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Rounding probabilities: Maximum probability and

minimum complexity multipliers
Max Happacher, Friedrich Pukelsheim
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Abstract

The choice of multipliers is studied, for multiplier methods of rounding that are based on rounding
functions. Four multipliers are introduced and shown to be asymptotically equivalent, an easy-to-calculate
multiplier, the exactly unbiased multiplier, the maximum probability multiplier, and the minimum com-
plexity multiplier. The results are useful in assessing the rounding error when rounding probabilities to
fractional proportions.
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1. Introduction

When rounding a finite set of probabilities to integral multiples of 1/n, for a given
denominator or accuracy n, standard rounding may well leave a nonvanishing discrepancy.
That is, the rounded weights often fail to sum to one. For examples and details of the
problem, see Mosteller, Youtz and Zahn (1967), Diaconis and Freedman (1979), Balinski
and Young (1982), Happacher (1996), or Happacher and Pukelsheim (1996, 1998).

Table 1 shows the result of the 1996 Russian presidential vote region-by-region. The
11 categories comprise the valid votes for each of the ten candidates, and the vote against
all candidates on the ballot. Using standard rounding, the counts are rounded to the tenth
of a percent. In our notation, this is of the form n;/n, with n = 1000. The last column
gives the discrepancy, D = (Z¢<11 n1> —1000.
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Table 1: Top portion [landscaped]
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In this paper we discuss the problem of bringing the discrepancy close to zero, by
making a good choice for a variable called multiplier to be introduced below. As in our
previous work (Happacher 1996, Happacher and Pukelsheim 1996, 1998) we concentrate
on a rounding function r,, for some ¢ € [0, 1]: For any integer £ > 0, a number z in the
interval [k, k4 1] is rounded to ry(z) = kif 2 < k+q,and tory(z) =k+1ifz > k+q. A
tie occurs when = = k + ¢, but these form a nullset under the distributional assumptions

that we adopt in the following.

For a fixed number of categories, ¢, we assume the probability vector (W7,..., W,) to
be uniformly distributed on the probability simplex of IR ¢. This distributional assumption

is fundamental to the sequel, and appears to be a natural starting point. The total

Teqv = Zigc rq(VW;) (1)

then is an integer-valued random variable, and crucially depends on the (continuous) mul-
tiplier v > 0. For given accuracy n, we seek to determine a multiplier v,, so that the
discrepancy

Deygn = Tequ, —n (2)

concentrates around zero, in some sense or other.

Table 1 presents an example for ¢ = 11 categories, using standard rounding ¢ = 1/2,
accuracy n = 1000, and multiplier v, = n. The 89 Constitutional Subjects of the Russian
Federation, together with the votes cast abroad and the candidates’ totals, yield the 91
realizations of the discrepancy D = D11 1/2 1000 given in the last column of the table. The

observed frequencies of the values of D are listed in Table 2.

For an individual set of weights (wy,...,w.) one can always find a multiplier v satis-
fying > ... 7¢(vw;) = n. This is what Balinski and Young (1982) call a rounding method.
The method that comes with standard rounding, ¢ = 1/2, is called the Webster method.
Table 1 indicates the corrective action, following standard rounding, that is needed to
obtain a solution according to the Webster method. A trailing sign + or - means to add

or to subtract 0.1 percent, in order to make the discrepancy vanish.

Section 2 reviews our earlier results on the easy-to-calculate multipliers

1
Hegm =M+ C (q - 5) . (3)

They achieve unbiasedness in an asymptotic sense, E[T¢ 4 ., .] = n + O(1/n). Standard
rounding has fi.1/2,, = n. If the accuracy n is fixed then there is an exactly unbiased

multiplier
nc,q,n Y (4)
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Table 2: Discrepancy Distribution for 11 Categories

Discrepancy D1171/271000 —4 -3 -2 —1 0 1 2 3 4
Observed frequency 0 0 9 18 37 20 6 1 0
Theoretical frequency 0 0 4 23 38 22 4 0 0
Probability 0.00002 0.00249 0.04845 0.24532 0.41096 0.24281 0.04751 0.00242 0.00002

The observed frequencies are from Table 1. The probabilities are calculated from the formula in Happacher
(1996, page 66). They are rounded (Webster method, n = 91) to obtain the theoretical frequencies.

fulfilling E[T 4,5, ,..] = n. This existence statement is of little merit for practical applica-

tions, as no closed form expression for 7. 4, is available.

In Sections 3 and 4 we introduce two new optimality concepts. In Section 3 we prove

that, for a given accuracy n, there is a multiplier

Te,qn ()

maximizing the probability of a vanishing discrepancy. This maximum probability mul-
tiplier m. 4 is again hard to calculate. The same is true of the minimum complexity

multiplier
Qc,qn (6)

in Section 4, minimizing the expectation of the absolute value of the discrepancy. Table 3
illustrates the small numerical differences between the four multipliers (3)—(6). Figure 1
suggests that the differences between (4)—(6) and (3) are bounded of the order 1/n.

Section 5 is devoted to the asymptotic discrepancy distribution, as the accuracy n
tends to infinity. Theorem 6 shows that, under mild assumptions on the multiplier sequence
(Vn)n>1, the discrepancies D, g ,, from (2) have a limiting distribution that does not depend
on ¢ and that is given by the density of the convolution of ¢ uniform distributions on the
interval (—1/2,1/2). The convolution of uniform distributions is a frequently used model
for the sum of rounding errors. See, for example, Mosteller, Youtz and Zahn (1967),
Diaconis and Freedman (1979), or Johnson, Kotz and Balakrishnan (1995, Chapter 26.9).
Table 4 lists the asymptotic probabilities for ¢ = 3,5,7,9,11 categories.

Section 6 comes to the conclusion that, asymptotically as n — oo, the multiplier
sequence from (3) is of maximum probability and minimum complexity, besides being

unbiased. In summary, we recommend the multipliers . g, from (3).
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2. Unbiased Multipliers

Unbiasedness relates to the moments of the total (1). For n > ¢, the existence of
a unique exactly unbiased multiplier (4) is established by Happacher (1996, page 29), or
Happacher and Pukelsheim (1996).

For the asymptotic statements we rely on Happacher (1996, pages 33, 36), or Hap-
pacher and Pukelsheim (1996). As v tends to infinity, the first two moments of the total

E[Te.q.] =u—c(q— %) + (g) 1/6+Iqj<q_ Yo (%) (7)

VarlT. y] 1_02 N g(;) a(g — 1/3)(61 - .5 (%) . (8)

satisfy

Hence the multiplier v = pi¢ 4, from (3) leads to the expectation n + O(1/n) in (7). This

is the property of asymptotic unbiasedness.

The moments in (7) and (8) depend on the onedimensional and twodimensional
marginal distributions of the random vector (Wy,...,W,). In general, the marginal distri-

butions have a simple structure.

Lemma 1 (Marginals). Fiz ¢ € {1,...,c}. The {-dimensional marginal distributions
of (Wh,...,W¢) are all identical,

c—1
P (W, >y1,---,W¢Z>yz)=(1—Zi<£yi) ;

with y1,...,ye € (0,1) such that 37, y; < 1.

Proof. Exchangeability leads to identical marginal distributions. The formula itself is not

hard to derive by a geometric argument, see Happacher (1996, page 26). O

3. Maximum probability multipliers

For a given accuracy n, a maximum probability multiplier 7., , must fulfill
P(Ttqx.,, =n) =max,>oP(Tc 4, =n). (9)

The following theorem shows that such a multiplier exists.
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Theorem 2 (Maximum probability). For every accuracy n > ¢, there exists a mai-

mum probability multiplier m. 4 .,,. All mazimum probability multipliers lie in the interval
(n—c(l —q),n+cq>.

Proof. The function g,(v) = P(1¢,4,., = n) is continuous on (0, 00). Indeed, the positive
quadrant (0, 00)¢ is tiled by cubes of the form (k1 —1+q,k1+¢q) X -+ X (ke —1+q, ke +q),
consisting of the vectors (z1,...,x.) that are rounded to (ki,...,k.). Let C(n) be the

union of the cubes with ), <. ki =n. We have
Teqv=mn = v(Wi,...,W,) € C(n).
Let S(c) be the probability simplex in IR¢. The representation

vole_q (C(n) N uS(c))
vole_1 <VS(C))

gn(y) = (10)

shows that the function g, is continuous on (0, 00).

A rounding function 7, comes with the basic relation r,(vW;) — 14 ¢ < vWV; <

rqo(vW;) + ¢, for all i < c¢. Summation yields
Teqv—c(1—q) <v<T.,,+cq. (11)

On the set {14, = n}, the multiplier v then lies in the interval K = [n—c(1—q),n+cq] C
(0,00). For v outside K we have P(T.,, = n) = 0. This extends to the endpoints
v =n—c(l—gq)and v = n+ cq, by continuity. Thus 7. 4, exists, and any such multiplier

must lie in the interior of K. O

The function g,, in the proof fails to be everywhere differentiable. Cubes that stick out
through one of the bounding faces of the positive quadrant are cut off. On the boundary
it is therefore not cubes, but rectangular subsets that are relevant. At such values of v
where the scaled simplex vS(c) just touches some cube or some boundary rectangle, the

function g, is not differentiable.

The first part of the proof makes no use of the special rounding functions r, of the
present paper. Hence the existence result carries over to general rounding functions r that

are determined by a signpost sequence s(k), as discussed in Happacher and Pukelsheim
(1996).
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4. Minimum complexity multipliers

The rounding algorithm in Dorfleitner and Klein (1999) relies on an initial multiplier
v to calculate the total ¢ = T, ,,. The first step, called the multiplier start, may leave a

nonzero discrepancy d = t —n. The second step, the discrepancy finish, needs |d| iterations

]

to work the discrepancy up or down to zero. The expected absolute discrepancy E[| D 4.n

thus measures the complexity of the algorithm. For this reason a multiplier o, 4, with
E[|Te.q,00.4., — 1] = mingso B[|Te g0 — nl] (12)

is called a minimum complexity multiplier. The following statement parallels Theorem 2.

Theorem 3 (Minimum complexity). For every accuracy n > c, there exists a mini-

mum complexity multiplier o q . All minimum complexity multipliers lie in the interval
(n— c(1 —q),n+cq>.

Proof. We need to minimize the function h(v) = E[|T; 4, — n|]. From (11) we obtain a

lower bound and an upper bound for the support of the total,
v—cq<Teqv <v+c(l—gq). (13)

For v € (0,n — ¢(1 — ¢)] this entails Tt 5, < n; here h(v) = n — E[T, 4, ] is nonincreasing.
For v € [n+ cq, 00) we get T¢ 4, > n; here h(v) = E[T, 4,] —n is nondecreasing. Hence h

is minimized in-between.

For v < n + cq we have T, ;, < n+ c and

hv) = 2:01 (n— OP(Togy =)+ > (t=n)P(Togy =1).

t=n-+1

The functions ¢;(v) = P(T,,q4,., = t) are continuous, admitting representations similar to

(10). Hence h is also continuous, and attains a minimum. O

The objective function h has value ¢/2+O(1/n) at v =n—c(1—q) and at v = n+cq,
as follows from (7). At v = n. 4., the trivial estimate |T.,, — n| < (T4, — n)* and (8)

= +o<%). (14)

yield the upper bound
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Table 3: Numerical Examples of Various Multipliers

q 0 1/4 1/2 3/4 1
[411,4,100 94.5 97.25 100 102.75 105.5
N11.4,100 94.40291 97.26260 100.04580 102.76042 105.41305
T11,4,100 94.39741 97.26310 100.05039 102.76046 105.40812
Q11,4,100 94.40068 97.26286 100.04764 102.76039 105.41106

The numerical differences between the unbiased multipliers (3)—(4) and the optimal multipliers (5)—(6)
are small, which is true beyond the special cases for ¢ = 11 and n = 100 that are shown in the table.

The Jensen inequality provides the alternative bound

c 1

—+ 0| —|. 15

2t <\/ﬁ> (15)
Therefore, up to terms of higher order, the minimum complexity lies below (14) for ¢ < 12,
and below (15) for ¢ > 12.

Table 3 conveys some impression of how the multipliers (3)—(6) compare numerically,
for ¢ = 11 categories, accuracy n = 100, and five values of g. The numbers were calculated
using the exact distribution of Happacher (1996, page 66). Figure 1 provides additional
insight for growing accuracy n = 11,...,300, in the special case ¢ = 11 and ¢ = 1/2, by

exhibiting the scaled remainder sequences

UB(n) = n(nqqm - ,UC,q,n)v
MP(n) = n(ﬁc,q,n - Naqm)» (17)
MC(n) = n(ac,q,n - Mc,q,n)-

The graphs seem to indicate that the differences between (4)—(6) and (3) stay bounded of

order 1/n. We were unable to confirm this result theoretically.

5. Asymptotic discrepancy distribution

The natural domain of definition of a rounding function is the positive half line (0, c0).
Standard rounding, however, permits an unambiguous extension to the full real line by
setting r1,2(y) = 2z if y € (2 — 1/2,2 4 1/2), for all integers z and for all y € IR. This

extension is “stationary”, in that we have rq/5(2 +y) = 2z + r1/2(y).

Lemma 5 parallels a result of Diaconis and Freedman (1979, Lemma 2). It reduces the

rounding function r, to standard rounding of appropriately shifted roundoff errors V, ,, ;.
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Figure 1: Scaled Remainder Sequences

5.0 MP(n) =n(meqn = Heqn)

4.8
MC(n) = n(acgn = tieqn)

4.6
UB(n) = n(ne,qn = He,gn)
4.4
n
11 100 200 300
For increasing accuracy n = 11,...,300, the remainder sequences (17) that are scaled by n appear to

be bounded. The graphs are for the special case of ¢ = 11 categories and standard rounding, ¢ = 1/2.

Lemma 5 (Convolutionlike representation). Let v, > 0 be an arbitrary multiplier.
Then the random variables Vg i = rq(vnW;) —vp,Wi 4+ q —1/2 take values in (—1/2,1/2),
fori=1,...,c—1, and satisfy

Dc,q,n =T1/2 (Vn — He,gmn T Zi<c ‘/q,n,z') . (18)

Proof. From v,W; =r,(vp,W;i) = Vyni+q—1/2and We=1-3%",_ W;, we get

1 1
vnWe = vy, — ZKC rq(vnWi) + ZKC Van,i—c¢ (q - 5) +q— 5

Using rq(z) = r1/2(x — ¢+ 1/2) and the stationarity of r; /o on IR, this rounds to

1
Tq(Van> - — Zi<c Tq(VnWi) + 7‘1/2 (Vn —C (q - 5) + Zi<c ‘/q,n,i) .

Collecting terms and again exploiting the stationarity of 71 /5 on IR establishes (18). O

It is tempting to conjecture that the cumulated roundoff errors ), __ Vg, behave
asymptotically like . <c Ui, where Uy, ..., U. are independent random variables with a
uniform distribution on (—1/2,1/2). For the discrepancy D, 4, however, one more degree
of freeedom is caused by the standard rounding operation in (18). To be precise, let f.
denote the density of the c-fold convolution of the uniform distribution on (—1/2,1/2), see
Johnson, Kotz and Balakrishnan (1995, Chapter 26.9).
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Table 4: Distribution of the Asymptotic Discrepancy D,

c 0 +1 +2 +3 +4
3 0.75 0.125

5 0.59896 0.19792 0.00260

7 0.51102 0.22880 0.01567 0.00002

9 0.45292 0.24078 0.03213 0.00063 0.0

11 0.41096 0.24407 0.04798 0.00245 0.00002

The probabilities are calculated from (21). For ¢ = 11 categories, symmetrization of the exact probabilities
in Table 2 yields almost precisely the present numbers; the support points £5 have probability 0.27-1079.

Theorem 6 (Asymptotic discrepancy distribution). Let q € [0,1] be arbitrary and

let (vn)n>1 be a multiplier sequence satisfying

lim (v, — plegn) = A € R. (19)

n—oo

Then we have, for every integer d,

d+1/2-X
lim P(Dy g = d) = / for () dy. (20)
n—oo d—1/2—X
Proof. It is a consequence of Lemma 3 of Diaconis and Freedman (1979) that >, Vg

converges in distribution to ), U;. Thus representation (18) and assumption (19)
yield (20),

Tim P(Degn =d) =P (ﬁ p(A+Y_ Ui) =d )

1 1
—p Uie<d———)\,d ——A) .
( i<c 2 + 2 >
Happacher (1996, page 81) provides an alternative proof based on the exact finite distri-
bution of D, 4 . O

Let D. be an integer-valued random variable with distribution

d+1/2
P(D, = d) = /d foor(y)dy = f.(d), (21)

—1/2
on the support points d = —[(¢ — 1)/2],...,|(c —1)/2]. According to (20) with A = 0,
the discrepancies D, 4, converge in distribution to D, as the accuracy n tends to infinity.
Table 4 gives the distribution of D, for ¢ = 3,5,7,9, 11 categories.
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6. Asymptotically optimal multiplier sequences

For asymptotic comparisons we may restrict attention to multiplier sequences (vy,)n>1

that satisfy the convergence condition (19).

Lemma 7 (Limiting unimodality). For every multiplier sequence (vy)n>1 that satis-
fies (19) and for every k > 0, we have

k+1/2—X

lim P(Thq, —n| < k) = / foor(y) dy
n—ro0 —k—1/2—X (22)

k+1/2
< / foor(y)dy = lim P(Togp.. . —n| < k).
—k—1/2 n—00

Proof. The two equalities result from Theorem 6. The densities f._; are symmetric and
unimodal about 0. Therefore the integral is maximized when the interval of integration is
centered at 0. This is the inequality in (22). a

The special case k = 0 shows that the multipliers from (3) are asymptotically of

maximum probability among the sequences (19),

lim P(T. 4., =n) < lim P(Teqpu.,, =n). (23)

n—oo n—oo

The multipliers in (4)—(6) are asymptotically maximum probability sequences as well.
From E[|T, ., —n|l = > 4> P (Te,q,0, —n| > k) we infer that the multipliers (3)
asymptotically also minimize the complexity,

lim E[|TC7Q7’/TL - n” Z lim EHTC:q?/J'C,q,?’L - n|]' (24)

n—oo n—oo

Again the same is true of the multipliers in (4)—(6).

Our results comprise the type of inverse problem considered by Athanasopoulos (1994,
Theorem 1.2). She fixes ¢ and k, chooses the multiplier v, = n, and then determines the
parameter ¢ € [0,1] that maximizes lim, oo P (|7¢ 4,n —n| < k). Our Theorem 6 states
that the limiting shift is A\ = ¢(¢ — 1/2). This probability is maximized when the shift

vanishes, forcing ¢ = 1/2.

In summary our results strongly advocate the multiplier p 4, from (3). It is easy
to calculate and, asymptotically, it achieves unbiasedness, maximizes the probability of a

vanishing discrepancy, and minimizes the complexity of our generic algorithm.
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Table 1. Russian Presidential Vote of 16 June 199¢

Constitutional Subject Yeltsin Zyuganov Lebed Yavlinsky  Zirinovsky  Fedorov Go
Republics [Respubliky]
Adygeya 45374:20.3 116701:52.1 31710:14.2 11977: 5.4 11494: 5.1 2245:1.0 5
Altay 27562:29.1+ 42204:44.6+ 12614:13.3 3347: 3.5 4671: 4.9 836:0.9 9
Bashkortostan 769089:34.9 941539:42.7+ 200859: 9.1 152557: 6.9 64541: 2.9 12256:0.6 174
Buryatia 134856:31.3 177293:41.2 46609:10.8 33451: 7.8 21329: 5.0 5464:1.3 25
Checheniya 239905:68.1 60119:17.1 9371: 2.7 15666: 4.4+ 5172: 1.5 3804:1.1 657
Chuvashia 132422:21.3+ 347524:56.0 49296: 7.9+ 29446: 4.7 27381: 4.4 20906:3.4 23
Dagestan 230614:29.3  511202:64.9  10799: 1.4 13753: 1.7  9041: 1.1 2208:0.3 27
Ingushetiya 37129:47.2 19653:25.0 1796: 2.3 12195:15.5 1398: 1.8 616:0.8 37
Kabardino—Balkaria 163872:44.8 139521:38.2 36685:10.0 12590: 3.4 5358: 1.5 1809:0.5 12
Karachay—Cherkessia 54 823:26.4— 117677:56.6 18624: 9.0 6527: 3.1 5286: 2.5 1014:0.5 10
Kareliya 165584:43.0 66428:17.3 47053:12.2 55768:14.5 33134: 86 3817:1.0 19
Khakassia 75801:29.7 91956:36.0 32491:12.7 18784: 7.4 25108: 9.8 3098:1.2 16
Khal’'mg Tangc 88615:59.9— 38964:26.3 8215: 5.5 3791: 2.6 5407: 3.7 633:0.4 5
Komi 202373:41.2— 81572:16.6 90830:18.5 47240: 9.6 49103:10.0 4262:0.9 29
Mari-El 93124:24.8 166131:44.2 41948:11.2— 28179: 7.5 28418: 7.6 5047:1.3 17
Mordvinia 116693:25.0 240263:51.4+ 51434:11.0 14493: 3.1 33138: 7.1 3323:0.7 14
North Ossetia 57849:19.5 187007:63.1 28795: 9.7 5390: 1.8 9703: 3.3 1705:0.6 8
Sakha (Yakutia) 228 398:53.2 90529:21.1 55551:12.9 20620: 4.8 16099: 3.8— 4647:1.1 34
Tatarstan 745181:39.4 740451:39.2 143429: 7.6 134161: 7.1 50119: 2.7 17895:0.9 157
Tyva 69971:62.5  24716:22.1  5297: 4.7  4926: 44  3529: 3.2 532:05 11
Udmurtia 271865:37.4  225074:30.9+ 85125:11.7 68215: 9.4 44243: 6.1 6802:0.9 50
Territories [Kraya]
Altay 300499:22.1 578478:42.5 267216:19.6+ 69619: 5.1 101669: 7.5 9439:0.7 63
Khabarovsk 288 585:39.4  169586:23.2 90550:12.4 77077:10.5 64007: 8.7 15991:2.2 5
Krasnodar 682602:26.6 1024603:39.9 454555:17.7 165231: 6.4 165721: 6.5—-23266:0.9 8C
Krasnoyarsk 523135:35.3 428781:28.9 208494:14.0 150527:10.1 113953: 7.7 13264:0.9 8&
Primor’ye 308747:29.9 256574:24.9 203384:19.7 74840: 7.3—133029:12.9 13094:1.3 57
Stavropol’ 302236:22.3— 603570:44.5— 265729:19.6 56353: 4.2— 84991: 6.3 10654:0.8 82
Regions [Oblasti]
Amur 127233:26.9 200186:42.4 56610:12.0 28985: 6.1 37852: 8.0 5651:1.2 23
Arkhangel’sk 288225:41.3+ 129299:18.5 121910:17.5 76136:10.9 46277: 6.6 11037:1.6 39
Astrachan’ 150190:30.0 185925:37.1 82140:16.4 30710: 6.1 36407: 7.3 4674:09 16
Belgorod 189320:23.2 383688:46.9+ 140322:17.2 47592: 5.8 35666: 4.4 4336:0.5 27
Bryansk 210257:26.6  397454:50.3 92948:11.8 27904: 3.5 40777: 5.2 4746:0.6 26
Chelyabinsk 685273:37.2 463071:25.1+ 371120:20.1+164230: 8.9 97937: 5.3 13732:0.7 89
Chita 130011:24.9 207282:39.8— 61981:11.9 29071: 5.6 68603:13.2 6688:1.3 28
Irkutsk 363648:32.7 311353:28.0 183962:16.5+100075: 9.0 95810: 8.6 22271:2.0 71
Ivanovo 204084:30.0 160105:23.5 203997:30.0— 41938: 6.2 48275: 7.1 4215:0.6 25
Kaliningrad 173769:33.8 119830:23.3 100264:19.5 66703:13.0 37412: 7.3 3189:0.6 22
Kaluga 190706:31.9— 214933:35.9 94650:15.8 45258: 7.6 31018: 5.2 5249:09 23
Kamchatka 57435:34.7 31307:18.9 23549:14.2 28935:17.5 16689:10.1 1731:1.0 8
Kemerovo 332376:23.4 561397:39.5— 220789:15.5 77099: 5.4 167925:11.8 23566:1.7 71
Kirov 272471:31.6+ 252624:29.3+ 119504:13.9 105934:12.3 75155: 8.7 7232:0.8 37
Kostroma 122971:28.4 125399:29.0— 102078:23.6— 34112: 7.9 33426: 7.7 3357:0.8 2C
Kurgan 170311:29.7 218464:38.0 64877:11.3 38479: 6.7 58143:10.1 4582:0.8 31
Kursk 177328:24.5 376880:52.1— 81555:11.3— 39641: 5.5 28666: 4.0 4280:0.6 2¢€
Leningrad 348505:37.9 215511:23.4+ 168540:18.3 107896:11.7 39882: 4.3 11038:1.2 57
Lipetsk 168077:25.5 310671:47.1 88165:13.4 37251: 5.6 35638: 5.4 4616:0.7 18
Magadan 40679:37.3— 17666:16.2 26288:24.1 6770: 6.2 12021:11.0 1570:1.4 5
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Moskva 1675374:44.8— 912684:24.4—
Murmansk 190719:41.0 56 789:12.2
Nizhniy Novgorod 657961:35.4 614467:33.0
Novgorod 148 515:36.1 98 682:24.0
Novosibirsk 371210:26.0 506791:35.5
Omsk 369782:33.3 417029:37.6
Orenburg 288865:26.4 468 689:42.8+
Oryol 109020:21.7 275643:54.9
Penza 181839:21.1 442066:51.4
Perm’ 742 968:56.1+ 216713:16.4
Pskov 121667:25.0 149056:30.7
Rostov-na-Donu 725949:29.4  873609:35.4
Ryazan’ 186477:25.0 302484:40.5
Sakhalin 87577:30.3 78935:27.3
Samara 620526:36.6— 604110:35.6
Saratov 426 533:28.8— 624996:42.1
Smolensk 141 854:22.2+ 287621:45.1
Sverdlovsk 1302951:60.1 255514:11.8
Tambov 144669:21.2 361 552:53.0
Tomsk 178 881:35.5+ 113281:22.5
Tula 311280:30.4+ 314098:30.7
Tver’ 299435:32.5 313168:33.9
Tyumen’ 238171:39.7- 166491:27.7
Ul’yanovsk 184218:24.1+ 355066:46.5+
Vladimir 270736:31.4 261808:30.3+
Volgograd 411822:28.9 576 802:40.5
Vologda 306 663:45.6 126 665:18.9
Voronezh 319402:22.9 641 540:46.0
Yaroslavl’ 260919:33.3+ 144 188:18.4+
Cities [Gorod]
Moskva 2861058:61.7+ 694862:15.0
Saint Peterburg 1137382:49.8— 342466:15.0
Autonomous Region [Avtonomnaja Oblast’]
Avt. Oblast’ of Jews 28 859:30.8 31220:33.3
Autonomous Districts [Avtonomny Okruga]
Buryat of Aginskoye 13647:45.7 10903:36.5
Buryat of Ust’-Ordynsk 21827:37.8 23604:40.9
Chukchi 20859:49.0 5808:13.6+
Evenki 3678:44.1- 1694:20.3
Khanty and Mansy 271345:53.2—= 66241:13.0
Komi-Permyak 37649:54.3 16751:24.2-
Koryaki 7270:46.8— 2367:15.2
Nentsy 9033:43.3+  3891:18.7
Taymyr’ (Dolgany and Nentsy) 9434:50.3—  2304:12.3
Yamal-Nentsy 104486:56.0— 17360: 9.3

571886:15.3 298656: 8.0
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:16.7-  533:
15.3 34138:
5.6- 2116:
16.1  1411:
122 1619:
15.1 1234
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7594: 8.1

1732: 5
2691: 4
3254: 7
597: 7
39217 7
6013: 8.
1028: 6
0

0

7

11169: 4.6

34510:0.9 174
4177:0.9 24
16620:0.9 8C
3398:0.8 24
14609:1.0 161
8693:0.8 50
10316:0.9 7C
3187:0.6 15
5775:0.7 24
12410:0.9 83
3319:0.7 2C
15082:0.6 7¢
4981:0.7 26
4030:1.4 16
16932:1.0 81
14135:1.0 54
3834:0.6 23
23103:1.1 93
5576:0.8 21
4026:0.8 3C
6196:0.6 33
6799:0.7 35
4988:0.8 32
7158:0.9 25
6980:0.8 36
19237:1.3+ 6
5894:0.9 46
10767:0.8 43
4896:0.6 33
37790:0.8 235
25410:1.1 176
1725:1.8 ¢
231:0.8 3
663:1.1 4
844:2.0 2
140:1.7
7178:1.4 29
360:0.5 ¢
208:1.3 1
465:2.2 2
292:1.6 1
2975:1.6 12
2862:1.2 16

Candidate’s Total

26 665495:35.824 211 686:32.510974 736:14.75 550 752: 7.44311479: 5.8699158:0.9386C

Counts are turned into proportions to the tenth of a percent using standard rounding. E.g. in the Republic Adygeya, th
When row percentages do not total 100.0 they leave a nonzero discrepancy D; trailing signs +, — indicate the corrective ac
of Khanty and Mansy has total percentage 100.2 and discrepancy 2; the Webster method assigns to Yeltsin 53.0%. 1



