THE LYAPUNOV SPECTRUM OF FAMILIES OF
TIME-VARYING MATRICES

FRITZ COLONIUS AND WOLFGANG KLIEMANN

ABSTRACT. For L°°-families of time varying matrices centered at an unper-
turbed matrix, the Lyapunov spectrum contains the Floquet spectrum ob-
tained by considering periodically varying piecewise constant matrices. On
the other hand, it is contained in the Morse spectrum of an associated flow
on a vector bundle. A closer analysis of the Floquet spectrum based on geo-
metric control theory in projective space and, in particular, on control sets, is
performed. Introducing a real parameter p > 0, which indicates the size of the
L°-perturbation, we study when the Floquet spectrum, the Morse spectrum,
and hence the Lyapunov spectrum all coincide. This holds, if an inner pair
condition is satisfied, for all up to at most countably many p-values.

1. INTRODUCTION

The real spectrum of a matrix A € gf(d,R)(= set of d x d matrices with real
entries) can be characterized in two different ways: Via the exponential growth
behavior of the solutions of @ = Az, i.e. via the real parts of eigenvalues, or
topologically via the chain recurrent components of the induced equation on the
projective space P4~!, i.e. via the (generalized) eigenspaces of eigenvalues with
the same real part. The characterization using exponential growth rates was gen-
eralized by A.M. Lyapunov in his 1892 thesis [Ly] to time varying matrix func-
tions A(t) by introducing the concept, which is called now ‘Lyapunov exponent’:
M (zg) = limiup 11og |(t,z0)|, where ¢(:,z0) denotes the solution of & = A(t)x

t—o0

with ©(0,z0) = 29 € R%. Lyapunov identified the so-called ‘regular matrix func-
tions’, which admit a decomposition of R? into a direct sum of subspaces, in which
the Lyapunov exponents are actually limits and independent of the time direction.
For regular matrix functions, the stability behavior under small perturbations is
characterized by the sign of the Lyapunov exponents, see e.g. [Ly|, [Ha], [Ce],
[BVGN].

For families of (time varying) matrix functions A C {A : R — ¢¢(d,R)} the char-
acterization of the entire set of Lyapunov exponents remains a problem, mainly for
two reasons: The exponents may not depend continuously on A (if A is endowed
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with some topology), and A may contain non-regular functions, for which the re-
lation of the growth rates to those of the regular elements in A is not known in
general.

Important progress can be made if one considers the time varying behavior as a
flow on the set A (compare e.g. [Mi], [Sei], and [Sel] for early ideas in this direc-
tion.) Complementary results were obtained from this point of view in particular
by Sacker/Sell, and by Oselede¢. Under the assumption that the flow on A has
an invariant probability measure p, Oselede¢ [Os| proved that with u-probability 1
the matrix functions are regular. This measure-theoretic result, in which the set of
regular functions can be topologically thin (see e.g. [Mal, p. 264), describes subsets
of the entire Lyapunov spectrum of A as regular exponents, i.e. it represents an
approximation of the entire spectrum ‘from the inside’. In contrast the topological
approach of Sacker and Sell constructs via (uniform) exponential splitting in A x R?
the dichotomy spectrum of A as those A € R for which the flow, multiplied by e,
has no exponential dichotomy, see [SaS]. The dichotomy (or ‘dynamical’) spectrum
contains the Lyapunov spectrum, and its extreme points are actually Lyapunov ex-
ponents, see [JPS]. Both results play an important role in the theory of dynamical
systems, and recently also for stochastic dynamics and nonlinear control theory.

All approaches mentioned so far start from the analysis of exponential growth
rates for a family A of time-varying matrix functions with a flow on A. According
to the situation for constant matrices, one can also try to start with a generaliza-
tion of the ‘eigenspaces’ of A, projected onto the projective space P4~1, i.e. with
topological properties of the induced flow on A x P?~1 and construct suitable
spectra over these sets. This is, for L*°-families A centered at a constant matrix
Ap € g£(d,R), the approach of this paper. We construct the Morse spectrum over
the finest Morse decomposition of the projected flow as an ‘outer approximation’
of the Lyapunov spectrum. These results, for the more general situation of linear
flows on vector bundles, appear in [CKj]. They are briefly reviewed here for our
special case in Section 3. An ‘inner approximation’ is obtained by constructing the
‘Floquet spectrum’ over the projected eigenspaces of piecewise constant, periodic
matrix functions in A, see Section 4. This is related to the action of a Lie semi-
group (the systems semi-group) on projective space. It turns out that for a point
(A,z) € AxR4\ {0} the Lyapunov exponent A\(4, z) is in the closure of the Floquet
spectrum, if the w-limit set of (A, z) on P4~! intersects the interior of the set of
projected eigenspaces of piecewise constant, periodic functions in A.

Hence the gap between these two spectra can be analyzed by ‘closing’ the chains
of the Morse sets in the interior of the sets of projected eigenspaces. To this
end, we introduce in Section 5 a real parameter p > 0, indicating the size of the
L% perturbation range. It is shown that under an inner pair condition (which is
necessary and sufficient for the existence of a suitable embedding of the Morse sets,
see [CKh]) there are at most countably many p-values for which the spectra can
differ. For all other perturbation ranges we obtain that the closure of the Floquet
spectrum, the Lyapunov spectrum, and the Morse spectrum agree.

This paper is based on a variety of results and methods from the theory of
dynamical systems and nonlinear geometric control theory. It presents a synthesis
of the ideas either developed or put into action in our previous papers [CKal, [CKc],
[CKe], [CKf], [CKg], [CKh], [CKj], which mainly originated from our efforts to
understand the spectral properties of families of time varying matrices. A number
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of applications and related problems in control theory and in stochastic dynamics
are discussed in [CKb], [CKd], [CKi] and [AKO], [AK].

2. PROBLEM FORMULATION

Consider the L°°-family of time varying d x d matrices

m

(2.1) Ao+ ui(t)Ai =: A(u(t)),

i=1
where A; € gf(d,R),j = 0...m, are given and the perturbation (u;(t))i=1..m =:
u(t) is of the form
(2.2) u €U = {u: R — U; measurable}

with U C R™ compact and convex with 0 € int U.
We are interested in a characterization of the entire Lyapunov spectrum of (2.1),
i.e. in all Lyapunov exponents

1
(2.3) AMu, x) := limsup n log |¢(t, x, u)],
t—o00
where ¢(t,z,u) solves the linear differential equation
(2.4) &= (Ao+ Y ui(t)Ai)x in R
=1

with ¢(0,z,u) = x # 0. We define the Lyapunov spectrum of (2.1) as

(2.5) Y1y = {\u,2); (u,z) €U x RY z £ 0}.
The Lyapunov exponents of (2.1) define a map
(2.6) AU xR\ {0} — R;

in fact, they are defined on a flow associated with the time varying differential
equations (2.4), which is given by
(2.7) P:RxUxRI — U x R,
CPt(uv {Z') = (etuv (p(t7 z, u))

where yu(-) := w(t + -) is the usual shift by ¢. If one endows U with the weak™*
topology of L®(R,R™) = L'(R, R™)*, then ® becomes a continuous flow, see [CK{]
for details. The flow point of view allows us to use concepts and techniques from
topological dynamics for the analysis of the Lyapunov spectrum.

The exponential growth behavior of linear differential equations (or linear flows)
can be studied via the associated (angular) system on the projective space P41
The angular component of (2.4) is

m
(2.8) §=ho(s) + Y ui(t)hi(s) = h(u, s) on P4~
=1
where hj(s) = (A; — sTA;s)s for j = 0...m. Solving the corresponding equation
for the radial component yields for the Lyapunov exponent
) ¢
(2.9) Mu,z) = limsup? /q(u(r),s(r, S0, u))dT

t—o00
0
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m
with q(u,s) = qo(s) + 3 ui(t)qi(s),q;(s) = sTA;s, and sg = f37- the projection
i=1

1=
of x € R\ {0} onto P!, Here s(7,s0,u) denotes the solution of (2.8) with
5(0,s0,u) = 8o € P71, With the family of (nonlinear) differential equations (2.8)
we associate the projected flow

(2.10) PO :RxU x Pl — ¢ x P41,
P®; (u, so) = (Gru, s(t, so, u)).

Hence the Lyapunov exponents of (2.1) are defined over P® as a map
(2.11) AU x P R,
and the Lyapunov spectrum (2.5) of (2.1) can be written as

Y1y = {Mu,2); (u,z) €U x P71

Our goal is to characterize ¥r,. This problem is difficult, mainly for two reasons:
e The map A in (2.11) need not be continuous nor semi-continuous, compare e.g.
Vinograd’s example ([Hal, p. 325).

e For all perturbation ranges U as above, the set of admissible perturbations U
contains functions u such that Ag + Xu;(t)4; is not Lyapunov regular, i.e. the
lim sup’s in (2.3) or (2.9) need not be limits and a regular basis and associated
Lyapunov spaces need not exist, compare e.g. Cesari [Ce], Hahn [Ha).

In the following sections we will use properties of the flow P® in (2.10) to char-
acterize X, for ‘almost all’ perturbation ranges. The ‘outer’ approximation uses
chain-recurrent components of P® and the associated Morse spectrum, while the
‘inner’ approximation considers eigenspaces of periodic perturbations and associ-
ated Floquet exponents. Ideas from geometric nonlinear control theory are used to
combine the two approaches yielding the main result of the paper.

3. THE MORSE SPECTRUM

In this section we present a brief review of some results from [CKj] that allow
us to approximate the Lyapunov spectrum (2.5) from the ‘outside’ by the Morse
spectrum. Compare also [Co] for some basic concepts.

For ¢,7 > 0 an (¢,T)-chain ¢ of P® is given by n € N, Tp,...,T,—1 > T,
and (ug,po)s- - (Un,Pn) in U x PA=1 with d(PO(T;, (us, pi)), (wir1, piv1)) < € for
i=0,1,...,n — 1. Here d(-,-) denotes a metric on U x P4~1 see [CKf], Lemma
2.1. Denote the chain recurrent set of P® by R, i.e. R = {(u,p) € U x P, for
all e > 0,7 > 0 there exists an (¢, T")-chain with (ug,po) = (tn,pn) = (u,p)}. The
set R has ¢ connected components &1,...,& (1 < ¢ < d), the Morse sets of P®.
Their projections E; := mp&; C P41 are the chain control sets of (2.8), see [CKg],
Theorem 4.9.

Define the finite time exponential growth rate of a chain ¢ (or ‘chain exponent’)
by

1,1

(3.1) Q) = (Z T> S (log |o(Ts, 24, )| — log [z

=0
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where |§—I| = p; € P41, The Morse spectrum of ® on &; is given by
Yaro(&j, ) ={X € R; there are ek =0, T — 0o and (¥, T%)-chains ¢*
in & with A(¢*) — X\ as k — oo};

we abbreviate this as X0(E;) and obtain the Morse spectrum of ® as

(3.2)

¢
Ynmo = U Yaro(Ej)
=1
(see [CKj], Definition 3.2).
We collect some basic facts on the Morse spectrum of @ in the following theorem.
3.1. Theorem.
(i) Forj=1...,0,Xn0(E;) is a compact interval, i.e. it has the form Xp0(E;)
= [x7(E)), w(E;)].
(i) Xry C Enmo and k*(Ej),k(Ej) are actually Lyapunov exponents for some
(lu’;vp;% (“’j?pj) S gj?? - 17 e /
‘
(iil) U x R4 = @ V; (Whitney sum),
=1
where Vj = {(u,z) € U x R% x # 0 implies (u,Pz) € E;},j=1,...,L

Proof. (i) follows from [CKj], Theorem 3.6. Assertion (ii) follows from [CKj], The-
orems 3.7 and 4.6. For assertion (iii) see [CKj], Theorem 3.1 and note that the base
space U for @ is chain recurrent by [CKf], Lemma 4.5. O

The following example shows that the intervals of the Morse spectrum need not
be disjoint.

3.2. Example. Consider the following family of 2 x 2 matrices

S G o R G IO

with U = [-1,1] x [=%, ] x [=%, §]- The chain control scts of the projected system
on P! in R? are given by

B = mp{(g) €R% 2y — a0 € [—\/ﬁ,—l/x/i] } :
S P P

where mp denotes the projection of R? onto P!. The Lyapunov exponents of the
family (3.3) for constant u € U (i.e. the real parts of the eigenvalues) form two
intervals I; = [—1,3] and Iy = [£,3], i.e. I; C Spo(Ej),j = 1,2. Hence [4,3] =
L NI, C EMo(El) n EMO(EQ).

(In fact, more is true in this 2-dimensional situation with two different chain
control sets: By [Jo], Theorem 4.1 it follows that all possible Lyapunov exponents
are contained in the intervals of real parts of eigenvalues. Hence we have I) U Iy =
ELy = E]\jo here.)

W =

3.3. Remark. Since the chain control sets Ej;,j = 1,...,¢, are projections of the
Morse sets of the flow P®, they can be ordered according to the order of Morse
sets, see [Co]. Note that in our context the flow # on U is chain recurrent, hence
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we obtain from Corollary 4.10 in [CKj]: If E; < Ej, then x*(E;) < £*(Ej), and
k(E;) < k(Ej). Therefore, the minimum and the maximum of the intervals of the
Morse spectrum are separated.

4. THE FLOQUET SPECTRUM

An ‘inner’ approximation of the Lyapunov spectrum of the family (2.1) can be
obtained by considering the Floquet exponents of the periodic matrix functions
in (2.1). A priori it is not clear that this part of the Lyapunov spectrum forms
intervals. Therefore, we impose a nondegeneracy condition that allows us to use
geometric control theory for the proof of certain properties of the Floquet spectrum.

Throughout this section we assume

(H) dim LA{h(u,-);u € U}(p) =d — 1 for all p € P71,

Here h(u,-) denotes the vector field of the projected system on P4~! as in (2.8) for
constant u € U, LA denotes the Lie algebra generated by these vector fields, and
dim LA(p) is the dimension of the distribution generated by LA in the tangent
space TP~ of P?~1 at the point p € P?~1. The assumption (H) is equivalent to
the requirement that the system (2.8), interpreted as a (analytic) control system
on P4=1 s locally accessible, see e.g. [Is].

We consider piecewise constant, periodic matrix functions of (2.1). Their funda-
mental matrices form the systems group G and semigroup S, defined as

G :={exp(t,B,) " exp(t1B1);t; € R, B; = A(uy)
for some u; € U,j =1...n,n € N},

S :={exp(t,By) - exp(t1B1);t; > 0, B; = A(uy)
for some u; € U,j =1...n,n € N}.

(4.1)

Note that G is a Lie group acting naturally on R%\ {0} and on P4~'. For ¢t > 0

denote by S<; the subset of S with ) ¢; < ¢, then Assumption (H) implies that
j=1

the interior int S<¢ of S<; in G is non-empty. For g € G¢(d,R) let spec g be the

spectrum of g, and E()) the (generalized) eigenspace of A € spec g. We introduce

the notation

V = {E(\); X € spec g,g € int S} C R?, and
PV = {PE(A); X € spec g,g € int S} € P71,
where, for a set A C R, PA is the projection of A\ {0} onto P?~!. Recall that a
main control set D for the system (2.8) is a maximal subset of P4~! with nonvoid

interior such that D C ¢/(S.s) for all s € D.
The following result was proved in [CKg], Theorem 3.10.

4.1. Theorem. Let assumption (H) be satisfied.

(i) The connected components of PV are the interiors of the main control sets
Dy...Dg of (2.8) and 1 < k <d.
(ii) The main control sets are linearly ordered by

D; < Dj if there exist x; € Dy, x5 € Dj,t >0, and gc S with gr; = x;.

We enumerate the control sets such that Dy < Dy < --- < Dy.
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(i) For every g € int S<¢ and every main control D there exists y € spec g
with PE(u) C intD. Furthermore, if u, ' € spec g with Rey < Rep/, and
PE(u) CintD, PE(y') C intD’, then D < D'.

(iv) If for g € S and p € spec g one has PE(u) C intD for some main control set
D, then g € int S<; for some t > 0.

4.2. Remark. Using the classification of transitive Lie groups on projective space
and the theory of control sets for semigroups in semisimple Lie groups (cp. [SMT]),
Barros and San Martin [BSM] were able, in certain cases, to give sharper estimates
on the number of main control sets.

Theorem 4.1 suggests the following definition.
4.3. Definition. Let D be a main control set of (2.8). The Floquet spectrum of
the family (2.1) over D is defined as
(4.2)  Zp(D) ={A(u,p); (u,p) €U x intD,u is piecewise constant, periodic
with period 7 such that s(7,p,u) = p},
where s(-, p,u) denotes again the solution of (2.8) with s(0,p,u) = p. The Floquet

k
spectrum of the family (2.1) is ¥p; = |J Zpi(D;).
=1

7
4.4. Remark.
(i) Note that (u(:),s(-,p,u)) T-periodic with p € intD implies that s(t,p,u) €
intD for all t € R.
(ii) According to Theorem 4.1 the periodic spectrum over a main control set D
can be written as

Er(D) ={X € R; there exists g € int S<; and p € spec g such that

1
PE(u) CintD and A= ——log ,
(1) ) pl}
where 7(g) = Y. t; for g = exp(tnBn) - -+ - - exp(t1B1). This means that

Jj=1
Y (D) is defined through those Floquet exponents of the g € int S whose
projected (generalized) eigenspaces are contained in ¢nt D. In particular, for
each g € int S there exists p € int D such that A(ug,p) € Xpyi(D), where
ug € U is a periodic perturbation with fundamental matrix g.

(iii) The main control sets D C P?~! uniquely correspond to the topologically
transitive components D of the associated flow P® on U x P4~ with int mpD #
¢ via

D = cl{(u,p) €U x P41 p(t.p,u) €int D for all te R}

(see [CK{], Theorem 3.9). Hence the Floquet spectrum is defined via topo-
logically transitive components of the flow ®, while the Morse spectrum is
defined via the chain recurrent components.

4.5. Theorem. Let (H) be satisfied. Consider the main control sets D1,..., Dy, of
the system (2.8) in P21,
(i) For eachi€ {1,...,k},clEp(D;) is a bounded interval.
(ii) If D; < Dj, then Zpi(D;) < Zpi(Dy) in the sense that inf Xpy(D;) <
inf ¥i(D;) and sup Epi(D;) < sup Xpi(Dj).



4396 FRITZ COLONIUS AND WOLFGANG KLIEMANN

(ili) supXpi(Dy) =supXp =max Xy, and inf Xpy(D1) = inf Xy = min X,
Proof.

(i) Abbreviate D = D; and let j = 1,2, \; € (D) with corresponding points
(uj,p;) € U x int D, periods 7; > 0 and fundamental matrices g;(7;). Since
{s(t,pj,u;);t € R} are compact subsets of the interior of the control set D,
there exist T'> 0 and v; € U, piecewise constant, with s(t1,p1,v1) = p2 and
s(ta, p2,v2) = p1 for some t1,to < T. For m,n € N define a control «™™ via
concatenation on the time interval [0, " "] with ™" = m7y + {1 + nre + 12 as

wm" =

n—times m—times

and on R as the t""™-periodic continuation. Assume without loss of gener-
ality that A1 < X2, and choose A € [A,A2] and € > 0. Then there exist
m, 7 € N such that s(-, p1,u™7") is t™"-periodic with |A — A(u™7", p1)| < «.
Note that by assumption (H) the controls v; can be chosen in such a way
that the corresponding fundamental matrices satisfy gy, (t;) € int S<y, for
¢ = 1,2. Hence the fundamental matrix g 5 corresponding to u™ ™ satisfies
G, (t™") € int S<ym.a and thus (D) is dense in [A1, Ag.

(ii) The inequalities follow directly from the construction of the main control sets
in the proof of Theorem 3.10 (ii) in [CKg].

(iii) The fact that sup ¥y, and inf ¥z, are actually Lyapunov exponents follows
from Theorem 3.1. From part (ii) we know that sup Xp; = sup Xp(Dg)
and inf Xp; = inf Xpy(Dq). The supremum and the infimum of the Floquet
spectrum can be characterized as the extremal exponential growth rates of the
spectral radius and the spectral coradius: Define for g € G¢(d,R), r(g) =
max{|u|; p € spec g} and cor(g) = min{|ul|}; u € spec g}. By Theorem 4.1 in
[CKe] we have that

1 1
sup Xy = limsup = sup logr(g) and inf ¥ = limsup = inf log cor(g)
t—00 geS, t—o0 gES,L
and the right-hand sides of the above equalities are the extremal Lyapunov
exponents. This yields the result. O

4.6. Remark. Part (i) of Theorem 4.5 can be strengthened in the following way:
for a main control set D define its multiplicity as (compare Remark 3.16 in [CKg])
m(D) = #{\ € R; ) is an eigenvalue of g, with PE(\) C int D},
where g € int S<¢,t > 0.
This is well defined since this number does not depend on g € |J int S<;. Then
t>0
¢l Y p1(D) coincides with ¥ pi(D), except for maybe at most m(D) + 1 points.

For a proof note that if \; € ¥p;(D) with fundamental matrices g; € int S<¢,,i =
1,2, then there exists a continuous path g : [0,t1 +t2] — int S<¢, 44, With g(0) = ¢1
and g(t1 + t2) = g2, compare Proposition 2.1 (iv) in [CKg]. Along this path the
eigenvalues vary continuously and the projections of the corresponding eigenspaces
are contained in the appropriate main control sets. Hence there are at most m(D)—1
points in int(clX g (D)) that are not in the Floquet spectrum over D. Furthermore,

the two endpoints of ¢fX. p;(D) need not be contained in X (D), compare Example
4.7(i). O
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4.7. Remarks and Examples.

(i) The Floquet spectral interval Xp;(D) is, in general, not closed, because it
is defined over the interior of D. Example 3.2 illustrates this point: the
control sets for this example are given by Dy = int Ey and Dy = E5. The
corresponding intervals of the Floquet spectrum are X g (D) = (—1, %) and
Sri(D2) = (1,3), they consist of the (real) eigenvalues corresponding to
eigendirections in ¢nt Dy and int Ds.

(ii) The same Example 3.2 shows that different intervals of the periodic spectrum
can overlap.

(iil) The spectrum of the constant matrices of the family (2.1) may be strictly
contained in the Floquet spectrum; consider the linear oscillator with per-

turbation in the restoring force
J+2by+ (1 +ut)y=0

where u(t) € [—1,1]. Setting (z1,z2) = (y,y) we can write

(4.3) &= {(_(1) _21b> + u(t) <_(1) 8) } r in R%

For b* < v/2 the projected system on P! has a unique main control set D = P,
compare e.g. [CKe], Section 6. For b = %, the spectrum of the constant
matrices of (4.3) is the interval [—3,0]. On the other hand, by Theorem 4.5,
the Floquet spectrum consists of one interval ¥ p;, and by Theorem 4.5 (iii)
we have that ¢/Xp; = cfXr,. The results in Section 6 of [CKe] show that
inf ¥y < —% and sup ¥, > 0, hence [—%,O] g Y. In fact, there exists a
critical value by ~ 0.405 such that for all b with b> < b2 the constant spectrum
is strictly contained in the Floquet spectrum, while for all b with 5% > b the

two spectra coincide.

4.8. Corollary. Assume that we are given a family of matrices (2.1) such that (H)
holds and that the system (2.8) has exactly one main control set D C P~1. Then

CZEFI = ELy = ZMO
up to at most d — 1 points in the interior of this interval.

Proof. 1f D C P%~! is the only main control set of the system (2.8), then D = P41
and hence P4~ is the unique chain control set. Therefore ¢ x P4~1 is the chain
recurrent set of the projected flow (2.10). Thus the Floquet spectrum and the
Morse spectrum each consist of one interval, and we have Xp; C Xz, C .
By Theorem 3.1(ii) we know that max ¥y, = maxXr,, and by Theorem 4.5(iii)
it holds that max¥r, = sup ¥ ;. Analogous equalities are true for the minimal
exponents. This, together with Remark 4.6 proves the result. O

Corollary 4.8 shows that for systems with unique main control set the Lyapunov
spectrum is nothing but the Floquet spectrum together with the endpoints of the
Floquet spectral interval, and at the same time this set coincides with the interval of
the Morse spectrum. As the following example shows, the intervals of the periodic
spectrum and of the Morse spectrum need not be the same, if more than one main
control set exists.
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4.9. Example. Consider the family of matrices

(4.4) (; g) + us (t) (2 (1)> + ua(t) <8 (D

with U = [-1, 4] x [-1, 3]. Parametrize the projective space P! via the angle ¢
as P! = {6; -5 < 0 < %}, then the two main control sets are given in terms of 6
as Dy = (—%,0) Dy = [% Z]. The unique chain control set is E = P!, compare
Example 5.8 in [CKg]. We compute the intervals of the Floquet bpectlum as
1
Epi(Dy) = (5, 1) ; Epi(D2) = (1’ 3t 5\@)

from the eigenvalues of the constant matrices in (4.4) as before.
Hence by Theorem 3.1 there is exactly one interval of the Morse spectrum and

Sao =YLy = (3,5 +3V2].
For families of 2 x 2 matrices the situations in Remark 4.7, Corollary 4.8 and
Example 4.9 are the only ones possible.

4.10. Corollary. Let d = 2 and assume (H). Then c¢f Yp; = Y1y = Sp0. More
precisely, we have the following three possibilities.
(i) The projected system (2.8) has two main control sets D1 < Do and two chain
control sets By = ¢l D1, Ey = Do, then
2 2
ol S = J et Sm(Di) = Sy = | Sumol(E)),
i=1 j=1
and the entire spectrum consists of real eigenvalues of constant matrices.
(ii) The projected system has two main control sets Dy < Ds, but one chain
control set E = P!, then
2
clSp = etSri(Di) = S1y = Suo
=1
again, the entire spectrum consists of real eigenvalues of constant matrices.
(iii) The projected system has one main control set D = P', hence the chain control
set is E =P, then

CEEFZ(D) = ELy = EMo»
and the spectrum of constant matrices may be contained strictly in Xr,,.

Proof. Tt follows from [CKg], Theorem 5.6 that the cases (i)-(iii) are the only ones
possible.

(i) In this case we know from [Jo], Theorem 4.1 that c/Xp; = U A (D;) =

Y1y and Xy, consists of real eigenvalues of constant matrlces By Theorem
3.1 we have that X1, C X, and that sup Xy, and inf ¥/, are actually
Lyapunov exponents. Hence the result.

(ii) If there are two main control sets D1 < Da, but only one chain control set E
(which then necessarily equals P!), then either c/D; N Dy # ¢ or there exists a
constant matrix A(u),u € U in the family (2.1) with a double real eigenvalue
X such that PE(X) = P'. In both cases we have c/Sp;(Dy) N clSp(Dy) #
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2
¢. Again we have Xp, = |J /X pi(D;), which in this case is one interval

consisting of real eigenvalueZs éf constant matrices. Hence ¥, = ¥, again
by Theorem 3.1.

(iii) This follows directly from Theorems 3.1 and 4.5, since Xp; and X, are
intervals with the same boundary points. Example 4.7 (iii) shows that the
constant spectrum may be strictly contained in the Lyapunov spectrum. [O

The situation in the 2-dimensional case is simple, because the control sets of (2.8)
on the one-dimensional space P! are given by the eigendirections of the constant
matrices in a given family, compare also [CKc] for a general discussion of control
sets in one dimensional spaces. For d > 3 this need not be true, and we have
to analyze which Lyapunov exponents A(u,z) can be represented in the periodic
spectrum. For this we have to consider the limit sets of trajectories of (2.8): for
(u,p) € U x P~ define the w-limit set by

(4.5) w(u,p) ={(v,q) €U x P?~1; there exists a sequence t, — oo such
that klim P®(ty,u,p) = (v,q)} CU x P71
—00

and mpw(u, p) C P41 is its projection onto P41,

The following result is the starting point of the discussion in the next section,
where we analyze the connections between the Floquet and the Morse spectrum via
‘closing of chains’.

4.11. Theorem. Assume (H) and let D C P2~ be a main control set of (2.8).
Consider a point (u,p) € U x P! such that mpw(u,p) C D, and there is tg > 0
with s(to,p,u) € int D.

Then A(u,p) € cfE (D).

Proof. We proceed in two steps. First we show that A(u,p) for points (u,p) as
in the formulation of the theorem can be approximated by Lyapunov exponents of
periodic u € U with periodic trajectory in int D. Then we show that the exponents
of arbitrary periodic u € U with periodic trajectory in int D are in the closure of
the Floquet spectrum over D.

(a) Let (u,p) € U x P41 be a point with mpw(u,p) C D and s(tg,p,u) € int D.
Hence, without loss of generality, we may assume that p € int D. Let K C D
be a compact set such that

mpw(u,p) Nint D Cint K and 7wpw(u,p) N (D \int D) C intp\n pK.

Such a set K exists because D\ intD is open in D, and mpw(u, p) is compact.
For € P41 and t > 0 let (9;(36) = {y € P41, there are 0 < 7 < t and
u € U with y = s(r,z,u)}.

Define 7 := inf{t > 0;p € O;t(aj) for all x € K}. By Proposition 2.3 in
[CKa] we know that 7 < oo.
Fix € > 0 and let {t,,,n € N} be a sequence with ¢, — oo and A(u,p) =

n—00

tn
lim % J q(u(o)s(o))do, compare (2.8). Pick n; € N such that
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T

lq(u,p)| < =
max u -
tn, + T Uxpi-t 9t p 2’

and no € N such that

Lo
1 €
— — for all n > no.
T /q(u(a),s(a))da AMu,p)| < 5 forall n>mny
0

Let N = max{ni,na}, and choose a control v : [0,T] — U with T" < 7 and
s(T, s(tn,p,u),v) = p. Define a new control w via concatenation on [0, ty+7]
as w = v o u, and continue ¢y + T-periodically. We have

(A, p) = Aw,p)| < e

and since s(ty,p,u) € intD, the first claim follows.

(b) Let (u,p) € U x P~ be a periodic point of the flow ® with period 7' > 0,
and assume that s(t,p,u) € intD for all t € R. Let K C intD be a compact
set with s(¢,p,u) € intK for all t € R. Define again the first hitting time 7
as above, and choose € > 0. Since (u,p) is a T-periodic point of ®, we have

T
Au,p) = = ({q(u,s)dr. Choose N € N such that w7 ax lq(u, p)| < 5.

On the compact time interval [0, NT] we find a piecewise constant control v

such that
NT NT 1
[ atue).strpwydr — [ ao(r),s(rip,0)dr| < 3NT
0 0

and s(NT,p,v) € K. Since K C intD there exists a control w : [0,0] —
U, piecewise constant, with ¢ < 7 and s(o,s(NT,p,v),w) = p. Now the
concatenation w o ulj n7) solves the problem. O

According to Theorem 4.11 the difference between the Morse and the Floquet
spectrum can be made up of those chains whose limit is contained in chain control
sets, but not in the interior of control sets. To close this gap, we have to be able
to ‘close chains’, i.e. to find trajectories of the system (2.8) in the interior of some
control set with Lyapunov exponents close to the chain exponent. This will be
accomplished in the next section by embedding the system (2.8) into a family of
systems with varying perturbation range.

4.12. Remark. It has been shown above in Corollary 4.10 (ii) and Example 4.9 that
the decomposition of the Lyapunov spectrum ¥, into the closures of the intervals of
the Floquet spectrum may be finer than the Morse spectrum. However, there need
not be a (constant dimensional) subbundle decomposition of U x R? corresponding
to the intervals of the Floquet spectrum that respects the (generalized) eigenspaces
of even the constant matrices in the family (2.1). Example 4.9 illustrates this
point: For u; = —%, Uy = —% the resulting matrix (1) ? has a double real
eigenvalue A = 1 with eigenspace E(\) = R2. Its projection PE()\) intersects
int D1 and int Dy. On the other hand, chain control sets always lead to subbundle
decompositions of U x R via the chain recurrent components PE; of P®, compare
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Theorem 3.1(iii). Therefore, it is natural to base the decomposition of ¥, on the
intervals of the Morse spectrum, which will be our point of view in the next section.

5. THE LYAPUNOV SPECTRUM

In order to express the exponents in the Morse spectrum as actual Lyapunov
exponents, we need to be able to approximate the corresponding chains by trajec-
tories of the projected system (2.8) in such a way that the Lyapunov exponents
approximate the chain exponents. Theorem 4.11 shows that approximation of the
growth rates is possible for trajectories whose w-limits set intersects the interior of
some control set. Furthermore, mpw(u,p) C int D for some control set D if and
only if w(u,p) consists of ‘inner pairs’, compare Theorem 4.4 in [CKh]. Hence the
inner pair condition guarantees that chains can be closed. (For a set up, in which
the closing of chains follows from Bowen’s Shadowing Lemma, see [CKj], Section
6.

The natural way to formulate an inner pair condition in the present context
is by embedding the set of matrices (2.1) into a family of systems with varying
control range. This guarantees that we can obtain the desired characterization of
the Lyapunov spectrum for almost all perturbation ranges.

For U C R™ compact and convex with 0 € int U denote

(5.1) UPi=p-U={p-u;ucU} for p>0.

To complete the picture we also consider the case of unbounded perturbations. Let

U* = Y U* = L*®°(R,R™) and denote the corresponding perturbed system by
p>0

(2.1%).

All quantities defined in Sections 2-4 will be written with a superscript p to
indicate their dependence on the control range U” for 0 < p < co. Note that for
p =0 we obtain the unperturbed matrix Ag.

We continue to assume the nondegeneracy condition (H) in the form

(HP) dim LA{h(-,u);u € UPY(p) =d —1 for all pe P all p>o0.

Since 0 € int U, we have that if (H?) holds for some p > 0, then it holds for all
p > 0. According to the results of Section 3 we need the inner pair condition for
all (u,p) € U x P with w(u,p) C &; for some j = 1...¢. But every w-limit set is
contained in one of the chain recurrent components of the flow P®. Hence we will
assume from now on for the family of systems (2.17), p > 0 the following p — p’
inner pair condition.

Forall 0 < p < p' and all (u,p) € UP x P4~! there exist T >0

@ .
and S > 0 such that s(T',p,u) € int (’)g}'+s(p),

where s(-,p,u) denotes again the solution of (2.8) and OQ’I;JFS(p) = {q € P; there
is v € UP" with s(t,p,v) = q for some 0 <t < T + S}.

We first study the behavior of main and chain control sets of the family of systems
(2.87) under the p — p’ inner pair condition (I). Let Ay, ..., Agx be the different real
parts of eigenvalues of the unperturbed matrix Ao, and let E(\;),i =1,...,k <d
the corresponding (sums of generalized) eigenspaces. The sets PE()\;) C P?~! are
the Morse sets (i.e. the components of the chain recurrent set) of the projected
flow of & = Agz on P41,
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Let C(P9~1) denote the set of compact subsets of P4~! with the Hausdorff metric,
and consider for ¢ = 1, ..., k the following maps:

(5.2) D; 1 [0,00] — C(PY),  prsctD?
with DY = PE()\;) and PE()\;) C int D!,

(5.3) E;:[0,00] — C(P¥Y), prs EF
with E? = PE()\;) and PE()\;) C EY.
Furthermore, let
(5.4) k() : [0,00] — {1,...k} denote for p >0 the number of (different)
main control sets and set k(0) := k.

The following lemma shows in particular, that under assumption (I) the maps
(5.2) and (5.3) are well defined.

5.1. Lemma.

(i) For alli =1,...,k and all 0 < p < oo there are unique main control sets
D;(p) and chain control sets E;(p) satisfying the conditions in (5.2) and (5.3),
respectively.

(ii) Foralli=1,....,k and all0 < p < p' < o0

(5.5) Di(p) C Ei(p) C int Dy(p').
Proof.

(i) The assertion for the chain control sets is obvious (naturally, some of the
E;(p) may coincide). Using (I) with p = 0, one finds by Theorem 4.4 in
[CKh] unique main control sets D? /, p' > 0, satisfying the conditions in (5.2).

(ii) By Theorem 5.5 in [CKg] we know that each chain control set contains a main
control set, i.e. the first inclusion follows. Applying (I) and again Theorem
4.4 in [CKh] implies the second inclusion. O

The following theorem characterizes the relations between the main control sets
and the chain control sets.

5.2. Theorem. Assume (H?) and the p — p' inner pair condition (I). For i =
1,...,k, the maps D;(p) and E;(p), 0 < p < oo, defined in (5.2) and (5.3), respec-
tively, have the following properties.
(1) Di(p) and E;(p) are strictly increasing in p.
(ii) D;(p) is left continuous and E;(p) is right continuous in p.
(iii) There exist at most finitely many values p} < -+ < p?@) such that the maps
D;(p) and E;(p) are discontinuous at p = pl*, n=1,...,n(i).
(iv) For each p # pl', n=1,...,n(i), we have ctD;(p) = E;(p), while for p = p?
there are at least two main control sets D, and D}, with D{ U D! C Ef.
(v) The map k() defined in (5.4) is decreasing with jumps exactly at those p for
which there existi andn with p = pl*. In particular, n(i) < k—k(co) and there
exist po > 0 and ps < 00 such that k(p) = k for p € [0, po] and k(p) = k(o0)

Jor p € [poo, o).
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Proof.

(i) This follows from (5.5), since chain control sets are closed.

(ii) Right continuity of chain control sets was proved in Theorem 5.1 of [CKh].
Left continuity of the main control sets follows from standard compactness argu-
ments and continuous dependence of the solutions of differential equations on the
right hand side:

Fix i € {1,...k} and abbreviate D(p) := D;(p). We will show: if K C int D(p)
is a compact set with d(K,clD(p)) < 2, then there exists § > 0 such that K C
int D(p) for all p— 6 < p < p. This will imply left continuity, since c/D(p) =
¢l int D(p) by (H).

Fix x € K and consider a piecewise constant u € U? and T > 0 with u(t) =
ut e UP fort € [to+ -+ +ti_1,t0+ - +1t), i = 1...n, where > t; = T and

i=1
to = 0, t; > 0. By (H”) we may choose T" > 0 arbitrarily small, and u € UP

such that the map v : R® — P! (1y,...,7,) = s (Z Ti,w,u7> has rank d — 1
i=1

at 7 = (11,...,7n) = (t1,...,tn); here u” is the control that coincides on [rp +
ceo+ 11,71 + -+ 7;) with v*. Choose T" > 0 small enough such that y =
s(T,z,u) € int DP. The Implicit Function Theorem, applied to the map (0,00) x

n
R™ — P4t (p, 71, ...y Tn) = 8 <Z T, T, %u" yields the existence of 69 = §p(z) >
i=1

0 and of a neighborhood Ny(y) with No(y) C OP*(z) for all p > p — &. Since
we have x € int D(p), there are up € UP and S > 0 such that s(S,y,us) = .
By continuous dependence of the solutions of differential equations on parameters,
one finds a § with 0 < § < &9 and a neighborhood N(y) C Ny(y) such that for
all p > p — 6 there exists y? € N(y) with s(S,y?, %uz) = z. Hence y is contained
in a control set D(p) for all p > p — 6. Again by (H?),int O*~(z) N N(y) # ¢,
where OP~(z) = {2 € P47, there are t > 0 and u € UP with = = s(t,y,u)}. Hence
x € int D(p). Now compactness of K implies that 6§ can be chosen independently
ofz € K.

(iii) From part (ii) and (5.4) we obtain that D;(p) and E;(p) are continuous at
p iff ¢¢D;(p) = E;(p). We show that inequality holds for at most k& — 1 points. For
a main control set D; and a control ug € U corresponding to g € S set

Di(ug) = {p € PV s(t,p,uy) € clD; for all t € R}
and recall that the chain control sets F; C P4~ can be lifted to U x R? (cf. Theorem
3.1) via
V; = {(u,z) €U x RY; s(t,Pz,u) € E; for all t € R}.
Then Theorem 5.6 in [CKg] implies that
V; = cl{(ug,z) €U x R% g € int S<; for some t > 0 and Pz € @Di(ug)

k3

where the sum is taken over all ¢ with D; C E;}.

Therefore, c/D;(p) = E;(p) iff there exists a unique main control set D(p) C E;(p).
In order to estimate the number of jumps, define the multiplicity of a chain
control set E; corresponding (via Theorem 3.1) to a subbundle V; C U x R4™! as
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m(E;) = dimV;(u) for some u € U.

This number does not depend on v € U. Recall the definition of the multiplicity
m(D) of main control sets D in Remark 4.6 and note that for g € int S<; the
eigenspaces in different main control sets are linearly independent. Therefore we
have: if ¢fD;(p) # E;(p), then m((D;(p)) + 1 < m(E;(p)), and hence m((D;(p)) <
m(D;(p")) for p < p'.
k
Furthermore, Y m(D;(p)) = d for all p > 0. Thus the functions D;(p) and
i=1
Ei(p),i=1,...,k, have at most k — k(co) discontinuities.

(iv),(v) It only remains to prove the existence of ps < 0o with the indicated
property, i.e. k(p) cannot jump at p = co. This is seen by a contradiction argument
using finite time controllability in int D;(c0),i = 1,...,k(c0), with L°°-
controls. O

Theorem 5.2 characterizes the dependence of the main and the chain control
sets of the family of systems (2.8”) on the size of the perturbation range. Examples
4.7(iii) and 4.9 show that jumps in the functions D;(p), E;(p), and k(p) can actually
occur. On the other hand, k(co) need not be 1 and the number of main and chain
control sets can be different for the unbounded perturbation range U = R™.

5.3. Example. Consider the matrices

(5.6) (g (1]>+u1(t) <8 ?)

with UP = [—p, p],p > 0. The projected system has two main control sets for all
p > 0, namely

o d (1) € B2y = r_ ﬁe_\/ ©
Dl—ﬁp{(xQ)ER,l'Q—al'],aG( 5 \/2—1—4,2 2+4 s

2 2|
DSZWP{<11) €R*wy = fr1, 5 € —g+\/2+%,g+\/2+%

xr2
For U® = R there are two main control sets, but one chain control set P'. The
corresponding spectral intervals are for p € [0,00)

00~ (- gy %)
iop= (G g g

4
Saio(EY) = clSpi (DY), Laio(ES) = el pi(D5).

For p = 0o we have one interval of the Morse spectrum X, = R = U Al pi1(DY°).
i=1
For the characterization of systems with unbounded perturbation range, but

bounded Lyapunov spectrum see [CKe].

From the characterization of main and chain control sets in Theorem 5.2 we
obtain the following result for the corresponding spectral intervals.
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5.4. Theorem. Assume (H?) and (I).

(i) For eachi=1,...,k the maps p — clSp(D?) are lower semicontinuous and
increasing, hence left continuous.
(i) For eachi=1,...,k, the maps p — Xpo(EY) are upper semicontinuous and

increasing, hence right continuous.
(iii) The maps

p = inf X (DY) = min Xaro(EY) and
p — sup Xpi(Df) = max X0 (EY)

are continuous. ,
(iv) Forp' >p>0andi=1,...,k we have L p; (DY) C Tpo(EY) C kX (DY).

Proof.

(i) Monotonicity is obvious from the definitions. Lower semicontinuity can be
seen as follows. Denote k;(p) = sup (DY), p > 0. Fix £ > 0. Then there

exist for each p/ > 0 a time ¢ > 0 and a fundamental matrix ¢’ € int Sgt,

(denoting the systems semigroup for (2.1¢')) such that there is \' € spec ¢’
with

1 /
ri(p) < P10g|/\’| +e and PE(N)CintD!.

Since |J S<; is path connected and since the eigenvalues depend continuously
t>0
on the entries of the matrix, there is § > 0 such that there exist t > 0 and

g € intSL, for p = p' — & with an eigenvalue A € spec g and %10g|)\| >
L log |N'|—e. Furthermore, by Theorem 5.2(ii) we may choose § small enough
such that PE(X) C intD!. Hence k;(p) > k;(p’) — 2¢. By monotonicity this
holds for all p > p' — 6.

Lower semicontinuity of inf ¥ (DY) is proved in the same way.

(ii) Monotonicity is again obvious, and upper semicontinuity follows from Theo-
rem 3.11 of [CKj].

(iii) This follows from (i) and (ii) above and Theorem 4.5(iii).

(iv) By Theorem 3.1(ii) max Xz, (E?) is attained in a Lyapunov exponent A(u, p)
with (u,p) € &7, hence mpw(u,p) C Ef C z'nth/ by (5.4). Thus, by Theorem
4.11, we have that A(u,p) € CEZFI(Df,). The same argument works for
min ¥ys,(E?), and the assertion follows.

O

5.5. Remark. Assertion (iii) can also be proved in a different way. By Theorem 4.5
(iii) the supremal Lyapunov exponent (p) satisfies x(p) = sup X7, = sup X (Dy),
thus it is the supremum over eigenvalues of all periodic matrix functions. Hence
it coincides with the supremal Bohl exponent which describes uniform exponential
growth behavior, cf. e.g. [DK], Chapter III. But upper semicontinuity of extremal
Bohl exponents is a classical result, see e.g. [DK], Theorem II11.4.6.

The following corollary shows in particular, that up to a ‘thin’ set of p-values
the Floquet spectrum determines the Lyapunov spectrum.
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5.6. Corollary. Assume (H?) and the p — p' inner pair condition (I). Then for
each i = 1,...,k, the sets of continuity points of the two maps p — (DY) and
p = Yaro(EY) agree. At each continuity point we have clXpi(DY) = Yo (EY), in

particular, if p is a continuity point for alli=1,...,k, then
k k
Uetrm(Df) =4, = | Sao(EL) = 34,
i=1 i=1

Note that there are at most countably many points of discontinuity.

Proof. Let py be a continuity point of c/Sp(D!) = [k} (p), ki(p)]. We have to show
left continuity of p — Zpo(EF) at p = p1: For e > 0 let § > 0 be such that
ki(p1) — e < Ri(p) < Ki(p1) for all p € [p1 — 6, p1]. Then, by Theorem 5.4 (iv),
ki(p1) —e < max Xpo(Ef) < ki(p1) for all p € (p1 — 6, p1). By assumption X g (DY)
is right continuous at p = p;. This implies that max Xy (E™) < k;i(p1). Similar
arguments hold for £} (p) and hence the assertion follows.

If p1 > 0 is a continuity point of Ypo(E}), then max Xy, (E]") < ri(p1) and
the proof follows from the fact that clX (DY) C Xaro(EYF) for all p > 0.

These arguments show at the same time that at continuity points of the spectral
intervals we have c/> (DY) = Xar0(EY).

Finally, the monotonicity of the considered maps implies that there are at most
countably many points of discontinuity. O

5.7. Remark. While the intervals of the Lyapunov spectrum can overlap (see Re-
mark 4.7 (ii)), we have at the continuity points of the spectrum that the minima
(and the maxima) of the spectral intervals are strictly separated, compare Remark
3.3.

5.8. Remark. In the two dimensional case d = 2, we know from Corollary 4.10 that
cAlEpi(p) = Zry(p) = Lamo(p) for all p > 0. From the results above we obtain
for the continuity of the spectral intervals: Let I C [0,00) be an interval with
DP =P! for all p € I, then $p,(p) = clSpe(DP) is continuous in p for p € I. This
follows directly from Corollary 4.10 (iii) and Theorem 5.4 (iii). If, on the other
hand, I C [0,00) is an interval with two distinct chain control sets Ef = cDf
and Ef = c/Df for all p € I, then the maps p — cfXp(D!) = Xpo(EY) for
¢ = 1,2 are continuous in p on I. This follows from the fact that in this case the
entire spectrum consists of real parts of eigenvalues of constant matrices in U”,
see Corollary 4.10 (i). Hence the spectral intervals can only be discontinuous at a
point p with the property: there is exactly one chain control set E? = P!, and two
distinct main control sets D} and DY, compare Theorem 5.2 (iv). Note that under
the assumptions of this section, for each given U C R™ there can be at most one
point p with this property. At these p-points, the spectral intervals can, in fact, be
discontinuous, as the discussion of the linear oscillator in Section 6 of [CKe] shows.

At the continuity points of the spectral intervals we obtain the following picture.
The Lyapunov spectrum consists of the Floquet spectrum over the interior of the
main control sets and at most d additional points. Each such component of the
Lyapunov spectrum is a compact interval (missing at most d points in the interior).
To each such interval is associated a unique Morse set of the projected flow P®,
and hence a (constant dimensional) subbundle decomposition of ¢ x R?. The order
between the Morse sets reflects the order of the spectral intervals, but these intervals
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may overlap, even in interior points. The intervals of the Lyapunov spectrum
inherit the upper semicontinuity property of the Morse spectrum with respect to
perturbations (see [CKj], Corollary 3.12).

Furthermore, in [CKj|, Section 5 results on the relation of the Morse spectrum
to the dichotomy spectrum 4. ([SaS]), the topological spectrum Yo, ([SaZ]), and
the Oseledec spectrum Yps are given using ergodic theory of the Morse spectrum.
These results immediately apply to the Lyapunov spectrum of families of time
varying matrices in the current set up. With respect to the Oselede¢ spectrum
we mention the following additional properties. The Oselede¢ spaces need not be
contained in the closure of main control sets, as Example 4.9 shows. However, every
point in the interior of a main control set ‘is’ an Oseledec space for some ergodic
measure p on U, compare Theorem 4.1 (i). Hence every point in the interior of a
chain control set ‘is’ an Oselede¢ space in the situation of Theorem 5.1 (iv), i.e.
for p # pl*. For each ergodic 4 on U the Oselede¢ spectrum Y.os(p) consists of
A(p) < o < As(p) with 1 < s < d. We have that ¢ < s, where £ is the number
of chain control sets, and simple examples show that ¢ < s is possible. Similarly,
the decomposition of U x R® into Oseledec spaces can be finer (with p-probability
1) than the decomposition according to the Morse spectrum. But note that the
Oselede¢ decomposition is, in general, only measurable.

Since the shift on ¢ is chain recurrent, we obtain from [CKj], formulae (5.13) and
(5.17), the following chain of inclusions for the different spectral concepts applied
to the family (2.1) of time varying matrices

(5'7) Z;Fl C U EOS(N) C ELy C ZZ\IO = Etop = EdiC7
w ergodic
(5.8) O wo(E;) C Xpy for j=1...L

At the continuity points of the spectra all inclusions in (5.7) are equalities, with
Y replaced by its closure, c¢{X ;.
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