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Abstract

This thesis presents part-based approaches to object class detection in sin-

gle 2D images, relying on pre-built CAD models as a source of synthetic

training data.

Part-based models, representing an object class as a deformable constella-

tion of object parts, have demonstrated state-of-the-art results with respect

to object class detection. Typically, the majority of part-based approaches

rely on real training images of publicly available image data sets and conse-

quently, the positive output of those detectors is restricted to the viewpoints

which are represented by those real training images. However, progress in

the domain of computer graphics enables the generation of photo-realistic

renderings on demand from a database of CAD models, which can serve as

training source for learning an object class detection approach. In this the-

sis, we present part-based object class detection methods which are based

on synthetically generated positive training images and real negative train-

ing images, thereby combining the advantages of the two domains described

above. More specifically, photo-realistic object parts, representing the ob-

ject class being trained, are learnt in an unsupervised way without requiring

any manual bounding box, object part, or viewpoint annotations during the

training process. The established object parts are efficiently combined into

an object class detection framework relying on two part-based models with

different learning paradigms. In addition, we outline an extension of our

detection framework which is able to cope with multiple object classes.

The approaches to object class detection are evaluated on standard bench-

mark data sets and achieve state-of-the-art results with respect to object

class detection in single 2D images.
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Chapter 1

Introduction

In this chapter, we motivate our work on object class detection and explain the chal-

lenges in this research area. Further, we describe the contributions to object class

detection provided by this thesis and outline its context.

1.1 Motivation

As outlined in (10), for a human a fraction of a second is enough to interpret a novel

image. For example, a glance at Figure 1.1 is sufficient to detect all individual object

instances and identify the way in which they might interact. In computer vision a long-

term objective is to replicate this ability of the human vision system with respect to

scene understanding. Replicating this ability would enable new possibilities for appli-

cations such as autonomous robots for domestic or rescue scenarios, driver assistance

systems, or visual surveillance. In order to achieve this objective, the scene under-

standing problem can be divided into subtasks. Object class detection is one of the

key requirements. It denotes the ability to detect all object instances of a predefined

object class within an image.

In recent years remarkable progress has been achieved in the area of object class de-

tection based on robust local image features (86) in conjunction with machine learning

techniques (11). In contrast to holistic object class detection approaches, which model

the entire appearance of object instances within an object class (21, 93), part-based

approaches to object class detection represent object instances within an object class

as a flexible constellation of individual object parts. They have already shown an

1



1. INTRODUCTION

Figure 1.1: For a human a glance is enough to recognize all individual object instances

in this image and identify their possible interactions (10). The image is taken from the

PASCAL VOC2006 data set (28).

excellent detection performance for various object classes (3, 34, 40, 72). Typically,

approaches to object class detection, including part-based approaches, mainly rely on

publicly available data sets (27, 100, 129) for training. These data sets consist of man-

ually annotated consumer photographs collected from photo-sharing web sites which

usually reflect typical object views. A good example, for instance, is the object class

car within the PASCAL VOC2006 data set (28). The majority of the cars within this

data set is shown from the point of view of a person. Consequently, a detector for

the object class car relying on those images as positive training set would not be able

to detect cars from a bird’s eye view, since the positive set of training images does

not include this viewpoint. However, the domain of computer graphics enables the

generation of photo-realistic renderings from pre-built CAD1 models on demand from

arbitrary viewpoints with varying lighting and background conditions, which can be

used as positive training images for learning to detect an object class.

1Abbreviation for Computer-Aided Design

2



1.2 Challenges in Object Class Detection

Consequently, the present thesis proposes methods for object class detection which com-

bine the advantages of part-based object class detection approaches with the advantages

of synthetically generated training images. The described part-based approaches rely

on object class specific databases of pre-built CAD models to generate positive training

images which avoid the need for any real positive training images in addition to a set

of real negative training images.

1.2 Challenges in Object Class Detection

The main objective of this thesis is to develop algorithmic approaches to object class

detection: given a 2D image from an optical camera, we intend to detect all object

instances of a predefined object class. In this thesis, we follow the work of (68) and

rely on the visual similarity of object instances in order to form object classes such as

car, bicycle, or motorbike. In the following, we describe the main challenges in the area

of object class detection and we briefly outline how the present thesis addresses these

problems:

Figure 1.2: The appearance of object instances within an object class can vary signifi-

cantly. The images are taken from the PASCAL VOC2006 data set (28).

• Intra-class Variance: One major problem of object class detection is that object

instances within an object class can vary greatly in appearance. As illustrated

3



1. INTRODUCTION

in Figure 1.2, these differences arise from a variability in geometry or texture.

Although all cars in Figure 1.2 are shown from the same viewpoint, significant

variations in appearance occur. An approach to object class detection must be

able to deal with intra-class variation and should be able to detect all object

instances of an object class. In this thesis, this problem is addressed by using

part-based models which are established from a database of pre-built CAD mod-

els and a set of real negative images. A part-based model exploits the fact that

within an object class the appearance of object parts, i.e., local image areas, is

less variable and that these object parts occur in a consistent geometric configu-

ration. In addition, CAD models are used to generate systematic variations of the

object class being trained. Further details on part-based models and CAD mod-

els are given in Section 2.2 and Section 2.3. Furthermore, in order to model the

appearance of an object class, all proposed approaches rely on machine learning

techniques (11) in conjunction with local image features (86), which are invariant

against small geometric variations.

Figure 1.3: Pose variance of an object instance within the object class car. The images

are taken from the 3D Object Category data set (100).

• Pose Variance: As shown in Figure 1.3, one object instance of an object class

can also cause significant variation in appearance when it is seen from different

viewpoints. Object class detectors require the ability to deal with pose varia-

tion and should be able to detect all object instances of an object class from

arbitrary viewpoints. However, object class detection approaches mainly rely on

publicly available data sets of real images which often consist of images showing

only some of the object views. Consequently, the resulting object class detectors

are restricted to those viewpoints. To address this problem, we resort to CAD

models as a source of synthetic training data which allows us to generate training

4



1.2 Challenges in Object Class Detection

images of the object class being trained from arbitrary viewpoints. Based on

these synthetically generated positive training images and a set of real negative

images, part-based object class representations are built which are able to better

deal with pose variation.

• Occlusion and Background Clutter: As shown in Figure 1.4, object instances

are often occluded by other object instances, or some parts of an object instance

stretch beyond the image border. In this work, this problem is addressed by part-

based models which have an increased robustness to partial occlusion (104). As

also shown in Figure 1.2 or Figure 1.4, an object instance can occur in different

environments. In this thesis, we rely on CAD models which allows changing the

background of the synthetically generated positive training images systematically

in order to take into account those background variations during the training of

an object class.

Figure 1.4: Occlusions in real world images are normally caused by other object instances

or by parts of an object instance stretching beyond the image border. The images are taken

from the PASCAL VOC2006 data set (28).

• Supervision of Training Data: Most of the existing object class detection

approaches are trained on publicly available data sets (27, 100, 129). All training

images of those data sets are provided at least with a rectangular bounding box,

a weak pose annotation, and sometimes even with a segmentation mask. The

generation of such annotations for a training image requires significant human ef-

fort. However, the training of an object class detection system should require as

little manual intervention as possible. In this thesis, we circumvent this issue by

resorting to pre-built CAD models as a source of synthetically generated positive

training images. We argue that it is legitimate to access this resource for com-

puter vision approaches in the same way as manually annotated large-scale image

5



1. INTRODUCTION

databases are used in other approaches. All proposed approaches in this work

rely on CAD models to generate positive training images and hence, no manual

bounding box or viewpoint annotations within the synthetically generated posi-

tive images are necessary, since this information is automatically provided during

the generation of an image.

• Multiple Object Classes: Different methods exist to detect object instances

from multiple object classes within an image. One common strategy to multi-

class object detection is termed ’one-versus-all’: during the training and detection

process of an object class detection framework each object class is treated inde-

pendently from all other object classes. In contrast, in this thesis we present

additional approaches to multi-class object detection relying on different sharing

strategies of object parts to exploit the dependencies and similarities between the

object classes being trained.

1.3 Contributions

In the following, we highlight the main contributions of this thesis:

• Rendering Synthetic Training Data: We present part-based approaches to

object class detection which rely on pre-built CAD models as a source of synthetic

training data and therefore avoid the need for any real positive training images

of the object class under training. Based on an object class specific database of

CAD models, positive training images are generated on demand including sys-

tematic variations in viewpoint, background, and lighting. Consequently, the pro-

posed part-based approaches to object class detection do not require any manual

bounding-box or viewpoint annotations, since this information is automatically

provided by the rendering process.

• Finding Suitable Object Parts: Based on synthetically generated positive

training images and a set of real negative training images, we present two different

approaches for an unsupervised identification of object parts which are suitable

to represent the object class being trained. In contrast to the first proposed

approach, which is restricted to discrete viewpoints on the viewsphere, the second

proposed approach makes use of viewpoint symmetries and part similarities within

6



1.4 Thesis Context

an object class over the entire viewsphere to discover common object parts such

that an optimal coverage of intra-class and viewpoint variation is guaranteed.

• Combining Different Learning Paradigms: The proposed approaches to

object class detection combine two part-based models which rely on different

learning paradigms into one common object class detection framework. These

approaches exploit the benefits from these different learning paradigms by relying

on generatively trained part-based models to produce initial object hypotheses,

which are subsequently verified by a discriminatively trained part-based model to

provide each initial object hypothesis with a final detection score.

• Object Part Sharing Strategies for Multi-Class Object Detection: We

present and compare different learning methods for multi-class object detection

which rely on different part sharing strategies to determine their suitability for

learning multiple object classes on a larger scale.

1.4 Thesis Context

In this section, we describe how the present thesis is related to previous work. We

identify links to part-based models and to the use of CAD models in computer vision

which we briefly summarize in the following. Detailed surveys of related work are given

in Chapter 3, Chapter 4, and Chapter 5.

1.4.1 Part-Based Models

The idea of representing an object class as a flexible arrangement of object parts was

originally introduced by (44). Early approaches relying on this idea (14, 15, 38, 125, 126)

used hand-labeled part locations and interest point detectors (85) for learning a part-

based model. Further part-based approaches also built on interest point detectors to

form a code book representation of an object class (1, 71). With the efficient match-

ing scheme of (36) the focus has moved to tree-structured and star-structured mod-

els (36, 39) and their extensions with spatial priors (19, 20). The efficient matching

scheme allows an exhaustive search for those part-based models over all possible part

locations within an image by using the generalized distance transform (35) and dy-

namic programming. More recently, discriminatively trained part-based models have

7



1. INTRODUCTION

been introduced by (8, 37, 66). The discriminative part-based model of (37) is extended

in (34, 91) with the introduction of mixture models and part sharing among the com-

ponents of such a mixture model. The present thesis takes up the original idea of (44)

and represents an object class as a flexible constellation of object parts.

1.4.2 CAD Models

The use of CAD models in computer vision has a long history. First approaches used

textureless CAD models in order to establish a recognition system for a specific object

instance (55, 59, 60, 62, 63) relying on simple features such as surface normals, surface

curvature, or edge features. Further approaches matched groups of line segments on an

object model (81), established a relational graph representation of a CAD model (46),

relied on indexing methods or geometric hashing (128), or resorted to a textured CAD

model for the detection and the pose estimation of a specific object instance (2). More

recently, the idea of using both textureless and textured CAD models for computer

vision tasks has regained attention, notably in (77) aligning a CAD model to obtain

the pose of a specific object instance, in (23, 119) recognizing 3D objects in an image or

point clouds, or in (69, 114) using CAD models to establish a virtual scene for evaluating

local image features or surveillance systems. There is also an increasing interest to use

CAD models for object class detection approaches (78, 79, 82, 94, 97, 109). In the

present thesis, we take up the idea to use CAD models for computer vision tasks and

propose part-based approaches to object class detection relying on a database of pre-

built CAD models as a source of synthetically generated training data.

1.5 Thesis Overview

In Chapter 2 preliminary information is provided: an overview of the used terminology

in this thesis and a brief introduction to part-based models are given. In addition, an in-

troduction to the generation of synthetic training images, an overview of the benchmark

data sets, and a description of the evaluation criterion in object class detection are pro-

vided. In Chapter 3 our first part-based approach to object class detection is presented

which is based on a database of CAD models and real negative images, the Multi-View

Model. The Multi-View Model establishes several viewpoint-specific part-based models

and combines the responses of these models in a joint spatial pyramid encoding. The

8



1.5 Thesis Overview

detection performance of the Multi-View Model is evaluated on several benchmark data

sets. Based on the analysis of theMulti-View Model, we present in Chapter 4 our second

part-based approach to object class detection which also relies on a database of CAD

models and real negative images, the Viewsphere Model. In contrast to the Multi-View

Model, the Viewsphere Model establishes an object class representation which is based

on an object part sharing procedure to densely cover the entire viewsphere. We compare

the detection performance of the Viewsphere Model on several benchmark data sets.

In Chapter 5 the Viewsphere Model is extended to cope with multiple object classes.

We present and compare three different learning strategies to represent multiple object

classes on the entire viewsphere. Chapter 6 concludes this thesis with a summary and

provides an outlook on possible research directions in the area of object class detection.

9
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Chapter 2

Preliminaries

This chapter gives a brief overview of the terminology and a general introduction to

part-based models. In addition, detailed descriptions of the part-based models, which

are used in this thesis, are provided. In this work, we rely on a database of pre-built

CAD models to generate positive training images for our proposed object class detec-

tion approaches. A short introduction into this topic is provided by describing the

properties of CAD models and the rendering process, which generates the synthetic

training images. This chapter concludes with a description of the standardized evalua-

tion criterion in the area of object class detection and an overview of the data sets, on

which the proposed detection approaches of this thesis are evaluated.

2.1 Terminology

In the following, a brief explanation of the terminology used in the present work is

provided:

• Object Instance: An individual object which is unique in the world (e.g. my

mother’s car).

• Bounding Box: The outer contour of an object instance within an image is

marked by the smallest possible axis-aligned rectangle.

• Object Class: A set of object instances which share visually similar properties

are grouped together into one object class (e.g. car, bicycle, or motorbike). Also

termed object category.

11



2. PRELIMINARIES

• Image Classification: Image classification predicts whether an image contains

one or more object instances of a specific object class.

• Object Class Detection: Object class detection answers the following question:

are there any object instances of a specific object class in an image and if so, where

are these object instances located? The position of an object instance within an

image is marked by a bounding box.

• CAD Model: A CAD model is a collection of 3D points, also called vertices.

Based on these vertices, polygons are defined which describe the 3D surface of

an object. In addition, for a CAD model different materials are defined and each

vertex is connected to a material. Some CAD models also rely on textures, in

order to increase the level of detail. A CAD model is also termed 3D object model

or 3D model.

• Rendering Process: A rendering process refers to a method, by which a com-

puter creates a synthetic image from a CAD model.

• Discriminative Model: A model learnt by a machine learning approach, which

establishes a decision boundary between a set of positive and negative training

samples, is termed a discriminative model. In simple terms, a discriminative

model describes directly what distinguishes an object class from other object

classes.

• Generative Model: A generative model describes what all object instances of

an object class have in common and builds an explicit model for each object class

(while ignoring the other object classes).

• Patch: A local image area of an object instance is termed patch.

• Local Image Feature: A local image feature encodes a patch. To this purpose,

different techniques are described in the literature.

• Object Part: Local image areas or patches which have a similar appearance over

all object instances of an object class are termed object parts or simply parts.

• Part-Based Model: In general, a part-based model represents an object class

based on object parts and their spatial relations.

12
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• SVM Classifier: A Support Vector Machine (SVM) classifier is a discriminative

learning technique. It models directly the decision boundary between a set of

positive and negative training samples.

• Object Part Detector: The appearance of an object part is modeled by an

SVM classifier in conjunction with a local image feature. We term such an SVM

classifier object part detector or part detector.

2.2 Part-Based Models

The principle of a part-based model is shown in Figure 2.1. Within an object class,

object instances can vary greatly in appearance which induces significant intra-class

variance. However, within sufficiently small local image areas, indicated by the colored

boxes in Figure 2.1, the appearance variations within an object class are less pro-

nounced. As mentioned in Section 2.1, these local image areas are termed object parts

or simply parts. In addition to having less appearance variation, these object parts

often occur in a consistent geometric constellation within an object class. For example,

for all object instances shown in Figure 2.1, the ’green part’ is always above the ’red

part’ and the ’red part’ is always to the left of the ’yellow part’. Consequently, the

Figure 2.1: The basic idea of a part-based model: within an object class the appearance

of object parts (colored boxes) is less variable and the spatial arrangement of these parts

often follows a consistent geometric configuration. The images are taken from the PASCAL

VOC2006 data set (28).

basic idea of a part-based model is to represent an object class based on the appearance

of object parts and their geometric constellation. When using a part-based model in

order to establish a representation of an object class, the following three questions have

to be considered:

13
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Figure 2.2: Examples of part-based models with different geometric structures: a star-

structured model (left), where all object parts are connected to one reference part (green

object part). A tree-structured model (center) has one root part (green object part) and

each object part is only connected to its own fixed reference part. Within a fully connected

model (right) each object part is connected to all other object parts.

• Part Positions: The first question is which local image areas within the object

class under training are suitable to serve as parts for this object class. Various

approaches to this problem are described in the literature. For example, in (19,

36, 103) object parts are manually defined or (53, 78) suggest a fixed grid-based

subdivision of object views. The approaches of (38, 72, 84) rely on interest point

detectors (85) to determine part positions. As shown in (34), it is also possible to

treat the part positions as hidden or latent variables during the training process

of a part-based model. In this thesis, we propose two different approaches to

determining suitable part positions within the synthetically generated positive

training images; see Chapter 3 and Chapter 4, respectively.

• Part Appearance: The second question in conjunction with a part-based model

is how to represent the appearance of an object part. Early approaches model the

appearance of an object part based on simple image patches, as described in (1,

73, 74). However, in recent years there is a growing consensus in the literature

that local image features provide a robust and efficient way to represent the

appearance of an object part (37, 72, 78, 87, 89, 109). In this thesis, we represent

the appearance of an object part by using the Histograms of Oriented Gradient

(HOG) descriptor of (21) in conjunction with an SVM classifier (105, 120).

• Geometric Structure: The third question of a part-based model concerns the

geometric structure which encodes the spatial relations between the object parts.

Figure 2.2 shows some common part-based models with different geometric struc-

tures: a star-structured model, where each object part is only connected to a fixed

reference object part, a tree-structured model, where each object part is only con-
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nected to its own fixed reference object part, and a fully connected model, where

each object part is connected to all other object parts. The fully connected

model has the most complex geometric structure which comprehends both, the

star-structured model and the tree-structured model. A brief overview of fur-

ther geometric structures, e.g., the k-fans of (19), is given in (16). Due to the

high computational complexity of a fully connected model (39), a star-structured

model or a tree-structured model is often used as an approximation of a fully

connected model.

In the present work, we propose approaches to object class detection which combine

two different part-based models: the first model is a star-structured model chosen

due to its computational efficiency during training and detection. We term this star-

structured model the Star Model. The second model establishes a representation for

the simultaneous occurrence of object parts by relying on the spatial pyramid approach

of (70). We term the second model the Spatial Pyramid Model. The Star Model and

the Spatial Pyramid Model rely on different learning paradigms: originally, the Star

Model is a generative part-based model (36, 50), while as described in Section 2.2.2,

the Spatial Pyramid Model is a discriminatively trained part-based model. For a more

detailed discussion on generative and discriminative learning methods, see (50, 67).

The proposed object class detection approaches in Chapter 3 and Chapter 4 efficiently

combine these two part-based models with different learning techniques. However, in

the following these two part-based models are described independently of each other.

2.2.1 Star Model

As shown in Figure 2.2 (left), the Star Model is a star-structured model and consists of

several object parts, which are all connected to the fixed reference part. In this section,

we first describe a training procedure in order to establish a Star Model for a specific

object class and then, we outline the detection procedure for the Star Model.
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2.2.1.1 Training Procedure

For describing the training procedure of the Star Model we assume positive training

images which represent the object class being trained at a predefined training scale1.

Typically, this training scale represents the object class on the smallest size which

should be detected, and the object instances within these training images differ in

width and height. For example, on the same training scale the object instance of a

compact car within a training image is smaller than the object instance of a limousine.

In addition, we assume that within the positive training images all object parts are

manually determined and annotated by bounding boxes2. These bounding boxes can

also vary in width and height. For example, the wheel of a compact car normally is

smaller than the wheel of a limousine.

Based on these assumptions, we outline a training procedure for the Star Model for

a specific object class consisting of two sequentially performed steps: the first step is

building an appearance model for each object part and the second step is modeling the

spatial relation between each object part and the fixed reference part. An illustration

of this sequential learning strategy is given in Figure 2.3.

2.2.1.1.1 Part Appearance

Based on the determined bounding boxes within the positive training images at the

predefined training scale, a collection of part-specific training samples, which vary in

width and height, is generated for each object part (see Figure 2.3). Subsequently, the

training samples for each object part are rescaled to their corresponding average size

(i.e. average width and average height) to obtain normalized and part-specific training

samples for each object part (see Figure 2.3). In order to model the appearance of

an object part at the predefined training scale, we rely on a discriminatively trained

representation that combines the HOG descriptor of (21) with a linear SVM classifier.

Discriminative training methods such as SVM classifiers (105, 120) or Adaboost (47)

are based on a training set of positive and negative samples and establish a model by

finding a decision boundary between the positive and the negative samples. As shown

1The training scales of the synthetically generated positive training images for the different object classes

are given in the experimental sections of Chapter 3, Chapter 4, and Chapter 5.
2In Chapter 3 and Chapter 4 respectively, we propose two different approaches for automatically de-

termining suitable part positions within the synthetically generated positive training images instead of

choosing them manually.
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2.2 Part-Based Models

Figure 2.3: Sequential training procedure of the Star Model under the assumption that

the part locations within the positive training images at the predefined training scale are

given: first, an appearance model for each object part is established. The normalized part-

specific training samples and background images are used in conjunction with the HOG

descriptor to train a linear SVM classifier as an object part detector for each object part.

Second, the spatial relation between an object part and the fixed reference part is modeled

by a Gaussian mixture model. In this thesis, we use the center of the positive training

images as reference and the average size of the positive training samples at the predefined

training scale as mean bounding box.

17
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in Figure 2.3, the normalized and part-specific training samples are encoded with the

HOG descriptor and serve as positive samples for the SVM training. Background im-

ages, which do not contain any object instance of the object class being trained, are also

encoded with the HOG descriptor and serve as negative samples during the SVM train-

ing. In general, the detection performance of an SVM classifier depends on the set of

training samples. Learning an SVM classifier on a few and non-representative training

samples normally results in a poor detection performance. As described in (113), the

training of an SVM classifier should be based on a comprehensive but computationally

feasible training set of positive and negative samples. For the positive samples this

procedure is straight forward, since all normalized and part-specific training samples

are given and can be encoded with the HOG descriptor in order to serve as positive

samples. Considering all possible negative samples from a set of background images

simultaneously during training is infeasible as every possible image patch within a back-

ground image can potentially serve as a negative sample. In order to keep the number

of negative samples computational feasible and still obtain a comprehensive training

set of negative samples we rely on a ’bootstrapping’ procedure (24, 34, 99, 113) to train

a linear SVM classifier as follows:

1. Create an initial training set consisting of all positive samples and randomly

selected negative samples from a set of background images.

2. Train a linear SVM classifier based on the current training set.

3. Evaluate all background images with the current linear SVM classifier by using

the detection procedure of Section 2.2.1.2 and collect all incorrectly classified

negative samples, i.e., false positive samples.

4. Update the current training set by adding a random subset of the collected false

positive samples as additional negative samples to the training set.

5. Repeat this procedure from step 2 until a predefined number of maximum boot-

strapping iterations has been reached or no further false positives have been

detected in the background images.

As shown in Figure 2.3, after a ’bootstrapping’ procedure the appearance of an object
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part at the predefined training scale of a Star Model is represented by a linear SVM

classifier. We term such an SVM classifier part detector.

2.2.1.1.2 Part Geometry

The second step of the sequential learning strategy for the Star Model is to model

the spatial uncertainty between each object part and the fixed reference part at the

predefined training scale of the positive training images (see Figure 2.3). However, we

do not choose an object part as reference part, instead we use the center of the positive

training images at the predefined training scale as reference which actually represents

the center of the object class being trained. The reason is that this choice enables a

simple but effective method to predict a suitable bounding box during the detection

procedure described in Section 2.2.1.2: the average size (i.e. the average width and

the average height) of the positive training images at the predefined training scale is

projected as mean bounding box into an input image. In order to model the spatial

uncertainty between an object part and the center of the positive training images,

all established part detectors, i.e., the linear SVM classifiers of Section 2.2.1.1.1, are

applied to the positive training images at the predefined training scale. As illustrated

in Figure 2.3, we obtain for each object part detector a part detector response on all

positive training images. For each object part we measure in each positive training

image the location x of the maximum detection response with respect to the image

center1. We model for each part the spatial distribution pdfX of all locations X by

using a Gaussian mixture model θ = {αc, µc,Σc} with C components (1≤c≤C, c∈N)

pdfX(x|θ) =
C∑
c=1

αcN(x|µc,Σc) =

C∑
c=1

αc
1

2π|Σc|
1
2

e−
1
2
(x−µc)

′
Σ−1

c (x−µc) (2.1)

where αc is the prior probability of a component c, µc is the mean vector of a component

c, and Σc is the covariance matrix of a component c. The parameters of a Gaussian

mixture model are automatically estimated by the approach of (13). By choosing a

mixture of Gaussian distributions, we are able to perform an efficient detection approach

which is described in Section 2.2.1.2.

Finally, we obtain a Star Model for a specific object class at the predefined training

1The position of the maximum detection response with respect to the center of a training image is

measured in column direction u and row direction v, i.e., x′ = (∆u,∆v).
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scale. The Star Model consists of a mean bounding box, i.e., the average size (the

average width and the average height) of all positive training images at the predefined

training scale, and several object part detectors which are represented by linear SVM

classifiers. Each object part detector has its own Gaussian mixture model conditioned

to the center of the object class being trained. An example for a Star Model is shown

in Figure 2.3.

2.2.1.2 Detection Procedure

As described in (36), a part-based model in general can be represented by a collection

of n object parts P = {p1, . . . , pn}. For each pair of connected object parts pi and

pj there is an edge (pi, pj) and Υ denotes the set of all connected object parts. An

object instance within an image is given by a configuration L = (l1, . . . , ln), where each

li specifies the location of an object part pi. The process to detect an object instance

in an image can be formulated in terms of energy minimization (36). The energy of

a specific configuration in an image, i.e., of an object instance of a class at a specific

location is defined by the energy which is necessary to place each object part onto its

location and the energy necessary to deform each pair of connected object parts from

their optimal relative arrangement. The energy necessary to place an object part in an

image onto a location li is given by a function ai(li). The energy necessary to deform

a given pair of connected object parts from their optimal relative arrangement and to

place an object part pi onto a location li and an object part pj onto a location lj is given

by a function sij(li, lj). Then, an optimal configuration Lopt of a part-based model in

an image is defined by

Lopt = argmin
L

( ∑
(pi,pj)∈Υ

sij(li, lj) +

n∑
i=1

ai(li)

)
. (2.2)

In general form, i.e., for a fully connected model, the computational complexity to mini-

mize Equation 2.2 is O(mn), where m is the number of possible locations for each object

part in an image and n is the number of object parts. One possible approach to restrict

the computational complexity during the detection process of a part-based model is to

reduce the part locations to a small set of possibilities returned by an interest point de-

tector (38, 39, 125). However, as shown in (39) such interest point detectors reduce the

overall detection performance of a system in contrast to an exhaustive search over all
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possible part locations. As mentioned in Section 2.2, the Star Model is a star-structured

model. The restriction of a part-based model to this specific geometric structure en-

ables a dynamic programming approach that takes O(nm2). In (36) it is shown that

an additional restriction for sij in terms of a Gaussian distribution (i.e. Mahanalobis

distance) yields a minimization of Equation 2.2 in O(mn) by using the generalized

distance transform (35). As described in Section 2.2.1.1.2, the spatial uncertainty for

each object part of the Star Model is modeled by a mixture of Gaussian distributions.

Consequently, we adapt the exhaustive detection approach of (36) over all possible part

locations. In the following, we describe the resulting detection procedure for the Star

Model. The equivalence of this detection procedure to (36) is shown in Appendix D.

Given an input image the overall detection process of the Star Model, i.e., minimiza-

tion of Equation 2.2, is illustrated in Figure 2.4. Initially, the given input image is

represented by an image pyramid in order to detect object instances of different sizes

within the input image. Consequently, the following detection procedure is applied to

each scale of the image pyramid: the image at a specific scale of the image pyramid is

encoded by the HOG descriptor and for each defined object part of the Star Model we

apply the corresponding linear SVM classifier to this encoded image to obtain a part

detector response. Within a part detector response a high detection score indicates

that in this area the input image contains the object part of the corresponding SVM

classifier with a high probability. Consequently, we have to invert each part detector

response, since the detection process of Equation 2.2 is defined in terms of a minimiza-

tion problem. For each defined object part of the Star Model, a distance transform (35)

on the corresponding inverse part detector response is performed for each component of

the related Gaussian mixture model (see Section 2.2.1.1.2). The transformed responses

of a defined object part are ranked with the corresponding prior probabilities of the

related Gaussian mixture model (see Appendix D for details). Finally, the transformed

and ranked part detector responses of all defined object parts are added and inverted to

obtain a final score map, where the local maxima indicate object hypotheses at a spe-

cific scale of the image pyramid. By back-projecting the provided mean bounding box

of the Star Model into the input image, we are able to predict for each local maximum

a suitable bounding box with an associated detection score. Finally, across all defined
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Figure 2.4: The detection procedure of the Star Model is performed at each scale of an

image pyramid in order to detect object instances of different sizes: at each scale of the

image pyramid part detector responses of all object parts are calculated by applying the

corresponding linear SVM classifiers to the encoded image. We take the inverse part detec-

tor responses and perform a distance transform. The transformed responses are inverted

and added in order to obtain a final score map at a specific scale of the image pyramid,

where a local maximum indicates an object hypothesis. Across all scales of the image

pyramid we keep a fixed number of object hypotheses.
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scales within the image pyramid we keep a fixed number1 of those object hypotheses

which have the highest detection scores.

2.2.2 Spatial Pyramid Model

In contrast to the generative Star Model of Section 2.2.1, we introduce in this sec-

tion a discriminatively trained part-based model, the Spatial Pyramid Model. In the

following, we describe the training procedure in order to establish a Spatial Pyramid

Model for a specific object class. As shown in Figure 2.5, we assume a set of positive

training images which represents the object class at the predefined training scale, a set

of negative training images, which does not contain any object instances of the object

class being trained, and a set of already trained object part detectors at the predefined

training scale (as described in Section 2.2.1.1.1).

Based on the training images and the object part detectors, the Spatial Pyramid Model

encodes the simultaneous occurrence of all object parts by relying on the approach

of (70) in conjunction with an SVM classifier. In the first training step of the Spatial

Pyramid Model, the following procedure is performed on all training images: a training

image is encoded by the HOG descriptor and the corresponding SVM classifiers of all

object parts are applied to obtain part detector responses. We follow the approach

of (70) and rely on a spatial pyramid representation, which partitions a given training

image into increasingly fine sub windows, in order to encode the detector response of

each defined object part on a training image (see Figure 2.5). In general, a spatial

pyramid representation has the advantage that it imposes a regularly spaced grid sub-

division which is relative to the area of a training image and thus independent of the

aspect ratio and the dimension of a given training image. As illustrated in Figure 2.5,

for each part detector response a spatial pyramid with K levels (1≤ k≤K, k∈N) is

defined, resulting in a fixed hierarchy of rectangular sub windows. A spatial pyramid,

for example, can be defined by a linear subdivision, where the number of sub win-

dows at a specific level k has k sub windows along the column and row direction, or

a quadratic subdivision, where the number of sub windows at a specific level k has

2k−1 sub windows along the column and row direction. For each defined sub window

of an object part detector, we sum up all the positive detection responses, i.e., all val-

1The number of object hypotheses per input image of the proposed object class detection approaches is

given in Chapter 3 and Chapter 4.
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Figure 2.5: The principle of the Spatial Pyramid Model : the spatial layout of all part

detector responses is encoded into a spatial pyramid. Based on positive and negative

training images, we obtain histogram based descriptors which are used to train an SVM

classifier.

ues above zero, of the corresponding object part detector and obtain one real-valued

number. We concatenate the resulting real-valued numbers of all defined sub windows

for all object part detectors in order to obtain a histogram based descriptor for a given

training image. The dimension d of such a descriptor depends on the number of object

parts n and the number of defined spatial pyramid levels K (1≤k≤K, k∈N). For a

linear subdivision of rectangular sub windows we obtain a descriptor with

d = n

K∑
k=1

k2 = n
1

6
K(K + 1)(2K + 1) (2.3)

dimensions and with a quadratic subdivision of rectangular sub windows we obtain a

descriptor with

d = n

K∑
k=1

4k−1 = n
1

3
(4K − 1) (2.4)

24



2.3 Synthetic Training Data

dimensions.

Given the descriptors of the positive and negative training images, the second training

step of the Spatial Pyramid Model is to train an SVM classifier by using the ’bootstrap-

ping’ procedure described in Section 2.2.1.1.1. For the Spatial Pyramid Model we rely

on a nonlinear SVM classifier (105) with an intersection kernel (56). A nonlinear SVM

classifier has an increased discriminative power at the cost of an increased computa-

tional complexity compared to a linear SVM classifier (122). However, our proposed

approaches to object class detection limit the number of those nonlinear classifications

to a few evaluations per image by pre-selecting object hypotheses using the Star Model.

Consequently, the Spatial Pyramid Model represents an object class with a discrimina-

tively trained nonlinear SVM classifier based on a spatial pyramid representation.

2.3 Synthetic Training Data

In contrast to the majority of object class detection methods, the proposed object class

detection approaches of this thesis rely on CAD models as a source of synthetic training

data. As described by Liebelt in (76), both the CAD models and the rendering process

suffer from imperfections which result in a gap between synthetically generated images

and real world images. For example, in our case these imperfections are caused by the

opaque rendering of originally transparent surfaces as illustrated in Figure 2.6 (left and

center). However, in the present work we argue like Liebelt in (76) that these imperfec-

tions of synthetically generated training images are comparable with the imperfections

resulting from a manually chosen database of real training images (27, 100, 129). In

order to create a database of training images which should be representative for a given

detection task, both processes rely on different assumptions and heuristics with respect

to intra-class, pose, and background variations. But in this thesis we argue that the

advantages of synthetically generated positive training images exceed their shortcom-

ings: in contrast to real positive training images, a source of synthetic training data

is able to create training images of different CAD models on demand from arbitrary

viewpoints with varying lighting and background conditions. Meta data in terms of a

binary segmentation mask, as illustrated in Figure 2.6 (right), and viewpoint annota-

tions are automatically provided by the rendering process described in Section 2.3.2.

In this thesis we make use of techniques from the domain of computer graphics in order
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Figure 2.6: Comparison between a real training image (left) and a synthetically generated

training image (center). A byproduct of the rendering process is a binary segmentation

mask (right) which is used to determine the bounding box of an object instance within the

corresponding training image.

to generate positive training images for the proposed object class detection approaches.

However, a detailed survey of the computer graphics domain is beyond the scope of

the present thesis. For an introduction to computer graphics we refer to the book by

Shirley (106). In the following sections only a brief introduction to this topic is pro-

vided by describing the properties of CAD models and the rendering process, which is

used in this thesis to generate positive training images.

2.3.1 CAD Models

In the present work, we rely on object class specific databases which are established

by downloading CAD models from commercial distributors such as turbosquid1 or

doschdesign2. We convert3 these models into the COLLADATM 4 file format which is

an XML-based scheme to represent a CAD model. Table 2.1 indicates that for each of

the PASCAL VOC2006 object classes a sufficient number of CAD models is available

from these commercial distributors.

In general, a CAD model is a collection of 3D points, also called vertices. Based on

these vertices, polygons (normally triangles) are defined in order to describe the 3D

surface of an object. In addition, for a CAD model different materials are defined

and each vertex of a CAD model is connected to a material. Such a material, which

consists of an ambient color coefficient ca, a diffuse color coefficient cd, a specular color

coefficient cs, and a specular color exponent ns, determines how a local area of an object

1http://www.turbosquid.com/
2http://www.doschdesign.com/
3In this thesis, we rely on NuGrafR⃝ distributed by Okino Computer Graphics to convert or modify our

CAD models (http://www.okino.com/nrs/nrs.htm/).
4http://www.khronos.org/collada/

26

http://www.turbosquid.com/
http://www.doschdesign.com/
http://www.okino.com/nrs/nrs.htm/
http://www.khronos.org/collada/


2.3 Synthetic Training Data

reflects a light source. Some CAD models use textures in order to increase the level of

detail of a rendered image. To this purpose each vertex is provided with 2D texture

coordinates and during the rendering process a texture is mapped onto the 3D surface

of an object based on these texture coordinates. Figure 2.7 illustrates some CAD

models which are used to represent the object classes bicycle, car, and motorbike. Also

see Appendix B for a visualization of all CAD models which are used in the present

thesis. In Appendix B we also provide for each CAD model statistical information

containing the number of vertices, the number of polygons, the number of materials,

and the number of textures. Based on these statistics we assess the impact of the CAD

models’ quality on the detection performance (see Section 4.5.2.4).

object class bike bus car cat cow dog horse mbike person sheep

no. of CAD models 2115 1556 18744 785 389 953 1248 426 1850 141

Table 2.1: Number of available CAD models at turbosquid.com for the PASCAL

VOC2006 object classes (accessed 2012-09-26).

Figure 2.7: Visualization of some CAD models to represent the object classes bicycle

(top), car (center), and motorbike (bottom). See Appendix B for a visualization of all

CAD models used in the present thesis.
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2.3.2 Rendering Process

One objective of this thesis is to use techniques from the computer graphics domain

in order to provide the proposed object class detection approaches with synthetically

generated positive training images. To this purpose, we have implemented a rendering

process based on OpenGL R⃝1 in conjunction with the OpenGL Shading Language in

order to make use of a programmable graphics pipeline. In our case it is necessary to

use a programmable graphics pipeline, since some of the described rendering techniques

(e.g. shadow mapping) are not available in the fixed-function pipeline of OpenGL. In

the implemented rendering process there remain differences between synthetically gen-

erated images and real world images. As shown in Figure 2.6 (left and center), these

differences between a real world image and a synthetically generated image are, for

example, due to the opaque rendering of originally transparent surfaces (e.g. glass

panes). However, in this work we argue that it is not necessary to completely close this

gap by improving the rendering quality (e.g. by using ray tracing). Instead we can

bridge the gap between synthetic and real world images by suitably chosen object class

representations.

In the following, we describe the techniques from the computer graphics domain im-

plemented with OpenGL R⃝ and the OpenGL Shading Language to synthesize positive

training images:

• Blinn-Phong Lighting Model: For our rendering process we have chosen the

Blinn-Phong lighting model (12) which is a modification of the Phong lighting

model (96) with a reduced computational complexity. The Blinn-Phong lighting

model is an empirical model of local illumination, assuming a point light source

at infinite distance. It has become the standard lighting model in most rendering

processes and describes the reflection I of a light source as a combination of three

components

I = Iambient + Idiffuse + Ispecular. (2.5)

The ambient component Iambient depends on the ambient color coefficient ca of

the material (see Section 2.3.1) and the ambient intensity Ia of the light source

Iambient = caIa. (2.6)

1http://www.opengl.org/
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The diffuse component Idiffuse depends on the position of the light source L⃗, the

surface normal N⃗ (see Figure 2.8 (left)), the diffuse color coefficient cd of the

material (see Section 2.3.1), and the diffuse intensity Id of the light source

Idiffuse = cdId

(
L⃗ · N⃗

|L⃗| · |N⃗ |

)
. (2.7)

The specular component Ispecular depends on the position of the light source L⃗,

the position of the camera V⃗ , the surface normal N⃗ (see Figure 2.8 (left)), the

specular color coefficient cs of the material (see Section 2.3.1), the specular color

exponent ns of the material (see Section 2.3.1), and the specular intensity Is of

the light source

Ispecular = csIs

(
N⃗ · (L⃗+ V⃗ )

|N⃗ | · (|L⃗+ V⃗ |)

)ns

(2.8)

By using the superposition principle the Blinn-Phong lighting model can also be

extended to multiple light sources. In our implementation, the rendering process

is able to handle four light sources where the number and the position of these

light sources are randomly determined.

• Antialiasing: A main problem of synthetically generated images is that lines

appear jagged because a synthesized line has to lie on the pixel grid which is just

an approximation. This jaggedness is also called aliasing and different methods for

reducing this detrimental effect are described in the literature. For our rendering

process we use the multisampling technique which is a standard approach for

antialiasing: multiple samples from neighboring pixels are used to calculate the

final pixel value. The difference between an image with and without antialiasing

is shown in Figure 2.8 (right). Further details on antialiasing are given in (106).

• Shadow Mapping: Shadows are an important element to improve the realism

of a synthetically generated image. For our rendering process a shadow mapping

algorithm is used which was introduced by (127). The first step of the shadow

mapping algorithm is to render the 3D scene from the position of the light source

and to store the depth information of the Z-buffer into a shadow map. The second

step is to render the scene from the position of the camera and subsequently, the

distance of the rendered points can be compared with the stored values in the

shadow map. Based on this comparison, it is possible to decide if a scene point

29



2. PRELIMINARIES

Figure 2.8: The Blinn-Phong lighting model has become the standard in most rendering

pipelines (left). The influence of antialiasing on a synthetically generated image (right).

is visible from a light source and therefore this point is illuminated or if a scene

point is not visible from a light source and therefore this point has to be rendered

shadowed. Examples of synthetically generated images with shadow mapping are

illustrated in Figure 2.9. Details on shadow mapping are given in (106).

Figure 2.9: Example images of our rendering process for the object classes bicycle (top),

car (center), and motorbike (bottom).
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• Background Variation: In order to take into account the background varia-

tions in real world images (see Section 1.2), we render the CAD models in front

of randomly selected background images which do not contain any object in-

stances of a relevant object class. In this thesis, for the rendered images we use

background images which stem from the TU Graz-02 data set (88). Examples

of synthetically generated images with these real background images are shown

in Figure 2.9. Note that for the proposed object class detection approaches we

additionally resort to real negative training images which are provided by the

benchmark data sets described in Section 2.5.

• Binary Segmentation Mask: As shown in Figure 2.6 (center and right), based

on the OpenGL Shading Language it is possible to establish a binary segmentation

mask for each generated training image. We render the CAD model from a given

viewpoint without the Blinn-Phong lighting model, without the shadow mapping,

and without all defined textures and materials of the CAD model. As a result,

we obtain a binary segmentation mask where the white pixels indicate the object

instance and the black pixels indicate the background within the corresponding

training image. We use such a binary segmentation mask to determine a bounding

box within the corresponding training image without any manual intervention.

2.4 Evaluation Criteria and Performance Measure

A standardized evaluation criterion and performance measure is essential to ensure

that the comparison between different object class detection approaches is equitable.

In this section, the naturally defined evaluation criterion in image classification (1) is

explained. Subsequently, we describe how this criterion has been adapted in the past

in order to obtain a standardized evaluation criterion and performance measure in the

area of object class detection which is also used in the present thesis.

2.4.1 Evaluation Criterion in Image Classification

Typically, an image classification system assigns a real-valued classification score1 to the

image being classified. This classification score is compared with a defined classification

1In this thesis, we exclusively rely on SVM classifiers which output real-valued classification scores.
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Figure 2.10: Possible evaluations in image classification based on the illustrated predic-

tion of a classification system (from left to right): true positive (TP), false negative (FN),

false positive (FP), and true negative (TN). In this case we assume that an image con-

taining a car has a positive ground truth label (left) and an image which does not contain

a car has a negative ground truth label (right). The images are taken from the PASCAL

VOC2006 data set (28).

threshold which leads to a binary classification: an image is classified as positive if the

assigned classification score is above the defined threshold and negative if the assigned

classification score is below the defined threshold. Consequently, the comparison of a

binary classification of an image against its corresponding ground truth label can have

four results: true positive (TP), true negative (TN), false positive (FP), or false negative

(FN). True positive means a positive labeled image is correctly classified as positive

and true negative means a negative labeled image is correctly predicted as negative.

False positive terms a negative labeled image which is incorrectly classified as positive

and false negative describes a positive labeled image which is incorrectly predicted

as negative. Figure 2.10 illustrates these four classification evaluations, based on the

assumption that an image containing a car is labeled as positive and an image which

does not contain a car is labeled as negative. With these definitions a true-positive-rate

is defined by

true-positive-rate =
nTP

nTP + nFN
=

nTP

nP
(2.9)

and a false-positive-rate is defined by

false-positive-rate =
nFP

nFP + nTN
=

nFP

nN
. (2.10)

Here, nTP is the number of true positives, nFN is the number of false negatives, nFP

is the number of false positives, and nTN is the number of true negatives. The number

of all positive labeled images within a data set is denoted by nP and the number of

all negative labeled images within a data set is denoted by nN . A receiver-operating-

characteristics (ROC) curve now plots the true-positive-rate versus the false-positive-

rate with a decreasing classification threshold, i.e., above this classification threshold
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an image is classified as positive and below this threshold an image is classified as

negative. From this curve the area-under-curve (AUC) is extracted in order to measure

the overall performance of a classification system. Figure 2.11 illustrates a receiver-

operating-characteristics curve with the area-under-curve as performance measure.

Figure 2.11: A receiver-operating-characteristics (ROC) curve is normally used in image

classification. With the area-under-curve (AUC) the performance of an image classification

approach is characterized.

2.4.2 Evaluation Criterion in Object Class Detection

In general, an object class detection system generates an object hypothesis, i.e., a

bounding box within an image, if the corresponding detection score of this object hy-

pothesis is above a defined detection threshold. However, in object class detection there

is no natural evaluation criterion as in image classification. In contrast to image classi-

fication, we have to decide whether the bounding box of a predicted object hypothesis

is close enough to a provided ground truth bounding box. For this purpose, Agarwal et

al. (1) suggest an overlap criterion based on the centroid of a predicted location and the

centroid of a ground truth bounding box. However, this criterion has been replaced in

the past by the criterion suggested by (28): a predicted bounding box Bp is considered

as correct (i.e. true positive) if the overlap o between this predicted bounding box Bp
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and a ground truth bounding box Bgt exceeds 50%. The overlap o is defined by

o =
Bp ∩Bgt

Bp ∪Bgt
. (2.11)

In contrast to image classification, multiple detections can occur, i.e., there could be

several correctly predicted bounding boxes for one ground truth bounding box. As sug-

gested in (28), such multiple detections are penalized: one detection is considered as

correct (true positive) and the remaining detections are considered as false detections

(false positive).

In contrast to image classification, a receiver-operating-characteristics curve is not suit-

able for the performance measure of an object class detection approach, since the total

number of negatives nN , which is required in the definition of the false-positive-rate

(see Equation 2.10), is not well defined. As described in (1), the number of negatives

nN is not a property of the input but rather an internal property of the implementation

of a detection system. A solution to this problem is given in (1) by the precision-recall

(PR) curve. The precision of a detection system is defined by

precision =
nTP

nTP + nFP
(2.12)

and the recall is given by

recall =
nTP

nTP + nFN
=

nTP

nP
. (2.13)

Note that the recall is the same as the true-positive-rate as in Equation 2.9. A precision-

recall curve now plots the precision versus the recall with a decreasing detection thresh-

old. From this curve the average-precision (AP) is extracted in order to characterize

the overall performance of an object class detection system. The average-precision is

equal to the area under the graph. Figure 2.12 illustrates a precision-recall curve with

the average-precision as performance measure.

2.5 Benchmark Data Sets

In the last few years, several benchmark data sets have been published in order to

evaluate and compare different object class detection approaches. Each of these data

sets has its own advantages and disadvantages, since each data set was designed for a

specific detection task. In the following, we describe two state-of-the-art benchmark
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Figure 2.12: In object class detection a precision-recall (PR) curve is used. With the

average-precision (AP) the performance of an object detection approach is characterized.

data sets for multi-view object class detection. Based on these two standardized data

sets we introduce our Multi-Class data set.

2.5.1 3D Object Category Data Set

The 3D Object Category data set has been introduced by Savarese and Fei-Fei (100)

in 2007 and contains altogether 10 different object classes: car, stapler, iron, shoe,

monitor, computer mouse, head, bicycle, toaster, and cellphone. The data set was

explicitly designed as a multi-view object class detection benchmark data set. The data

set contains for each object class 10 different object instances. Each object instance is

shown in front of a varying background from 8 different 45◦-spaced azimuth angles (left,

front-left, front, front-right, right, back-right, back, and back-left), 2 different elevation

angles, and 3 different distances. Figure 2.13 shows for each of the 8 different azimuth

angles an example image for the object classes car and bicycle. The 3D Object Category

data set is the current state-of-the-art benchmark data set for multi-view object class

detection and pose estimation.
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Figure 2.13: Example images from the 3D Object Category data set (100) for the classes

car (top) and bicycle (bottom). Each object instance from the 3D Object Category data

set is shown from 8 different 45◦-spaced azimuth angles (from left to right and top to

bottom): left, front-left, front, front-right, right, back-right, back, and back-left.

2.5.2 PASCAL VOC2006 Data Set

Since 2005 the PASCAL Visual Object Classes (VOC) challenge1 is a benchmark in

order to provide the computer vision community annually with a data set and standard-

ized evaluation criterion (26). In this thesis, we rely on the PASCAL VOC2006 data

set (28), since it is still a challenging data set with respect to intra-class variance, object

pose and size, illumination, and occlusion. In addition, the majority of the reported

detection approaches, which serve as reference to our proposed detection approaches, is

evaluated on this data set up to now. The PASCAL VOC2006 data set contains 5304

real world images from the Microsoft Research Cambridge database (107) and from the

1http://pascallin.ecs.soton.ac.uk/challenges/VOC/

36

http://pascallin.ecs.soton.ac.uk/challenges/VOC/


2.5 Benchmark Data Sets

photo-sharing web site flickr1. The data set is divided into 2618 training images and

2686 test images containing the 10 following object classes: bicycle, bus, car, cat, cow,

dog, horse, motorbike, person, and sheep. Figure 2.14 shows some example images

from the PASCAL VOC2006 data set.

Figure 2.14: Examples images from the PASCAL VOC2006 data set (28).

1http://www.flickr.com/
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2.5.3 Multi-Class Data Set

In Chapter 5 of this thesis, we also address the problem of multi-class object detection.

The 2D localization performance of the presented multi-class learning strategies is eval-

uated on three different test sets which consist of images from the 3D Object Category

data set (see Section 2.5.1) and the PASCAL VOC2006 data set (see Section 2.5.2).

Specifically, the following multi-class test sets are utilized:

• Bicycle-Motorbike test set: This test set contains 96 images from the 3D

Object Category data set showing two bicycle instances from the 48 defined

viewpoints of the 3D Object Category data set. In addition, we use the first

96 images from the VOC2006 motorbike test set which show only one motorbike

(not labeled as ’truncated’ or ’difficult’). See Appendix C for an illustration of

these motorbike images. Altogether this test set contains 192 test images.

• Bicycle-Car test set: This test set contains 192 images from the 3D Object

Category data set showing two bicycle and two car instances from the 48 defined

viewpoints of the 3D Object Category data set.

• Bicycle-Car-Motorbike test set: This test set contains the 192 test images

from the Bicycle-Car test set and the 96 motorbike images from the Bicycle-

Motorbike test set. Altogether this test set contains 288 test images.

2.6 Summary

In this chapter preliminary information has been provided: an overview of the termi-

nology and an introduction to the part-based models, which are used in this thesis,

have been given. In addition, an explanation of CAD models, a description of our ren-

dering process, an overview of standard benchmark data sets, and a description of the

evaluation criterion have been provided. In the following chapters, we propose different

approaches to object class detection, which exploit the advantages of part-based models

in conjunction with CAD models as a source of synthetically generated training data.
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Chapter 3

The Multi-View Model

In this chapter, we present our first part-based approach to multi-view object class

detection which is based on a database of 3D object models and a set of real negative

training images. This model allows us to detect object instances of a given object class

from multiple viewpoints. In this thesis, we term this approach the Multi-View Model.

We summarize previous work and focus on explaining the unsupervised training and

detection procedure of the Multi-View Model. This chapter is concluded by providing

the results of an experimental evaluation of the Multi-View Model.

3.1 Introduction

In the previous chapter, we have introduced the generative Star Model in Section 2.2.1

and the discriminative Spatial Pyramid Model in Section 2.2.2, two part-based models

relying on two different learning paradigms, and we have outlined in Section 2.3.2 a

rendering process in order to generate synthetic training images based on a database

of CAD models. In this chapter, we propose with the Multi-View Model an object

class detection approach which integrates these two different part-based models from

Chapter 2 into one common object class detection framework. This framework is able

to detect object instances of a given object class from multiple viewpoints. In addition,

the Multi-View Model is learnt on synthetically generated positive training images and

a set of real negative training images resulting in a training process which does not

require any manual bounding box, object part, or viewpoint annotations.

More specifically, synthetically generated positive training images and real negative
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training images are used as training sources for learning a set of viewpoint-specific ob-

ject part detectors. This generated set of viewpoint-specific part detectors becomes the

common component of the Multi-View Model. We then obtain an efficient object class

detection framework as follows: based on the set of viewpoint-specific part detectors,

we establish several viewpoint-specific Star Models and one Spatial Pyramid Model.

During the detection procedure, the generative part of the Multi-View Model produces

initial object hypotheses on a test image by relying on the viewpoint-specific Star Mod-

els. Subsequently, these initial object hypotheses are verified by the discriminative part

of the Multi-View Model, the Spatial Pyramid Model.

The proposed object class detection framework of this chapter combines several ad-

vantages: first, the Multi-View Model does not require any manual bounding-box,

viewpoint, or part annotation during the training process, since this training process

relies on a database of CAD models with an automatic identification of suitable part

positions. Second, the object class detection framework of the Multi-View Model com-

bines the advantages of the generatively trained Star Models with the advantages of

the discriminatively trained Spatial Pyramid Model. As outlined in (50, 51), a genera-

tive model such as the Star Model is able to deal with significant intra-class variation

resulting in a high recall of an object class detection system. However, generatively

trained models normally tend to produce a significant number of false-positives (51)

decreasing the precision of a detection system. In contrast to a generative model, a

discriminative model such as the Spatial Pyramid Model directly establishes a decision

boundary between a set of positive and negative training samples. This leads to a

classification performance which is often superior to those obtained by a generative

model (51). The proposed Multi-View Model exploits the benefits from these different

methods by relying on generative Star Models to produce initial object hypotheses,

which are subsequently verified by the discriminative part of the Multi-View Model.

This verification step of the Multi-View Model consists of one Spatial Pyramid Model

combining all viewpoint-specific object parts into one spatial pyramid representation

to fully exploit the information contained in the available set of viewpoint-specific part

detectors. Consequently, the Spatial Pyramid Model is a multi-view representation of

an object class which enables a consistent ranking of initial object hypotheses provided

by the viewpoint-specific Star Models and additionally makes use of viewpoint symme-
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tries1 and part similarities2 within an object class.

This chapter is structured as follows: Section 3.2 summarizes previous work on multi-

view object class detection. A system overview of the proposed Multi-View Model is

given in Section 3.3. Details on the training and the detection procedure are pre-

sented in Section 3.4 and in Section 3.5. Experimental results and a comparison of

the Multi-View Model with other reported object class detection approaches are given

in Section 3.6. This chapter is concluded with a summary in Section 3.7.

3.2 Related Work

A large amount of work has been published on object class detection. Consequently, in

this section we focus on recent multi-view object class detection approaches which are

related to our proposed detection approaches described in this chapter and in Chap-

ter 4, respectively.

Most recent work on multi-view object class detection focuses on deriving a represen-

tation of an object class as a set of two-dimensional constellations of object parts for

discrete viewpoints. Several authors propose sophisticated combinations of viewpoint-

specific object class detectors, instead of running those discrete object class detectors

independently from each other, as described in (17, 92). Thomas et al. (115), for ex-

ample, suggest to link viewpoint-specific implicit shape models (74) with the approach

of (41), thereby achieving an object class detection system over multiple viewpoints.

In (3), part-based models for discrete viewpoints are combined by training an SVM clas-

sifier based on the detection scores of those viewpoint-specific detectors. Additionally,

part-based models have been introduced and increasingly enriched with powerful ma-

chine learning techniques in conjunction with local image features in order to improve

the detection performance of such a multi-view object class detection system. Origi-

nally described in (44), the idea to represent an object class as a flexible constellation of

object parts is taken up by (36) who restricted the geometric structure of a part-based

model to a tree (or star) instead of modeling all pairwise interactions. The approach

of (36) is further extended in (34) with a discriminatively learnt object part appear-

ance based on local image features and a mixture of multiple heuristically initialized

1For example, the front and back view of the object class car are symmetric viewpoints which might be

visually similar.
2For example, the wheels within the object class car are similar object parts.
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part-based models for different aspect ratios of the object class being trained, thereby

increasing robustness. In (57), the approach of (34) is applied to build viewpoint-specific

discriminative detectors with varying levels of supervision for viewpoint classification.

The heuristic initialization of (34) is circumvented in (6) by relying on manually anno-

tated object parts. In contrast to these part-based approaches which model a sparse

set of distinct object parts, also a fixed grid-based subdivision of discrete object views

into spatial regions has been suggested in (53, 78) to detect object instances within

an image by the spatial consistency of those fixed defined object regions. Based on

hand-segmented training images, Hoiem et al. (65) introduce a 3D layout conditional

random field model to roughly align physical parts across object instances at different

viewpoints. Savarese and Fei-Fei (100) establish discriminative object regions com-

posed of local images features and homographic transformations between those regions

in order to form a viewpoint-independent 3D object category model. Based on training

images with known viewpoint labels, (112) describe a generative approach which repre-

sents an object class as a constellation of object parts and establishes correspondences

of those parts among different viewpoints. A similar approach to (112) is proposed

in (110). However, the training of (110) requires a video clip in order to establish an

initial model. In (4), the implicit shape model from (74) is extended to obtain a 3D

implicit shape model for 3D transformations and self occlusion relying on manually

marked feature points. More recently, Mei et al. (83) propose a statistical manifold

modeling approach which also represents an object class as a constellation of object

parts and considers the trade-off between object class and viewpoint variation in a more

principled way,although their approach requires video sequences for both training and

testing. While being robust, the output of those described part-based approaches is

mostly restricted to a few discrete viewpoints, due to the limited availability of anno-

tated real training images or they require time-consuming video sequences for training.

Alternatively, CAD models have been suggested as training data in order to circumvent

this restriction of real training images, since synthetic training images can be gener-

ated on demand from arbitrary viewpoints. Early approaches relying on CAD models

exclusively use textureless models in order to establish a detection system for a specific

object instance (55, 59, 60, 62, 63). Recently, the idea of using CAD models for object

class detection approaches has regained attention. Heisele et al. (61), for example, use

textureless 3D models in order to systematically evaluate the influence of the generated
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training set on the performance of a detection system. Yan et al. (130) establish a 3D

feature model by relying on a homographic framework to map 2D features onto an ex-

isting CAD model. In (79), local image features are derived from synthetically rendered

3D models to evaluate the global consistency of a 2D detection with respect to a 3D

geometry. Based on textureless renderings, (109) establish an object class representa-

tion consisting of viewpoint-specific shape models. The approach of (109) is extended

in (132) with a global deformable 3D wireframe based on manual annotations of 3D

correspondences. Liebelt and Schmid (78) propose a part-based approach for object

class detection and pose estimation which builds for discrete viewpoints the 3D geom-

etry of an object class from a database of 3D models and learns the part appearance

from an annotated database of real training images. In (82, 97) CAD models are used

to learn an object class detection system for pedestrians. More recently, (94) extend

the deformable part-based models of (34) to include both pose estimation and 3D parts

based with a heuristic initialization.

In this chapter and in Chapter 4, respectively, we propose part-based approaches to

multi-view object class detection and build on the idea of using pre-built and textured

CAD models, thereby combining the main advantages of the two domains described

above. More specifically, photometric object parts are learnt in an unsupervised way

from a database of CAD models and a set of real negative images. Subsequently, the

established object parts are efficiently combined in a detection framework relying on

part-based models with two different learning paradigms.

3.3 Overview

Figure 3.1 gives an overview of the Multi-View Model which is presented in this chap-

ter. The Multi-View Model relies on a database of 3D object models for the object

class that should be detected and a set of real negative images as training data source.

See Figure 2.7 for some model examples of different object classes or Appendix B for

a visualization of all CAD models which are used in this thesis. In contrast to other

work (109, 132), the Multi-View Model does not require any semantically labeled 3D

parts, which CAD designers sometimes assign to parts of the model geometry during

the creation process (e.g. ’wheel’ or ’car door’), since we have frequently found these

manual labels to be inconsistent. By means of the rendering process, which is described
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Figure 3.1: Overview of the Multi-view Model which integrates several generatively

trained Star Models and one discriminatively trained Spatial Pyramid Model into one

common object class detection framework. Training (left side): viewpoint-specific part

detectors are trained by means of CAD models and a set of real negative images. These

part detectors are used to establish a set of viewpoint-specific Star Models and one multi-

view Spatial Pyramid Model. Detection (right side): Object hypotheses, which are gen-

erated by the viewpoint-specific Star Models in a pre-detection step, are verified by the

multi-view Spatial Pyramid Model.

in Section 2.3.2, the CAD models from the training database are used to generate for

each defined viewpoint v (1≤v≤V, v∈N) of the Multi-View Model two independent sets

of positive training images: the part examples and the viewpoint examples.

As illustrated in Figure 3.1, the part examples in conjunction with a set of real negative

images are used as training source for the discriminative learning of viewpoint-specific

part detectors. The objective of this learning step is to automatically identify a spatial

part layout, which describes the characteristic appearance of an object class under a

given viewpoint v. For each defined viewpoint v of the Multi-View Model, individual
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part locations are automatically chosen as those regions which consistently show dom-

inant gradients across all 3D object models of an object class (see Figure 3.3). While

the selected part regions do not necessarily have a semantic meaning, this process en-

sures that the appearance of the chosen object parts is sufficiently structured for the

training process of an object part by capturing the dominant gradients across all object

models of an object class. The determined part positions of the established spatial part

layout are used in a subsequent step to train viewpoint-specific part detectors from the

determined object part locations of the part examples (see Figure 3.5). As shown in

Figure 3.1, the generated set of viewpoint-specific part detectors is the common compo-

nent of the Multi-View Model for both, the generatively trained viewpoint-specific Star

Models and the discriminatively trained Spatial Pyramid Model. More details on the

generation of those viewpoint-specific part detectors are given in Section 3.4.2.

Based on the part examples and the viewpoint-specific part detectors, a Star Model

is established for each defined viewpoint of the Multi-View Model. These viewpoint-

specific Star Models are the generative part of the Multi-View Model and are able to

determine object hypotheses on an image which have a high likelihood of containing

an object instance of the trained object class. Further details on this training step are

given in Section 3.4.3. However, as outlined in (51) and (50) generative models such as

the viewpoint-specific Star Models tend to produce a significant number of false posi-

tives. In addition, due to the differences in layout and appearance discriminativity of

the different defined viewpoints of the Multi-View Model, the scores of the Star Models

do not allow for a comparison between the defined viewpoints which, however, is nec-

essary to rank the generated set of initial object hypotheses.

In order to verify the initial object hypotheses which are detected by the above described

viewpoint-specific Star Models and to establish a comparable ranking, we suggest to

use the discriminative Spatial Pyramid Model as a joint encoding of the responses of all

generated part detectors in a detected image region, i.e., in an initial object hypothesis.

Consequently, the Spatial Pyramid Model is the discriminative part of the Multi-View

Model and incorporates all the information contained in the generated set of viewpoint-

specific part detectors. The training examples for the Spatial Pyramid Model are de-

termined by applying the generated set of part detectors on the established viewpoint

examples and real negative images (see Figure 3.8). On each training image we apply

the generated set of all viewpoint-specific part detectors, resulting in a set of detector
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responses that include real detections (e.g. responses of front view part detectors on an

actual front view example) as well as ’hallucinated’ detections (e.g. responses of front

view part detectors on a side view example). The useful contribution of ’hallucinated’

detections for the overall detection of objects relies on viewpoint symmetries and part

similarities and is illustrated in Figure 3.7, where the consistent response of a front view

detector (red bounding box) contributes to the evidence of a side view detection (green

bounding box). Details on the Spatial Pyramid Model are presented in Section 3.4.4.

As illustrated in Figure 3.1, during the detection process the generative part of theMulti-

View Model generates in each test image a set of initial object hypotheses by relying on

the viewpoint-specific Star Models. Subsequently, the full set of generated part detec-

tors is applied to these object hypotheses. The resulting histogram based descriptors,

encoding all the individual part detector responses, are then verified by the discrimina-

tively trained multi-view Spatial Pyramid Model. A non-maxima suppression discards

all those object hypotheses which overlap (see Equation 2.11) by more than 50% with

a higher-scoring object hypothesis to obtain the final detections on a test image. More

details on the detection process are given in Section 3.5.

3.4 Training

This section outlines the necessary training steps for the Multi-View Model and starts

with the use of CAD models and a set of real negative images as training source. After-

wards, the unsupervised training approach for the viewpoint-specific part detectors is

explained. These part detectors serve as the common component for both, the genera-

tive and the discriminative part of the Multi-View Model. The training steps of these

two parts of the Multi-View Model are also described in this section.

3.4.1 Training Examples

As shown in Figure 3.1, the Multi-View Model, presented in this chapter, is trained

on a database of 3D object models and a set of real negative images. See Figure 2.7

for some CAD models of different object classes or Appendix B for a visualization of

all CAD models which are used in this thesis. As outlined in Section 2.3, the use of

3D object models as training source allows to generate positive training images of an

object class from arbitrary viewpoints. In addition, for each synthetically generated
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training image the bounding box of the object instance within the training image and

its viewpoint label are automatically known without any manual intervention. Based on

the described rendering process of Section 2.3.2, we generate for each defined viewpoint

v (1≤v≤V, v∈N) of the Multi-View Model two independent sets of training images

at a predefined training scale1: the part examples and the viewpoint examples (see

Figure 3.1). In addition to the synthetically generated positive training images, we rely

on a set of background images which does not contain any object instance of the object

class being trained. To this purpose, we modify the PASCAL VOC2006 training data

set to establish this set of negative training images2.

Figure 3.2: An adequate subdivision of an object class into object parts depends on the

viewpoint. For example, for the front view of the bicycle class (left) a subdivision into two

object parts seems to be adequate (in contrast to four object parts), whereas the side view

of the bicycle class (right) might require a more fine-grained part subdivision with four

parts (in contrast to two object parts).

3.4.2 Object Parts

Learning the appearance of an object class must take into account large intra-class

and viewpoint variations as well as partial occlusions and background (see Section 1.2).

In addition, when dealing with part-based object class detection, object parts have to

be chosen such that they are suitable for the training of classifiers, i.e., object part

detectors. A manual annotation of these part positions (19, 36, 103) is time consuming

and additionally, there is no guarantee that the manually selected object parts are

suitable, i.e., sufficiently discriminative, for the training process which is described in

Section 2.2.1.1.1. As a consequence, some authors propose a fixed layout of object

parts (53, 78) or suggest unsupervised approaches to localize suitable part positions.

1Note that the part examples and the viewpoint examples at a predefined training scale differ in width

and height. The average width and the average height are given in experimental section of this chapter.
2The PASCAL VOC2006 training data set is modified such that it does not contain any object instance

of the object class under training.
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For example, in (37) an object class is decomposed into the fixed number of six object

parts, selecting the part positions such that the resulting patches capture a maximum

of the object structure. However, a multi-view object class detection approach requires

the choice of part positions of different viewpoints with different sizes, aspect ratios, and

appearance characteristics. The method of (37) results in a spatial part layout, where

each object part has approximately the same size and each viewpoint is subdivided

into the same number of object parts. However, this might not be a suitable approach

for the multi-view representation of all object classes. For those viewpoints where an

object class covers a smaller area the chosen patches could be too small and therefore

might not contain sufficient structure to be suitable for a discriminative classifier, i.e.,

an SVM classifier. As shown in Figure 3.2, the front view of the bicycle class is a

good example of a viewpoint for which a subdivision into one or two parts is adequate,

whereas a bicycle side view may requires a more fine-grained part subdivision with four

object parts.

Figure 3.3: Based on the part examples for a specific viewpoint v (here side view) a Laplace

image is established from which a spatial part layout with L part levels is derived.

3.4.2.1 Spatial Part Layout

For the Multi-View Model we rely on the approach of (37) in order to determine suit-

able part positions within the part examples for a defined viewpoint v. However, we

circumvent the above described problem of an adequate subdivision for different view-

points by deriving a spatial part layout which decomposes an object class for a given

viewpoint into L (1≤l≤L, l∈N) part levels.
The concept of this object class decomposition for a given viewpoint v (e.g. side view)
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is shown in Figure 3.3. We scale the part examples at the predefined training scale to

their average width and their average height, apply a Laplacian filter mask, and average

over the filtered examples. The resulting image is divided into small quadratic regions1

and within each region we calculate the corresponding mean value. Finally, we obtain

a Laplace image for a given viewpoint which indicates by an area of high values a struc-

tured region within the part examples (e.g. wheels). For establishing a Laplace image,

it is necessary that the part examples for a given viewpoint have similar aspect ratios

and that the structured regions of an object class for a given viewpoint occur in similar

areas within the part examples. Based on the Laplace image for a given viewpoint, we

employ the following procedure to determine a spatial part layout with altogether L

part levels: for the first part level (i.e. l = 1) we define a rectangle which captures the

entire Laplace image (see the red rectangle within Figure 3.3). As described in (37),

for the subsequent part levels (i.e. 2≤ l≤L) we define on each part level l an area a

such that the object class is decomposed into 2l−1 object parts and a2l−1 equals about

70% of the area of the Laplace image. By relying on the approach given in (32), we

greedily select a rectangle with area a that captures the most structured region within

the Laplace image; the selected region is masked out in the Laplace image and the

procedure is repeated at each part level l until the positions of all 2l−1 object parts

are determined. Decomposing an object class for a given viewpoint finally leads to a

spatial part layout with N viewpoint-specific part positions

N =

L∑
l=1

2l−1 = 2L − 1 (3.1)

on L part levels. Since the Multi-View Model is defined for V different viewpoints, we

finally obtain V spatial part layouts with altogether V N normalized part positions.

3.4.2.2 Training of Part Detectors

Once the spatial part layout for each defined viewpoint of the Multi-View Model is

identified with the method described in Section 3.4.2.1, it is possible to determine the

corresponding part positions within each image of the part examples. The concept of

this projection is illustrated in Figure 3.4. We assume that a normalized part position

1The size of those quadratic regions is equivalent to the HOG cell size which is used for the Multi-View

Model ; see Section 3.6.
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Figure 3.4: We project the normalized part position, i.e., ūul, v̄ul, ūlr, and v̄lr, within

the Laplace image into the corresponding part position, i.e., uul, vul, ulr, and vlr, within

an image of the part examples.

within the Laplace image for a given viewpoint is specified by the upper left corner

and the lower right corner of the bounding box, i.e., ūul, v̄ul, ūlr, and v̄lr. We further

assume that the Laplace image has a width w̄ and a height h̄ and an image of the part

examples has a specific width w and a specific height h. Then, the position of an object

part within an image of the part examples, i.e., uul, vul, ulr, and vlr, is given by

uul = ūul
w

w̄

vul = v̄ul
h

h̄

ulr = ūlr
w

w̄

vlr = v̄lr
h

h̄
.

(3.2)

Figure 3.5: The determined object part positions (here red and yellow bounding boxes)

within the part examples at the predefined training scale are used to train viewpoint-specific

part detectors (here D1 to D3 and D4 to D6).
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Based on Equation 3.2 it is possible to determine for each spatial part layout the

part positions within the corresponding part examples at the predefined training scale.

Those determined part positions are subsequently used to train viewpoint-specific part

detectors by relying on the procedure described in Section 2.2.1.1.1. We generate for

each object part specific training samples and resize those positive training samples

of an object part to their corresponding average width and average height. We resort

to the HOG descriptor of (21) to encode the appearance of an object part. For each

object part a separate linear SVM classifier is learnt by relying on the ’bootstrapping’

procedure described in Section 2.2.1.1.1: the normalized and part-specific training sam-

ples serve as positive training examples and the negative examples are initially chosen

randomly from the negative training images. After the initial training run, the SVM

classifier is refined on an extended training set which has been augmented with the

false positives of the initial SVM classifier. Finally, V N discriminatively learnt object

part detectors are obtained, each representing the appearance of an object part for a

defined viewpoint; for an example see D1 to D3 and D4 to D6 in Figure 3.5.

Figure 3.6: The viewpoint-specific part examples at the predefined training scale and the

corresponding part detectors (here D1 to D3 and D4 to D6) are used to train viewpoint-

specific Star Models.

3.4.3 Viewpoint-Specific Star Models

For the generative part of theMulti-View Model, which is used to produce a set of initial

object hypotheses in a test image, we establish for each defined viewpoint of the Multi-

View Model a generatively trained Star Model. As shown in Figure 3.6, we rely on

the viewpoint-specific part detectors of Section 3.4.2 and the part examples at the

predefined training scale to establish those viewpoint-specific Star Models. As described
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in Section 2.2.1.1.2, we apply all generated part detectors of a specific viewpoint to

the part examples at the predefined training scale which represent the same viewpoint.

We model the spatial uncertainty for each object part detector, i.e., the location of an

object part, with a Gaussian mixture model. According to Section 2.2.1.1.2, we choose

the center of the part examples as reference in order to predict a suitable bounding

box during the detection procedure, by projecting the average size of the part examples

(i.e. the average width and the average height at the predefined training scale) as mean

bounding box into an input image.

Figure 3.7: The Spatial Pyramid Model builds on the combination of all viewpoint-

specifically trained object part detectors. For example, detector D4 (trained on front

view images) also provides a consistent response on side view images (red bounding box);

instead of discarding these detector responses, the Spatial Pyramid Model exploits their

information content in a joint encoding.

3.4.4 Spatial Pyramid Model

As described in Section 3.4.2, viewpoint-specific part detectors are derived in an unsu-

pervised way. In the following, we introduce the Spatial Pyramid Model, a multi-view

object class representation which jointly encodes the responses of all individual object
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Figure 3.8: The Spatial Pyramid Model builds on all viewpoint-specific part detectors

(here D1 to D6) and encodes the spatial layout of their responses into a spatial pyramid

representation. Based on a set of positive and negative training samples a non-linear SVM

classifier with an intersection kernel is trained.

part detectors. The Spatial Pyramid Model allows to consistently rank detections for

the different defined viewpoints of the Multi-View Model. Note that the scores of the

viewpoint-specific Star Models of Section 3.4.3 alone do not allow for such a ranking,

mainly due to their differences in layout and appearance discriminativity of the differ-

ent defined viewpoints.

Due to viewpoint symmetries and part similarities, the trained object part detectors of

Section 3.4.2 sometimes locate object parts at wrong positions or in viewpoints where

these object parts are not actually visible. Still, these ’hallucinated’ part detections

often appear consistently within an object class. An example of such a ’hallucinated’

part detection is given in Figure 3.7: as expected, an object part detector, which has

been trained on example images for cars from a side view, provides consistent ’true’

responses on images showing the object class from this viewpoint (green bounding box);

however, another object part detector, which has been trained on example images for

cars from a front view, also provides consistent ’hallucinated’ (false positive) responses

on these images (red bounding box). We suggest exploiting this kind of readily available

additional information with the Spatial Pyramid Model in order to combine the ’true’

as well as the ’hallucinated’ detector responses for a more discriminative multi-view

object class representation.

The idea of the Spatial Pyramid Model is shown in Figure 3.8. For each training in-

stance HOG features with the same layout as in Section 3.4.2 are computed densely.

Each encoded training image is classified by all viewpoint-specific object part detec-

tors. As described in Section 2.2.2, we follow the approach of (70) and rely on a spatial

pyramid representation to encode the responses for each object part detector within

the area of a training instance. For each part detector response a spatial pyramid with

K (1≤k≤K, k∈N) levels is defined which results in a fixed hierarchy of rectangular
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sub windows. Within each defined sub window we sum up all the positive detection

responses, i.e., all detection responses above zero, to obtain one real-valued number.

We concatenate those real-valued numbers of all defined sub windows for all object

part detectors and obtain a descriptor for a given training image. We choose a spatial

pyramid with a quadratic subdivision resulting in an object class representation with

d = V N

K∑
k=1

4k−1 = V N
1

3
(4K − 1) (3.3)

dimensions for altogether V N object part detectors. Given the viewpoint examples for

all defined viewpoints at the predefined training scale as positive training examples and

a set of negative training examples, a nonlinear SVM classifier with an intersection ker-

nel (56) is trained based on the ’bootstrapping’ procedure described in Section 2.2.1.1.1.

3.5 Detection

This section describes the two detection steps of theMulti-View Model, the pre-detection

step based on the generative part of theMulti-View Model, i.e., the viewpoint-specific Star

Models to obtain initial object hypotheses, and the discriminative part of the Multi-

View Model, i.e., the Spatial Pyramid Model, in order to verify those initial object

hypotheses and to establish a comparable ranking.

3.5.1 Pre-Detection

In order to identify regions of interest, i.e., initial object hypotheses which poten-

tially contain an object instance of the trained object class, we rely on the viewpoint-

specific Star Models of Section 3.4.3 in conjunction with the detection procedure of

Section 2.2.1.2. The generatively trained Star Models provide on a test image a fixed

number1 of object hypotheses (see Figure 3.9 (left)) with a detection score and a view-

point label for each generated object hypothesis. Although the Star Models are able

to deal with significant intra-class variation, resulting in a high recall on a benchmark

data set, the detection scores of the Star Models alone do not allow a consistent ranking

of the generated object hypotheses. The reason is that for a given viewpoint each Star

Model is trained independently of all other viewpoints and relies on different layout and

1In our experiments each Star Model generates 8 object hypotheses on a test image.
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Figure 3.9: The detection procedure of the Multi-View Model consists of two steps: the

pre-detection step is based on the generative and viewpoint-specific Star Models in order

to establish a set of initial object hypotheses (left). The verification step relies on the

discriminative part of the Multi-View Model, the Spatial Pyramid Model. Consequently,

each initial object hypothesis is classified by the Spatial Pyramid Model. Based on the

resulting classification scores of the Spatial Pyramid Model, we apply a non-maximum

suppression to avoid multiple and overlapping detections. Subsequently, we obtain the

final detections on a test image (right) which are provided with a detection score based on

the Spatial Pyramid Model and an approximate pose label based on the viewpoint-specific

pre-detection step.

appearance characteristics; see Section 3.6.2.1 for experimental results. Consequently,

in the following verification step we build on the classification performance of the Spa-

tial Pyramid Model, which relies on the object part detectors of all defined viewpoints

of the Multi-View Model, in order to obtain a normalized and comparable detection

score for all generated object hypotheses within a test image.

3.5.2 Verification

The final detection result consists of a consistent and comparable scoring of the obtained

initial object hypotheses based on the Spatial Pyramid Model of Section 3.4.4. To this

purpose, each initial object hypothesis, which is generated by a viewpoint-specific Star

Model, is scaled to the average size (i.e. the average width and the average height) of

the corresponding viewpoint examples at the predefined training scale. The responses of

all object part detectors in the scaled area of an object hypothesis are encoded by the

spatial pyramid representation described in Section 3.4.4 and subsequently classified

by the Spatial Pyramid Model to obtain a final detection score for the corresponding
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object hypothesis. Since the detection process of the Multi-View Model can result in

multiple overlapping object hypotheses a non-maximum suppression retains only high

scoring bounding boxes and discards those bounding boxes covered by a higher-scoring

bounding box with an overlap (see Equation 2.11) of more than 50%.

As a result, each final detection on a test image is provided with a detection score based

on the Spatial Pyramid Model and an approximate pose label based on the viewpoint-

specific pre-detection step of the Multi-View Model (see Figure 3.9 (right)).

3.6 Evaluation

In this section, we outline the experimental results we achieve with the proposed Multi-

View Model. We evaluate the Multi-View Model on the 3D Object Category data set

of Section 2.5.1 and on the PASCAL VOC2006 data set of Section 2.5.2 for the object

classes car and bicycle.

3.6.1 Training Setup

For generating a set of training images in order to learn the viewpoint-specific part

detectors, the corresponding Star Models, and the Spatial Pyramid Model, we rely on

positive training images rendered from CAD models which are available from commer-

cial distributors, notably turbosquid.com or doschdesign.com (see Appendix B for a

visualization of all CAD models which are used in the present thesis). We use 24 car

models and all 8 bicycle models from the available databases for the respective object

classes. The reason for taking 24 car models instead of all 25 is that it is essential that

the corresponding part examples have a comparable aspect ratio for a specific view-

point (see Section 3.4.2.1). Therefore, model 25 of the car database (see Appendix B)

is not considered in the following experiments due to its clearly different aspect ratio

compared to the remaining car models.

For the Multi-View model we define the following five different viewpoints (i.e. V = 5):

left (i.e. azimuth=0◦ and elevation=0◦), front-left (i.e. azimuth=45◦ and elevation=0◦),

back-left (i.e. azimuth=315◦ and elevation=0◦), front (i.e. azimuth=90◦ and elevation=0◦),

and back (i.e. azimuth=270◦ and elevation=0◦). Example images of these defined view-

points are given in Figure 3.10. The respective symmetric views are covered by applying

the approach to the horizontally mirrored images. Based on these five viewpoints we
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Figure 3.10: Example images for the different defined viewpoints (from left to right):

left, front-left, back-left, front, and back.

generate the part examples and the viewpoint examples for both object classes. The part

examples are generated from the fixed azimuth angle and the fixed elevation angle for

each defined viewpoint. The viewpoint examples are generated by a uniform variation

in azimuth direction (i.e. ±9◦) and a uniform variation in elevation direction (i.e. +9◦)

in order to increase the robustness towards small viewpoint variations. We also vary

the light conditions for each defined viewpoint within the part examples and viewpoint

examples in order to take into account this variation in real world images. Altogether

2640 training images (i.e. 1200 part examples and 1440 viewpoint examples) for the

object class car and 880 training images (i.e. 400 part examples and 480 viewpoint

examples) for the object class bicycle are generated; details on the generated positive

training images are given in Table 3.1 for the object class car and in Table 3.2 for the

object class bicycle.

car (24 CAD models) left front-left back-left front back

average width 147 pixels 126 pixels 130 pixels 67 pixels 66 pixels

average height 51 pixels 51 pixels 55 pixels 50 pixels 54 pixels

azimuth 0◦ 45◦ 315◦ 90◦ 270◦

elevation 0◦ 0◦ 0◦ 0◦ 0◦

no. of light variations 10 10 10 10 10

no. of all part examples 1200

average width 168 pixels 143 pixels 148 pixels 82 pixels 85 pixels

average height 64 pixels 71 pixels 71 pixels 72 pixels 71 pixels

azimuth [−9◦, 0◦, 9◦] [36◦, 45◦, 54◦] [306◦, 315◦, 324◦] [81◦, 90◦, 99◦] [261◦, 270◦, 279◦]

elevation [0◦, 9◦] [0◦, 9◦] [0◦, 9◦] [0◦, 9◦] [0◦, 9◦]

no. of light variations 2 2 2 2 2

no. of all viewpoint examples 1440

Table 3.1: Details on the generated positive training images for the object class car.

In order to train the linear SVM classifiers for the object parts as well as the nonlinear

SVM classifier for the Spatial Pyramid Model, negative training examples are drawn
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bicycle (8 CAD models) left front-left back-left front back

average width 96 pixels 72 pixels 69 pixels 31 pixels 25 pixels

average height 59 pixels 65 pixels 61 pixels 67 pixels 63 pixels

azimuth 0◦ 45◦ 315◦ 90◦ 270◦

elevation 0◦ 0◦ 0◦ 0◦ 0◦

no. of light variations 10 10 10 10 10

no. of all part examples 400

average width 95 pixels 70 pixels 68 pixels 32 pixels 27 pixels

average height 59 pixels 66 pixels 65 pixels 71 pixels 68 pixels

azimuth [−9◦, 0◦, 9◦] [36◦, 45◦, 54◦] [306◦, 315◦, 324◦] [81◦, 90◦, 99◦] [261◦, 270◦, 279◦]

elevation [0◦, 9◦] [0◦, 9◦] [0◦, 9◦] [0◦, 9◦] [0◦, 9◦]

no. of light variations 2 2 2 2 2

no. of all viewpoint examples 480

Table 3.2: Details on the generated positive training images for the object class bicycle.

from the PASCAL VOC2006 training data set1. The part appearance is built on the

HOG implementation of (37) with a HOG cell size of 4 pixels; we choose a spatial part

layout with L = 4 part levels resulting in N = 15 part detectors per viewpoint. For

the Spatial Pyramid Model we choose a spatial pyramid representation with K = 3

levels and a quadratic subdivision. For testing we choose an image pyramid with 10

levels in an octave.

As described in Section 2.4.2, we evaluate the performance of our Multi-View Model

with respect to 2D ground truth bounding boxes by relying on the detection quality

criterion suggested by (28): a predicted bounding box is considered as correct if the

overlap between the predicted bounding box and a ground truth bounding box exceeds

50%. If several bounding boxes are predicted in the same image area, only one detection

is considered as correct and the remaining detections are considered as false positives.

3.6.2 3D Object Category Data Set

On the 3D Object Category data set we assess the contribution of the generative part of

the Multi-View Model, i.e., the viewpoint-specific Star Models, and the discriminative

part of the Multi-View Model, i.e., the Spatial Pyramid Model. In addition, we evaluate

the Multi-View Model with respect to 2D localization, pose estimation, and robustness

to partial occlusions.

1The PASCAL VOC2006 training data set is modified such that it does not contain any object instance

of the object class under training.
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3.6.2.1 Contribution of the Star Models and the Spatial Pyramid Model

In order to demonstrate the contribution of the generative part of the Multi-View

Model, we exemplarily apply the pre-detection step of Section 3.5.1, which consists of

the viewpoint-specific Star Models, on the entire car test set (i.e. containing all 480

test images) and the entire bicycle test set (i.e. containing all 480 test images). Based

on the generated object hypotheses for each test image, we calculate the corresponding

recall for both test sets. We determine how often on each test set the overlap between

one generated object hypothesis, i.e., a predicted bounding box, and the ground truth

bounding box within a test image exceeds 50%. As mentioned above, the generative

and viewpoint-specific Star Models are able to deal with significant intra-class varia-

tion which results in a high recall of the detection system. As shown in Table 3.3, the

generated object hypotheses of the Star Models achieve with 99.0% on the entire 3D

Object Category car data set and 97.3% on the entire 3D Object Category bicycle data

set a significantly high recall on these two test sets.

3D Object Category car data set 3D Object Category bicycle data set

recall 99.0% 97.3%

Table 3.3: The generative part of the Multi-View Model achieves with 99.0% on the entire

3D Object Category car data set and with 97.3% on the entire 3D Object Category bicycle

data set a high recall by relying on the generative and viewpoint-specific Star Models of

the pre-detection step.

In order to demonstrate the contribution of the proposed Spatial Pyramid Model of

Section 3.4.4, we evaluate the Multi-View Model exemplarily on the entire car test set

(i.e. containing all 480 test images) and the entire bicycle test set (i.e. containing all

480 test images), once with and once without the discriminative Spatial Pyramid Model

as the verification step of the detection process. Without the Spatial Pyramid Model we

exclusively rely on the detection score provided by the viewpoint-specific Star Models

of Section 3.5.1 in conjunction with the non-maximum suppression described in Sec-

tion 3.5.2. The results are given in Figure 3.11. Omitting the Spatial Pyramid Model as

verification step of the Multi-View Model (blue curves with 72.2% for the object class

car and 31.0% for the object class bicycle) results in an average-precision, which is sig-

nificantly below the precision obtained with the proposed Spatial Pyramid Model (red

curves with 82.0% for the object class car and 79.4% for the object class bicycle), since
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the generative Star Models tend to produce a large number of false-positives (especially

the Star Models for the front view and the back view of the object class bicycle).

These two experiments indicate that the proposed Multi-View Model exploits the ad-

vantages from both the generative Star Models, i.e., dealing with significant intra-class

variation which results in a high recall1, and the discriminative Spatial Pyramid Model,

i.e., superior classification performance, by integrating these two part-based model with

different learning paradigms into one common object class detection framework.
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Figure 3.11: The Spatial Pyramid Model increases the average-precision of theMulti-View

Model. For example, on the entire 3D Object Category car data set (left) the detection

performance of the Multi-View Model increases from 72.2% without the Spatial Pyramid

Model (blue curve) to 82.0% with the Spatial Pyramid Model (red curve) and on the entire

3D Object Category bicycle data set (right) the detection performance increases from 31.0%

(blue curve) to 79.4% (red curve).

3.6.2.2 2D Localization

In order to compare the 2D localization performance of the Multi-View Model on the

3D Object Category data set to other reported detection approaches, we follow the test

1In addition to dealing with significant intra-class variation, the generative Star Models reduce the

number of all possible object hypotheses to a few object hypotheses per image without compromising

the recall of the Multi-View Model (see Table 3.3). For example, a test image of the 3D Object Category

data set with a size of 400x300 pixels, an image pyramid with 10 levels in an octave, and a HOG cell size

of 4 pixels result in more than 2·105 possible object hypotheses for a specific viewpoint of an object class.

In our experiments each viewpoint-specific Star Model reduces those 2 ·105 possible object hypotheses

to 8 object hypotheses which are subsequently verified by the computational more expensive Spatial

Pyramid Model.
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Figure 3.12: Precision-recall curves of theMulti-View Model (red curve) on the 3D Object

Category car data set compared to other reported results and the state-of-the-art detection

approach of (34).
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Figure 3.13: Precision-recall curves of the Multi-View Model (red curve) on the 3D

Object Category bicycle data set compared to other reported results and the state-of-the-

art detection approach of (34).

protocol of (109) for the object class car and the test protocol of (78) for the object

class bicycle. Note that the test protocol of (109) for the object class car and the test

protocol of (78) for the object class bicycle define a subset of test images and therefore
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3. THE MULTI-VIEW MODEL

differ from the test setup for the experiments in Section 3.6.2.1, which are evaluated

on the entire car test set and the entire bicycle test set. In Figure 3.12, we compare

the result of the Multi-View Model on the 3D Category car data set to the approach

of (109). As can be seen, with 84.8% the proposed Multi-View Model (red curve) is

comparable to the results achieved by (109). Note that the best result of (109) (blue

curve with 89.9%) is based on a set of 36 viewpoint-specific models with more than 400

trained object parts; when using only a comparable number of 8 viewpoint models, we

outperform their average-precision (green curve with 81.0%) due to a higher recall. The

precision-recall curve obtained with the Multi-View Model on the 3D Category bicycle

data set is given in Figure 3.13. On this test set we compare to the approach of (78).

The Multi-View Model achieves with 77.5% (red curve) on the bicycle test set a higher

average-precision than the multi-view approach of (78) (blue curve with 69.8%).

We also compare the Multi-View Model against the current state-of-the-art object class

detection approach of (34) using their pre-trained VOC2006 model provided as part

of voc-release4 (33). As shown in Figure 3.12 and in Figure 3.13, the approach of (34)

achieves with 96.7% (brown curve) on the car test set a higher average-precision than

the Multi-View Model and with 78.0% (brown curve) a comparable average-precision

on the bicycle test set. We also evaluate the method of (34) based on our synthetically

generated positive training images. To this purpose, we train and evaluate for both

object classes a detection model with the recommended settings of 3 components and

8 parts per component. We use the approach of (34), which is provided as part of voc-

release4 (33), in conjunction with the synthetically generated viewpoint examples1 as

positive training images and the PASCAL VOC2006 training data set as negative train-

ing images. The results indicate with 95.3% (cyan curve in Figure 3.12) on the car test

set and with 90.4% (cyan curve in Figure 3.13) on the bicycle test set a gap between

the Multi-View Model and the current state-of-the-art object class detection approach

of (34). Some successful detection results of the Multi-View Model on the 3D Object

Category data set are shown for the object class car in Figure 3.20 and for the ob-

ject class bicycle in Figure 3.21. Figure 3.24 depicts some failed detection results of

1When we try to use the part examples and the viewpoint examples jointly as positive training images

for learning a detection model with the approach of (34), we get the error ’Not enough space’ on a

64bit-machine with 24GB RAM during the training process. Consequently, we use only the viewpoint

examples as positive training images.
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the Multi-View Model for the object class car and the object class bicycle. The failed

detections on the 3D Object Category data set are mainly caused by sub detections

within an object instance or a nonrigid geometry.

Figure 3.14: Confusion matrix (rows: ground truth, columns: estimates) for the 3D

Object Category car data set. Based on the viewpoint-specific Star Models the Multi-View

Model is able to predict an approximate pose label.

Figure 3.15: Confusion matrix (rows: ground truth, columns: estimates) for the 3D

Object Category bicycle data set. Based on the viewpoint-specific Star Models the Multi-

View Model is able to predict an approximate pose label.

63



3. THE MULTI-VIEW MODEL

3.6.2.3 Pose Estimation

In Section 3.5.1 we mention that the Multi-View Model is able to provide an approxi-

mate pose label based on the pre-detection step, i.e., the viewpoint-specific Star Models.

Figure 3.14 and Figure 3.15, respectively, show the resulting confusion matrices on the

car test set and the bicycle test set for classifying all true positive detections of Sec-

tion 3.6.2.2 into the 8 azimuth angles defined by the 3D Object Category data set (see

Section 2.5.1). For cars, we observe that neighboring viewpoints are rarely confused.

Confusion for cars is more pronounced for opposing views due to the viewpoint sym-

metries inherent in the car class. For example, 30.0% of the back views are classified as

front views. For bicycles, we observe that confusion is primarily pronounced for neigh-

boring viewpoints and for the front and back views. For example, 39.0% of the left

views are classified as front-left views. With an average-accuracy of 61.0% for the object

class car and an average-accuracy of 48.7% for the object class bicycle, the pose esti-

mation of the Multi-View Model performs worse than the reported results of (109) with

an average-accuracy of 80.5% for cars and of (78) with an average-accuracy of 75.0%

for bicycles. However, the pose estimation of the Multi-View Model relies exclusively

on the pose label provided by the viewpoint-specific Star Models of the pre-detection

step. Since the object parts of these Star Models are selected in an unsupervised way

which does not take into account the inter-viewpoint discriminativity of the object parts

such a behavior of the Multi-View Model, i.e., confusion of neighboring and opposing

viewpoints, cannot be avoided.

3.6.2.4 Occlusion

In this experiment we assess the quality of the Multi-View Model in the presence of

partial occlusion. To this purpose, we modify the entire 3D Object Category car data set

containing all 480 test images and generate a test set with artificial partial occlusions:

30% of the annotated ground truth for each test image is replaced by a white area. Some

example images of this modified test set are given in Figure 3.16. In this experiment

the object class detector with the same settings as in Section 3.6.2.2 is applied to the

modified data set, i.e., without any retraining or adaptation. In order to compare

the performance of our part-based approach, i.e., the Multi-View Model, to detection

methods which do not use object parts, we have implemented a baseline approach which
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is based on the method of (21). This baseline approach is trained on the viewpoint

examples which are described in Section 3.6.1; it consists of viewpoint-specific HOG

descriptors, each representing the entire object class for a defined viewpoint, which are

classified by linear SVM classifiers1. We use a sliding window approach and rely on

the non-maximum suppression step of Section 3.5.2 to combine these viewpoint-specific

classifier responses.

Figure 3.16: Example images of the modified 3D Object Category car data set in order

to assess the quality of the Multi-View Model in the presence of partial occlusions. In each

image 30% of the annotated ground truth is replaced by a white area.

As can be seen in Figure 3.17, with 57.2% compared to 20.0%, the Multi-View Model

(red curve) outperforms the baseline approach (green curve) which relies on a global

description of the object class. Since the object class representation of the Multi-View

Model is based on several object parts with different sizes and due to the chosen spatial

part layout with L = 4 part levels, partial occlusions have less effect on the overall

description of the object class than on the baseline approach.

We also assess the influence of the chosen spatial part layout on the overall detection

performance of theMulti-View Model. To this purpose, we exemplarily evaluate aMulti-

View Model with a spatial part layout consisting of three part levels (L = 3) and

a Multi-View Model with a spatial part layout consisting of two part levels (L = 2).

For training these models we rely on the same training images and the same training

settings of Section 3.6.1, i.e., a HOG cell size with 4 pixels and a spatial pyramid

1Note that this baseline approach is inherently included in the Multi-View Model by the trained object

part detectors which cover for each defined viewpoint at the part level l = 1 the entire object class.
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Figure 3.17: The quality of the Multi-View Model (red curve) under partial occlusion is

shown in comparison to a baseline approach (green curve) which is based on the method

of (21). A Multi-View Model based a spatial part layout with fewer part levels results in a

lower average-precision (blue and brown curves).

representation withK = 3 levels and quadratic subdivision. The detection performance

of these Multi-View Models are also shown in Figure 3.17 (blue and brown curve).

As expected, the average-precision is reduced when decreasing the part levels due to

the lack of information of the small object parts. Note that with two part levels

the corresponding Multi-View Model still performs better than the baseline approach,

although the reduction in performance is considerable when compared to a spatial part

layout with L = 4 part levels. Consequently, for the Multi-View Model a spatial part

layout with sufficiently many part levels is necessary to achieve increased robustness

against partial occlusions.

3.6.3 PASCAL VOC2006 Data Set

The precision-recall curves obtained with theMulti-View Model on the PASCAL VOC2006

data set for the object classes car and bicycle are given in Figure 3.18 (red curve) and

Figure 3.19 (red curve), respectively. For both data sets we provide the best perform-

ing approaches of the PASCAL challenge 2006 (28) (blue curves), the best performing

approaches of the PASCAL challenge 2007 on the 2006 test set (29) (cyan curves), and

the most recent multi-view approaches of (110) (green curves) and (95) (brown curves).
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Figure 3.18: Precision-recall curves of the Multi-View Model (red curve) for the object

class car on the PASCAL VOC2006 data set compared to other reported results.
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Figure 3.19: Precision-recall curves of the Multi-View Model (red curve) for the object

class bicycle on the PASCAL VOC2006 data set compared to other reported results.

With 40.2% on the car test set and 47.0% on the bicycle test set the Multi-View Model

achieves a higher average-precision than these two multi-view approaches, despite being

trained on a different (i.e. synthetically generated positive training images) data set.

We observe that the appearance variations within the car test set are more pronounced
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than those within the bicycle class, which might be the reason for the observed per-

formance difference of the Multi-View Model : while the chosen bicycle CAD models

and the corresponding part examples and viewpoint examples are sufficient to represent

these appearance variations of the bicycle test set, the car CAD models and the corre-

sponding part examples and viewpoint examples seem to be not representative enough.

Some successful detection results of the Multi-View Model on the PASCAL VOC2006

data set are shown for the object class car in Figure 3.22 and for the object class bicy-

cle in Figure 3.23. Figure 3.25 depicts some failed detection results of the Multi-View

Model for both object classes. The failed detections on the PASCAL VOC2006 data

set are mainly caused by sub detections within other object instances or a nonrigid

geometry.

3.7 Summary

In this chapter, we have presented theMulti-View Model which is a part-based approach

to multi-view object class detection based on a database of 3D object models and a set of

real negative training images. The main contribution of this approach is the integration

of the generative Star Model and the discriminative Spatial Pyramid Model into one

common object class detection framework. In addition, the Multi-View Model does

not require any manual bounding box, object part, or viewpoint annotations during

the training process. The training process relies on a database of 3D object models

to generate positive training images with an automatic identification of suitable part

positions within these positive training images. However, this identification of suitable

part positions is independent for each defined viewpoint of the Multi-View Model and is

based on a simple heuristic: object parts are chosen as those regions which consistently

show dominant gradients across all 3D object models of an object class. It is assumed

that the aspect ratios of the CAD models from the training database are similar for a

given viewpoint and that the structured regions within an object class occur in similar

areas within the synthetically generated positive training images. In addition, the

pose estimation of the Multi-View Model relies exclusively on the pose label provided

by the viewpoint-specific Star Models of the pre-detection step. As a result, the 2D

localization performance of the Multi-View Model can compete with other reported

object class detection approaches, however, there is a performance gap to the current
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state-of-the-art detection approach of (34). Also the pose estimation performance of

the Multi-View Model is not comparable to other reported results. In the next chapter,

we outline an approach which addresses the shortcomings of the Multi-View Model and

thus is able to close the gap to the current state-of-the-art detection approach of (34).
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3. THE MULTI-VIEW MODEL

Figure 3.20: Some successful detection results of the Multi-View Model on the 3D Object

Category car data set. Note that the Multi-View Model also provides an approximate pose

label based on the viewpoint-specific Star Models. This pose label is indicated for each

detection by an arrow. We show only the highest scored detection per image.
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Figure 3.21: Some successful detection results of the Multi-View Model on the 3D Object

Category bicycle data set. Note that the Multi-View Model also provides an approximate

pose label based on the viewpoint-specific Star Models. This pose label is indicated for

each detection by an arrow. We show only the highest scored detection per image.
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Figure 3.22: Some successful detection results of the Multi-View Model for the object

class car on the PASCAL VOC2006 data set. Note that theMulti-View Model also provides

an approximate pose label based on the viewpoint-specific Star Models. This pose label is

indicated for each detection by an arrow. We show only the highest scored detection per

image.
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Figure 3.23: Some successful detection results of the Multi-View Model for the object

class bicycle on the PASCAL VOC2006 data set. Note that the Multi-View Model also

provides an approximate pose label based on the viewpoint-specific Star Models. This

pose label is indicated for each detection by an arrow. We show only the highest scored

detection per image.
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3. THE MULTI-VIEW MODEL

Figure 3.24: Some failed detection results of the Multi-View Model on the 3D Object

Category car data set (top) and on the 3D Object Category bicycle data set (bottom).

The failed detections are mainly caused by sub detections within an object instance or a

nonrigid geometry.

Figure 3.25: Some failed detection results of the Multi-View Model on the PASCAL

VOC2006 data set for the object class car (top) and for the object class bicycle (bottom).

The failed detections are mainly caused by sub detections within other object instances or

a nonrigid geometry.
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Chapter 4

The Viewsphere Model

In this chapter, we describe our second part-based approach to object class detection

which relies on a database of 3D object models and a set of real negative training images.

In this thesis, we term this approach the Viewsphere Model. We relate the Viewsphere

Model to the Multi-View Model, summarize previous work, and focus on explaining the

unsupervised training procedure of the Viewsphere Model. This chapter concludes with

an experimental evaluation which also includes a comparison of the Viewsphere Model

with the Multi-View Model.

4.1 Introduction

In the previous chapter, we have introduced the Multi-View Model, our first approach

to multi-view object class detection which relies on a database of CAD models and real

negative training images. The Multi-View Model combines the advantages of the gen-

erative Star Model and the discriminative Spatial Pyramid Model by combining these

two different part-based models into one common object class detection framework.

However, the Multi-View Model suffers from the following limitations which will be

addressed by our second part-based approach, the Viewsphere Model :

• For each defined viewpoint of the Multi-View Model a set of viewpoint-specific

part detectors is established independently of all other viewpoints. Consequently,

the Multi-View Model generates similar or redundant object part detectors due to
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viewpoint symmetries1 or part similarities2. The Viewsphere Model addresses this

issue by discovering common object parts in an unsupervised way. These common

object parts are intrinsic within an object class over the entire viewsphere and,

consequently such an object part can contribute to an object class representation

for several defined viewpoints on the viewsphere.

• The described method of the Multi-View Model for generating a set of viewpoint-

specific part detectors relies on a simple heuristic: based on the synthetically

generated positive training images of an object class a Laplace image for a spe-

cific viewpoint is established. A spatial part layout with different part levels,

i.e., different part sizes, is derived by decomposing this Laplace image into sev-

eral part locations which capture the highest gradient over all training examples.

Subsequently, these part locations are used to train viewpoint-specific part de-

tectors. The first shortcoming of this method is that there is no verification step

in order to ensure that the resulting part detectors are suitable to represent the

object class being trained. The second shortcoming is the assumption that the

aspect ratios of the CAD models for a specific object class are similar for a given

viewpoint and that the structured regions within an object class occur in similar

areas within the synthetically generated positive training images. In this chapter,

we circumvent these two shortcomings by relying on a two-stage approach which

determines suitable object parts for a given object class: first, we use affinity

propagation (48) in conjunction with the HOG descriptor (21) to decompose a

given object class by an unsupervised approach into a pool of potential object

parts. In the second step, a subset of these generated object parts is selected by

an entropy-based measure (45, 123) in order to obtain those object parts which

are most informative with respect to the object class being trained.

• The pose estimation of theMulti-View Model simply relies on the pose label which

is provided by the viewpoint-specific Star Models of the pre-detection step. The

corresponding object parts of those Star Models are established in an unsuper-

vised way which does not take into account the inter-viewpoint discriminativity.

1For example, the front view and the back view of the object class car are symmetric viewpoints which

might be visually similar.
2For example, the wheels of a car are similar object parts.
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As a result the performance of the Multi-View Model with respect to pose estima-

tion cannot compete with other reported results due to viewpoint confusion which

is mainly pronounced between opposing and neighboring viewpoints. The View-

sphere Model addresses this issue by dividing the defined viewsphere into a set

of suitable subspaces. Subsequently, we select for each defined subspace a subset

of most informative object parts and establish for each defined subspace a dis-

criminative Spatial Pyramid Model based on these selected sets of object parts.

In addition, within the subspace with the highest classification score, the pose

estimation can be further refined by modeling the locations of the corresponding

object parts with Gaussian mixture models.

In summary, we introduce the Viewsphere Model which is an approach to object class

detection and approximate pose estimation based on a database of 3D object models

and real negative training images. The Viewsphere Model avoids the described limita-

tions of the Multi-View Model but retains the advantage of the Multi-View Model, i.e.,

the integration of the generative Star Model and the discriminative Spatial Pyramid

Model into one common object class detection framework. This chapter is structured

as follows: Section 4.2 summarizes previous work on object part sharing and the unsu-

pervised selection of object parts. Details on the training and the detection procedure

of the Viewsphere Model are presented in Section 4.3 and in Section 4.4. Experimental

results and a comparison of the Viewsphere Model with the Multi-View Model are given

in Section 4.5. This chapter is concluded in Section 4.6.

4.2 Related Work

A survey of related work on multi-view object class detection has already been given in

Section 3.2. Consequently, in this section we focus on the selection of informative object

parts1 and the sharing of object parts for the task of multi-view object class detection

and pose estimation. Both the sharing of object parts and the selection of informative

object parts reduce the computational complexity of an object class detection system.

In addition, the selection of informative object parts overcomes overfitting (58).

Recent work on feature selection with respect to object class detection and pose es-

timation can mainly be divided into two groups, either by using AdaBoost (47) or

1Note that object parts are also referred to as features in related work.
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by relying on the mutual information (18) as the selection criterion. AdaBoost was

originally introduced as a machine learning algorithm by Freund and Schapire (47).

It iteratively selects a ’weak’ classifier from a pool of ’weak’ classifiers to establish a

’strong’ classifier as linear combination of those selected ’weak’ classifiers. The idea

of using AdaBoost for object class detection, especially for face detection, is proposed

by (124). It relies on a boosted cascade of simple haar-like features and was extended

for example by (80). In (117) Gentle AdaBoost (49) is adapted in order to select simple

image patches that can be shared across different object classes and different object

poses as well.

The second group of approaches to object part selection relies on the mutual infor-

mation as a criterion by measuring the mutual dependence between random variables.

The advantages of an entropy-based part selection are discussed in (121). In (118)

class-specific image patches are selected for classification by maximizing the mutual

information between the image patches and the object class they represent. Dorko

and Schmid (22) also maximize the mutual information in order to select object parts

which are based on manually labeled local image features for the task of object class

detection. In (123) the maximization of the mutual information is extended by a greedy

search, taking into account the previously selected features and thus avoiding redun-

dancy among the selected features. This feature selection procedure is also termed

conditional mutual information and in (45) it is shown that this selection procedure

achieves equivalent results compared to AdaBoost. The conditional mutual information

criterion is used in (25) to build a hierarchy of simple image patches for classification

and in (92) to select binary features for a spatial pyramid in order to perform a pose

estimation.

In contrast to the selection of informative object parts, procedures for object part shar-

ing intend to establish common object parts that can be shared within an object class

and/or among different object classes and thus reduce the computational complexity

of an object class detection system. In (84) one common hierarchical codebook of

edge based features is established by using agglomerative clustering in order to rep-

resent several object classes and (111) propose hierarchical models based on shared

object parts and interest point detectors for learning multiple object classes. Fidler

and Leonardis (43) also represent several object classes by a hierarchy of parts based

on a set of oriented Gabor filters, where the parts of a specific layer are the statistically
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most significant compositions of parts from the previous layer. A further multi-level hi-

erarchical model for part sharing is proposed in (131), relying on both appearance and

shape based features in order to simultaneously perform multi-view and multi-object

detection.

Regarding the proposed Viewsphere Model, we reconsider the work of (123) in order to

select informative object parts for the task of multi-view object class detection and pose

estimation. However, we rely on a discriminative learning of object parts and unlike

the object class detection approaches of (91, 94), these object parts are initialized by

an unsupervised clustering step. In further contrast to previous work (43, 84, 111, 131),

the Viewsphere Model is based on a flat hierarchy which can be efficiently evaluated.

Furthermore, we exploit the advantages of CAD models for training in order to per-

form a fully unsupervised selection of photo-realistic object parts over the entire view-

sphere. By avoiding manually chosen semantic object part correspondences (132) or

viewpoint-specific object parts (109), common geometry and appearance, which are in-

trinsic within an object class over the entire viewsphere, are discovered. Consequently,

an established object part can contribute to the representation of an object class for

several defined viewpoints on the viewsphere, resulting in an object class representation

which performs on par with the current state-of-the-art detection approach of (34).

Figure 4.1: With the Viewsphere Model an object class representation covering the de-

fined viewsphere is built from a database of 3D object models and a set of real negative

images. To this purpose, common object parts are discovered from the rendered training

images such that intra-class and viewpoint variation is covered. The Viewsphere Model

allows for a 2D localization and an approximate pose estimation on unseen test images.
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4.3 Training

This section outlines the necessary training steps for the Viewsphere Model and starts

with the use of an object class specific database of CAD models and a set of real negative

images as training source. Afterwards, the unsupervised approach for decomposing an

object class into a pool of potential object parts is explained. This generated pool of

potential object parts serves as input for both the 2D localization step and the pose

estimation step of the Viewsphere Model, which are also described in this section.

Figure 4.2: Example images for the pure examples (left) and the validation images (right).

The pure examples exclusively show the object instances of a specific object class in front of

a black background. In contrast, the validation images show the object instances (indicated

by the bounding boxes which are automatically determined during the rendering process)

of a specific object class in front of randomly selected images from the background images

described in Section 2.3.2. Note that the viewpoint label for each synthetically generated

training image is provided by the rendering process without any manual intervention.

4.3.1 Training Examples

Similar to the Multi-View Model, the Viewsphere Model derives its positive training

examples for all subsequent training steps entirely from an object class specific database

of CAD models (see Figure 4.1). See Figure 2.7 for some model examples of different

object classes or Appendix B for a visualization of all CAD models which are used

in this thesis. When applied to a test set, the Viewsphere Model does not need to

be retrained or adapted to the data set characteristics. This is a key advantage of

reducing training set dependencies in favor of a better generalization. The CAD models

of the database for a specific object class are rendered from a dense grid of viewpoints

ω = (α, ϵ) which is defined on the viewsphere in steps of 5◦ in azimuth direction α and

in steps of 5◦ in elevation direction ϵ. Based on this defined grid of viewpoints and

the rendering process described in Section 2.3.2, we generate for the Viewsphere Model
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two independent sets of training images: the pure examples and the validation images.

For the pure examples, which are used to decompose an object class into a pool of

potential object parts, the CAD models are rendered in front of a black background (see

Figure 4.2 (left)). As a result, the influence of any background on the part generation

process for a specific object class can be avoided. In order to define a fixed training

scale for the Viewsphere Model we rescale (by retaining the aspect ratio of each training

image) the pure examples to a fixed height1. The validation images are generated by

rendering the CAD models in front of randomly selected images from the background

images described in Section 2.3.2. The object instances within the validation images

vary in width and height (see Figure 4.2 (right)). Further details on the pure examples

and the validation images are given in the experimental evaluation of Section 4.5. In

addition to the synthetically generated positive training images, i.e., the pure examples

and the validation images, the Viewsphere Model relies on a set of real negative training

images which does not contain any object instance of the object class being trained.

To this purpose, we modify the PASCAL VOC2006 training data set to establish this

set of negative training images2.

Figure 4.3: Object parts from different viewpoints might display similar appearance

characteristics in HOG space. The Viewsphere Model exploits these similarities in an

adaptive way for 2D localization and pose estimation.

4.3.2 Generating a Pool of Object Parts

Initially, for the object class being trained, a pool P of potential object parts is gener-

ated as input for the subsequent higher-level training steps of the Viewsphere Model,

1For our experiments we use a fixed height of 64 pixels for all object classes. Note that the pure examples

vary in width, since we retain the aspect ratio of each training image.
2The PASCAL VOC2006 training data set is modified such that it does not contain any object instance

of the object class under training.
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Figure 4.4: The pure examples for all defined viewpoints on the viewsphere at the pre-

defined training scale are encoded with the HOG descriptor of (21). We apply affinity

propagation (48), which is an unsupervised clustering algorithm, to all features which are

collected from the pure examples for a specific HOG layout. The features which are as-

signed to a cluster serve as positive training examples and subsequently, we train for each

generated cluster a linear SVM classifier, i.e., an object part detector, by using the ’boot-

strapping’ procedure of Section 2.2.1.1.1 in conjunction with real negative training images.

We repeat this procedure for different HOG layouts in order to obtain a pool of potential

object parts.

i.e., for training the 2D localization step which is described in Section 4.3.3 and for

training the pose estimation step which is described in Section 4.3.4. The objective

of this training step is to discover common object parts which are intrinsic within an

object class over parts of the viewsphere due to viewpoint symmetries and/or part sim-

ilarities (see Figure 4.3). The unsupervised approach to establish a pool P of potential

object parts and to discover common object parts is illustrated in Figure 4.4.

For generating a pool of potential object parts for an object class, we rely on the gener-

ated pure examples at the predefined training scale for all defined viewpoints and real
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negative images which do not contain any object instance of the object class under train-

ing. The T pure examples are encoded with the HOG descriptor of (21), since we intend

to discover common object parts within an object class in HOG space (see Figure 4.3).

Let E be an encoded pure example with the fixed training height of htrain ’HOG-cells’

and a width of wt ’HOG-cells’. The maximum width within all T encoded pure examples

is denoted by wmax. Let l = (h,w) be a HOG layout with a height of h ’HOG-cells’ and

a width of w ’HOG-cells’. L = {(h,w) | 4 ≤ h ≤ htrain, 4 ≤ w ≤ wmax, h ∈ N , w ∈ N}
denotes a set of different HOG layouts. A HOG feature f of a corresponding HOG

layout l = (h,w) is obtained by concatenating the ’HOG-cells’ within a h × w sub

window of an encoded pure example E.

As shown in Figure 4.4, for a specific HOG layout in L we collect HOG features from the

encoded pure examples of all defined viewpoints using a ’sliding window’ approach. We

apply affinity propagation (48), which is an unsupervised clustering process, to these

collected HOG features and consequently, similar HOG features (i.e. patches with a

similar appearance) within an object class are assigned to the same cluster. For each

established cluster an object part detector is built in order to model the appearance

of the corresponding patches within a cluster. We use the HOG features assigned to

a cluster as positive training examples and rely on the ’bootstrapping’ procedure of

Section 2.2.1.1.1 in conjunction with real negative training examples from the modified

PASCAL VOC2006 training data set to train an object part detector, i.e., a linear

SVM classifier (see Figure 4.4). For learning those object part detectors the size of the

established clusters is essential: the size of the established clusters must not be too

large (e.g. all collected HOG features are assigned to one cluster) and must not be too

small (e.g. each collected HOG feature represents a cluster on its own) to learn suitable

object part detectors. To address this issue, we measure the average distance s of all

established clusters in Euclidean space by using the following equation

s =
1

Q

Q∑
q=1

∑
fj∈Gq

(||fj −mq||2)2. (4.1)

Q is the total number of all established clusters, fj are the HOG features which are

assigned to the cluster Gq, and mq is the representative training example, i.e., a specific

HOG feature, for the cluster Gq chosen by affinity propagation (48). By setting the

’preference’ values (48) of affinity propagation, we are able to pre-specify the number

of established clusters: high ’preference’ values cause a large number of clusters (i.e.
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a small average distance s of the established clusters) and small ’preference’ values

induce a small number of clusters (i.e. a high average distance s of the established

clusters). Consequently, we apply affinity propagation with high ’preference’ values to

the collected HOG features for a specific HOG layout, calculate the average distance

s of all established clusters with Equation 4.1, and reapply affinity propagation with

smaller ’preference’ values to the collected HOG features until a predefined average dis-

tance spre of the established clusters is reached1. The described procedure above, i.e.,

collecting HOG features for a specific HOG layout from the encoded pure examples of

all defined viewpoints, clustering the resulting HOG features until a predefined average

distance spre is reached, and training a linear SVM classifier for each established cluster,

is repeated for all defined HOG layouts in L. Finally, we obtain a pool P of potential

object parts, in which each object part is represented by a linear SVM classifier.

Figure 4.5: The defined viewsphere of the Viewsphere Model is divided into eight equally

spaced viewsphere subspaces in azimuth direction and for each subspace a potential pool

of object parts is generated. Finally, the generated object parts for all defined subspaces

form the final pool P of potential object parts.

During initial experiments it turned out that it is advantageous for the detection per-

formance of the Viewsphere Model to divide the defined viewsphere of the Viewsphere

Model into smaller subspaces and to generate for each of these defined subspaces a pool

of potential object parts by applying the described procedure above to the correspond-

ing pure examples for each defined viewsphere subspace. To this purpose, we divide

the defined viewsphere of the Viewsphere Model in azimuth direction into eight equally

1Based on initial experiments we have identified spre = 500 as an adequate average distance of the

established clusters resulting in suitable object part detectors.
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spaced viewsphere subspaces (see Figure 4.5) and establish for each of those viewsphere

subspaces a pool of potential object parts. Finally, the generated object parts for all

defined viewsphere subspaces form the final pool P of potential object parts for the

subsequent training steps; the influence of this viewsphere subdivision on the detection

performance of the Viewsphere Model is reported during the experimental results in

Section 4.5.2.1.

4.3.3 2D Localization

In this section, we describe the training procedure for the 2D localization step of

the Viewsphere Model : a subset of N2D object parts, which are most informative with

respect to the object class being trained, is selected from the generated pool P of po-

tential object parts. Here, we rely on an entropy-based measure (45, 123) which is

described in this section. Similar to the proposed Multi-View Model, the Viewsphere

Model combines the generative Star Model and the discriminative Spatial Pyramid

Model into one common object class detection framework. Consequently, the selected

subset of N2D informative object parts serves as input for both the generative part of

the Viewsphere Model, which consists of a dense grid of Star Models, and the discrimi-

native part of the Viewsphere Model, which consists of one Spatial Pyramid Model. The

training steps of these two parts for the 2D localization step of the Viewsphere Model

are also described in this section.

4.3.3.1 Selecting the Most Informative Object Parts

The generated pool P of potential object parts (see Section 4.3.2) contains a large num-

ber of redundant and/or non-informative object parts due to viewpoint symmetries and

part similarities. In this training step a subset of N2D (1≤n≤N2D, n∈N) object parts is
selected from the established object part pool P , by ranking the informativeness of each

potential object part with respect to a defined positive and a negative image set based

on an entropy-based measure. For the 2D localization of an entire object class, we de-

fine that an object part is informative if it appears on as many object instances under as

many viewpoints as possible. Consequently, the positive image set is chosen to contain

the generated pure examples at the predefined training scale of all defined viewpoints

on the viewsphere. The negative image set is chosen to contain real negative training

examples from the modified PASCAL VOC2006 training data set (see Section 4.3.1).
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Based on the defined positive and negative image set, we select altogether a subset of

N2D object parts from the object part pool P for the 2D localization step of the View-

sphere Model by relying on the entropy-based selection procedure which is described

in the following two subsections. We rely on this entropy-based selection procedure

also for training the pose estimation step of the Viewsphere Model which is described

in Section 4.3.4. Consequently, in the following we describe this selection procedure

consisting of two steps in general form, i.e., independent of the defined positive and

negative image set and the number of selected object parts.

The first step of this entropy-based measure determines independently for each object

part from the established pool P of potential object parts (i.e. for the corresponding

linear SVM classifier) an optimal detection threshold. This detection threshold max-

imizes the information content of an object part regarding the defined positive and

negative image set. The second step of this selection procedure is a greedy search algo-

rithm based on the conditional mutual information criterion (45) to avoid redundancy

among the selected object parts.

4.3.3.1.1 Detection Threshold

The first step of the entropy-based selection process is to determine for each object

part from the pool P an optimal detection threshold θ. This detection threshold maxi-

mizes the mutual information (18) between an object part and the defined positive and

negative image set. To this purpose, we treat an object part Fi in association with a

detection threshold θi as a binary random variable

Fi(θi) =

{
1, if scmax(img, svmi) ≥ θi

0, otherwise
. (4.2)

Here, scmax is the maximum score of the corresponding object part detector svmi (i.e.

the linear SVM classifier) on an image img. In addition, a binary random variable C

is defined, where C = 1 if the image img belongs to the defined positive image set

and C = 0 if the image img belongs to the defined negative image set. Between these
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two binary random variables the mutual information MI(Fi(θi);C)1 is defined as

MI(Fi(θi);C) = H(C) +H(Fi(θi))−H(C,Fi(θi)) (4.3)

As shown in Equation 4.3, the mutual information between an object part Fi and the

binary random variable C depends on the detection threshold θi. Consequently, the

optimal detection threshold θopti for an object part Fi can be determined from

θopti = argmax
θi

[MI(Fi(θi);C)] (4.4)

resulting in the maximal mutual information MImax
i for an object part Fi

MImax
i = max

θi
[MI(Fi(θi);C)] = MI(Fi(θ

opt
i );C). (4.5)

An example for the mutual information of an object part Fi as a function of the detec-

tion threshold θi is given in Figure 4.6. If the detection threshold is set too low, the

mutual information score will also be low since the object part is detected frequently in

the defined negative image set. A high detection threshold will likewise result in a low

mutual information since the object part now is too sparsely detected in the defined

positive image set. At some intermediate value of the detection threshold the mutual

information reaches a maximum and the object part delivers a maximum amount of

information.

4.3.3.1.2 Greedy Search

After the optimal detection threshold θi for each object part Fi in the pool P is inde-

pendently determined, we can iteratively select an optimal subset of N (1≤n≤N,n∈N)
object parts from the pool P of potential object parts. We rely on a greedy search al-

gorithm, which is based on the conditional mutual information criterion (45), to avoid

redundancy among the selected object parts.

We assume that the initial pool of potential object parts, which contains all gener-

ated object parts from P , is denoted by P0. The initial pool of selected object parts,

which is an empty set, is denoted by S0. The greedy search algorithm is initialized (i.e.

1With H(U) = −
∑

u∈U p(u) log2 p(u) and H(U, V ) = −
∑

u∈U

∑
v∈V p(u, v) log2 p(u, v) being Shan-

non’s entropy and Shannon’s joint entropy based on the binary random variables U = {0, 1}
and V = {0, 1}. The estimation of the probabilities (i.e. p(u) and p(u,v)) can be done accurately

by counting the numbers of occurrences of the specific patterns within the defined positive and nega-

tive image set.
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Figure 4.6: Mutual information as a function of varying the detection threshold of an

example object part detector.

n = 1) by moving the object part F opt
1 with the highest mutual information, obtained

by Equation 4.5, from the initial pool of potential object parts P0 to the initial pool of

selected object parts S0. After the first iteration of the greedy search algorithm, the

pool of potential object parts is denoted by P1 and the pool of selected object parts is

denoted by S1. At the second iteration of the greedy search algorithm (i.e. n = 2) we

want to select the second object part F opt
2 from the pool of potential object parts P1.

However, at the second iteration we do not rely on the maximal mutual information

as the selection criterion. Instead, we rely on the conditional mutual information crite-

rion (45) in order to select as second object part F opt
2 from the pool P1 the object part

which has the highest additional information regarding the previously selected object

part F opt
1

MI(C;Fi|F opt
1 ) = H(C,F opt

1 )−H(C,Fi, F
opt
1 )−H(F opt

1 ) +H(Fi, F
opt
1 ). (4.6)

As described in (45), the conditional mutual information of Equation 4.61 is an estimate

of the quantity of information shared between an object part Fi from the potential pool

of object parts P1 and the binary random variable C, given the first selected object

part F opt
1 . If Fi and F opt

1 contain the same information about C the terms on the

1WithH(U, V,W ) = −
∑

u∈U

∑
v∈V

∑
w∈W p(u, v, w) log2 p(u, v, w) being Shannon’s joint entropy based

on the binary random variables U = {0, 1}, V = {0, 1}, and W = {0, 1}. Similar to Equation 4.3, the

probabilities of Equation 4.6 can be accurately estimated by counting the numbers of occurrences of

the specific patterns within the defined positive and negative image set.
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right side of Equation 4.6 compensate each other and consequently, the conditional

mutual information is zero. If Fi brings additional information about C, which is not

already contained in F opt
1 , there is a difference on the right side of Equation 4.6 and

the conditional mutual information is not zero. Consequently, at the second iteration

of the greedy search algorithm, we select as second object part F opt
2 from the pool P1 of

potential object parts the object part with the highest conditional mutual information

obtained by Equation 4.6. For the selection of the third object part F opt
3 (i.e. n = 3)

we then have to consider the previously selected object parts F opt
1 and F opt

2 . Formally,

the selection process of an object part F opt
n at iteration n can be described as

F opt
n = argmax

Fi∈Pn−1

[
min

Fj∈Sn−1

[
MI(C;Fi|Fj)

]]
2 ≤ n ≤ N. (4.7)

Pn−1 is the pool of potential object parts and Sn−1 is the pool of selected object parts

at iteration n. First, we have to calculate between a potential object part Fi and all

previously selected object parts Fj the conditional mutual information by using Equa-

tion 4.6. Afterwards, we store for this potential object part Fi the minimum value

obtained for the conditional mutual information (see Equation 4.7). This value will be

small if the potential object part Fi is similar to a previously selected object part Fj

and consequently, redundancy among the selected object parts will be avoided. This

calculation is done for all potential object parts from the pool Pn−1. Subsequently, we

select the object part F opt
n from the pool Pn−1 which yields the maximum increase of

additional information about the defined positive and negative image set (see Equa-

tion 4.7). The update rules for the pool of potential object parts and the pool of

selected object parts are defined by

Pn = Pn−1 \ {F opt
n } Sn = Sn−1 ∪ {F opt

n } 1 ≤ n ≤ N. (4.8)

After N iterations we have selected N object parts from the pool P of potential ob-

ject parts that contain a maximum of information regarding the defined positive and

negative image set.

4.3.3.2 Modeling a Dense Grid of Star Models

As shown in Figure 4.7, the generative part of the Viewsphere Model consists of a dense

grid of Star Models. To this purpose, we establish for each defined viewpoint on the
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Figure 4.7: The pre-detection step of the Viewsphere Model consists of a Star Model

for each defined viewpoint on the viewsphere. Each generative Star Model describes the

spatial uncertainty, i.e., the locations of the most informative object parts, with Gaussian

mixture models.

viewsphere a generative Star Model (see Section 2.2.1) based on the selected subset of

N2D object parts of Section 4.3.3.1. As shown in Figure 4.8, each linear SVM classi-

fier associated with a selected object part is applied densely to the pure examples at

the predefined training scale of a defined viewpoint leading to part detector responses.

According to Section 2.2.1.1.2, we collect for each object part the location of the max-

imum detection response in each pure example and model the spatial distribution of

these locations with respect to the image center by using a Gaussian mixture model.

Finally, we obtain for each defined viewpoint a generative Star Model which is able

to predict a suitable bounding box during the detection procedure, by projecting the

average size of the corresponding pure examples (i.e. the fixed height and the average

width at the predefined training scale) as mean bounding box into a test image (see

Figure 4.8).

The dense grid of Star Models as the generative part of the Viewsphere Model is used to

identify regions of interest, i.e., initial object hypotheses, which potentially contain an

object instance of the trained object class. However, in order to establish such a dense

grid of Star Models, which should be able to deal with significant intra-class variation

in order to achieve a high recall on a benchmark data set, it is not necessary to use all

N2D selected object parts of Section 4.3.3.1. On the validation images, we optimize the

trade-off between minimizing the number of object parts M2D (M2D ≤ N2D) used by

the dense grid of Star Models in favor of a lean description and maximizing the recall of

the dense grid of Star Models on the expected intra-class and intra-viewpoint variation
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within the object class being trained. In practise, we determine the optimal number of

M2D object parts for the dense grid of Star Models in a validation step; see Section 4.5

for experimental results.

Figure 4.8: For each defined viewpoint on the viewsphere, we apply the SVM classifiers

associated with the selected subset of object parts to the corresponding pure examples at

the predefined training scale. We model the location of these object parts with respect to

the image center by using Gaussian mixture models. The average size (i.e. the fixed height

and the average width) of the pure examples is used as mean bounding box to predict a

suitable bounding box during the detection procedure.

4.3.3.3 Learning the Spatial Pyramid Model

During testing, the established dense grid of Star Models (see Section 4.3.3.2) will allow

generating a set of initial object hypotheses. However, depending on each Star Model,

these generated object hypotheses have different score ranges and varying aspect ra-

tios. In the following, we introduce, similar to the Multi-View Model, a verification

step which is based on the Spatial Pyramid Model of Section 2.2.2 in order to rank

the generated object hypotheses in a consistent way. We apply the established dense

grid of Star Models to the validation images and resize (while retaining the aspect

ratio) the generated object hypotheses to the predefined training scale, i.e., the fixed

height of the pure examples. We convert the resized object hypotheses into spatial

pyramid representations (70) by relying on the selected subset of N2D object parts of

Section 4.3.3.1. By using a spatial pyramid representation we can impose a regularly

spaced grid subdivision which is relative to the area covered by an object hypothe-

sis and thus independent of its aspect ratio and dimension. As a result, this spatial
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pyramid representation encodes the part detector responses of all N2D selected object

parts within the area covered by an object hypothesis. Based on the ground truth,

which is automatically provided for each validation image, we are able to divide these

spatial pyramid representations into a set of positive and negative training examples.

Subsequently, we train one common nonlinear SVM classifier with an intersection ker-

nel (56) based on this training set of spatial pyramid representations. Consequently,

the established Spatial Pyramid Model is an object class representation which models a

given object class for all defined viewpoints on the viewsphere and enables a consistent

ranking of the initial object hypotheses provided by the dense grid of Star Models.

4.3.4 Pose Estimation

In this section, we describe the training procedure for the pose estimation step of

the Viewsphere Model. In contrast to the 2D localization step of the Viewsphere Model,

where we rely on one common Spatial Pyramid Model for the entire viewsphere, we

divide the viewsphere into equally spaced viewsphere subspaces. Subsequently, we

select for each defined subspace the most informative object parts from the pool P of

potential object parts. Based on these selected subsets of object parts a Spatial Pyramid

Model is established for each defined subspace enabling an initial pose estimation for

an object hypothesis. In addition, this initial pose estimation for an object hypothesis

can be further refined by using Gaussian mixture models.

4.3.4.1 Selecting the Most Informative Object Parts

Unlike the 2D localization step of the Viewsphere Model, the pose estimation step of

the Viewsphere Model requires a suitable discretization of the defined viewsphere into

V (1≤v≤V, v∈N) equally spaced subspaces. This discretization can be freely adapted

to the task setting and is not inherent to or imposed by our training procedure1. Since

the pose estimation step of the Viewsphere Model is based on the object hypotheses,

which are provided by the pre-detection step of the Viewsphere Model, it is not nec-

essary to select object parts which are suitable to discriminate the entire object class

from the background. In fact, for the pose estimation step of the Viewsphere Model it

is necessary to select object parts which are suitable to discriminate a specific object

1In our experiments we rely on the same viewsphere discretization (see Figure 4.5) which is used for the

part pool generation described in Section 4.3.2.
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pose from other object poses. To this purpose, we define the pure examples which

correspond to a specific viewsphere subspace v as the positive image set and we de-

fine the remaining pure examples, i.e., which correspond to the remaining viewsphere

subspaces, as the negative image set. Based on those defined positive and negative

image sets, we are able to select for each defined viewsphere subspace v a subset of

Nv
3D informative object parts from the generated pool P of potential object parts by

using the entropy-based selection process which is described in Section 4.3.3.1.

4.3.4.2 Pose Initialization

Based on the discretization of the defined viewsphere of the Viewsphere Model into V

(1≤v≤V, v∈N) equally spaced subspaces and the V selected subsets of Nv
3D informative

object parts, we establish for each defined viewsphere subspace v a Spatial Pyramid

Model. As described in Section 4.3.3.3, the object hypotheses which are generated

on the validation images (by applying the established dense grid of Star Models) are

resized to the predefined training scale of the Viewsphere Model, i.e., the fixed height of

the pure examples. For each defined subspace v we rely on the corresponding subset of

Nv
3D selected object parts, convert all rescaled object hypotheses into spatial pyramid

representations (70), and divide these spatial pyramid representations into a set of

positive and negative training examples based on the ground truth which is provided for

each validation image. Given these training sets, a nonlinear SVM with an intersection

kernel (56) is trained for each defined subspace v by relying on the ’bootstrapping’

procedure described in Section 2.2.1.1.1. During detection, the Viewsphere Model is

able to provide an object hypothesis with an initial pose estimation by relying on the

corresponding subspace of the Spatial Pyramid Model with the highest classification

score.

4.3.4.3 Pose Refinement

As described in Section 4.3.4.2, the pose initialization of the Viewsphere Model is based

on several Spatial Pyramid Models where each Spatial Pyramid Model is directly linked

to a discretized subspace of the viewsphere. Figure 4.9 shows how the pose estimation

precision of an object hypothesis can be further refined for the subspace of the cor-

responding Spatial Pyramid Model with the highest classification score. Each defined

subspace v (1≤ v ≤ V, v ∈N) has its subset of Nv
3D (1≤ n≤Nv

3D, n∈N) informative
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Figure 4.9: The pose refinement step of the Viewsphere Model is based on several Gaus-

sian mixture models. Each Gaussian mixture model captures the spatial arrangement of

an object part for a defined viewpoint on the viewsphere.

object parts and consists of R (1≤r≤R, r∈N) defined viewpoints ωr = (αr, ϵr). During

the training of the pose estimation step, the corresponding linear SVM classifiers of

the Nv
3D selected object parts are applied densely to the pure examples at the prede-

fined training scale of the Viewsphere Model, i.e., the fixed height of the pure examples,

within the corresponding subspace v. Subsequently, we measure for each object part n

in each pure example for a given viewpoint ωr = (αr, ϵr) the location xn,ωr of the max-

imum detection response with respect to the image center1. We model for each object

1The position of the maximum detection response with respect to the center of a training image is

measured in column direction u and row direction v, i.e., x′
n,ωr

= (∆u,∆v).
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part n and each defined viewpoint ωr the spatial distribution pdfXn,ωr
of all locations

Xn,ωr by using a Gaussian mixture model θn,ωr = {αk, µk,Σk} with K components

(1≤k≤K, k∈N)

pdfXn,ωr
(xn,ωr |θn,ωr) =

K∑
k=1

αkN(xn,ωr |µk,Σk). (4.9)

αk is the prior probability of a component k, µk is the mean vector of a component

k, and Σk is the covariance matrix of a component k. The parameters of a Gaussian

mixture model θn,ωr are automatically estimated by the approach of (13). Assuming

conditional independence of the Nv
3D object parts, the initially estimated subspace v

can be refined to the viewpoint ωest
r

ωest
r = argmax

ωr

Nv
3D∏

n=1

pdfXn,ωr
(xn,ωr |θn,ωr). (4.10)

Note that the refined viewpoint of Equation 4.10 is relative to the virtual camera pa-

rameters used to generate the synthetic training images. With an estimated viewpoint

ωest
r and a given bounding box of the 2D localization step, we are able to project for

each object hypothesis a mean 3D bounding box, which is computed from the 3D object

model database, into a tested image.

4.4 Detection

This section describes the two necessary detection steps of the Viewsphere Model with

respect to 2D localization and approximate pose estimation.

4.4.1 2D Localization

As mentioned in the introduction of this chapter, the Viewsphere Model retains the

advantage of the Multi-View Model and integrates the generative Star Model and the

discriminative Spatial Pyramid Model into one common object class detection frame-

work. In the following, we describe the two detection steps of the Viewsphere Model

with respect to 2D localization. First, the generative pre-detection step based on the

dense grid of Star Models to obtain initial object hypotheses and second, the verifica-

tion step based on the discriminative Spatial Pyramid Model to verify the initial object

hypotheses and to establish a comparable ranking.
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4.4.1.1 Pre-Detection

In order to identify regions of interest, i.e., initial object hypotheses, which potentially

contain an object instance of the object class being detected, we rely on the dense

grid of generative Star Models1 described in Section 4.3.3.2 in conjunction with the

detection procedure of the Star Model described in Section 2.2.1.2. The detection

scores of these Star Models alone do not allow a consistent ranking of the initial object

hypotheses, since the corresponding object hypotheses have varying aspect ratios and

different score ranges. Consequently, in the following verification step of the Viewsphere

Model we build on the classification performance of the Spatial Pyramid Model in order

to obtain a normalized and comparable detection score for each initial object hypothesis.

4.4.1.2 Verification

The final detection result consists of a consistent and comparable scoring of the ini-

tial object hypotheses based on the Spatial Pyramid Model of Section 4.3.3.3. To this

purpose, each initial object hypothesis, which is generated by the dense grid of Star

Models, is resized (while retaining the aspect ratio) to the predefined training size, i.e.,

the fixed height of the pure examples. The responses of all N2D selected object parts in

the scaled area of an object hypothesis are encoded in a spatial pyramid representation

as described in Section 4.3.3.3, which is then classified by the Spatial Pyramid Model

to obtain the final detection score for the corresponding object hypothesis. Since the

detection process of the Viewsphere Model can result in multiple overlapping object

hypotheses, finally, a non-maximum suppression is performed which retains only high

scoring bounding boxes and discards those bounding boxes covered by a higher-scoring

bounding box.

Similar to the verification step of theMulti-View Model, the verification step of theView-

sphere Model results in a significant gain in average-precision of up to 40% in our ex-

periments when compared to the detection scores provided by the dense grid of Star

Models.

1In our experiments each Star Model generates 5 object hypotheses on a test image.
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4.4.2 Pose Estimation

In addition to 2D localization, the Viewsphere Model is able to perform an approxi-

mate pose estimation for each final object hypothesis. As described in Section 4.3.4,

this pose estimation step is based on several Spatial Pyramid Models where each Spatial

Pyramid Model is directly linked to a discretized subspace of the defined viewsphere.

To this purpose, each object hypothesis remaining after the non-maxima suppression of

the verification step described in Section 4.4.1.2 is classified by the V Spatial Pyramid

Models for all defined subspaces. Within the discrete subspace with the highest clas-

sification score the pose estimation precision of an object hypothesis is further refined

by applying the pose refinement step of the Viewsphere Model which is described in

Section 4.3.4.3.

4.5 Evaluation

In this section, we outline the experimental results we achieve with the proposed View-

sphere Model. We evaluate the Viewsphere Model with respect to different tasks on

the 3D Object Category data set of Section 2.5.1 and on the PASCAL VOC2006 data

set of Section 2.5.2 for the classes car and bicycle and compare its performance with

the Multi-View Model.

4.5.1 Training Setup

Like the Multi-View Model, the Viewsphere Model relies on synthetically generated

positive training images rendered from CAD models which are available from commer-

cial distributors, notably turbosquid.com and doschdesign.com. See Appendix B for a

visualization of the CAD models which are used in the present thesis. In contrast to

the Multi-View Model, we use all 25 car models and all 8 bicycle models for training, as

the object part generation process of the Viewsphere Model (see Section 4.3.2) is not

based on the assumption that the aspect ratios of the CAD models for a specific object

class should be similar for a given viewpoint. As illustrated in Figure 4.10, for the

bicycle class we modify1 6 bicycle CAD models of the 8 basic CAD models in a similar

way to cover typical variations within the bicycle object class resulting in altogether

1We rely on NuGrafR⃝ distributed by Okino Computer Graphics to modify the CAD models

(http://www.okino.com/nrs/nrs.htm/).
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14 CAD models, i.e., 8 basic CAD models and 6 modified CAD models. In order to

define a dense grid of viewpoints on the viewsphere, azimuth α is uniformly sampled

from 0◦ to 360◦ in 5◦ steps and elevation ϵ is uniformly sampled from 0◦ to 20◦ in 5◦

steps. This viewpoint setup is used to generate the pure examples and the validation

images; details on the generated positive training images for the Viewsphere Model

are presented in Table 4.1. We draw all negative training images from the PASCAL

VOC2006 training data set, which excluded the training images for the object classes

car and bicycle. For our experiments we rely on the HOG implementation of (37) with

a HOG cell size of 8 pixels and for testing we choose an image pyramid with 10 levels

in an octave; for the Spatial Pyramid Models we choose a spatial pyramid representa-

tion with three levels of linear subdivision since a linear subdivision results in a more

compact object class representation compared to a quadratic subdivision1.

Figure 4.10: In order to take into account the typical variations within the object class

bicycle (left) 6 of the 8 basic bicycle CAD models (center) are modified to generate 6

additional bicycle CAD models (right).

In order to evaluate the 2D localization performance of the Viewsphere Model and to

be comparable with the results of the Multi-View Model, we again use the overlap cri-

terion which is described in Section 2.4.2: a predicted bounding box is considered as

correct if the overlap between a predicted bounding box and a ground truth bounding

box exceeds 50%. If several bounding boxes are predicted in the same image area, only

one detection is considered as correct, while the remaining detections are considered as

false positives.

In Section 4.3.3.2 we outline that the number of selected object parts for the dense grid

of Star Models is chosen in a validation step to optimize the tradeoff between recall and

model complexity. To this purpose, we increase the number of object parts M2D for

1For a spatial pyramid representation with three levels a linear subdivision reduces the descriptor length

to 66% compared to a quadratic subdivision, independently of the number of object parts.
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building a dense grid of Star Models until the recall1 on the validation images exceeds

a predefined threshold or the limit of the N2D selected informative object parts has

been reached (i.e. M2D ≤N2D). Based on the results for the pre-detection step of

the Multi-View Model (see Section 3.6.2.1), we decide to use a threshold of 98% for the

predefined recall. Figure 4.11 shows the impact of changing the object part number

M2D with respect to the achieved recall on the validation images for the object class

bicycle. In this example, saturation is reached when selecting M2D = 50 object parts

for building the dense grid of Star Models.

car (25 CAD models) bicycle (8+6 CAD models)

pure validation pure validation

examples images examples images

average height of the object instances 64 pixels 64 pixels 64 pixels 109 pixels

no. of defined viewpoints 360 360 360 360

no. of light variations 1 1 1 1

no. of all training images 9000 360 5040 360

Table 4.1: Details on the generated positive training images for the Viewsphere Model.

The pure examples at the predefined training scale have the same fixed height and vary

only in width. The object instances within the generated validation images vary in width

and height. Note that for each defined viewpoint one CAD model is randomly selected to

generate a viewpoint-specific training image for the validation images.

4.5.2 3D Object Category Data Set

On the 3D Object Category data set we assess the influence of the viewsphere subdivi-

sion and the number of selected object parts on the detection performance of the View-

sphere Model. In addition, the performance of the Viewsphere Model with respect to 2D

localization and pose estimation is evaluated and compared to other reported results.

Finally, we assess the influence of the CAD models’ quality and the influence of using

real images for training on the detection performance of the Viewsphere Model.

4.5.2.1 Viewsphere Subdivision and Number of Object Parts

In the first experiment, we evaluate the impact of two different parameters on the

training procedure of the proposed Viewsphere Model : the influence of the viewsphere

1We determine how often on the validation images the overlap between one generated object hypothesis,

i.e., a predicted bounding box, and the ground truth bounding box within a validation image exceeds

50%.
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Figure 4.11: Tradeoff between recall on the validation images and number of selected

object parts M2D for the dense grid of Star Models of the object class bicycle.

car left front-left front front-right right back-right back back-left

no. of object parts 734 512 225 547 773 622 248 527

no. of all object parts 4188

Table 4.2: Number of generated object parts for the object class car when dividing the

viewsphere of the Viewsphere Model into the eight equally spaced viewsphere subspaces

given in Figure 4.5.

bicycle left front-left front front-right right back-right back back-left

no. of object parts 681 364 38 404 691 390 41 394

no. of all object parts 3003

Table 4.3: Number of generated object parts for the object class bicycle when dividing

the viewsphere of the Viewsphere Model into the eight equally spaced viewsphere subspaces

given in Figure 4.5.

car bicycle

no. of all object parts 1597 936

Table 4.4: Number of generated object parts for the object classes car and bicycle when

the object parts are generated on the entire viewsphere of the Viewsphere Model.

subdivision during the generation of potential object parts which is described in Sec-

tion 4.3.2 and the influence of the number of selected object parts N2D which is de-

scribed in Section 4.3.3.1. For both object classes (i.e. cars and bicycles) we compare

the 2D localization performance of the Viewsphere Model on the 3D Object Category

data set when generating informative object parts from the entire viewsphere or when
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dividing the entire viewsphere into the eight equally spaced viewsphere subspaces which

are given in Figure 4.5. The numbers of generated object parts for the final pool of

potential object parts are given in Table 4.2, Table 4.3, and Table 4.4. The numbers

indicate that the viewsphere subdivision results in a significantly increased number of

generated object parts. Based on these generated pools P of potential object parts,

we train for both object classes a Viewsphere Model with N2D = 50 and N2D = 100

selected object parts. We apply the resulting Viewsphere Models to the entire 3D Ob-

ject Category data set, i.e., to all 480 test images per object class. The precision-recall

curves we obtain are shown in Figure 4.12 for the object class car and in Figure 4.13

for the object class bicycle. For cars, the viewsphere subdivision has little effect on the

overall detection accuracy. The reason is that for both settings suitable object parts

are generated and selected. Consequently, the resulting object class detectors do not

suffer from low recall. In addition, the number of selected object parts N2D has little

effect on the performance of the corresponding car detector. For the object class bicycle

the behavior is different. If the object parts for the bicycle class are generated from

the entire viewsphere the corresponding bicycle detector suffers from low recall. The

bicycle detector is not able to detect the front and the back views of a bicycle which

cover relatively small areas and contain delicate structures. If we choose the eight

equally spaced viewsphere subspaces given in Figure 4.5, specific object parts for those

viewpoints, i.e., the front and the back view of a bicycle, are established and selected.

This results in a significantly higher recall of the final bicycle detector. Furthermore,

increasing the number of selected object parts from N2D = 50 to N2D = 100 object

parts improves the overall precision of the bicycle detector.

Based on these results, for the subsequent experiments we choose a viewsphere di-

vision into the eight subspaces given in Figure 4.5. For the car detector we select

N2D = 50 object parts which results in M2D = 25 object parts for building the dense

grid of Star Models. For the bicycle detector we also choose the same subdivision and

select N2D = 100 object parts which results in M2D = 50 object parts for building

the dense grid of Star Models. For training the pose estimation step, we also rely on

the eight subspaces given in Figure 4.5. For each defined subspace v (1≤v≤8, v∈N),
we select a subset with Nv

3D = 50 object parts for the object class car and a subset

with Nv
3D = 100 object parts for the object class bicycle in order to train the Spatial

Pyramid Models and to establish the Gaussian mixture models.
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50 parts, 8 subspaces, AP=90.8%
100 parts, 8 subspaces, AP=90.1%
50 parts, entire viewsphere, AP=91.1%
100 parts, entire viewsphere, AP=90.2%

Figure 4.12: Precision-recall curves for the 3D Object Category car data set when us-

ing different viewsphere subspaces for generating the final pool of potential object parts

(solid/dashed curves) and different numbers N2D of object parts (red/green curves).
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50 parts, 8 subspaces, AP=82.9%
100 parts, 8 subspaces, AP=86.3%
50 parts, entire viewsphere, AP=73.6%
100 parts, entire viewsphere, AP=75.5%

Figure 4.13: Precision-recall curves for the 3D Object Category bicycle data set when

using different viewsphere subspaces for generating the final pool of potential object parts

(solid/dashed curves) and different numbers N2D of object parts (red/green curves).
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Viewsphere Model
AP=94.9%
Stark, BMVC2010
AP=89.9%
Felzenszwalb, PAMI2010, pre−trained VOC2006 model
AP=96.7%
Felzenszwalb, PAMI2010, trained on our data
AP=94.0%

Figure 4.14: Precision-recall curves of the Viewsphere Model (red curve) on the 3D

Object Category car data set compared to other reported results and the state-of-the-art

detection approach of (34).
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Viewsphere Model
AP=87.0%
Liebelt, CVPR2010
AP=69.8%
Felzenszwalb, PAMI2010, pre−trained VOC2006 model
AP=78.0%
Felzenszwalb, PAMI2010, trained on our data
AP=87.2%

Figure 4.15: Precision-recall curves of the Viewsphere Model (red curve) on the 3D

Object Category bicycle data set compared to other reported results and the state-of-the-

art detection approach of (34).

4.5.2.2 2D Localization

In order to compare the 2D localization performance of the Viewsphere Model on the

3D Object Category data set to previous work, we follow the test protocol of (109)
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for the object class car and the test protocol of (78) for the object class bicycle. Note

that these two test protocols define test subsets and therefore differ from the test setup

for the experiments in Section 4.5.2.1 which are evaluated on the entire data set, i.e.,

containing all 480 test images per object class. In Figure 4.14 we compare the detec-

tion performance of the Viewsphere Model to the approach of (109). With 94.9% on

the car data set the proposed Viewsphere Model (red curve) outperforms the approach

of (109) (blue curve with 89.9%) due to a higher recall on the test set. Note that the

approach of (109), which is also trained on synthetic data, uses a bank of 36 viewpoint-

specific models with more than 400 trained object parts. In contrast, the Viewsphere

Model, which is able to exploit appearance co-occurrences across different defined view-

points, requires only 50 object parts. The precision-recall curve for the Viewsphere

Model on the 3D Object Category bicycle data set is given in Figure 4.15. With an

average-precision of 87.0% on the bicycle data set the Viewsphere Model (red curve)

outperforms the approach of (78) (blue curve with 69.8%) due to a significantly higher

recall.

For both object classes, we compare the Viewsphere Model against the current state-

of-the-art approach of (34) using their pre-trained object class models on the PASCAL

VOC2006 data set provided as part of voc-release4 (33). As shown in Figure 4.14,

with an average-precision of 94.9% on the car data set the proposed Viewsphere Model

(red curve) can compete with the state-of-art detector of (34) (green curve with 96.7%)

despite being trained on synthetically generated positive training images. As shown in

Figure 4.15, on the bicycle test set the Viewsphere Model (red curve with 87.0%) out-

performs the state-of-the-art detection approach of (34) (green curve with 78.0%) due

to a higher precision at a comparable recall. We also evaluate the method of (34) based

on our synthetically generated positive training images. To this purpose, we train and

evaluate for both object classes a detection model with the recommended settings of 3

components and 8 parts per component. We use the approach of (34) which is provided

as part of voc-release4 (33) in conjunction with the synthetically generated validation

images1 as positive training images and the PASCAL VOC2006 training data set as neg-

ative training images. The results indicate with an average-precision of 94.0% (brown

1We only use the synthetically generated validation images as positive training images, since the pure

examples with a black background might not be suitable as positive training images for the method

of (34).
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curve in Figure 4.14) on the car test set and with an average-precision of 87.2% (brown

curve in Figure 4.15) on the bicycle test set that the proposed Viewsphere Model per-

forms on par with the current state-of-the-art object class detection approach of (34).

Numerous approaches have been evaluated on the 3D Object Category data set with

respect to 2D localization. However, different test configurations have been used which

makes an objective and comprehensive benchmarking difficult. To compare to each ap-

proach, we evaluate the Viewsphere Model with respect to 2D localization using each

of the test configurations reported by the different authors on the car data set. The

results are shown in Table 4.5. Note that the Viewsphere Model performs on par or

better than most of these reported detectors with respect to 2D detection, despite being

trained on synthetically generated positive training images.

Approach Reported Test Configuration AP2D Own AP2D

Glasner (54) 5 inst./3 scales 99.2% 94.9%

Liebelt (78) 3 inst./3 scales 76.7% 97.2%

Stark (109) 5 inst./3 scales 89.9% 94.9%

Su (110) 5 inst./2 scales 55.3% 94.9%

Sun (112) 5 inst./2 scales —– 94.9%

Zia (132) 5 inst./3 scales 90.4% 94.9%

Table 4.5: We evaluate the Viewsphere Model with respect to 2D localization following

the previously reported test protocols on the 3D Object Category car data set in order

to achieve an objective comparison (abbreviation: inst.=object instance, AP2D=average-

precision for 2D localization).

4.5.2.3 Pose Estimation

In order to benchmark the pose estimation performance of the Viewsphere Model on the

3D Object Category data set, we bin the estimated viewpoints of the pose estimation

step (see Section 4.4.2) in 45◦ steps to match to the ground truth annotations defined

by (100). Here, we follow the test protocol of (109) for the object class car and the test

protocol of (78) for the object class bicycle to compare the pose estimation performance

of the Viewsphere Model to existing approaches. The confusion matrices obtained

by classifying all positive detections of Section 4.5.2.2 are shown in Figure 4.16 for

the object class car and in Figure 4.17 for the object class bicycle. For the object

class car we observe that confusion is more pronounced for opposing views due to

the symmetries inherent in the car class. For example, 27.0% of back-right views
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Figure 4.16: Confusion matrix (rows: ground truth, columns: estimates) for the 3D

Object Category car data set.

Figure 4.17: Confusion matrix (rows: ground truth, columns: estimates) for the 3D

Object Category bicycle data set.

are classified as front-left views. Still, with an average-accuracy of 82.6% the pose

estimation step of the Viewsphere Model compares favorably to the reported result

of (109) with 80.5%. For the object class bicycle we observe that confusion is more

pronounced between neighboring viewpoints. For example, 44.0% of the right views

are classified as front-right views. On the bicycle data set, the achieved result of

87.7% significantly outperforms the approach of (78) with 75.0%. Some successful
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detection results with the full detection process of the Viewsphere Model on the 3D

Object Category data set are shown for the object class car in Figure 4.27 and for the

object class bicycle in Figure 4.28. Figure 4.31 depicts some failed detection results of

the Viewsphere Model for the object class car and the object class bicycle. The failed

detections on the 3D Object Category data set are mainly caused by sub detections

within an object instance or when there is insufficient evidence in the image for a correct

pose initialization.

Similar to Section 4.5.2.2, we compare the Viewsphere Model with respect to pose

estimation to other reported results. Table 4.6 shows that the Viewsphere Model also

performs on par or better than most of these reported detection approaches with respect

to pose estimation.

Approach Reported Test Configuration AA3D Own AA3D

Glasner (54) 5 inst./3 scales 84.9% 82.6%

Liebelt (78) 3 inst./3 scales 70.0% 81.5%

Stark (109) 5 inst./3 scales 80.5% 82.6%

Su (110) 5 inst./2 scales ≈69.4% 83.6%

Sun (112) 5 inst./2 scales 66.6% 83.6%

Zia (132) 5 inst./3 scales 84.0% 82.6%

Table 4.6: We evaluate the Viewsphere Model with respect to pose estimation following

the previously reported test protocols on the 3D Object Category car data set in order

to achieve an objective comparison (abbreviation: inst.=object instance, AA3D=average-

accuracy for pose estimation).

Figure 4.18: Some examples of CAD models with a reduced quality (bottom) from the

car database (see Appendix B) compared to their original CAD models (top). The number

of vertices is reduced by 25% resulting in visible defects of the CAD models.
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High Quality
AP=90.8%
Low Quality
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Figure 4.19: The influence of the CAD models’ quality on the detection performance

of the Viewsphere Model. A database of CAD models with a reduced quality, i.e., a

small number of vertices, results in a significantly lower 2D localization performance of the

proposed Viewsphere Model.

4.5.2.4 Influence of CAD Models’ Quality

In this experiment we assess the influence of the CAD models’ quality on the 2D

localization performance of the proposed Viewsphere Model. To this purpose, we reduce

the number of vertices for all CAD models of our car database (see Appendix B)

by 25% resulting in a database of car models with visible defects1. Some examples

of car models with such a reduced quality are shown in Figure 4.18. Based on this

database of CAD models with a reduced quality, we train a Viewsphere Model for

the object class car with the 8 subspaces given in Figure 4.5 and N2D = 50 object

parts to be comparable with the previous results of the Viewsphere Model. We follow

the test protocol of Section 4.5.2.1 and apply the resulting Viewsphere Model to the

entire 3D Object Category car data set, i.e., to all 480 test images. As shown in

Figure 4.19, the Viewsphere Model, relying on a database with a reduced quality of the

CAD models, achieves a 2D localization performance of 83.1% (blue curve) which is

below the detection performance of the Viewsphere Model relying on the original CAD

1To this purpose, we rely on the polygon reduction system of NuGrafR⃝ distributed by Okino Computer

Graphics which automatically adapts the textures and the materials of a CAD model when reducing

the number of vertices. Details on this polygon reduction system are given in (52).
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model database without any visible defects (red curve with 90.8%). Consequently, a

database of CAD models with sufficiently many vertices, i.e., CAD models with a high

quality without any visible defects, is necessary to establish a powerful Viewsphere

Model for a specific object class.
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Spatial Pyramid Model with synthetic training data
AP=94.9%
Spatial Pyramid Model with real training data
AP=97.2%

Figure 4.20: Using real training images for the Spatial Pyramid Model of the Viewsphere

Model results in a slightly better 2D localization performance. However, this performance

gain comes with the shortcoming of using real training images, i.e., the supervision of

training data.

4.5.2.5 Influence of Real Training Images

In this experiment we evaluate the influence of real training images on the proposedView-

sphere Model. To this purpose, we adapt the trained Viewsphere Model for the object

class car of Section 4.5.2.1 and learn the corresponding Spatial Pyramid Model with

real training examples instead of synthetically generated validation images. In order

to be comparable with the 2D localization results of Section 4.5.2.2, we follow the test

protocol of (109) by dividing the 3D Object Category car data set into 240 training

images (i.e. 5 cars in total) and 240 test images (i.e. 5 cars in total). We use the train-

ing images as training source for learning the Spatial Pyramid Model of the Viewsphere

Model as described in Section 4.3.3.3. As a result, we obtain a car detector which

consists of a synthetically trained pre-detection step and a verification step based on

real training images. Consequently, the resulting Viewsphere Model is based on a mix-
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ture of real and synthetic training images, similar to the approach of (78). As shown

in Figure 4.20, the Viewsphere Model, consisting on both synthetic and real training

images (blue curve with 97.2%), achieves a sightly better performance due to a higher

precision, compared to the Viewsphere Model which relies only on synthetic training

images (red curve with 94.9%). Consequently, training the Viewsphere Model with

both synthetic and data set specific images results in a slightly better 2D localization

performance. However, this small performance gain has the disadvantage of using real

training images (see Section 1.2), which in this case do not seem to justify the use of

real training images for the Viewsphere Model. In addition, this small performance

gain could also be the result of an adaption of the Viewsphere Model to the data set

characteristics of the 3D Object Category data set at the expense of its generalization

abilities.

4.5.3 PASCAL VOC2006 Data Set

The precision-recall curves on the PASCAL VOC2006 data set obtained with the View-

sphere Model are given in Figure 4.21 (red curve) for the object class car and in Fig-

ure 4.22 (red curve) for the object class bicycle. For both object classes we provide the

best performing approaches of the PASCAL challenge 2006 (28) (blue curves), the best

performing approaches of the PASCAL challenge 2007 on the 2006 test set (29) (cyan

curves), and the most recent multi-view approaches of (110) (green curves) and (95)

(brown curves). With 40.4% on the car test set and 44.5% on the bicycle test set,

the Viewsphere Model achieves a higher average-precision than these two multi-view

approaches, despite being trained on synthetically generated positive training images.

Similar to the Multi-View Model (see Section 3.6.3), we observe that the appearance

variations within the car test set are more pronounced than those within the bicycle

class which might be the reason for the observed performance difference of the View-

sphere Model on these two object classes: while the chosen synthetic bicycle models

and the corresponding validation images and pure examples are sufficient to repre-

sent the appearance variations of the bicycle test set, the synthetic car models and

the corresponding validation images and pure examples seem to be not representative

enough. Some successful detection results of the Viewsphere Model on the PASCAL

VOC2006 data set are shown for the class car in Figure 4.29 and for the class bicycle

in Figure 4.30. Figure 4.32 depicts some failed detections of the Viewsphere Model for
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Figure 4.21: Precision-recall curves of the Viewsphere Model (red curve) for the object

class car on the PASCAL VOC2006 data set compared to other reported results.

both object classes. The failed detections are mainly caused by sub detections within

other object instances or nonrigid geometries. Note that in contrast to the 3D Object

Category data set of Section 4.5.2, we do not perform the pose estimation step of Sec-

tion 4.4.2 on the PASCAL VOC2006 data set, instead providing only a 2D bounding

box.

4.5.4 Comparison to the Multi-View Model

In this section, we compare the achieved results of the Viewsphere Model to those of

the Multi-View Model on the 3D Object Category data set and PASCAL VOC2006

data set.

In order to compare the results of the Viewsphere Model with the results of the Multi-

View Model on the 3D Object Category data set for the object classes car and bicycle,

we follow the test protocol of Section 4.5.2.1 and apply the trained detectors to the entire

3D Object Category data set, i.e., to all 480 test images per object class. Note that the

test protocol of Section 4.5.2.1 differs from the two test protocols used in Section 4.5.2.2

and in Section 4.5.2.3, since these two test protocols define a subset of test images. The

results of the two different approaches, i.e., the Multi-View Model and the Viewsphere

Model, with respect to 2D localization are given in Figure 4.23. For both object classes,
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Figure 4.22: Precision-recall curves of the Viewsphere Model (red curve) for the object

class bicycle on the PASCAL VOC2006 data set compared to other reported results.
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Figure 4.23: Comparison of the Viewsphere Model (red curves) with the Multi-View

Model (blue curves) with respect to 2D localization on the 3D Object Category car data

set (left) and the 3D Object Category bicycle data set (right).

the Viewsphere Model outperforms the Multi-View Model due to a higher precision.

The confusion matrices obtained by classifying the corresponding positive detections

are shown in Figure 4.24 for the object class car and in Figure 4.25 for the object class

bicycle. In the case of pose estimation the Viewsphere Model significantly outperforms

the Multi-View Model due to a set of discriminatively trained Spatial Pyramid Models

where each Spatial Pyramid Model is directly linked to a discretized subspace of the
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defined viewsphere. We observe that for the object class car the confusion for opposing

views and for the object class bicycle the confusion for neighboring views is significantly

reduced by the Viewsphere Model compared to the Multi-View Model. The comparison

of the Viewsphere Model with the Multi-View Model on PASCAL VOC2006 data set for

the object classes car and bicycle is given in Figure 4.26. For both proposed approaches,

we observe a similar detection performance on both test sets.

Figure 4.24: Comparison of the Multi-View Model (left) with the Viewsphere Model

(right) with respect to pose estimation on the 3D Object Category car data set.

Figure 4.25: Comparison of the Multi-View Model (left) with the Viewsphere Model

(right) with respect to pose estimation on the 3D Object Category bicycle data set.
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Figure 4.26: Comparison of the Viewsphere Model (red curves) with the Multi-View

Model (blue curves) with respect to 2D localization on the PASCAL VOC2006 data set for

the object class car (left) and the object class bicycle (right).

4.6 Summary

In this chapter, we have presented the Viewsphere Model which is an approach to 2D

localization and pose estimation. The Viewsphere Model learns an object class represen-

tation from a database of CAD models and a set of real negative training images. Sim-

ilar to the Multi-View Model of the previous chapter, the Viewsphere Model integrates

the generative Star Model and the discriminative Spatial Pyramid Model in one com-

mon object class detection framework. However, in contrast to the Multi-View Model,

the Viewsphere Model exploits appearance co-occurrences due to viewpoint symmetries

and part similarities by choosing non-semantic object parts. The 2D localization per-

formance of the Viewsphere Model is on par with the current state-of-the-art detection

approach of (34) and we show an increased robustness of the Viewsphere Model with

respect to pose estimation compared to the Multi-View Model. In the following chapter,

we extend the Viewsphere Model to cope with multiple object classes simultaneously.
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Figure 4.27: Some successful detection results with the full detection process of the View-

sphere Model on the 3D Object Category car data set. We show only the highest scored

detection per image.
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Figure 4.28: Some successful detection results with the full detection process of the View-

sphere Model on the 3D Object Category bicycle data set. We show only the highest scored

detection per image.
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Figure 4.29: Some successful detection results of the Viewsphere Model for the object

class car on the PASCAL VOC2006 data set. Note that the PASCAL VOC2006 data set

is only evaluated with respect to 2D localization resulting in a 2D bounding box. We show

only the highest scored detection per image.
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Figure 4.30: Some successful detection results of the Viewsphere Model for the object

class bicycle on the PASCAL VOC2006 data set. Note that the PASCAL VOC2006 data

set is only evaluated with respect to 2D localization resulting in a 2D bounding box. We

show only the highest scored detection per image.

118



4.6 Summary

Figure 4.31: Some failed detection results of the Viewsphere Model on the 3D Object

Category car data set (top) and on the 3D Object Category bicycle data set (bottom). The

failed detections are mainly caused by sub detections within an object instance or when

there is insufficient evidence in the image for a correct pose initialization.

Figure 4.32: Some failed detection results of the Viewsphere Model on the PASCAL

VOC2006 data set for the object class car (top) and for the object class bicycle (bottom).

The failed detections are mainly caused by sub detections within other object instances

or a nonrigid geometry. Note that the PASCAL VOC2006 data set is only evaluated with

respect to 2D localization resulting in a 2D bounding box.
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Chapter 5

The Viewsphere Model for

Multiple Object Classes

In this chapter, we extend the Viewsphere Model of Chapter 4 in order to cope with

multiple object classes. First, we summarize previous work on multi-class object de-

tection and second, we present three learning approaches based on the training steps

of the Viewsphere Model with different part sharing strategies. This chapter concludes

with an experimental evaluation and a comparison of these three learning methods.

5.1 Introduction

Learning and recognizing multiple object classes from arbitrary viewpoints is still in its

infancy. Several approaches address the problem of viewpoint-independent object class

detection (54, 79, 100, 102, 110) or multi-class object detection (31, 42, 90, 98, 108,

117). Most of these approaches consider these two problems in isolation, i.e., either a

viewpoint-independent representation of an object class is built (54, 102, 110) or multi-

ple object classes are trained from discrete viewpoints (42, 90, 117). In contrast to these

approaches, we present in this chapter three learning strategies based on the Viewsphere

Model in order to represent multiple object classes on a densely sampled viewsphere.

Altogether we describe, evaluate, and compare the following learning strategies: first,

an independent learning strategy, which trains each object class separately from all

other object classes, second, a joint learning strategy, which trains all object classes

simultaneously, and third, a sequential learning strategy, which learns one object class
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after another. All presented learning strategies rely on the part-based object class rep-

resentation of the Viewsphere Model which derives its positive training examples from

a database of textured CAD models. The 2D localization performance of these learning

strategies is evaluated on the Multi-Class data set of Section 2.5.3 consisting of images

from the 3D Object Category data set and the PASCAL VOC2006 data set. Our ex-

periments indicate that the sequential learning strategy achieves the best result with

respect to 2D localization performance and flexibility during the training process and

thus could be suitable for learning multiple object classes from arbitrary viewpoints on

a larger scale.

This chapter is structured as follows: Section 5.2 gives an overview of previous work

on multi-class object detection. In Section 5.3 we present the three different learning

strategies based on the training steps of the Viewsphere Model and their detection pro-

cedures are outlined in Section 5.4. Experimental results and a comparison of these

learning strategies are given in Section 5.5. This chapter is concluded in Section 5.6.

5.2 Related Work

In general, there are three main strategies for learning to represent multiple object

classes: first, an independent learning which trains each object class separately from

all other object classes. Second, a joint learning (117) which trains all object classes

simultaneously and third, a sequential learning which trains one object class after an-

other (90). In (117) multiple object classes are trained jointly based on boosted decision

stumps to find common features. A variation of (117) is proposed in (90) which en-

ables a sequential addition of a new object class without a retraining of the previously

learnt object classes. In the context of learning object classes from a small number of

training samples (5, 9, 31, 75, 108) the sequential learning is also termed knowledge

transfer or one-shot learning. In (31) the priors of probabilistic models are adapted by

a few training samples to represent new object classes and in (5) a template from a

previously trained object class is used to regularize the training of a novel object class.

Bart and Ullman (9) replace features from known object classes with ones from a new

but visually similar object class. Levi et al. (75) use prior information about a novel

object class in order to assist a feature selection process. Stark et al. (108) propose

a shape-based model which enables full or partial knowledge transfer. All mentioned
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approaches have in common that they either learn the object classes from just a few

discrete viewpoints (31, 108) or they perform knowledge transfer within visually similar

object classes (5, 9, 75).

In contrast, we present in this chapter three learning strategies to represent multi-

ple (also visually dissimilar) object classes on a densely sampled viewsphere. To this

purpose, we rely on the training steps of the Viewsphere Model where an object class

representation is learnt by relying on a database of CAD models and a set of real

negative images. Our work is related to (42) where a hierarchical framework is used

to compare different types of multi-class learning strategies. However, in contrast to

our work, (42) restrict possible synergies among the object classes to a few discrete

viewpoints.

5.3 Multi-Class and Multi-View Learning Strategies

In this section, we present three learning methods with different part sharing strategies,

which rely on the training steps of the Viewsphere Model to represent C object classes

on a densely sampled viewsphere: an independent (I), a joint (J), and a sequential (S)

learning strategy. By relying on the part-based representation of the Viewsphere Model,

we follow common multi-class approaches which also decompose each object class into

object parts (9, 98, 117).

5.3.1 Independent Learning

The first learning strategy is an independent learning of all C (1≤ c≤C, c∈N) ob-

ject classes (see Table 5.1 for pseudo code). Based on the pure examples Ec
pure and

the validation images Ec
val, each object class c is trained independently from all other

object classes. For each object class c a pool P c
I of independent and object class specific

parts is generated (see Section 4.3.2) and for each object class the N c
I most informative

object parts from the established pool P c
I are selected (see Section 4.3.3.1). Based on a

subset of M c
I object parts and the pure examples Ec

pure, a dense grid of Star Models is

established for each object class c (see Section 4.3.3.2). Finally, for each object class c

a Spatial Pyramid Model with the N c
I selected object parts is learnt on the correspond-

ing validation images Ec
val (see Section 4.3.3.3).

Training each object class independently from all other object classes has the advantage
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Independent Learning of C Object Classes:

for c := 1 to C

- generate a pool P c
I of object parts based on the pure examples Ec

pure

- select the N c
I most informative object parts from P c

I with

an entropy-based measure

- model a dense grid of Star Models based on the pure examples Ec
pure

- learn a Spatial Pyramid Model with all N c
I object parts on the

validation images Ec
val

end

Table 5.1: An independent learning strategy based on the training steps of the Viewsphere

Model. For a single object class (C = 1) this strategy reduces to the Viewsphere Model

described in Chapter 4.

that a new object class can easily be added without retraining the previously learnt

object classes (42). However, object parts are not shared among object classes which

implying that the computational complexity of the overall representation grows linearly

with the number of object classes, as shown in (117).

5.3.2 Joint Learning

The second learning strategy is a joint learning of all C (1≤c≤C, c∈N) object classes.
An overview of the joint learning strategy is outlined in Figure 5.1 and the correspond-

ing pseudo code is given in Table 5.2. Based on the pure examples of all object classes

Epure =
C∪
c=1

Ec
pure a common pool PJ of object parts is generated (see Section 4.3.2)

and the NJ most informative object parts, which cover all object classes at once, are

selected from the established pool PJ (see Section 4.3.3.1). Subsequently, a dense grid

of Star Models is established for each object class c by using the corresponding pure

examples Ec
pure and a common subset of MJ object parts (see Section 4.3.3.2). Finally,

one common Spatial Pyramid Model, covering all object classes at once, with all NJ se-

lected object parts is learnt on the validation images of all object classes Eval =
C∪
c=1

Ec
val

(see Section 4.3.3.3).

The properties of the joint learning strategy are opposed to the properties of the inde-

pendent learning strategy: for joint learning, adding a new object class to an already ex-
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Figure 5.1: Overview of the joint and sequential learning strategy based on the training

steps of the Viewsphere Model. The corresponding pseudo code is given in Table 5.2 for the

joint learning and in Table 5.3 for the sequential learning. The term knowledge transfer

stems from machine learning literature (30) and is described with respect to this work in

Section 5.3.3.
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Joint Learning of C Object Classes:

- generate a common pool PJ of object parts based on the pure

examples Epure =
C∪
c=1

Ec
pure of all object classes

- select the NJ most informative object parts from PJ with

an entropy-based measure

for c := 1 to C

- model a dense grid of Star Models based on the pure examples Ec
pure

end

- learn one common Spatial Pyramid Model with all NJ object parts on the

validation images Eval =
C∪
c=1

Ec
val of all object classes

Table 5.2: A joint learning strategy based on the training steps of the Viewsphere Model.

For a single object class (C = 1) this strategy reduces to the Viewsphere Model described

in Chapter 4.

isting multi-class representation is not possible without retraining all previously trained

object classes from scratch. As shown in (117), a joint learning of multiple object classes

normally reduces the computational complexity of the overall representation by finding

common object parts that can be shared across different object classes. In the following

section, we describe a sequential learning strategy which combines the advantages of

both the independent and the joint learning strategy (42).

Figure 5.2: Examples for transferable object parts: from the bicycle class to the motorbike

class (left) and from the bicycle class to the car class (right).

5.3.3 Sequential Learning

In this thesis, the knowledge of an object class is defined as the appearance of its

corresponding object parts. When learning one object class after another, we are able

to transfer object parts (i.e. knowledge) from previously trained object classes to novel
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Sequential Learning of C Object Classes:

- generate an initial pool P 1
S of object parts based on

the pure examples E1
pure of the first (c=1) object class

for c := 2 to C

- determine the transferable object parts from the pool P c−1
S to the novel

object class c in order to obtain the remaining examples Ec
remain

- generate a pool P
c
S of object parts based on the

remaining examples Ec
remain of the novel object class c

- merge the resulting object part pools P c
S = P c−1

S ∪ P
c
S

end

- select the NS most informative object parts from PC
S with

an entropy-based measure

for c := 1 to C

- model a dense grid of Star Models based on the pure examples Ec
pure

end

- learn one common Spatial Pyramid Model with all NS object parts on the

validation images Eval =
C∪
c=1

Ec
val of all object classes

Table 5.3: A sequential learning strategy based on the training steps of the Viewsphere

Model. For a single object class (C = 1) this strategy reduces to the Viewsphere Model

described in Chapter 4.

object classes. In this work, we term those object parts which are transferred from

previously trained object classes to novel object classes the transferable object parts.

Examples for transferable object parts are shown in Figure 5.2. By finding transferable

object parts across different object classes we reduce the computational complexity of

the overall representation. However, similar to the independent learning strategy it

is possible to learn a novel object class without retraining all previously learnt object

classes from scratch. In the following, we describe a sequential learning strategy of

C (1≤c≤C, c∈N) object classes. An overview of this sequential learning strategy is

outlined in Figure 5.1 and the corresponding pseudo code is given in Table 5.3.

We assume an initial pool of potential object parts P
1

S based on all generated pure

examples E1
S (see Section 4.3.2) of the first object class (c=1). However, in contrast to

the independent learning strategy, for a novel (subsequent) object class c (2≤c≤C) it

127



5. THE VIEWSPHERE MODEL FOR MULTIPLE OBJECT CLASSES

might not be necessary to establish a pool of potential object parts based on all pure

examples Ec
pure of the corresponding object class c. Instead, we intend to determine

the transferable object parts which can be transferred from a previously trained object

class to a novel object class c. Based on the transferable object parts, we are able

to reduce the number of the pure examples Ec
pure and obtain the remaining examples

Ec
remain (Ec

remain ⊆ Ec
pure) for a novel object class c. For example, if a previously

trained object class represents bicycles and a novel object class represents motorbikes

it is not necessary to establish a pool of object parts based on all pure examples of the

motorbike class. In both object classes visually very similar object parts occur (e.g.

the wheels). Consequently, those transferable object parts can be transferred from the

bicycle class to the motorbike class without generating those object parts again from

the corresponding pure examples of the motorbike class (see Figure 5.2 (left)). In order

to determine the transferable object parts which can be transferred from a previously

trained object class to a novel object class c, we calculate for each object part from the

established pool P c−1
S of object parts a joint mutual information MIjoint as follows

MIjoint(c) =
1

c− 1
MImax

all +
c− 2

c− 1
MImax

novel 2 ≤ c ≤ C. (5.1)

MImax
all is the maximal mutual information for an object part on all pure examples.

Consequently, the positive image set consists of both the pure examples of all previ-

ously trained object classes and the pure examples of a novel object class, i.e.,
c∪

i=1
Ei

pure.

MImax
novel is the maximal mutual information for an object part on the pure examples of

a novel class. Consequently, the positive image set consists of the pure examples of a

novel object class Ec
pure. See Equation 4.2 to Equation 4.5 for calculating MImax

all and

MImax
novel of an object part from the pool P c−1

S in conjunction with an optimal detection

threshold1. The joint mutual information of Equation 5.1 for an object part takes into

account with the first term on the right side that with an increasing number of previ-

ously trained object classes an object part is less likely to contain information about

all object classes simultaneously. However, with an increasing number of previously

trained object classes, Equation 5.1 requires with the second term on the right side

that an object part must provide at least information about a novel object class for

1The negative image sets are chosen to contain real negative training images from the modified PASCAL

VOC2006 training data set which does not contain any object instance of the object classes under

training.
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being a transferable object part. Finally, an object part from the established pool P c−1
S

with a joint mutual information MIjoint (obtained by Equation 5.1) above a predefined

information threshold α

MIjoint(c) ≥ α (5.2)

is considered as transferable object part, which can be transferred from a previously

trained object class to a novel object class c (2≤c≤C). Based on the determined trans-

ferable object parts, we are able to reduce the number of the pure examples Ec
pure for a

novel object class c. To this purpose, we determine for each transferable object part its

visibility in the pure examples of a novel object class Ec
pure and consequently, we remove

those images from the pure examples Ec
pure of a novel object class c. We rely on the

calculated maximal mutual information on all pure examples MImax
all of Equation 5.1

in conjunction with Equation 4.2 to determine if the maximum detection score of the

corresponding linear SVM classifier of a transferable object part on a pure example is

above the optimal detection threshold. We require that at least L1 transferable object

parts are visible in a pure example to remove this image from all pure examples Ec
pure.

Finally, we obtain the remaining examples Ec
remain of a novel object class c. Based on

the remaining examples Ec
remain of a novel object class c, a pool P

c
S of object parts

is established and subsequently, the pools P c−1
S and P

c
S are merged into one common

pool P c
S of object parts which forms the basis for further novel object classes.

After repeating the procedure described above for all C defined object classes we obtain

a final pool of object parts PC
S . Based on this final pool PC

S of object parts, the NS

most informative object parts, which cover all C object classes at once, are selected

with an entropy-based measure (see Section 4.3.3.1). Subsequently, for each object class

c a dense grid of Star Models is established by using a common subset of MS object

parts and the corresponding pure examples Ec
pure (see Section 4.3.3.2). Finally, one

common Spatial Pyramid Model for all object classes is learnt by using the validation

images of all C object classes Eval =
C∪
c=1

Ec
val and the selected NS object parts (see

Section 4.3.3.3).

Note that Equation 5.1 and Equation 5.2 rely on heuristics and consequently, the se-

quential learning strategy cannot be generalized to any number of object classes C (see

Section 6.2). However, in Section 5.5 we present experimental results which indicate

1We choose L = 3, since this value performed best in our experiments.
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that the sequential learning strategy works well for two and three object classes.

5.4 Detection

In this section, we outline for the described learning strategies of Section 5.3 the nec-

essary detection steps with respect to 2D localization. In addition, we present for the

joint and sequential learning strategy a procedure which enables an estimation of the

object class label for a predicted object hypothesis.

5.4.1 Independent Learning

The independent learning strategy of Section 5.3.1 results in a set of object class spe-

cific Viewsphere Models. Consequently, during the detection process the 2D localization

procedure described in Section 4.4.1 is applied to a test image for each established View-

sphere Model. Since this process can result in multiple overlapping object hypotheses

of different object classes, finally, a non-maximum suppression for all generated object

hypotheses of all object classes is performed in order to keep only high scoring bounding

boxes. Note that the predicted object hypotheses can be provided with an object class

label based on the object class specific Viewsphere Models.

5.4.2 Joint Learning and Sequential Learning

Both the joint learning strategy of Section 5.3.2 and the sequential learning strategy of

Section 5.3.3 establish object class specific grids of Star Models and one common Spatial

Pyramid Model. This results in the following detection procedure for these two learning

strategies: during the detection process we rely on the established object class specific

grids of Star Models in order to identify object hypotheses based on the detection pro-

cedure described in Section 4.4.1.1. These initial object hypotheses potentially contain

an object instance of the object classes being trained. Subsequently, all these initial

object hypotheses are verified by the common Spatial Pyramid Model to obtain a final

detection score for each object hypothesis (see Section 4.4.1.2). Finally, we perform a

non-maximum suppression in order to retain only high scoring object hypotheses.

The joint learning strategy and the sequential learning strategy are not able to provide

an object hypothesis with an object class label, since these learning strategies rely on

a common Spatial Pyramid Model which covers all object classes at once. However,
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based on a set of object class specific Spatial Pyramid Models it is possible to provide a

predicted object hypothesis with an object class label. To this purpose, it is necessary

to adapt the selection criterion described in Section 4.3.3.1 for selecting the most infor-

mative object parts: for each defined object class c (1≤c≤C, c∈N), we select a subset

of NJ (or NS) object parts from the final pool PJ (or PC
S ) which contains a maximum

amount of information about an object class. The pure examples of a specific object

class serve as positive image set and the pure examples of the remaining object classes

serve as negative image set. Based on those selected subsets of object class specific

parts and the validation images of all object classes, for each object class c a Spatial

Pyramid Model is learnt by relying on the procedure described in Section 4.3.3.3. Fi-

nally, a predicted object hypothesis of the joint or sequential learning strategy obtains

the object class label from the corresponding Spatial Pyramid Model with the highest

classification score; see Section 5.5.4 for experimental results.

5.5 Evaluation

In this section, we outline the experimental results we achieve with the three different

learning strategies described in Section 5.3. First, we evaluate the performance of

these learning strategies with respect to 2D localization and object class estimation on

the Multi-Class data set of Section 2.5.3 and second, we outline and evaluate for the

sequential and joint learning strategy the pose estimation approach of the Viewsphere

Model described in Section 4.3.4.

5.5.1 Training Setup

The described learning strategies of Section 5.3 rely on the training steps of the View-

sphere Model, where a database of CAD models and a set of real negative images1 serve

as training source. For our experiments we use all 25 car models, all 14 bicycle models

(i.e. the 8 basic CAD models and the 6 modified CAD models of Section 4.5.1), and all

13 motorbike models. See Appendix B for a visualization of these CAD models. In order

to define a dense grid of viewpoints on the viewsphere, azimuth α is uniformly sampled

from 0◦ to 360◦ in 5◦ steps and elevation ϵ is uniformly sampled from 0◦ to 20◦ in 5◦

1The PASCAL VOC2006 training data set is modified such that it does not contain any object instance

of the object classes under training.
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steps. This viewpoint setup is used to generate the pure examples and the validation

images once for each object class to make sure that the training images for the different

learning strategies are identical; details are given in Table 5.4. For a fair comparison of

the three different learning strategies with respect to the 2D localization performance

two possibilities exist: either we keep the 2D localization performance constant and

compare the computational complexity (which is measured by the number of object

parts to detect) of the overall representation or we keep the computational complexity

constant and compare the 2D localization performance. In our case, we choose to keep

the computational complexity for the different learning strategies constant and com-

pare the 2D localization performance. Consequently, the following settings are used

for all experiments: M c
I = MJ

C = MS
C = 10 object parts for modeling a dense grid

of Star Models and N c
I = NJ

C = NS
C = 25 object parts for learning the Spatial Pyramid

Model where C is the number of object classes. We rely on the HOG implementation

of (37) with a HOG cell size of 8 pixels and for testing we choose an image pyramid

with 10 levels per octave; for the Spatial Pyramid Model we choose a spatial pyramid

representation with three levels of linear subdivision. In order to generate the pools of

object parts for the different learning strategies (see Section 4.3.2 for further details),

we choose to establish the object parts from the entire viewsphere, i.e., without a view-

sphere subdivision, since the joint learning strategy does not allow assigning viewsphere

subspaces of different object classes.

car (25 CAD models) bicycle (8+6 CAD models) mbike (13 CAD models)

pure validation pure validation pure validation

examples images examples images examples images

average height of
56 pixels 64 pixels 56 pixels 109 pixels 56 pixels 63 pixels

the object instances

no. of defined
360 360 360 360 360 360

viewpoints

no. of light
1 1 1 1 1 1

variations

no. of all

training images
9000 360 5040 360 4680 360

Table 5.4: Details on the generated positive training images for the object classes car,

bicycle, and motorbike. The pure examples at the predefined training scale have the same

fixed height and vary only in width. The object instances within the generated validation

images vary in width and height. For each defined viewpoint one CAD model is randomly

selected to generate a viewpoint-specific training image for the validation images. Note

that for the object class bicycle we take the 8 basic CAD models and the 6 modified CAD

models of Section 4.5.1.
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5.5 Evaluation

To compare the presented learning strategies with respect to 2D localization we use

the evaluation criterion described in Section 2.4.2: an object hypothesis is considered

as correct if the overlap between its corresponding bounding box and a ground truth

bounding box exceeds 50%. For multiple overlapping object hypotheses, only one object

hypothesis is considered as correct and the remaining object hypotheses are penalized

as false detections.
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Sequential (α=0.0), AP=53.4%

Figure 5.3: Precision-recall curves for the different multi-class learning strategies on the

Bicycle-Motorbike test set.

5.5.2 Two Object Classes

We perform the different learning strategies on two visually similar object classes (i.e.

on the Bicycle-Motorbike test set) and on two visually dissimilar object classes (i.e.

on the Bicycle-Car test set). Figure 5.3 and Figure 5.4 illustrate the corresponding

precision-recall curves. We observe for both cases that the joint learning strategy (green

curves) outperforms the independent learning strategy (red curves) and the sequential

learning strategy (blue and brown curves) due to a higher precision. In order to assess

the influence of the transferable object parts (see Section 5.3.3), the sequential learning

strategy from the bicycle class to the motorbike class and from the bicycle class to

the car class is performed for two different information thresholds α (see Equation 5.2).

For α = 0.0 (brown curves) all object parts from the previously trained bicycle class are
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Figure 5.4: Precision-recall curves for the different multi-class learning strategies on the

Bicycle-Car test set.

considered as transferable object parts with the result that for both cases (bicycle to car

and bicycle to motorbike) the set of the remaining examples Eremain for the novel object

class is an empty set and consequently, no further object parts for the novel object class

(i.e. motorbike or car) are generated. As a result, for visually similar object classes

(i.e. from bicycle to motorbike) the detection result for the sequential learning strategy

(brown curve with 53.4%) is still on par with the independent learning strategy (red

curve with 51.5%) and worse than the joint learning strategy (green curve with 58.2%).

For visually dissimilar object classes (i.e. from bicycle to car) the detection result

for the sequential learning strategy (brown curve with 51.6%) is worse than both the

independent learning strategy (red curve with 74.0%) and the joint learning strategy

(green curve with 80.0%), since no further object parts for the visually dissimilar object

class are generated. With an increased information threshold of α = 0.4 (blue curves)

the situation is different. For visually dissimilar object classes (i.e. from bicycle to car)

none of the bicycle object parts is considered as transferable object part which results

in a non-empty set for the remaining examples Eremain and consequently, additional

object parts for the object class car are generated. The increased detection performance

(blue curve with 75.0%) is now on par with the independent learning strategy (red

curve with 74.0%). For visually similar object classes (i.e. from bicycle to motorbike)
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three of the bicycle object parts are still considered as transferable object parts. This

results in a non-empty set for the remaining examples Eremain, additionally generated

object parts for the object class motorbike, and a detection result (blue curve with

52.8%) which is on par with the result of the independent learning strategy (red curve

with 51.5%). These results indicate that in both cases (i.e. visually similar and visually

dissimilar object classes) an information threshold of α = 0.4 for the sequential learning

strategy achieves a good trade-off between transferring knowledge (i.e. object parts)

from previously trained object classes to novel object classes and generating additional

knowledge (i.e. object parts) from a novel object class. Then, the sequential learning

strategy which combines the advantages of the joint and the independent learning

strategy results in a detection performance which is on par with or better than the

detection performance of the independent and the joint learning strategy. Therefore,

for the subsequent tests the information threshold for the sequential learning strategy

is set to α = 0.4. Examples for transferable object parts on both data sets are shown

in Figure 5.2.
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Figure 5.5: Precision-recall curves for the different multi-class learning strategies on the

Bicycle-Car-Motorbike test set.
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5.5.3 Three Object Classes

The precision-recall curves on the Bicycle-Car-Motorbike test set are shown in Fig-

ure 5.5. In this case, the joint learning strategy (green curve with 69.8%) clearly

outperforms the independent learning strategy (red curve with 56.5%) due to a higher

precision. We observe that the order in which the object classes are learnt during the

sequential learning strategy affects the detection performance. The detection results

indicate that it might be advantageous to learn visually dissimilar object classes at first.

However, both detection results (blue curve with 68.4% and brown curve with 74.1%)

of the sequential learning strategy significantly outperform the independent learning

strategy and perform on par with or even better than the joint learning strategy. In

addition, with the sequential learning strategy it is possible to learn a novel object class

without retraining the previously trained object classes from scratch (in contrast to the

joint learning strategy).

Figure 5.6: Comparison of the independent learning strategy (left), the joint learning

strategy (center), and the sequential learning strategy (right) with respect to object class

estimation showing confusion matrices (rows: ground truth, columns: estimates) for the

Bicycle-Car-Motorbike test set.

5.5.4 Object Class and Pose Estimation

As described in Section 5.4, the three learning strategies are able to provide a pre-

dicted object hypothesis with an object class label. The confusion matrices obtained

by classifying all positive detections of Section 5.5.3 on the Bicycle-Car-Motorbike test

set are shown in Figure 5.6 (left) for the independent learning strategy, in Figure 5.6

(center) for the joint learning strategy, and in Figure 5.6 (right) for the sequential learn-

ing strategy (learning order: bicycle-car-motorbike). For all three cases, confusion is

more pronounced between the bicycle class and the motorbike class. The joint learning
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Figure 5.7: Comparison of the joint learning strategy (left) with the sequential learning

strategy (right) with respect to pose estimation showing confusion matrices (rows: ground

truth, columns: estimates) on the Bicycle-Car-Motorbike test set for the object class car.

Figure 5.8: Comparison of the joint learning strategy (left) with the sequential learning

strategy (right) with respect to pose estimation showing confusion matrices (rows: ground

truth, columns: estimates) on the Bicycle-Car-Motorbike test set for the object class bicy-

cle.

strategy with an average classification accuracy of 91.3% and the sequential learning

strategy with an average classification accuracy of 93.7% achieve a better performance

with respect to object class estimation than the independent learning strategy with an

average classification accuracy of 86.4%, due to the established sets of discriminatively

trained object class specific Spatial Pyramid Models described in Section 5.4.2.

An advantage of a part-based representation for multiple object classes resides in the

spatial co-occurrence of object parts which can be used for the pose estimation step of
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the Viewsphere Model described in Section 4.3.4. The following experiment shows that

this advantage is retained even when the object parts are shared over several object

classes, as done for the joint learning strategy and the sequential learning strategy. To

this purpose, for each object class being trained we rely on the eight subspaces given

in Figure 4.5 and for each defined subspace we draw a new subset of NS (or NJ) object

parts from the final pool PC
S (or PJ) of object parts for training the pose estimation step

of the Viewsphere Model. The confusion matrices obtained by classifying all positive

detections of Section 5.5.3 on the Bicycle-Car-Motorbike test set are shown in Fig-

ure 5.7 for the sequential learning strategy (right) and the joint learning strategy (left)

for the object class car and in Figure 5.8 for the sequential learning strategy (right)

and the joint learning strategy (left) for the object class bicycle1. For the joint learning

strategy we observe that for the object class car confusion is more pronounced in oppos-

ing views and for the object class bicycle confusion is more pronounced in neighboring

views. However, the pose estimation of the joint learning strategy relies on the final

pool PJ which consists of common object parts of all object classes (i.e. bicycle, car,

and motorbike) with a reduced viewpoint discriminativity. For the sequential learning

(with the learning order bicycle-car-motorbike) the situation is different. For the object

class bicycle we obtain a pose estimation result which is comparable to the result of

the Viewsphere Model (see Section 4.5.2.3) and for the object class car we obtain a

confusion matrix which is similar to the confusion matrix of the joint learning strategy.

The reason for this behavior is that the pose estimation of the sequential learning is

based on the final pool PC
S of object parts which mainly consists of an initial pool P 1

S

of bicycle object parts and a few additionally generated object parts for the object

classes car and motorbike. While the initially generated object parts for the bicycle

class are sufficient to discriminate between the viewpoints of the bicycle class, the few

additionally generated object parts for the object class car seem to be not sufficient to

discriminate between the viewpoints of the object class car. Some successful results of

the full detection process with 2D localization, object class, and pose estimation on the

Bicycle-Car-Motorbike test set are shown in Figure 5.9 for the sequential learning strat-

egy and in Figure 5.10 for the joint learning strategy. Figure 5.11 (top) depicts some

1Note that for the object class motorbike it is not possible to establish a confusion matrix, since no

ground truth with respect to the object pose for the motorbike class is provided within the Bicycle-

Car-Motorbike test set.
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failed detection results of the sequential learning strategy and Figure 5.11 (bottom) de-

picts some failed detection results of the joint learning strategy. The failed detections

on the Bicycle-Car-Motorbike test set are mainly caused by sub detections within an

object instance or when there is insufficient evidence in the image for a correct pose

initialization.

5.6 Summary

In this chapter, we have presented three learning methods with different part sharing

strategies: an independent learning strategy which trains each object class indepen-

dently from all other object classes and does not share object parts among the object

classes, a joint learning strategy which trains all object classes simultaneously and

shares object parts among the object classes, and a sequential learning strategy which

learns one object class after another and transfers object parts from previously trained

object classes to novel object classes. All these learning strategies rely on the training

steps of the proposed Viewsphere Model where a database of CAD models and real

negative images serve as training source. Our experiments indicate that the sequential

learning achieves the best result with respect to flexibility during the training process

and recognition performance and thus could be suitable for learning multiple object

classes on a densely sampled viewsphere on a larger scale.
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Figure 5.9: Some successful detection results of the full detection process consisting of

2D localization, object class, and pose estimation on the Bicycle-Car-Motorbike test set for

the sequential learning strategy. The estimated object class and object pose are indicated

with a colored 3D bounding box (car: green, bicycle: blue, motorbike: red). We show only

the highest scored detection per image.
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Figure 5.10: Some successful detection results of the full detection process consisting of

2D localization, object class, and pose estimation on the Bicycle-Car-Motorbike test set

for the joint learning strategy. The estimated object class and object pose are indicated

with a colored 3D bounding box (car: green, bicycle: blue, motorbike: red). We show only

the highest scored detection per image.
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Figure 5.11: Some failed detection results on the Bicycle-Car-Motorbike test set for the

sequential learning strategy (top) and for the joint learning strategy (bottom). The failed

detections are mainly caused by sub detections within an object instance or when there is

insufficient evidence in the image for a correct pose initialization.
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Chapter 6

Conclusion

In this chapter, we summarize the work presented in this thesis and provide an outlook

on possible research directions in the area of object class detection.

6.1 Summary

In this thesis, we have presented three different, but related approaches to object class

detection which learn a part-based object class representation from a database of CAD

models and a set of real negative training images.

First, we have proposed the Multi-View Model, an approach which is able to detect

object instances from multiple viewpoints. One advantage of the Multi-View Model is

that it integrates the generative Star Model with the discriminative Spatial Pyramid

Model (i.e. two different learning paradigms) into one common object class detection

framework. In addition, the Multi-View Model derives its positive training examples

exclusively from a database of pre-built CAD models and its negative training examples

from an arbitrary set of background images. Consequently, during training the Multi-

View Model does not require any viewpoint or bounding box annotations. Furthermore,

it relies on an unsupervised approach to determine suitable object part positions within

the positive training examples for a given viewpoint such that during training a set of

viewpoint-specific part detectors can be established without any manual intervention.

Based on this set of part detectors several viewpoint-specific Star Models and one com-

mon Spatial Pyramid Model are established. The Spatial Pyramid Model combines all

viewpoint-specific part detectors into one spatial pyramid representation to exploit all
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the information contained in the set of part detectors and to make use of viewpoint sym-

metries and part similarities within the object class being trained. During detection,

the Multi-View Model relies on a pre-detection step where the viewpoint-specific Star

Models identify regions of interest which potentially contain an object instance of the

object class being tested. Subsequently, these initial object hypotheses are verified by

the Spatial Pyramid Model in order to obtain a final detection score for each object

hypothesis. In addition to the final detection score, each object hypothesis is also pro-

vided with an approximate viewpoint label based on the viewpoint-specific Star Models

of the pre-detection step. When applying the Multi-View Model on different benchmark

data sets it performs on par with other reported object class detection approaches with

respect to 2D localization. However, there is a performance gap to the current state-

of-the-art detection method of (34). In addition, the performance of the Multi-View

Model with respect to pose estimation is not comparable with other reported results,

due to the unsupervised object part generation which does not take into account the

inter-viewpoint discriminativity.

In order to obtain 2D localization and pose estimation results which are comparable to

the current state-of-the-art results we have introduced the Viewsphere Model, our sec-

ond part-based approach to object class detection. The Viewsphere Model retains the

advantage of the Multi-View Model by combining the generative Star Model and the

discriminative Spatial Pyramid Model into one common object class detection frame-

work and also derives its positive training examples exclusively from a database of

CAD models. However, the Viewsphere Model takes into account the shortcomings of

the Multi-View Model, notably a viewpoint-specific generation of object parts result-

ing in redundant or non-informative object parts and a poor pose estimation due to a

lack of inter-viewpoint discriminativity. The Viewsphere Model addresses these short-

comings and establishes an object class representation which densely covers the entire

viewsphere and efficiently exploits co-occurrences of object parts within the object class

being trained due to viewpoint symmetries and part similarities. To this purpose, the

object class being trained is decomposed by using affinity propagation (48) in con-

junction with the HOG descriptor of (21) resulting in a pool of potential object parts.

Subsequently, we rely on an information-theoretic selection criterion (123) in order to

obtain a subset of object parts containing a maximum of information about the object

class with respect to object class detection. Based on this selected subset of object parts,
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a dense grid of Star Models is established providing initial object hypotheses and one

common Spatial Pyramid Model is learnt to verify these initial object hypotheses. For

the pose estimation step of the Viewsphere Model, we first divide the viewsphere into a

set of suitable subspaces and second, for each defined subspace we draw a new subset of

object parts from the pool of potential object parts and learn a Spatial Pyramid Model.

During detection, an object hypothesis is provided with the corresponding viewpoint

label of the Spatial Pyramid Model with the highest classification score. In addition, the

pose estimation within an estimated subspace can be further refined by using Gaussian

mixture models (13) which model the spatial arrangement of the corresponding object

parts. The Viewsphere Model, which densely covers the entire viewsphere by sharing

object parts over several defined viewpoints on the viewsphere, achieves detection and

pose estimation results which are superior to those obtained by the Multi-View Model

and on par with the current state-of-the-art results.

Finally, we have extended the Viewsphere Model for a single object class to cope with

multiple object classes simultaneously. To this purpose, we have presented three learn-

ing methods with different object part sharing strategies relying on the training steps of

the Viewsphere Model : an independent learning strategy which learns each object class

independently from all other object classes, a joint learning strategy which learns all

object classes simultaneously, and a sequential learning strategy which learns one object

class after another. An independent learning strategy has the advantage that a novel

object class can easily be added to an already existing multi-class representation (42).

However, the complexity of this representation grows linearly with the number of object

classes (117). The properties of a joint learning are opposed to the properties of an

independent learning strategy. Adding a novel object class to an existing multi-class

representation is not possible without retraining all previously trained object classes

from scratch. However, a joint learning strategy normally reduces the computational

complexity of a multi-class representation by finding common object parts across sev-

eral object classes (117). A sequential learning strategy now combines the advantages

of a joint and an independent learning strategy. When learning one object class after

another it is possible to add a novel object class to an existing multi-class representa-

tion without retraining the previously learnt object classes from scratch. In addition, it

is possible to reduce the overall complexity of the multi-class representation by trans-

ferring knowledge (30) from previously trained object classes to a novel object class.
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In this work, the knowledge transfer of the described sequential learning strategy relies

on an entropy based measure (123). We determine which training images of a novel

object class are already covered by the knowledge (i.e. object parts) of a previously

trained object class and thus can be removed from the training set of the novel object

class. Our experiments show that the sequential learning strategy achieves the best

result with respect to flexibility during the training process and detection performance

and thus could be used for training multiple object classes on a larger scale.

6.2 Future Work

This thesis presents part-based approaches to object class detection which rely on a

database of CAD models and a set of real negative images. Based on the described

methods and concepts, the following directions for future work are possible:

• Sequential Learning on a Larger Scale: In Chapter 5 we have presented three

different learning strategies to learn multiple object classes on a densely sampled

viewsphere. Considering the flexibility of the training process and the detection

performance the sequential learning strategy achieves the most promising results.

However, in our experiments we use only three object classes and thus, the scala-

bility and the detection performance of the described sequential learning strategy

have to be investigated for more object classes. Also the proposed concept for

knowledge transfer could be revisited to improve the pose estimation performance

by also considering the viewpoint discriminativity of the transferable object parts.

• Geometric and Scene Context: All the described object class detection ap-

proaches of this thesis consider a predicted object hypothesis in isolation and

do not take into account geometric or scene context, although contextual infor-

mation plays an important role for object detection (116) and several successful

approaches to this topic have been proposed such as (7, 64, 101). For example,

the estimated pose of an object instance could be used as geometric prior and

the estimated object class label of an object hypothesis could be used as scene

prior for other object hypotheses. Consequently, an extension of the approaches

presented in this thesis should make use of this context information to further

improve their detection performance.
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• Extension to Nonrigid Object Classes: The evaluation of the object class

detection approaches presented in this thesis is restricted to predominantly rigid

object classes. An extension of the proposed methods to nonrigid object classes

has to be investigated. As shown in (97) for people detection, the use of CAD

models as training source could be an advantage, since it is possible to generate

an arbitrary amount of training images which better represent the shape and pose

variations within the nonrigid object class being detected.
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Publications

Parts of the work presented in this thesis have been published in the following conference

papers and technical reports:

• Johannes Schels, Joerg Liebelt, and Rainer Lienhart. Learning an object class

representation on a continuous viewsphere. In IEEE Conference on Computer

Vision and Pattern Recognition, Providence, 2012.

• Johannes Schels, Joerg Liebelt, and Rainer Lienhart. Self-calibrating 3D con-

text for retrieving people with luggage. In IEEE International Conference on

Computer Vision Workshops, Barcelona, 2011.

• Johannes Schels, Joerg Liebelt, Klaus Schertler, and Rainer Lienhart. Syntheti-

cally trained multi-view object class and viewpoint detection for advanced image

retrieval. In ACM International Conference on Multimedia Retrieval, Trento,

2011.

• Johannes Schels, Joerg Liebelt, Klaus Schertler, and Rainer Lienhart. Building

a semantic part-based object class detector from synthetic 3D object models.

In IEEE International Conference on Multimedia and Expo, Barcelona, 2011.

• Johannes Schels, Joerg Liebelt, and Rainer Lienhart. Learning to represent mul-

tiple object classes on a continuous viewsphere. Technical report, University of

Augsburg, 2012.
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Appendix B

3D Model Database

In the following, all CAD models for the three different object classes bicycle, car, and

motorbike are visualized. All CAD models stem from commercial distributors, notably

turbosquid.com and doschdesign.com. In addition, we provide for each CAD model a

statistic which contains the number of vertices, the number of polygons, the number of

materials, and the number of textures. See Section 2.3.1 for details.

Figure B.1: All CAD models to represent the object class bicycle.
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Figure B.2: All CAD models to represent the object class car (1/2).
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Figure B.3: All CAD models to represent the object class car (2/2).
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Figure B.4: All CAD models to represent the object class motorbike.
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no. of vertices no. of polygons no. of materials no. of textures

model 1 55442 101943 19 17

model 2 63166 116397 11 6

model 3 50507 94954 18 20

model 4 46824 58360 14 14

model 5 27142 26164 19 19

model 6 32445 53272 6 6

model 7 49565 62468 20 7

model 8 51256 62228 9 8

mean 47034 73223 15 12

Table B.1: Statistics of all CAD models used to represent the object class bicycle.

no. of vertices no. of polygons no. of materials no. of textures

model 1 67145 44702 13 6

model 2 45132 30158 11 5

model 3 80608 86841 11 6

model 4 3438 3051 8 0

model 5 6529 6556 5 0

model 6 10535 11431 12 0

model 7 58995 43167 12 6

model 8 42061 26954 12 4

model 9 4178 6819 14 3

model 10 118755 212177 26 3

model 11 30524 54958 19 8

model 12 25600 45801 27 22

model 13 29657 52808 4 1

mean 40243 48109 13 5

Table B.2: Statistics of all CAD models used to represent the object class motorbike.
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no. of vertices no. of polygons no. of materials no. of textures

model 1 62542 118071 13 2

model 2 20124 36232 16 0

model 3 87416 170156 12 2

model 4 42344 78358 26 5

model 5 23032 37776 16 0

model 6 8739 11795 14 0

model 7 90506 171326 15 2

model 8 34050 63170 25 8

model 9 35897 66482 20 4

model 10 9686 14553 13 0

model 11 32952 60820 24 6

model 12 9004 13790 19 0

model 13 27285 50704 23 9

model 14 32497 59998 23 3

model 15 30136 55882 23 5

model 16 30587 56430 22 1

model 17 304969 585568 123 17

model 18 35257 65630 26 6

model 19 40051 74378 28 4

model 20 116997 225295 15 3

model 21 33111 61768 22 2

model 22 37070 69516 21 1

model 23 40541 74890 30 6

model 24 36873 67818 30 8

model 25 18790 31663 18 0

mean 40243 92882 23 4

Table B.3: Statistics of all CAD models used to represent the object class car.
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Multi-Class Data Set

In the following, the 96 images from the VOC2006 motorbike test set which are used

for the Multi-Class data set are visualized. See Section 2.5.3 for further details.

Figure C.1: All images from the VOC2006 motorbike test set which are used for the

Multi-Class data set (1/4).
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Figure C.2: All images from the VOC2006 motorbike test set which are used for the

Multi-Class data set (2/4).
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Figure C.3: All images from the VOC2006 motorbike test set which are used for the

Multi-Class data set (3/4).
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Figure C.4: All images from the VOC2006 motorbike test set which are used for the

Multi-Class data set (4/4).
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Appendix D

Star Model with C Components

per Object Part

Felzenszwalb and Huttenlocher describe in (36) a dynamic programming approach in

order to minimize Equation 2.2 for a star-structured or tree-structured model. In the

following, we briefly summarize the principle of this dynamic programming approach

and describe the adaption of this method with respect to the detection procedure of

the Star Model described in Section 2.2.1.2.

As outlined in (36), for any object part pj with no children1, the best location for the

object part pj can be computed as a function of the location of its own fixed reference

part pi. The only edge incident on pj is (pi, pj), thus the only contribution of lj to the

energy of Equation 2.2 is aj(lj) + sij(li, lj). The quality of the best location for the

object part pj given a location li for its own fixed reference part pi is

Bj(li) = min
lj

(
aj(lj) + sij(li, lj)

)
. (D.1)

For any object part pj with T children, we assume that the function Bt(lj) is known

for each child pt. Then the quality of the best location for the object part pj given a

location li for its own fixed reference part pi is

Bj(li) = min
lj

(
aj(lj) + sij(li, lj) +

T∑
t=1

Bt(lj)

)
. (D.2)

1A child refers any leaf of a tree-structured model or any object part (excepting the reference part) of

a star-structured model.
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Finally, for the root or reference part pr with T children, we assume that the function

Bt(lr) is known for each child pt. Then the quality for the root or reference part pr is

Br(lr) = ar(lr) +

T∑
t=1

Bt(lr). (D.3)

Consequently, the minimization of Equation 2.2 can be recursively expressed in terms of

the function Bj(li) (see Equation D.1). The function Bj(li) can be efficiently computed

by using the generalized distance transform (35) when sij is restricted to a Mahalanobis

distance.

The Star Model described in Section 2.2.1 consists of N object parts pn and one ref-

erence part pr. The reference part pr represents the center of the training images and

in contrast to the object parts pn, the appearance of the reference part pr is not rep-

resented by a linear SVM classifier, i.e., ar(lr) = 0. Each object part pn is connected

to the reference part pr by its own Gaussian mixture model θ = {αc, µc,Σc} with

C components (see Equation 2.1). As described in Section 2.2.1.2, for the inverted

part detector response of an object part pn we perform a distance transform for each

component c of the related Gaussian mixture model. For an object part with C com-

ponents, the transformed responses of all components are ranked with corresponding

prior probabilities probc and added to compute the quality for the reference part pr

Br(lr) = ar(lr) +
C∑
c=1

probcBc(lr)

=

C∑
c=1

probcBc(lr)

(D.4)

with

probc =
αc

2π|Σc|
1
2

. (D.5)

By using Equation D.1 the term probcBc(lr) in Equation D.4 can be reformulated as
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follows

probcBc(lr) = probcmin
ln

(
an(ln) + scrn(lr, ln)

)

= min
ln

(
probcan(ln) + probcs

c
rn(lr, ln)

)

= min
ln

(
ācn(ln) + s̄crn(lr, ln)

)
= B̄c(lr)

(D.6)

where an(ln) denotes the inverse part detector response of an object part pn. s
c
rn(lr, ln)

denotes the Mahanalobis distance of an object part pn to the reference part pr which

is defined by the mean vector µc and the covariance matrix Σc of a component c.

ācn(ln) denotes the inverse part detector response of an object part pn and s̄crn(lr, ln)

denotes the Mahanalobis distance of an object part pn. Both ācn(ln) and s̄crn(lr, ln) are

specialized for a component c of the related Gaussian mixture model. By combining

Equation D.4 and Equation D.6 we obtain

Br(lr) =
C∑
c=1

B̄c(lr) (D.7)

which is equivalent to the dynamic programming approach of (36) for C object parts

in a star-structured model with flat hierarchy (see Equation D.3). The above described

procedure can be repeated for each of the N object parts of the Star Model with C

components per object part, resulting in a total ofNC separate object parts represented

by a flat hierarchy.
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