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Abstract We derive rewrite-based ordered resolution calculi for semilat-
tices, distributive lattices and boolean lattices. Using ordered resolution
as a metaprocedure, theory axioms are first transformed into indepen-
dent bases. Focused inference rules are then extracted from inference
patterns in refutations. The derivation is guided by mathematical and
procedural background knowledge, in particular by ordered chaining cal-
culi for quasiorderings (forgetting the lattice structure), by ordered reso-
lution (forgetting the clause structure) and by Knuth-Bendix completion
for non-symmetric transitive relations (forgetting both structures). Con-
versely, all three calculi are derived and proven complete in a transparent
and generic way as special cases of the lattice calculi.

Keywords: automated deduction, lattice theory, term rewriting, ordered
resolution, ordered chaining.

1 Introduction

We propose focused ordered resolution calculi for semilattices, distributive lat-
tices and boolean lattices as theories of order. These calculi are relevant to many
interesting applications, including set-theoretic and fixed-point reasoning, pro-
gram analysis and construction, substructural logics and type systems. Focusing
means integrating mathematical and procedural knowledge. Here, it is achieved
via domain-specific inference rules, rewriting techniques and syntactic orderings
on terms, atoms and clauses. The inference rules are specific superposition rules
for lattice theory. They are constrained to manipulations with maximal terms
in maximal atoms. Since lattices are quite complex for automated reasoning,
focusing may not only drastically improve the proof-search in comparison with
an axiomatic approach, it seems even indispensable. But it is also difficult. Only
very few focused ordered resolution calculi are known so far. One reason is that
existing methods require guessing the inference rules and justifying them a pos-
teriori in rather involved completeness proofs (c.f. for instance [3229]).

We therefore use an alternative method to derive the inference rules and
prove refutational completeness by faithfulness of the derivation [27]. This deriva-
tion method uses ordered resolution as a metaprocedure. It has two steps. First,
a specification is closed under ordered resolution with on the fly redundancy
elimination. The resulting resolution basis has an independence property similar



to set of support: No inference among its members is needed in a refutation. Sec-
ond, the patterns arising in refutational inferences between non-theory clauses
and the resolution basis are transformed into inference rules that entirely replace
the resolution basis. Up to refutational completeness of the metaprocedure, the
derivation method is purely constructive. It allows a fine-grained analysis of
proofs. It supports variations, approximations and modular extensions.

The concision and efficiency of focused calculi depends on the quality of the
mathematical and procedural background knowledge that is integrated. Here,
it is achieved mainly as follows. First, via specific axioms: for instance, via a
lattice-theoretic variant of a cut rule as a surprising operational characteriza-
tion of distributivity [I8]. Second, extending related procedures: ordered chain-
ing for quasiorderings [A27], ordered resolution calculi as solutions to lattice-
theoretic uniform word problems [26] and Knuth-Bendix completion for qua-
siorderings [28]. On the one hand, ordered resolution is (via the cut rule) a criti-
cal pair computation for quasiorderings extended to distributive lattices. On the
other hand, ordered chaining rules are critical pair computations extended to
clauses. Extending both to lattices and clauses motivates an ordered resolution
calculus with ordered chaining rules for lattices that include ordered resolution
at the lattice level. Third, via syntactic orderings: these constrain inferences,
for instance to the respective critical pair computations. We extend and com-
bine those of the background procedures. We use in particular multisets as the
natural data structure for lattice-theoretic resolution to build term orderings.

Briefly, our main results are the following.

— We propose refutationally complete ordered chaining calculi for finite semi-
lattices, distributive lattices and boolean lattices. These calculi yield decision
procedures. We also argue how to lift the calculi to semi-decision procedures
for infinite structures.

— The lattice calculi comprise an ordered chaining calculus for quasiorderings,
a Knuth-Bendix completion procedure for quasiorderings and ordered reso-
lution calculi as special cases. Their formal derivation and proof of (refuta-
tional) completeness is therefore uniform and generic.

— As a peculiarity, we derive propositional ordered resolution (with redun-
dancy elimination) formally as a rewrite-based solution to the uniform word
problem for distributive lattices. This yields a constructive refutational com-
pleteness proof that uses ordered resolution reflexively as a metaprocedure.

— We present theory-specific simplification techniques that increase the effi-
ciency of the calculi.

— Besides this, our results further demonstrate the power and applicability of
the derivation method with a non-trivial example. In particular we show how
easily focused calculi can be extended in a modular way.

We also include many examples that show the lattice calculi at work.

The remainder is organized as follows. Section [ recalls some ordered reso-
lution basics. Section B introduces some lattice theory and motivates our choice
of the resolution basis with mathematical arguments. Section Bl introduces the
syntactic orderings for our lattice calculi. Section Blintroduces the lattice calculi.



Here we restrict our attention to the ground case, that is the case of finite struc-
tures. Section Bl contains the first step of the derivation: the construction of the
resolution basis. Section [l contains the second step of the derivation: the extrac-
tion of the inference rules and therewith the proof of refutational completeness
of the calculus for finite distributive lattices. Section Bl discusses refutational
completeness of special cases and decidability issues. Section @ shows that our
calculi yield short and simple proofs of some typical textbook exercises from lat-
tice theory. In section [, we lift our calculi to the non-ground case. Section [
discusses some simplification techniques for the lattice calculi. These are indis-
pensable for implementations. Section [[2 discusses some extensions of the lattice
calculi. In particular to boolean lattices and to set-theoretic reasoning, which is
an interesting application. Section contains a conclusion and an outlook to
further work.

2 Ordered Resolution and Redundancy

We first recall some well-known results about ordered resolution and redundancy
elimination. Consider [Bl5] for further reference.

Let Tx(X) be a set of terms with signature X and variables in X, let P be
a set of predicates. The set A of atoms consists of all expressions p(ti,...,ts),
where p is an n-ary predicate and ty,...,t, are terms. A clause is an expression

{I¢1,...,¢m|} — ﬂ¢1,---,¢nﬂ’-

Its antecedent {¢1,...,dn[t and succedent {1, ..., ¥,[ are finite multisets of
atoms. Antecedents are schematically denoted by I', succedents by A. Brackets
will usually be omitted. The above clause represents the closed universal formula

(Vo1 . zp) (=1 VoV my Vb1 V-V 1),

A Horn clause contains at most one atom in its succedent. We deliberately write
A for — A and —I" for I' —.

We consider calculi with inference rules constrained by syntactic orderings. A
term ordering is a well-founded total ordering on ground terms. An atom order-
ing is a well-founded total ordering on ground atoms. For non-ground expressions
e; and ez and a term or atom ordering < we define e; < ey iff 10 < ex0 for all
ground substitutions . Consequently, s ¥ t if to > so for some ground terms so
and to. An atom ¢ is mazimal with respect to a multiset I" of atoms, if ¢ £ ¥
for all ¢ € I'. Tt is strictly mazimal with respect to I', if ¢ A4 for all ¢ € I'.
The non-ground orderings are still well-founded, but need no longer be total.

While atom orderings suffice to constrain the inferences of the ordered resolu-
tion calculus, clause orderings are needed for redundancy elimination. To extend
atom orderings to clauses, we measure clauses as multisets of their atoms and
use the multiset extension of the atom ordering. To disambiguate occurrences
of atoms in antecedents and succedents, we assign to those in the antecedent
a greater weight than those in the succedent. See section H for more details.



The clause ordering then inherits totality and well-foundedness from the atom
ordering. Again, the non-ground extension need not be total. In unambiguous
situations we denote all orderings by <.

Definition 1 (Ordered Resolution Calculus). Let < be an atom ordering.
The ordered resolution calculus OR consists of the following deduction inference
rules. The ordered resolution rule

I — A¢ I — A
I'o, "o — Ao, Ald

(Res)

where o is a most general unifier of ¢ and v, ¢po is strictly maximal with respect
to I'o, Ao and maximal with respect to I''o, A'c. The ordered factoring rule

I' — A, ¢,9

- F:
I'c — Ao, ¢o’ (Fact)

where o is a most general unifier of ¢ and ¢ and ¢o is strictly maximal with
respect to I'c and mazimal with respect to Aoc.

In all inference rules, side formulas are the parts of clauses denoted by capi-
tal Greek letters. Atoms occurring explicitly in the premises are called minor
formulas, those in the conclusion principal formulas.

Let S be a clause set and < a clause ordering. A clause C' is <-redundant
or simply redundant in S, if C' is a semantic consequence of instances from §
which are all smaller than C' with respect to <. Closing S under OR-inferences
and eliminating redundant clauses on the fly transforms S into a resolution
basis H(S). The transformation need not terminate, but we have refutational
completeness: All fair OR-strategies derive the empty clause within finitely many
steps, if S is inconsistent. We call a proof to the empty clause an OR-refutation.

Proposition 1. S is inconsistent iff rb(S) contains the empty clause.

A resolution basis B is a special basis. By definition it satisfies the independence
property that all conclusions of primary B-inferences, that is OR-inferences with
both premises from B, are redundant. However, it need not be unique.

Proposition 2. Let B be a consistent resolution basis and T a clause set such
that BUT is inconsistent. There is an OR-refutation without primary B-inferences.

In [B], variants of proposition[land proposition have been shown for a stronger
notion of redundancy. For deriving the lattice calculi, the weak notion suffices.
But the strong notion can of course always be used.

By proposition Bl resolution bases allow ordered resolution strategies sim-
ilar to set of support. The construction of a resolution basis will constitute
the first step of our derivation of focused lattice calculi. OR will be used as a
metaprocedure in the derivation. Its properties, like refutational completeness
and avoidance of primary theory inferences, are essential ingredients.



3 Lattices

Here we are not concerned with arbitrary signatures and predicates. Let X =
{u,M} and P = {<}. U and M are varyadic operation symbols for the lattice join
and meet operations. < is a binary predicate symbol denoting a quasiordering—
a reflexive transitive relation. A join semilattice is a quasiordered set closed
under least upper bounds or meets for all pairs of elements. Ameet semilattice
is a quasiordered set closed under greatest lower bounds or meets for all pairs of
elements. Join and meet semilattices are duals. Lattice duality means exchange
of joins and meets and inversion of the ordering. A lattice is both a join and
a meet semilattice. It is distributive, if (disfl) holds (see below) or its dual and
therewith both. A quasiordering is axiomatized by the set Q = {(kel), {(xand) },

the join and meet semilattice by J = QU{ (b)), (k) } and M = QU{(gH), (@)},
a lattice by L = JU M, a distributive lattice by D = L U {(disfl)}. Thereby

z<z (ref)
r<y,y<z—zr<z (trans)
rNy <z rNy<y (Ib)
r<zlUy y<zUy (ub)
r<y,z<z—zx<yMz (glb)
r<z,y<z—zlly<z (lub)
zM(yUz) < (zNy)U(zNz) (dist)

For a quasiordering, joins and meets are unique up to the congruence ~ =
(<N >). Semantically, </~ is a partial ordering, hence an antisymmetric qua-
siordering (z < y,y < x — x = y). Operationally, the only role of antisymme-
try is splitting equalities into inequalities. We can therefore disregard it. Joins
and meets are associative, commutative, idempotent (z Mz = z = = U z) and
monotonic in the associated partial ordering. We will henceforth consider all
inequalities modulo AC (associativity and commutativity) and normalize with
respect to I (idempotence). See [0 for further information on lattices.

In [25] we directly use J, M and D for deriving resolution bases. Here we
choose a technically simpler way that uses more domain specific knowledge. First,
the lattice axioms allow us to transform every inequality between lattice terms
into a set of simpler expressions. Consider the following Horn clauses.

r<z—zNy<z (ml)
r<y—z<ylz (i)
r<yNz—z<y (imr)
zly<z—z<z (ij1)

Lemma 1. Let A be a quasi-ordered set.

(i) A is a meet-semilattice iff A satisfies (gl)), @md) iff A satisfies (gl0)), ().



(ii) A is a join-semilattice iff A satisfies ([wd), {i7l) iff A satisfies {wB), {).
(gMD) and (fmi) and their duals (D) and ({l) together with (disfl) allow us to

restrict our attention to inequalities of a particular format.

Lemma 2. Let S be a meet semilattice, L a distributive lattice and G a set of
generators (that is a set of constants disjoint from X).

(i) An inequality s <ty M ...Mt, holds in S, iff s < t; holds for all 1 <i < n.

(i1) An inequality s < t holds in L, iff there is a set of inequalities of the form
s1 M. .Mspy, <ty U...Uty, that hold in L and the s; and t; are generators
occurring in s (t).

A reduced join (meet) semilattice inequality is a join (meet) semilattice inequality
whose left-hand (right-hand) side is a generator. A reduced lattice inequality is
a lattice inequality whose left-hand side is a meet and whose right-hand side
is a join of generators. Reduced semilattice and lattice inequalities are lattice-
theoretic analogs of Horn clauses and clauses. In particular, the clausal arrow is
a quasiordering. We usually write more compactly

81...Smst1...tn

instead of s1M...Ms,, <ty U...Ut,. By a lattice-theoretic variant of the Tseitin
transformation [30], there is a linear reduction of distributive lattice terms. We
speak of reduced clausal theories, when all inequalities in clauses are reduced.

(ml) and () are procedurally preferable to ([D) and (b)), since they allow
splitting at left-hand and right-hand sides of inequalities. This splitting is also
important for Whitman’s algorithm for solving the word problem for the free
lattice [B3UZ4UTT]. It is also similar to the situation in the sequent calculus [T322].

For the remainder of this text we assume that all lattice and semilattice
inequalities are reduced. We will also restrict our inference rules to reduced
terms. But then, some axioms of the join and meet semilattice as well as the
distributivity axiom can no longer be used, since they do not operate on reduced
clauses. However, one cannot completely dispense with their effect in the initial
specification.

Lemma 3. J without {[wh) and M without (gll]) are incomplete for the reduced
clausal theory of the join and meet semilattice.

Proof. By duality we only consider the meet semilattice. Let M~ = M —{(gIH) }.
The quasi-orderings A; and A,

N7 \T/



are models of M~ but not of M, since by (gb)), a < b, a < cand bMe < d imply
a < d. a, b, c and d can be taken as generators. Thus the statement holds in
particular in the reduced clausal theory. |

Lemma 4. In the reduced clausal theory, a quasiordering is a model of M~ but
not of M iff it contains a sub-quasiordering isomorphic with Ay or As.

Proof. Tt remains to show the only if direction. Assume that A is a quasiordering
that does not contain a substructure isomorphic with 4; and As. Assume further
that A is a model of M ~. We show that O is also a model of M. Whenever A
contains an element a such that ¢ < b and a < ¢, then it contain also b ¢ by
([B). Since A does not contain a substructure isomorphic with A;, a and bl ¢
must be comparable. Since A does not contain a substructure isomorphic with
As, bMe £ a. Consequently, a < bMec. In reduced clausal theory, we cannot write
a < b A c. But whenever there is a d such that bMc¢ < d, then our argument
must hold. This follows from the same considerations. In particular it holds for
d=bNec. |

Again a dual statement holds for the join semilattice.

At this point, background knowledge comes into play to find the appropriate
initial specification for reduced clausal theories. Following [I8] we use the cut
rule

1 <y12,T22 <y — 172 < Y192. (cut)

as an alternative characterization of distributivity.
Lemma 5. A lattice is distributive iff it satisfies (cud).

Written as an inference rule, this Horn clause is a lattice-theoretic variant of
resolution. It combines the effect of transitivity, distributivity and monotonicity
of join and meet. See [26] for a discussion and a derivation. In the context of
Knuth-Bendix completion for quasiorderings, it can be restricted by ordering
constraints and used as a critical pair computation to solve the uniform word
problem for distributive lattices [26]. There are similar cut rules (not involving
distributivity)

1 < Y12,z < Yo — 71 < Y1y, (jeut)
T < 2,092 < Yo — 1172 < Yo, (mcut)
for the join and meet semilattice. These are used for solving the respective semi-

lattice word problems. (cufl), (fcuf]) and (mcnil) operate on reduced inequalities.
The expression z which is cut out is necessarily a generator.

Lemma 6. The following sets aziomatize their reduced clausal theories up to
normalization with I and modulo AC.

(i) J' = {(rep), @aznd), (7)), @cud } for join semilattices,
(ii) M' = {(rep), Erand), (ml), @@cud) } for meet semilattices,
(iii) D" = {(re)), zaznd), [, @md), [fcud), [@mcud), (Cud) } for distributive lattices.




Proof. (ad i) The proof is dual to that of (ii).

(ad ii) First, we show that (fncil) holds in every semilattice. Let 21 < z. Since
meet is commutative and monotonic in every lattice, we also have z1Mzs < x2Mz.
Then (frand) together with zo Mz < yo yields 1 Mxza < ys.

Let now a < b, a < ¢ and be < d. By (mcmd) a < b and be < d imply ac < d;
a < cand ac < dimply aa < d. Thus a < d by normalization with idempotence.
Hence (el rules out sublattices isomorphic with A; and As.

(ad iii) This follows from combination of (i) with (ii) and from lemma[ll O

One can even further restrict the axiom sets.

Lemma 7. J' and M' without ([ffznd) and D' without {fzand), (jcul) end (mcud)

axiomatize their reduced clausal theories up to normalization with I and modulo
AC.

Proof. For M', we show that (ocufl) makes (frand) superfluous. We show that
we can derive a < ¢ from a < b and b < ¢ without (frand). (ml) allows us to
derive ab < ¢ from b < ¢. This yields a < ¢ via (cail) and normalization with
respect to idempotence. The proof for J' is dual.

For D', we only consider (mcmd). We show that we can derive ajas < by
from a1 < z and asz < by without (mcud). ([ij) allows us to derive a; < xbo
from a; < z. This yields a1as < by via (&) and normalization with respect to
idempotence. O

In implementations, normalization with respect to I and also with respect of
0 and 1, when these constants are present, must be explicit. In finite semilattices
and lattices, on can always define 1 and 0 as the join and meet of all generators.
We use the canonical equational system modulo AC

T={zNz—=z, zUz -z,
zUl1—=1, 21—z,
zU0—2z, xM0— 0}

The orientation of the rewrite rules is compatible with the term orderings from
section Bl T' induces reduced lattice inequalities modulo ACI01. AC and 101 are
however treated completely differently. AC is handled by a compatible ordering
(c.f. section ), not by rewrite rules (the laws are not orientable). I01 is han-
dled by the normalizing rewrite system 7', not by a compatible ordering (which
does not exist [19]). In the general non-ground case, some inference rules of
our calculi use ACI- or ACIO1-unification [I]. This is in the spirit of normalized
equational rewriting [I9]. ACI-unification is however very prolific. In presence of
many variables, it leads to enormous numbers of most general unifiers. However,
the unifiability test is very simple. Using a calculus with constraints [TBJ3TIT],
only unifiability must be tested in most steps of a refutation. This is important
for the applicability of the calculus. But we do not treat this issue here. In the
ground case, much cheaper operations, like string matching, suffice for compar-
ing terms in the inference rules. Moreover, in presence of more structure, the
most prolific inference rules completely disappear (c.f. section

10



We denote the normal form of an expression e (a term, an atom, a clause)
with respect to T by (e) Jr. In the ground case we may sort joins and meets
of generators after each normalization. All consequences of a reduced clause set
and J, M and D are again reduced. However, consequences of a reduced clause
set in T-normal form may not be in T-normal form.

At the end of this section we again consider background knowledge to moti-
vate the lattice calculi. As already mentioned, (£m) is used to solve the uniform
word problem for distributive lattices. In this context, all non-theory clauses are
atoms. We however want to admit arbitrary non-theory clauses. This is analogous
to ordered chaining calculi for quasiordering, where a Knuth-Bendix completion
procedure for quasiorderings, operating entirely on positive atoms, is extended
to clauses via a (ground) positive chaining rule.

I' — Ar<s I' — A s<t
rr— A A r<t

Thereby s is the maximal term in the minor formulas and the minor formulas are
strictly maximal with respect to I', I'!, A and A’. The rule is a clausal extension
of a critical pair computation. A chaining rule for distributive lattices can then
analogously be motivated as an extension of (€l to the lattice level.

F—)A,Sl <tz F/—)AI,SQ$<t2
F,F' —)A,A’,8182 < t1ts

But which other inference rules are needed and what are the ordering con-
straints? These questions require further consideration. They will be answered
with the help of the derivation method.

Our third way of including background information is the construction of the
specific syntactic orderings. In the following section, we will base them again on
those of ordered resolution and ordered chaining. In section B we will show that
J', M'" and D’ are resolution bases for these orderings and therefore independent
sets. Thus the Horn clauses from these sets are independent, no inference between
them is needed in refutations and their effect in refutations can be completely
internalized into focused inference rules. This is the subject of section [

4 The Syntactic Orderings

The computation of a resolution basis, its termination and the procedural be-
havior of focused calculi crucially depend on the syntactic term, atom and clause
orderings. In section Bl we have developed our initial axiomatizations with regard
to the ordered chaining calculi for quasiorderings and ordered resolution in lat-
tice theory. Here we build syntactic orderings for lattices that refine those of the
background procedures and turn (fcuf]), and (€fl) into lattice-theoretic variants
of ordered Horn resolution and resolution.

Like in section 2] we first define a term ordering and then extend it to atoms
and clauses. For the term ordering, let < be the multiset extension of some

11



total ordering on the set of generators. We assign minimal weight to 0 and 1, if
present. < is trivially well-founded, if the set is finite or denumerably infinite.
We measure both joins and meets of generators by their multisets. This clearly
suffices for the terms occurring in reduced lattice inequalities. By construction,
< is well-founded and compatible with AC: terms which are equal modulo AC
are assigned the same measure. < is natural for resolution, since multisets are
a natural data structure for clauses. This choice of < will force the calculus
under construction to become resolution-likdl. < also appears, when resolution
is modeled as a critical pair computation for distributive lattices.

We now consider the atom ordering. Let B be the two-element boolean alge-
bra with ordering <p. Let

m=GxBxBxG,

where G denotes a multiset of generators. Let A be a set of atoms occurring
in some clause C = I' — A. The ordering <1 C m x m is the lexicographic
combination of < for the first and last component of m and <p for the others.
A ground atom measure (for clause C) is the mapping pc : A — m defined by

e s (tu(¢)vp(¢)vs(¢)atu(¢))

for each (ground) atom ¢ € A occurring in C. Hereby t,(¢) denotes the maximal
term with respect to < in ¢ and t,(¢) denotes the minimal term with respect
to < in ¢. p(¢) = 1 if ¢ occurs in I" and p(¢) = 0, if ¢ occurs in A. s(¢) =1 if
¢ =s<tand s > tand s(¢) =0,if ¢ =s <t and s < t. The (ground) atom
ordering <2C Ax A is defined by ¢ <2 ¢ iff uc (@) <1 pc (@) for ¢,9p € A. Hence
<9 is embedded in <; via the atom measure. The ordering < is total and well-
founded by construction. Via the embedding, <5 inherits these properties. The
definition of the atom measure follows those of the ordered chaining calculi for
quasiorderings and of Knuth-Bendix completion for quasiorderings. This forces
the calculus to become a chaining calculus at the clausal level and a completion
procedure at the lattice level. The polarity p is not needed for comparing atoms,
but it is crucial for the extension to clauses, to integrate redundancy elimination.

All these orderings are extended to the non-ground level and the clause level
according to section [ In particular the polarity p assigns greater weight to an
occurrence of a term in the antecedent than to an occurrence in the succedent.
In unambiguous situations we denote all orderings by <.

5 The Lattice Chaining Calculi

In this section we restrict our attention to finite lattices. Then all non-theory
clauses are ground, since existential quantification can be replaced by a finite
disjunction and universal quantification by a finite conjunction. The non-ground

! In [Z5], we alternatively force tableau calculi for distributive lattices with a term
ordering emphasizing the subterm ordering.

12



clauses in J', M' and D’ are completely internalized into the focused inference
rules. Therefore, our entire calculi are then ground. The extension to the non-
ground case is discussed in section

We introduce indexed brackets to abbreviate the presentation of the calculi.
A pair of brackets [.] in a clause denotes alternatively the clause without the
brackets and the clause, where the brackets together with their content have
been deleted. The clause

I — A[r]s < t,

for instance, denotes alternatively the clauses
I — Ars<t I — A s<t.

In inference rules, brackets with the same index are synchronized. The inference

rule
I' — Arlis<t

I [ulijv <w — A

for instance, denotes alternatively the inference rules

I' — Ars<t I — As<t
I'uw<w-— A I"'ov<w-— A

Definition 2 (Distributive Lattice Chaining). Let > be the atom and clause
ordering of section[f} Let all clauses be reduced. The ordered chaining calculus
for finite distributive lattices DC consists of the deductive inference rules and
the redundancy elimination rules of ORA and the following inference rules.

rit<t— A
T o4 (Ref)
< <
Irs<t— A (ML) Ir<st— A (JR)

r<t— A Ir<s— A

Here the minor formula is mazimal with respect to I' and strictly maximal with
respect to A.
I — A,Sl < [tl]j.’E I — AI, [Sg]m.’E <2
(LT — A A si[so]m < [ta]jt2) dr

(Cut+)

Here the terms containing x are strictly mazimal in the minor formulas. The
minor formulas are strictly mazimal with respect to the side formulas in their
respective premises.

I — A,Sl S [tl]j.’E FI,Sl[SQ]m S [tl]jtg — A
(F,I", [U]ml‘ S t2 — AaA’) J/T

(Cut-)

Here the terms containing s1 are strictly mazimal in the minor formulas. In
the first premise, the minor formula is strictly mazimal with respect to the side

% Section Pl only defines a semantic notion of redundancy. Every set of inference rules
implementing this notion is admitted.

13



formulas. In the second premise, the minor formula is mazimal with respect to
the side formulas. Moreover, [u],x # ta mod AC, u = sy or else u = s1, if $2
is absent in the minor formula.

F, [Sz]mﬂf S t2 — A I — A’,Sl[SQ]m S [tl]th
(F7F/781 < [U]].’E — A,A/) J/T

(Cut-)

Here the terms containing t, are strictly mazimal in the minor formulas. In the
first premise, the minor formula is mazimal with respect to the side formulas.
In the second premise, the minor formula is strictly mazimal with respect to the
side formulas. Moreover, s1 # [u]j& mod AC, u = t; or else u = ta, if t1 is
absent in the minor formula.

I — A,S S [tl]m.’E,S S [tl]mtg
(I [s]jx < ta — A, s < [ti]mt2) Ir

(DF)

Here, © is a generator, either ty is strictly mazimal in the minor formulas or s
is strictly mazimal in the minor formulas and s can be set to 1 in the antecedent
of the conclusion. The leftmost minor formula is strictly maximal with respect
to the side formulas and the rightmost minor formula.

I — A, [Sl]j.’l? <t, [Sl]jSQ <t
(I 82 < [tlmx — A, [s1]j52 <) Ir

(DF)

Here, © is a generator, either sy is strictly mazimal in the minor formulas or t
is strictly maximal in the minor formulas and t can be set to 1 in the conclusion.
The leftmost minor formula is strictly mazimal with respect to the side formulas
and the rightmost minor formula.

The calculus is meant modulo AC at the lattice level.

(Bef) stands for reflexivity, (IB) and (M) for join right and meet left, in analogy
to the sequent calculus. and (Cutd) stand for positive and negative cut,
(DE) for distributivity factoring. The two ([Cufd) rules and the two (DE) rules
are dual, if also the indices of brackets are exchanged. We immediately obtain
the following specializations of DC.

Definition 3. Under the conditions of definition[d, the calculus DC specializes
to the following calculi.

(i) An ordered chaining calculus for join semilattices JC, removing the inference
rule (MI) and discarding in the inference rules of DC the contents of all
brackets indexed with m.

(i) An ordered chaining calculus for meet semilattices MC, removing the infer-
ence rule [IR) and discarding in the inference rules of DC the contents of
all brackets indexed with j.

(iii) An ordered chaining calculus for quasiorderings QC, removing the inference
rules (IR) and (L) and discarding in the inference rules of DC the contents
of all brackets indexed with j and m.
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(iv) An ordered chaining calculus for transitive relations TC, removing the in-

ference rule from QC.

Definition 4 (Lattice Ordered Resolution [26]). Under the conditions of
definition[d, the deduction inference rules of the ordered Horn resolution calculus
HOR and the ordered resolution calculus OR ofllmjﬁ as rewrite-based solutions to
the uniform word problem of semilattices and distributive lattices are restrictions
of DC and MC to non-theory clauses consisting of positive atoms.

In this case, the only applicable rule is (Cutf). It computes a lattice-theoretic
variant of a Grébner basis from the given presentation (the set of positive atoms).
The query inequalities, which are in question as consequences of the presentation
and the axioms, can then be shown to be redundant by a search method (c.f. [26]).
An alternative solution to the word problem transforms the query into a set of
negative atoms and then uses DC. We will see in section K that the resolution
calculi are indeed a decision procedure.

Definition 5 (Knuth-Bendix Completion [28]). Under the conditions of
definition 3, the deduction inference rules of the Knuth-Bendix completion pro-
cedures for quasiorderings and non-symmetric transitive relations (without term
structure), are restrictions either of QC and TC to non-theory clauses consisting
of positive atoms or OR, all lattice terms being generators.

Soundness and completeness of DC are the subject of section [l and section [
the other calculi are dealt with in section The unordered variant of DC is an
instance of theory resolution. We will derive the DC-rules as an ordered variant
thereof. DC is more focused than mere reasoning with resolution bases.

6 Construction of the Resolution Bases

We now perform the first step of the derivation of the chaining calculi. We
start with the axiom sets J', M’ and D’. With the orderings of section H we
compute the respective resolution bases; closing the rules with respect to OR
and eliminating redundant clauses on the fly. Use of duality prevents us from
repetitions. It turns out that J', M’ and D’ are almost the resolution bases.
However, in presence of syntactic orderings, we must also consider restricted
variants of (fcuf]), (mcidfl) and (cidl). We define the following sets of Horn clauses.

JII — Jl U{M}, MII — MIU {(m}’ DII — JII UMI/ U {m}.

The fact that also the restricted variants are needed is evident from the con-
struction in the proof of lemma [ These restrictions are of course unnecessary,
when the structures under consideration contain a zero and a unity. Then the
instance

s1 < 011?,3211? <ty —> 5189 < Oty

3 The ordering constraints of these calculi are weaker as those of ordered resolution
given in this text in section
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of (i) normalizes with respect to T' to the instance
$1 <@, 80 <ty — 5182 < b
of (cml) and the instance
s1 <z, lx <ty —> 511 <ty
of (mcufl) normalizes to the instance

s1 <z, x <ty —> 81 < i

of (fxand).

Lemma 8. Let < be the atom ordering defined in section [JJ Let OR be the
ordered resolution calculus defined in section 4

(i) M" is a resolution basis for the reduced clausal theory of meet semilattices.
M" =rb(M").
(i) J" is a resolution basis for the reduced clausal theory of join semilattices.
" o__ "
J" =rb(J").
(i) D" is a resolution basis for the reduced clausal theory of distributive lattices.
D" = rb(D").

We always implicitly normalize with respect to I.

Proof. By lemma [M and lemma B, J', M’ and D’ are sound and complete for
the respective reduced clausal theories in the unordered case. Soundness and
completeness of J"”, M" and D" is an evident consequence.

(ad i) We first determine how M" is ordered with respect to <. We assign an
index ¢ (increasing) to the clausal arrow, if the right-hand side of the clause is
greater than the left-hand side, d (decreasing), if the converse holds and 7, if the
clause must be ordered instance-wise. We identify clauses that are equivalent up
to associativity and commutativity.

—iz <z (ref)
r<z—;ry<z (ml
r<y,y<z-—gx<z (trans)

T1 < 2,T92 < Yo —>7 T1T2 < Ys (horncut)

The simple computation leading to this orientation are left implicit. In case of
(nl), we implicitly assume that z occurs twice at the right-hand side of the
inequality of the antecedent and is then normalized in refutations.

We now show that all conclusions of OR-inferences between clauses in M"
are <-redundant. For the sake of simplicity we assume a zero and a unity. This
allows us, without loss of generality, to treat (Erand) as a special case of (mcmi).
In the computations below this means that all the cases of (frand) are covered

by cases of (fncul).
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(a) The only OR-inference between ([efl) and another rule from M’ is

—is<s §s<s,8<t—358<1t
s<t—435<1t

with (frand) as a special case of (ocudl). It yields a tautology. In particular, an
inference between — a < @ and an instance

r<r,rs<t-—rs<t
of (mcmd) is ruled out by the ordering constraints. An inference between

— tMNs <tMs,
r<s,sNt<sNt—rft<slt

is ruled out, since only reduced clauses are considered.
(b) There are three main OR-inference between (fnll) and (cod). The first
one is

51 <x —>; 8182 <% 5182 < w,x83 <t —>g 518283 < 1
§1 < z,x89 <t —> 5818283 <t

The conclusion is redundant. It follows semantically from the smaller instances

s1 <@, x53 <t —>q 5153 <t
5183 <t —>; 8518283 <t

of (mcud) and (ml). There is a similar inference with the clauses

s1 < ax —>; 818983 <
518283 < x,x83 <t —>g 818253 <1

which also leads to a redundant conclusion essentially in the same way. The
second one is

r<t— x50 <1 s1 <x,x80 <t —>3818 <1
s1<z,x <t—>s155<1

The conclusion semantically follows from the smaller instances
s1 <zyx <t—q5 <
s1 <t—; 81850 <t
of (cl), that is (fxand), and (ml). The third one is

s1<t—; 8006 <t 51 <z,x89 <t —38518 <1
$1 <x,80 <t —> 818 <t

The conclusion semantically follows from the smaller instance of (ml) alone.
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(c) There are three main OR-inference between (fncnfl) and (cid). The first
one is

51 Sx, 282 <Y —> $152 < Y 8182 <Y, ys3 <t —>g 518283 <t

51 < x,x82 < Y,ys3 <t —> S18283 <t

The conclusion semantically follows from the smaller instances

82 S Y,ys2 <t —>q TS283 < t,
81 < x, w8283 <t —>; S185283 <1

of (). There are similar inference with the clauses
51 < @, 25283 < Y —>i 515253 < ),
515253 <Y, ys3 <t —>q 518253 < 1,

for instance, which also lead to a redundant conclusion essentially in the same
way. The second one is
Sp Sxyxy <t — sy <t 51 <Y, ys2 <t —q51 <t
51 <y, s S,y St— 8152 <t

The conclusion semantically follows from the smaller instances

S1 SyalUySt—)dSleta
so<z,51x <t —>;818, <1

of (mcm). The third one is

y<z,s510<t— 51y <t $2 Ly, 51y St—>q 81 <t
s2 <y,y <z, 512 <t—> 818 <t

The conclusion semantically follows from the smaller instances

82 <,y < —rg 82 < 7,
So < x,851¢ <t —>; 5182 <1

of (cxl).

Thus all OR-inference between members of M" are redundant and M" is a
resolution basis for the reduced clausal theory of the meet semilattice. In a real
construction, which starts with M’ one will notice in (a) and the second case
of (b), that there are irredundant conclusions (at least in absence of a unity).
Adding (fxand) makes these conclusions redundant.

(ad ii) This follows immediately from (i). The inferences are dual. In the
redundancy check, the asymmetry in the third component s of the atom measure
does not change the relative size of the clauses.

(adiii) D’ is the union of J" and M', with (mcufl) replaced by (cafl). (cafl) can
again be ordered only instance-wise. Obviously for reduced clauses, the clauses
in J" and M’ are mutually independent. Moreover the case analysis in the proof
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of (i) can be performed with (il exactly as with (coil). In particular there
are no new cases from resolving (&fl) with (cf). Thus our results for J' and M’
are modular and D’ is a resolution basis for the reduced clausal theory of the
distributive lattice. |

In principle, the construction of the resolution basis and in particular the
verification, that a given set of axioms is a resolution basis, can be automated
with a saturation-based theorem prover. The construction is in general quite in-
volved. Probably, different resolution strategies might lead to different resolution
bases of different procedural quality. A guidance by hand seems more realistic
in many cases. Even the verification might be problematic for state of the art
automated theorem provers, since we work modulo ACI or even ACIO1. Even a
formal proof with a higher-order proof checker seems involved. Complex ordering
constraints must be specified and analyzed and again at least ACI unification
must be explicitly considered.

Proposition ] and lemma [ immediately imply the following fact, which is
essential for our further derivation.

Corollary 1. For every inconsistent reduced clause set containing J", M" or
D" there exists a refutation without primary theory inferences in OR.

By corollary[ll, working with the resolution bases is already a strong improvement
over plain axiomatic reasoning. In particular, the use of theory-specific knowledge
leads to a restricted representation of the initial axioms in terms of reduced
inequalities and to the use of rather sophisticated axioms in D’ or D". This
should result in a much better performance that reasoning with the usual lattice
axioms, even in the case of unordered resolution. We will see in the following
section that the ordered lattice chaining calculi yield even more restrictive proofs,
when axioms are completely avoided in favor of focused inference rules.

7 Deriving the Chaining Rules

We now turn to the second step in the derivation, namely the extraction of
the inference rules of DC from OR-derivations with D”. Our main assumptions
are refutational completeness of OC (theorem [M) and the fact that our ordering
constraints rule out primary theory inferences (corollary ). The main idea is to
consider all possible interactions between non-theory clauses and the elements
of D" in a refutation. Disregarding the ordering constraints, the inference rule
of DC can be derived, for instance, as

I — A,Sl < zty s1 < xty

Sox < 1o ‘ — 5189 < t1t9

i

F,szm§t2—>3132§t1t2 FI—)AI,SQQTSI:Q
F,F' — A,AI,Slsg < t1ta

from two non-theory clauses and an instance of (€ufl). Here, the atoms of (i)
that are cut out are in boxes. In the rule (Cut3]), the effect of (cm) is then
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completely internalized. The derivations of (Cufd) are similar

Lot <tts 4[5S owe <12 — [ S
F,Slstll',SQl'Stz—)A F’—)A’,Sl <tz
I sex <ty — A, A

I'sise <tita — A 51 <t

SQ.’EStQ‘—)‘Slsg Stltg‘
F,Slftlllﬁ,SQZUStQ—)A F’—)A/,SQZUStQ
F,F’,Sl Stll'—)A,Al

The (DE) rules arise from a resolution step followed by a factoring step. (IR
and (MI)) arise from resolution steps with and (fl). The restrictions in
DC modeled by brackets arise from derivation with (fcuf]), (cufl) or (frand). If
it is possible to partition all refutations into these macro inferences, then the
respective rules from D can be completely discarded in favor of the focused
inference rules. Looking more precisely, this partition in patterns is however
not straightforward. First, it must respect the ordering constraints of ordered
resolution. Second, there are certain legal proof steps in refutations that may
violate the pattern construction. We first argue that these unwanted proof steps
can be avoided. We then show how the partition of arbitrary OR-refutations into
patterns corresponding to the DC-rules is obtained.

To understand the obstacles to the macro inferences, consider again the above
derivation of ([Cufd). First, I" — A’, ss2 < t5 may be another instance of (Ci).
We call this situation a secondary theory inference. Second, A may contain an
atom bigger than s; < #;z. Then the derivation of ([Cufd) does not continue as
above, but with a “bad” resolution step cutting out this bigger atom. We call this
situation a blocking inference. In a blocking inference, only the first step uses the
theory axiom. In DC, secondary theory inferences can occur in connection with
(cod), (fcul), (mcud) and (Erand). An OR-derivation is regular, when it contains
neither primary and secondary theory inferences nor blocking inferences. See [27]
and the references given there for a more formal definition and discussion.

We first prove a technical lemma that allows us to restrict our attention to
instances of (Cif), (fcuf]), (mcufl) and (Ezand) that are decreasing from left to
right in a refutation and thus can be indexed with d.

Lemma 9. For every two-step proof in a OR-refutation that cuts out two atoms

of (czd), (jcul), fmcud) or (ffazmd) there is another OR proof from the same non-

theory premises to the same conclusion, in which (another instance of) (cud)

{cul), (mcud) or [amd) decreases from left to right.

Proof. Tt suffices to inspect cases, where (i) is not already in d. For an instance
81 < t1m, 82 <ty — 8182 <ty

this is the case, when either s; or #; are maximal, or when s, is maximal and
Ss1 > x or when t; is maximal and ¢, > .
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(case i) Let s; be maximal. We put the occurance of s; in the atom which is
cut out into a box. Consider the two-step proof

Lfsifsa <tito — A 51 <tiw,sox <o — 152 <tato

F,Stlx,32m§t2—>A F’—)A’,Stlﬂf
F,F’,SQ.TSiQ —)A,AI

We replace it by the three-step proof
I — AI, < tix
I — AI,SQ < tix 82 <tiz,85x <ty —> 5182 < t1te

F/,SQfL' S to — AI,SQ S t1to F,SQ S t1to — A
F,F’,SQQT < ts —)A,AI

The leftmost uppermost inference uses an unoriented variant of meet left. Idem-
potence has been implicitly applied in (cm).

(case ii) Let t2 be maximal. This case is completely dual to (case 1).

(case iii) Let ¢; be maximal and ¢; > x. Consider the two-step proof

I' 5155 < t2 — A 5y <thm,sow <ty — 518 < tity

I s, Sx,32x§t2—>A F’—>A',31§

F,F’,SQ.TSfQ —)A,A’

We replace it by the three-step proof

I' — A s Sa:
I — AI,Sl StQQf S1 SQQ?,SQ.T <ty — 5189 < tyto
F',SQ.’E StQ — A’,5152 S tQ F,S1SQ SQ — A
I Msow <ty — A A

The leftmost uppermost inference uses an unoriented variant of meet left. Idem-
potence has been implicitly applied in (cm).
(case iv) Let sy be maximal This case is completely dual to (case iii). |

This proof transformation is completely local with respect to two-step and three-
step proofs. Therefore, when internalizing the rules of D", the transformation is
completely inside of the macro inference, hence completely hidden to the outside.
We use lemma [ to transform a given refutation into one, where (fcuf]), (mcii)
and (€il) are always decreasing. This can be done in a local way, just by inserting
join left or meet right inferences at the appropriate places and rearranging some
subtrees in the refutation. This transformation increases the number of proof-
steps in a refutation (measured as a tree) only by the number of non-decreasing
instances of (fcuf), (mcofl) and (cufl). Thus the number of proof steps can at
most be doubled. For the remainder of this section we assume that all proofs are
of this particular shape.
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Lemma 10. For every inconsistent clause set there exists a reqular OR-refutation
(possibly violating the ordering constraints).

Proof. We show that (i) there is a refutation without blocking inferences, (ii)
there is a refutation without secondary theory inferences and (iii) there is a
refutation without both these inferences. By lemma [ we assume a refutation in
which all instances of (il are in d.

(ad i) By induction on the size of clauses in a refutation. The argument is
independent from the particular structure of D". It has already been given in [26].
The main idea is that the needed inference can be permuted up in the refutation
tree, whereas the second step of the blocking inference can be permuted down.
One thereby obtains a new refutation with the desired macro inference at the
appropriate place. Due to factoring it may be the case that some subtrees of the
proof tree must be copied. This construction is then iterated on the proof tree.

(ad ii) By induction on the size of clauses in a refutation. Here the argu-
ment depends on the rules in D" and in particular on the given precedence on
generators.

(case a) Let s1 be strictly maximal. Consider the ordered resolution inference

I'— A,SQ < tix 32 <tiz,850x <ty —> 5182 < t1te
F, Sox <ty — A,SQ < tito

using (€ufl). There are three possible further resolution inferences that lead to a
secondary theory inference.
First, consider the inference

I' ssx <ty — A,3283 < tits 8283 < tita, s3ta < t3 — 518283 < tits

I'ysow < ty, 83ty <tg — A, 518083 < tit3
(2)
We replace the two step inference by the one-step inference
I'— A,SQ <tz SQ < tix,8283x < t3 —> 815253 < l1t3
I, sos3x < t3 — A, 518983 < t1t3

Tt differs from the conclusion of ([@) only in the antecedent. In a refutation, there
are necessarily two clauses

FI—>AI,82.’E§t2, F”—)A”,S:;tgftg

which cut out the atoms ssx < #5 and s3ty < t3 later in the refutation. But
using the smaller instance

Sox < tg, 83t < 13 —> 82837 < 13

of (€l we can then also cut out the atom sas3z < t3 in the antecedent of (3.
By the induction hypothesis, these new instances do not introduce secondary
theory inferences.
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Second, consider the inference

I sox <ty —> A,[ 815253 < taly 83 < 1352, 81 [s283 < taty —> s183 < titaty

Iysow < ty,83 <t3ss — A, 8153 < titals
(4)
which continues inference (). We transform the proof like in the first case, using
an instance
818283 < t1x, s3x < tatz —> s183 < tilat3

of (). We can again use the smaller instance
83 <1382, 820 <ty —> s3x < tat3

of (£ to cut out the atom ssz < tot3, using the clauses cutting out sez < o
and sz < t3s2 in (@).
Third, consider the inference
Iysow <ty —> A,[s1]s2 <tity 83 <lgs1,[81]s2 < tiby — 5283 < oty
I sax < ta,83 <tgs1 —> A, s283 < tatals

()

We now transform the proof using an instance
83 < ta81,81 < t1wx —> s3 < fizw
of (cf). We can again use the smaller instance
S3 < t1t3x, 59T < to — 8983 < tats
of (£ to cut out the atom s3 < t;t3x, using the clauses cutting out saz < o

and sys3 < tots in (@) together with (fml).
(case b) Let t; be maximal and let z > t». Then the first inference is

I — A,Sl < 11? s1 < 117,82.7,' <ty — 5189 < tyto (6)

F, Sox <ty — A,8182 < tito

Thee are four ways to produce a secondary theory inference.
First, consider the inference

I'isox <ty — A, 5185 < 2t3 8182 < t2t3,83t2 <3 —> 518283 < 11t3
I sox < 3,83ty <tz —> A, 515553 < tit3
(7)

We now transform the proof using an instance
81 < 1w, 82830 < T3 —> 818283 < ti3
of (). We can again use the smaller instance

Sox < tg, 83t < 13 —> 82837 < 13
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of (il to obtain another refutation.
Second, consider the inference

I'isyx <ty — A, 5155 < tz 8182 < t2,83t1 <3 —> 818283 < fals
I sox <g,83t; <tz — A, 515553 <tyt3

(8)

We now transform the proof using an instance
s1 < tix,s3t; <t3 — s183 < t3@
of (). We can again use the smaller instance
5183 < 137,820 < 1o —> 515983 < a3

of (il to obtain another refutation.
Third, consider the inference

I'sox <ty — A, 5180 < t2 83 < s1t3,5182 < t2 — 8283 < tylats
I sox < 19,83 < s1t3 — s253 < titats

(9)

We now transform the proof using an instance

83 < 81t3,5183 < f1tzr —> 83 < t1i3x
of (cu). We can again use the smaller instance

s3 < t1t3x, Sox < tog — S983 < t1lats

of (il to obtain another refutation.
Fourth, consider the inference

I'sox <ty — A, 5180 < t2 83 < 8at3,5152 < t2 — 5183 < tytats
I' sox < 1o, 83 < satyg — A, 5153 < titats

(10)
We now transform the proof using an instance

81 S tiw, 83w < oty —> 8182 < it
of (cu). We can again use the smaller instance
Sox < ta, 83 < Sot3 —> s3x < dols

of (cal) to obtain another refutation.

(case c) t; maximal and x > t5. This case is the same as (case b), with some
more uses of (fml).

(case d) Let 2 be maximal. There are two main cases. Consider the inference

I' — A sy <tyfx] s1 <tifx] sow <ty — s159 < tits
F, SoT S T — A,SlSQ S t1to

(11)
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Since now the antecedent is maximal, there can at most be inferences using (fmll)
or ([ij). There are three subcases, namely

Isofa] <ty — A, 5185 < ity

sy <ty — A,s189 < t1ts (12)

Isolz] <ty — A, s180 < tity (13)
Ix <ty — A, 5180 < tits

Isola ] < it — A, s1s0 <ttty (14)

F, 82 S tll — A, S1892 S t’ltllltg

In @), t; = tit!. The conclusion of ([[2) is a lattice theoretic tautology, from
which the empty clause can never be derived. This inference is not needed in
any refutation and can therefore be disregarded.

We transform the proof with () using the instance

$1 <tiw,x <tp — 81 <1ty

of (cfl) and the fact that the atom z < ¢; can be eventually eliminated. The
atom s; < t; in the conclusion can also be eliminated, since s1s2 < t1t5 can be
eliminated and (fmll) and can be used. The argument for () is similar.

The second main case, where I' — A, 51 < t1 cuts out the second atom
in the antecedent of (&) is completely dual to the first one, using in particular
.

(case d) Let so be maximal. This case is completely dual to (case b).

(case e) Let to be maximal. This case is completely dual to (case a).

Moreover, the cases for (fcuf]), (ncufl) and ([fxand) are straightforward restric-
tions of the cases for (cil).

(ad iii) The argument is again identical to that in [26]. By induction on the
size of clauses. Primary theory inferences are ruled out ab initio by the order-
ing constraints. We inspect the proof bottom up. We first transform secondary
theory inferences (if they exist) up to the first blocking inference. This does
not introduce new blocking inferences, by the induction hypothesis. We then
transform the first blocking inference. This permutation introduces at most one
secondary theory inference at the top level. We then transform all secondary the-
ory inferences up to the second blocking inference. Whenever we copy a proof
tree in the transformation, we simultaneously transform all copies. Therefore
the procedure terminates after finitely many steps for each proof and yields a
regular derivation. |

We are now prepared for our main theorem.

Theorem 1. . Let all clauses be reduced. The ground ordered chaining calculus
DC is refutationally complete for finite distributive lattices: For every reduced
ground clause set that is inconsistent in the first-order theory of distributive
lattices there exists a refutational derivation in DC.
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Proof. Consider a regular refutation. Such a derivation exists by lemma
Hence in all inferences either both premises are non-theory clauses (with respect
to D" or one premise is a non-theory clause and the other an instance of a clause
in D". The former inferences are handled by specializations of and (DF)
to (Bed) and (Eacil). The latter yield the inference rules of the ordered chaining
calculus DC, as the following argument shows. Consider the (Bed) and (Eaci)
steps of non-theory clauses with D”. By duality we can restrict our attention to
steps involving (fcefl), (ml) and some cases for (). We sometimes put terms, at
which the chaining takes place into boxes.

(case i) The resolution inference of a non-theory clause I, s < s — A with
a ground instance of (Eel)) is

—;s<s INs<s—4A
r— A ’

where s < s is maximal in the premise. Internalization of (Eell) yields (Bel).
(case ii) The resolution inference of a non-theory clause I',s1s0 <t —4 A
with a ground instance of ([ml) is

Slftﬁisl(ﬁgt F,Slsgft—th
F,Slst—)A ’

where the minor formula is maximal with respect to the side formulas in the
second premise. Internalization of (mll) yields ((MIJ).

(case iii) The derivation of [IRl) from is dual to (case ii).

(case iv) Consider the resolution steps with a ground instance

S1 S tlll?,SQ.’I? S to —> S1S9 S t1to (15)

of (cm), where sq, sy are meets of generators, t1,t, are joins of generators and
z is a generator. By the proof of lemma [0, we can put (&afl) in d by adding
appropriate contexts to left- and right-hand sides of instances of non-theory
expressions and instances of (€mil). We use this fact only implicitly in proofs.

(case iv a) Let s; be maximal in ([3) and assume that there is a clause
I' — A,s; < tyz in which the atom s; < ¢z is strictly maximal. Then, a
possible resolution inference is

F—)A,Stlﬂf Stlﬂf,Szl'Stz —> 5189 < t1to
F, Sox <ty — A,8182 < tito )

(16)

In the conclusion, the maximal element s; may occur more than once, but only
in A. The situation is completely analogous to that of (case i) in the refuta-
tional completeness proof for the ordered chaining calculus for transitive rela-
tions in [26]. The difference between (cufl) and (fand) is not visible at this stage.
Again there a several subcases. By assumption, there are no secondary theory or
blocking inferences. So in the first case, s152 < t1f2 may be strictly maximal in
the conclusion and does not occur in A. Then there may be a non-theory clause
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I, 52 < tity — A’ and a resolution inference

FI,SQ S tito — Al F, SoT S to — A,Slsg S t1to
I, sow <ty — A, A ’

thus deriving a ground instance of the first (Cufd) rule. Moreover it may be the
case that s; = so. Then sy does not appear in the premise of this last inference,
however it must appear in the conclusion. This yields the last proviso of the first
(Cuid) rule.

In the second case, A may contain the clause s1ss < t1t2. In order to be
smaller than sy < 1z, it is necessary that s, is identical to s; or to 1. Moreover
t> < x must hold. Hence A = A, s; < t1t» and the conclusion of (@@ specializes
to

I'syx <ty — 51 <tyta, 51 < tat.

Still, a (Eacil) inference is not possible, since s;z < ts is the maximal atom.
However, the s; in the antecedent stems from the instance of (cfl) and not
from the non-theory clause. But in the instance of (cufl) we are free to set this
occurrence of s; to 1. Then ([[) specializes to

I — Alsi]<twsi <ty [s1]<tz,a <ty — 51 < hiby
Iz <ty — A, s1 < tita,s1 < tits '

It can be continued by (Eacil) as

Iz <ty — A,sy < tits,s1 < tits
F,.I‘StQ—)Z,SlStth .

This yields a first of the ([DE) rules.

(case iv b) Let #; be maximal in ([[H) and assume that there is a non-theory
clause I' — A, sy < t12 in which the atom s; < t;z is strictly maximal. Then
there is a possible resolution inference

I'— A sy Sw 51 S,SQwStg — 5182 < t1to

F, SoT S to — A,Slsg S t1to

As in (case iv a), it can either be continued as

F,SQ(E S to — A,Slsg S 2 F/SlSQ StQ — A

I, sow <ty — A, A ’

which yields the first of the (Cufd) rules, or we obtain a first instance of (DE):

I' — A;sy <tyx,s1 < tity
F,Slfl? StQ — A,Sl Stth

(case iv ¢) Let z be maximal in ([ and assume that there is a clause
I' — A, ssx < ty in which the atom ssx < 5 is strictly maximal. The situation
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is completely analogous to the completeness proof of the Positive Chaining rule
of OC in in [26]. There must be a clause I" — A’ s; < ty2 that leads to an
instance of in a two-step proof with (Cu).

The cases, where s or to are maximal in [[H), are dual to (case iv a) and
(case iv b). They yield instances of the second ([Cuid) and (OE) rules. O

Soundness of DC is trivial from the completeness proof, since all rules have been
derived from OR with rules from D. Again, it should be possible, but involved,
to verify this proof at least with a higher-order proof checker.

8 Decidability and Special Cases

In this section we discuss various special cases of theorem [l including chaining
calculi for semilattices, quasiorderings and transitive relations. We also address
decidability of these calculi, which follow almost immediately from the finiteness
of the structures under consideration. In section [ we argue how DC can be
extended to the non-ground case. Our first corollary addresses specializations.

Corollary 2. (i) DC without (DH) is refutationally complete for the reduced
Horn theory of finite distributive lattices.

(i) JC and MC are refutationally complete for the reduced clausal theories of the
finite join and meet semilattice.

(i) QC and TC are refutationally complete for the theory of quasiorderings and
transitive relations.

This follows immediately from refutational completeness of DC, discarding the
respective brackets in the inference rules.
Our second corollary addresses decidability.

Corollary 3. DC decides the elementary theory of finite distributive lattices.

Proof. Finitely presented distributive lattices are finite. Modulo ACI the infer-
ence rules of DC do not introduce any new variables or constants. Thus there
are only finitely many inferences that lead to irredundant conclusions. Together
with refutational completeness this implies that the procedure terminates after
finitely many steps. The resulting resolution basis contains the empty clause if
and only if the initial clause set was inconsistent. O

This result also immediately specializes to decidability of JC, MC, QC and TC.
Remember that we only consider ground calculi. Termination of DC also has the
following consequence.

Corollary 4. HOR and OR of [28] are solutions to the uniform word problem
for semilattices and distributive lattices.

In particular, a variant of propositional ordered resolution has been formally
derived as a rewrite-based lattice-theoretic decision problem using ordered reso-
lution resolution as a metaprocedure. This implies a reflexive refutational com-
pleteness proof. However, the ordering constraints at the lattice-level are weaker
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than those of the logical level. An alternative (less formal and generic) deriva-
tion of HOR and OR as Knuth-Bendix completion procedures for quasiorderings
that are specialized to semilattices and distributive lattices can be found in [26].
These calculi also use the weak ordering constraints in the context of the uni-
form word problem. The strong constraints are only appropriate for refutations,
which is the context of uniform word problems means a restriction to the query
1<0.

Corollary 5. The variants of Knuth-Bendix completion procedures for quasiorder-
ings and transitive relations of definition [ terminate.

Our variants are only special cases of more general completion procedures for
quasiorderings and transitive relations (c.f. [28]). Here, we neither deal with non-
ground terms nor with monotonic functions. In presence of monotonic functions,
the procedures need not terminate even in the ground case. An example can be
found in [28]. If the system is moreover non-ground, the situation becomes even
more problematic. Then also variable critical pairs occur [I74f24]. In presence of
the rules
a—; b, rMNx —g,

for instance, there is the two-step rewrite proof
alb—;bMb—4b,

which is a critical pair in the sense of non-symmetric rewriting, and which cannot
be replaced by a rewrite proof (a possibly empty sequence of decreasing steps
followed by a possibly empty sequence of increasing steps). So far, there is no
way to finitely represent these variable critical pairs within first-order logic.
Since critical pair computations appear in Knuth-Bendix completion and also
in chaining rules, this fact is very important for the extension of DC to the
non-ground case in section [T

9 Examples

We now consider some examples that show DC at work. They are as difficult
as typical exercises from introductory textbooks on lattice theory or typical
lemmata that arise everywhere in lattice theory. The example show that DC can
easily handle such proofs. Sometimes the resolution proofs are even more direct
and concise than standard textbook proofs.

Example 1. We show that DC can appropriately handle the axioms of D and
D'

Lemma 11. DC refutes the axioms (re}]), (azd), (@), @d), ) and [@md) of

lattice theory.

Proof. (disi)) (as an equation) and ().
(ad [cefl). The clause to be refuted is # £ x. The empty clause is obtained in

one step by (Bel)).
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(ad Exand). The clauses to be refuted are z < z, z < y and x £ z. Depending
on the ordering constraints, we obtain a two-step refutation with either (Cut+])
or ([Cutd) and ordered resolution.

(ad ). The clause to be refuted is zy £ x. We obtain a two-step refutation

using (MIJ) and (Be).
(ad i) This case is dual to that of ([H).
(ad [x). The clauses to be refuted are z < z and zy £ z. We obtain a two-step

refutation using ([IB]) and ordered resolution.
(ad [nll) This case is dual to that of (fi). O

We now show that DC can appropriately handle the distributivity axiom.
Lemma 12. DC refutes the distributivity law

zU(yNz)=(zUy)N(zU2). (17)

Proof. We first split () into a conjunction of two inequalities
zU(yNz) <(zUy)N(zUz), (18)
(zUy)N(zUz) <zU(ynz). (19)

In order to refute it, we negate it and then simply multiply it out to obtain
reduced lattice inequalities. This yields the clause

rA—
where
I'=z<wzy,x <wzz,yz <zyyz < xz,
A=z <zy,xz<zz,xz<zy,zz<zz,zy <zyzy <zz,yz < zy,yz < 2.

I' stems from (I8 and A stems from (). We consider only I'. We obtain the
refutation

z<zy,x<zz,yz <zyyz < xz, A —
F {(MI)) with third and fourth atom}
z<azy,x<zz,y<ayz<zzA—
F {({RB) with all atoms}
r<z,x<z,y<y,z<z,A—
F {(Bel) with all atoms}
A—

The refutation of A — is similar. O

No cut rule has been used in the proof. For ([[8), this is only understandable,
since this inequality holds in all lattices. ([[d) also does not use any of the cut
rules, although it only holds in distributive lattices. This shows that in some
cases the effect of distributivity is sufficiently handled by the transformation to
reduced inequalities.
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Lemma 13. DC refutes (cud).

Proof. The clauses to be refuted are 1 < y12, 292 < Yo and 2129 £ y1y2. Like
in the case of (ffand) we obtain two-step refutation using either ([Cuf£]) or ([QLE])
and ordered resolution.

We now show a further important property of the join and meet operation.

Lemma 14. Join and meet are monotonic operation in a lattice.

r<y—zlUz<ylz, (20)
r<y—zNz<yNz (21)

hold for all elements x, y and z of the lattice.

Proof. (ad 2Z0) For the refutation, we obtain the reduced clauses z < y, x £ yz

and z < yz. The elimination of the first two clauses is identical to the refutation

of ([i). The elimination of the third clause is identical to the refutation of (ull).
(ad El) The refutation is dual to that of (Z0).

Ezample 2. We now show that DC can also handle the equational axioms of
lattices.

Lemma 15. DC refutes the following equations.

[\
N

U(yUz)=(zUy)U z, (22)
NyNz)=(xNy)Nz (23)
zrUy=ylUuz, (24)
rMNy=yNx, (25)
rUz=ua, (26)
xMNz=ux, (27)
U(zMy (28)

(29)

) =
NzUy) =
Proof. (ad Z2) We consider only the inequality z Ll (x L 2z) < (x Uy) U z. For the
refutation, we obtain the reduced clause

T <zyz,y < xY2,2 < TYZ2 —> .

The empty clause follows immediately, using ([IB]) and (Befl). The proof for the
other inequality is similar.

(ad ) The proof is dual to that of (ad E2).

(ad 24) We consider only the inequality x Uy < y U z. For the refutation we
obtain the reduced clause

r<zyy<zy —.
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The empty clause follows immediately, using ([IB]) and (Befl). The proof for the
other inequality is similar.

(ad EAl) The proof is dual to that of (ad E4I).
(ad 26l For the refutation, we obtain the reduced clause

r<z,z<xr —.

The first atom can be eliminated by (Befl), the second one by (IB]) and (Bef).
This yields the empty clause.

(ad Z) The proof is dual to that of (ad ZH).
(ad 2Z8) For the refutation, we obtain the reduced clause

r<z,zy<z,xr<zy,r<Irr —.

The first atom can be eliminated by (Befl), the second one by (M) and (Bef),
the third and fourth one by ([R]) and (Befl). This yields the empty clause.
(ad Z9) The proof is dual to that of (ad E8). O

We have therewith shown the following

Lemma 16. FEvery distributive lattice as a theory of order is an equational dis-
tributive lattice.

Proof. We have refuted the equational axioms of lattices in lemma [[A and the
distributivity axiom in lemmal[[Z By refutational completeness of DC (theorem/[l
and lemma [l these axioms are therefore consequences of the axioms for the
reduced clausal theory of distributive lattices. By lemma B, the case of reduced
clauses can be lifted to the first-order theory of lattices. |

Ezample 3. We now present one more example that shows that in many cases,

the use of distributivity in the transformation to reduced lattice inequalities
already suffices for the refutation. This makes proofs very simple.

Lemma 17. Every distributive lattice A is modular. That is,
z<r=zMN(yUz)=(zNy)Uz, (30)
holds for every z,y,z € A.

Proof. We first show that 2N (yUz) < (2My) Uz holds without the assumption
z < x. Transforming to reduced lattice inequalities yields

zy <azy,xy <yz,rz <xz,xz <y — . (31)
This clause can be reduced by a simple refutation to the empty clause using

mainly ([IB]) and ((MIJ), which hold in every lattice, but without any of the cut
rules.
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We now show that the converse inequality (zMy) Uz < 2 M (y U 2) follows
from the assumption. Transformation to reduced lattice inequalities (without
using distributivity) yields

z <z, (32)
vy <woxy <Yz,2 < T,2 Yz —> . (33)

Using (IB)), (MIJ) and (Bef), @3) reduces to z < x —. The empty clause then
follows immediately from (B2) by ordered resolution. O

Example 4. We now show that in some cases, proofs in DC can be surprisingly
simple.

Lemma 18. Complements in distributive lattices with 0 and 1 are uniquely de-
fined (provided they exist).

Proof. We first present a typical textbook proof. Let b and ¢ be two complements
of an element a of the distributive lattice. By definition of complements, therefore
we have two elements 0 and 1 such that

alb=1, (34)
amb =0, (35)
ale=1, (36)
afNe=0. (37)

We show that under these conditions b = ¢. Now

b

= {Definition of 1}
b1

= {oy @)
bM(alc)

= {Distributivity}
(bna)u(bMe)

= (o @)
ou(bne)

= {Definition of 0}
bne

< {Definition of lower bound}

C.

A dual argument, of the same size, using ([B4) and BZ) shows that ¢ < b and
therewith b = ¢. The proof obviously requires some creative steps.
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We now consider the proof in DC. The clauses that are necessary for repre-
senting the problem are

ab < 0, (38)
ac <0, (39)
1 < ab, (40)
1< ae, (41)
b<c,c<b—. (42)

Let a = b > ¢ > 1> 0. The refutation is

F {by (CEE of @) and EF)}

b<c (43)
F {by of @) and B9)}

c<b (44)
F {resolving ([E3) and @A)}

c<b—. (45)
F {resolving () and E3)}

O

Other choices of < lead to similar proofs. |

Here, the DC-proof is obviously simpler and shorter than the textbook proof. In
particular, there are no creative steps. The search possibilities at each stage of
the proof are strongly restricted. This shows very well that focusing pays.

Example 5. Here is another example that is surprisingly simple with DC. In
particular it shows the necessity of the special proviso in the (Cufd) rules.

Lemma 19. Let A be a distributive lattice. Then
aldb=cUbAalNb=cNb=a=c (46)

holds for all a,b,c € A.

Proof. Transforming (6] to reduced lattice inequalities yields the clauses

a < be, (47)
¢ < ab, (48)
ab < ¢, (49)
¢b < a, (50)
a<c,c<a— (51)



Let a = b > ¢. The refutation is

F {by €53 of @D and ED)}

ab<c,c<a— (52)
Fo {by @Cuid) of @) and (B2)}

ab<c,c<ab— (53)
F {resolving (@@ and B3I}

c<ab— (54)
F {resolving (X)) and @4}

O

O

Beyond such simple examples, the number of clauses that are needed for the
problem specification increase so quickly that a calculation by hand becomes
hopeless. A real verification of the claim that focused calculi are strongly superior
to axiomatic reasoning therefore depends on extensive experimentation with an
efficient implementation.

The experience with these examples and also the fact that the (Cufd) rules
can be quite prolific shows that cut rules should be applied in a lazy way in
implementations.

10 The Non-Ground Case

We now consider the extension of the calculi to infinite structures. Then quan-
tifiers can no longer be eliminated and first-order variables appear. Our calculi
become semi-decision procedures, since the corresponding first-order theories
are undecidable. We have already discussed the problems that may arise with
monotonic functions and non-linear variables. Here we do not build in chaining
at subterms. Monotonicity laws, like for instance

r<y— f(z) < f(y)

must therefore be treated in an axiomatic way. We will always use reduction
orderings that contain the subterm ordering. Then monotonicity axioms always
increase from left to right. Monotonicity axioms may introduce unshielded vari-
ables (c.f section [[l) that make chaining very prolific. A more sophisticated
alternative would be to restrict subterm chaining to linear variables and use
monotonicity axioms for the non-linear ones. This may still be simpler than re-
sorting to higher-order techniques like context unification [d], which has been
proposed for handling variable critical pairs [I7].

Fortunately, Skolem functions, which appear in the infinite case from exis-
tential quantification, are non-monotonic.

For the remainder of this text, we assume that monotonicity is not built in
for any free function. Then, our calculi can be lifted in a straightforward way.
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However some care has to be taken with idempotence, which can no longer be
used implicitly as a simplification. This yields factoring rules also at the lattice

level.
Co[]s1.-.8i . Sp...sm <t

Co,[]s10...58i0...8m0 < to’

where o is a most general unifier of s; and s; and the o-instance of the minor
formula is strictly maximal in the left-hand rule and maximal in the right-hand
rule.

C’,[—|]s Stl---ti---tk---tm

Co,[-)so < tio...tio.. . tyo'

where ¢ is a most general unifier of ¢; and ¢; and the o-instance of the minor for-
mula is strictly maximal in the left-hand rule and maximal in the right-hand rule.
Also the remaining rules of DC now have unification constraints. The ([Cut+])
rule now is of the form

I As <l I — N fslnt’ <t
I'o,I"'oc — Ao, Ao, 510[520)m < [ti10]jt20

Thereby o is a most general unifier of 2 and 2/, [t10];20 £ s10, [s20]m2’c A tao
and the o-instances of the minor formulas are strictly maximal with respect to
the o-instances of the side formulas in their respective instances.

The first of the ([Cufd) rules is now of the form

I — A,Sl < [tl]j.’E FI,Sll[SQ]m < [tll]jtg — A
I'o, I'o,[ulmzo < too — Ao, Ao’

Thereby o is a most general unifier of s; and s} and of ¢, and ¢}, s10 A [t10];20,
$10[520]m A [t}0]jt20. In the first premise, the o-instance of the minor formula
is strictly maximal with respect to o-instance of the side formulas. In the second
premise, the o-instance of the minor formula is maximal with respect to the
o-instance of the side formulas. Moreover, [u],,z0 # to0 mod AC, u = sy0 or
else u = sy0, if s is absent in the minor formula.

The specification of the second (Cuid)-rule is dual.

The first of the (D) rules is now of the form

I' — Ajs <[t1]mz, 8" < [t]]mt2
I'o,[so]jzo < tac — A, s0 < [t10]mt20)

Here, x is not a join, o is a most general unifier of s and s’ and of ¢; and ¢},
either t10 A soxo and tjo £ s'otao or so £ [tio]zo and so £ [t]0]mt20 and s
can be set to 1 in the conclusion. The o-instance of the leftmost minor formula
is strictly maximal with respect to the o-instances of the side formulas and the
o-instance of the rightmost minor formula.

The specification of the second (DE) rule is dual.

Substitutions may instantiate variables at lefthand sides of reduced lattice
inequalities with joins and those at righthand sides with meets. Thus the rules of
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(DC) must be intertwined with reduction rules that transform these expressions
again into reduced inequalities.

Co[=s1 - (s U...USik)...8m <t

Algjgkc-sl---sij---sm <t

C,["]SStl...(tilﬂ...ﬂtik)...tm
MNicj<k Cs<ti...tij..tm

As already discussed in section Bl in particular the ACI-unifications of the
(Cutd) rules can be extremely prolific. This can however be avoided using uni-
fication constraints, where unification can often be replaced by a simple test
for unifiability. See [31IZI] for constraint superposition calculi. For the sake of
simplicity, we do not add constraints to the calculi given in this text. But for
implementations, they are definitely important. Fortunately, in presence of more
structure, like for instance set theory, the most prolific rules can be completely
discarded, as we will see in section

11 Simplification

Simplification techniques are indispensable for efficient ordered resolution cal-
culi. Some techniques, like for instance subsumption, concern only the clausal
structure. They are common to all ordered resolution calculi. We do not dis-
cuss them in this text (c.f. [3]). We restrict our attention to theory-specific and
therefore focused simplification techniques.

The main idea of simplification is that a clause C' in a clause set S is simplified
by a clause C', if adding C’ to S makes C redundant and if C" is a consequence
of S. Then of course C' can be added to S and C' can be discarded. Here we
may assume that S contains both the non-theory clauses and the lattice axioms
from D". But if every inference of C' with members of D" and the new clause
C'" is redundant, then in particular every application of a DC-rule leads to a
redundant conclusion, since it is nothing but a macro inference with rules from
D".

In this section, we not only discuss simplifications in this strong sense, but
also avoidance of prolific inferences that arises through the ordering constraints
and term-dependent redundancy mechanisms. Situations, where the calculi them-
selves can be simplified, are discussed in section

We first consider simplification techniques. Consider, for instance, the clause

syt Sy <ty u... .ty — A (55)

It becomes redundant, when the (smaller) clause
r— A (56)

is added (by subsumption). Moreover (BH) semantically follows from (B3), since
S1...U...Sym < ty...u...t, holds in lattice theory. Thus (B3) may be deleted
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as soon as (Bf) is added. Similarily, a clause
I' — Asi..ou... .8, <ti...u...t,

can be deleted, since it is subsumed by s1...u...8, < t;...u...t, and this
clause semantically follows from the lattice axioms.

Moreover, all instances of axioms from D" can be deleted, when they are
generated by chance during the procedure. More generally, we may use reduced
clauses that hold in lattice theory for simplification, provided they are compatible
with the ordering constraints of redundancy. This is for instance the case with
lemma [T[9 We have the clause

a<bc,ab<c—a<ec
which is a special case of (&ml). So if there are clauses

I' — A a < be,
I' — A'ab<c,

such that the explicit inequalities are strictly maximal, we may replace them by
the clause
' — A Aa<c,

since the latter follows from the formers and the lattice axioms and the latter
makes the formers redundant. There are also the obvious simplification rules for
0 and 1.

We now discuss possibilities to discard clauses that are redundant in presence
of others. For example, we may discard the clause

I' — Ajab<ed

in presence of
I' — A',a<e,

provided I'" — A’ subsumes I' — A.

We now show that the ordering constraints rule out some prolific inferences,
namely chaining with variables. See ] for a discussion in the context of ordered
chaining calculi for transitive relations. The situation for lattices is very similar.
We say that a variable that occurs in an atom or a clause is shielded, if it occurs
at least once below a free function symbol. Otherwise it is called unshielded.
Shielded variables cannot be maximal in an atom or a clause, since we assume an
ordering that contains the subterm ordering. Therefore shielded variables cannot
be cut out by inferences. However there can be inferences with
unshielded variables.

F—>A,31§t1x F’—)AI,SQSIQStQ
FU’, I —» AU,A,Sldsz < tiots

At least, if z occurs neither in s; and ¢;, nor in I" and A, then the conclusion
of ([Cutt) reduces to
F, ' — A,A',slsg < t1ts.
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It is already properly subsumed by the first premise according to our above con-
siderations or it is identical to it up to renaming of variables. This yields an
partial restriction of variable chaining. However, as in the case of ordered chain-
ing calculi for transitive relations, chaining with variables cannot be completely
avoided.

We have seen that also simplification techniques depend on the integration
of theory-specific knowledge. Here, mathematical ingenuity may have drastic
impact on the efficiency of the calculi. In opposition to the derivation of the fo-
cused inference rules, it is now however integrated via the notion of redundancy
and therefore the syntactic ordering. Considerations are now not based on proof
transformation, but on semantical consideration. In general, there may be fur-
ther possibilities of simplification for distributive lattices. Their appropriateness
and usefulness is best confirmed by experimenting with an implementation and
practical examples.

12 Extensions

In this section we consider some extensions of DC. These include focused rea-
soning with boolean lattices and fragments of set theory and the integration of
reasoning with filters and ideals.

A first extension concerns boolean lattices.

Corollary 6. DC is refutationally complete for the reduced clausal theory of
(finite) boolean lattices.

Proof. Boolean lattices are complemented distributive lattices with 1 and 0. A
lattice is complemented, if every element a has a complement o', that is aAa’ = 0
and a V ¢’ = 1 hold. For lattice inequalities a A ' < ¢ is equivalent to a < bV ¢
and dually a < b’ V¢ to a Ab < c. Thus complements can be eliminated while
reducing clauses and DC suffices for the boolean case. |

An alternative would be equational reasoning with a boolean ring. Such a cal-
culus can be obtained from the superposition calculi for rings in [29]. These
calculi extend the Grébner-base approach to the uniform word problems for cer-
tain commutative rings [6]. Performance of both methods should be investigated
by experiment. One might expect, that in some examples, lattice-theoretic rea-
soning with orderings pays, whereas others are more efficiently handled by a
ring-based approach. The transformation from boolean lattices to boolean rings
uses essentially the complement. It is therefore not possible for non-boolean lat-
tices. Equational reasoning with boolean lattices in the sense of superposition
calculi is impossible, since there is no canonical term rewrite system for this
class [Z3].

Another extension are linear orderings. A partial ordering is linear, if a < b
or b < a holds for all elements a and b of the universe. This further axiom
allows one to transform every negative inequality a < b — into a positive
inequality — b < a. This means that all clauses in a specification consist solely
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of positive atoms. In the focused calculi, therefore, all inference rules that use
negative atoms are no longer applicable. This holds in particular for (Cutd). Thus
a main source of prolificy can be avoided in presence of more structure. In this
case, however, the use of focused rules offers no further advantage over plain
ordered resolution with a resolution basis. The main effect of focusing hereby
comes from the appropriate choice of the axioms and the syntactic ordering.
In the context of lattices, linear orderings are trivial, but standing alone and
in particular in combination with further axioms like density and end-point
properties linear orderings have interesting applications [82]. We have added this
remark, since ordered chaining calculi for transitive relations and quasiorderings
arise as specialization of our calculi.

An interesting application of DC and its extension to boolean lattices is
reasoning in set theory. Since sets form a boolean lattice under union, inter-
section, complement an inclusion, DC immediately applies to this case. It has
already been noticed in [I4] that an unordered variant of can be used
for set-theoretic reasoning. In [I4], a single further interpreted operation s(.) for
singleton sets is used for a calculus based on unordered resolution for reason-
ing with sets. Moreover, one assumes a lattice with a 0 (the empty set), but
without a 1. Unfortunately, no precise axioms for the additional structure are
explicitly given in [T4]. At least, negative inequalities can again be transformed
into positive ones:

sZt<= Tz.s(x) CsAs(z)Nt CH.

This equivalence can be used as a rewrite rule in the transformation to reduced
inequalities. Then in particular the prolific (Cuid) rules can again be completely
avoided. A reconstruction of the calculus in [I4], in particular of its simplification
rules, in the context of ordered resolution or the development of similar calculi
based on DC seems very promising.

Finally, we show that reasoning with filters and ideals can be easily integrated
into the calculi. This example demonstrates in particular that the derivation
method supports a simple and transparent modular approach to focusing. This
is also a major advantage over previous approaches. An ideal I of a lattice A is
a non-empty subset of A that is downward closed (a € IANb <y = b€ I) and
closed under finite joins (¢ € IAb € I = aUb € I.) Dually, a filter F'is a
non-empty subset of A that is upward closed and closed under finite meets. This
yields the clauses

I(a),b < a— I(D),
I(a),I(b) — I(alb),
F(a),a <b— F(b),
F(a),F(b) — F(anb).

We use an atom ordering in which I and F' have greater weight than <. Then
there are no ordered resolution inferences between these axioms and D" It is also
easy to see that all inferences between these axioms lead to redundant clauses.
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Hence also D" plus the filter and ideal axioms is a resolution basis. Then the
axioms can immediately be turned into the inference rules

I I(aub) —s A

T I(a), 1()) — A (61)
LIb) — A ' —s A I(a) -
TIb<a—AAN
I F(anb) — A )
T Fla), F(b) — A
'Fb) — A I — A' F(a) (64)

IT,a<b— A A

We must again consider secondary theory inferences. For ideals, the only possi-
bility is

F,I(b)—)A I(all_lag),algb,aggb—>l(b)
F,I(a1Ua2),a1§b,a2§b—>A )
The inference can be continued with an instance of ([BS) as
I',I(all_laQ),algb,aggb—)A I(al),I(aQ)—>I(a1|_|a2)
I I(a1),I(as),a1 < b,as <b— A

But in a refutation, also the atoms I(a;) and I(as) can be eventually be elimi-
nated. We can then use the smaller instances

I(a1),b < a — I(b),
I(as),b < a — I(b)

of (B1) for a new refutation, like in the proof of lemma [ The argument for
filters is dual.

Our above axiomatization of filter and ideals is not complete. We disregard
the fact that filters and ideals must be non-empty. If necessary, the clausal variant
of the axiom Jz.I(z) (including Skolemization) can be added. In most applica-
tions, however, this axiom is probably unnecessary.

An alternative would be the inclusion of set-theoretic reasoning in a second
calculus based on DC that uses another ordering C for set inclusion and other
joins and meets for union and intersection. Since these calculi work on different
orderings, their combination is trivial. In particular one could add a comprehen-
sion axiom of the form

I(p) <= s(p) C (1),
where ¢(I) denotes the set corresponding to the predicate I to shift between logic

and set-theory in a well-defined way.
We finish this section with a simple example for reasoning with ideals.

Example 6. We prove the simple fact that for every ideal I in a lattice A we
have that a € I and b € A implies aMb € I. The clauses for the refutation are
I(a) and =I(aMb). Then (B2) yields ab £ a. This clause can be refuted in two

steps using (MI)) and (Bef).
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13 Conclusion

We have derived focused ordered resolution calculi for semilattices, distributive
lattices and boolean lattices with a novel method. Using ordered resolution as
a metaprocedure, theory-specific mathematical and procedural knowledge has
been integrated in a smooth and controlled way. Boolean lattices are probably
the most complex structures that have been integrated into ordered resolution
procedures so far. As the title says, the main emphasis of this text has been on
the construction of the inference systems. But we have also presented theory-
specific simplification techniques to enhance practical proof performance. More-
over, a series of examples at the niveau of textbooks on lattice theory show that
our calculi yield simple and concise proofs in practice. In case of finite structures,
our calculi specialize to decision procedures. In case of infinite structures, some
inference rules may become quite prolific, since we unify modulo ACI. Working
with unification constraints should yield a drastic improvement in implementa-
tions. But, as often in computer science, practical experiments should be the
ultimate criterion of applicability.

Our calculi are also interesting in (at least) two more respects. First, we de-
veloped and thereby proved (refutational) completeness of several other calculi as
special cases in a uniform and generic way. In particular, we formally developed
and proved refutation completeness of (ground) resolution as a lattice-theoretic
uniform word problem reflexively within ordered resolution at the metalevel.
Second, the lattice calculi are the basis to many interesting practical applica-
tions. Our example of focused reasoning with filters and ideals shows that with
the derivation method, the lattice calculi can be extended in a simple and modu-
lar way. Moreover, in presence of more structure the calculi can be considerably
simplified. In particular, our most prolific inference rules completely disappear in
lattice-theoretic reasoning with sets. Besides a more extensive integration of set-
theoretic reasoning (exploiting, for instance, the approach based on unordered
resolution in [I4]), we plan to investigate certain embedding of semilattices and
distributive lattices into semirings [I6UT0] or allegories [T2] and to include fixed
point, reasoning. Such structures are important for the construction and anal-
ysis of hard- and software systems. Proof support for these endeavors is very
challenging.
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