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Phase coherence in a random one-dimensional system of interacting fermions:
A density-matrix renormalization-group study
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Using the density-matrix renormalization-group algorithm, we study the model of spinless fermions with
nearest-neighbor interaction on a ring in the presence of disorder. We determine the spatial decay of the density
induced by a defect(Friedel oscillations and the phase sensitivity of the ground-state energy
AE=(-)N[E(¢=0)—E(¢p=m)], wherep=27d/d, (N is the number of fermionsp the magnetic flux,
and®,=h/e the flux quantuny for a disordered system versus the system BizeThe quantity INMAE) is
found to have a normal distribution to a good approximation. The “localization length” decréasesases
for a repulsive(attractive interaction.[S0163-1826)05624-X]

INTRODUCTION whereo= ¢/M,

About five decades after the first theoretical discussion of
orbital magnetism of free electrons on a rihthis phenom- Hy=V2 njnj., 2
enon — or “persistent” current — has been observed in !
mesoscopic metallf¢ and semiconductiffg ring structures.
At present, the magnitude of the effect — experimental re-
sults are much larger than theory predicts — is not well
understood. It was suggested immediately after the experi- lez €n; . ©)
ment that the constraint of local charge neutrality, imposed i
by the electron-electron interaction, could lead to a consid-

erable enhancement of the currfdtbut these results, at In contrast to the “generic” defects described by the ran-
least for single rings, were not conclusf/@nd were not dom on-site energiese;}, it is also possible to construct
confirmed numericalfy/(see also, e.g., Refs. 10 and)11 integrable modef$ with “transparent” impurities, which

Considering electrons on a ring, the ground-state energgecrease the phase sensitivity even though there is no wave-
E(¢#) depends on the boundary condition, characterized bjunction localization. The distinction between “integrable”
the phasep (¢=0 corresponds to periodic, anti=+ 7 to  and “nonintegrable” is also most important for the tempera-
antiperiodic boundary conditionsAlternatively, the bound- ture dependence of the Drude weigbt,'* We remark that
ary condition can be interpreted as arising from a magnetithe clean case is well studied by exact meth(ske, e.g.,
flux ® provided we identify ¢ with 27®/d,, where Refs. 15 and 16
®,=h/e denotes the flux quantum. Clearli( ) is peri-
odic with period 2r. The energy difference between peri- e pENSITY-MATRIX RENORMALIZATION-GROUP
odic and antiperiodic boundary conditionsE, the persis- ALGORITHM
tent current,|~—E’(¢), and the charge stiffnesghe
“Drude weight”), D~E"(¢=0), are a measure of the  The density-matrix renormalization-grodPMRG) algo-
phase sensitivity of the systeta comprehensive discussion rithm, introduced by Whité! is a numerical technique that
is given in Ref. 12 In view of the discrepancy between allows reliable results for one-dimensional quantum lattice
experiment and theory, in particular for the metallic models, of a siz€up to a few hundred sitésnuch larger
sample<;? it is important to understand further the interplay than accessible by exact diagonalization methods, to be ob-
between interaction and disorder. Progress has been made tained. The algorithm can, in short, be characterized as a
simple one-dimensional mode$we concentrate on these in “projected diagonalization,” where the subspace to be pro-
the following. jected onto is determined by the most probable eigenstates of

We investigate the standard model of spinless fermions oa density matrix. Start, for example, with a reasonable rep-
a ring, with nearest-neighbor interactiéh (in units of the  resentation of as-site system, using relevant states. Then
hopping amplitudg the lattice constant is unityyl denotes add one sites—s+1, and supplement the system by an
the number of sitefi.e., the system sizeandN the fermion  “environment,” namely, the sites+2,...,26+1). The
number. We restrict ourselves to the case of half filling,basis of (2n)? states formed in this way is used to determine
N=M/2, and consider on-site disorder. The model is dethe ground state of{,s.,. (The factor “two” appears here

scribed by the Hamiltoniafi{=H + Hy+ H, , with since we have two states for each gifehe density matrix of
the “system” determines then most important states, onto
Hy= _2 ( e"PC,-THCj + H.c), (1) which all relevant operators are projected. Then add another

] site,s+1—s+2, and proceed.
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FIG. 1. Decay of the Friedel oscillations induced by weak im-  FIG. 2. The exponend vs interaction, for the same impurity as
purities, located symmetrically at the ends of the chainin Fig. 1. The continuous line is the asymptotic res&ef. 20.
(e,=—€y=0.01). The increase for largearises due to the finite-

ness of the chain. The calculations are performed at half filling, . . . .
N=M/2, keepingn=120(200) states per block fokl = 200(500). shown in Fig. 1, where we plot, on a logarithmic scale, the

The amplitude of the oscillation vanishes fey—0. magnitude| on;| versus distange_. Clearly, it is po_ssible to
extract the exponeri without difficulty. We emphasize that
e . ] ) . the algebraic decay starts already at a few lattice site sites.
The result of this “infinite lattice” algorithm is the basis Typically, we have used a basis of=120 (200) states for

Ior t?e “finiﬁa Ie;‘;tice” algoritthm, W?iCh. isTr;]ee_d?dlin ?rggrto the M=200 (500 system, and performed four sweeps
reat nonreflection symmetric systen$.The infinite lattice through the lattice.

algorithm is used to find a representation ofsaflite systems The exponent as a function of the nearest-neighbor in-

with s up toM — 3. (ii) Then consider the sites 1. . s as a . o N .
system, add two sites, and take as the environment th‘tgractlo.nv 'S given in Fig. 2.-The exp.onerzﬁdecea.ses W'th.
increasing repulsive interaction, and increases with attractive

s+3,... M system.(iii) Proceed as described above. This, . d h lue f : ing fermi
process can be characterized as “sweeping through the Ia nteraction, compared to the value for noninteracting fermi-

tice.” With m up to several hundred, we have achieved suf°"S; 8= 1 (one dimensioh _ o

ficient accuracy, even for questions as subtle as the phase Qualitatively, this trend agrees with the predictidhased
sensitivity. The method works best for open boundary con®n the Luttinger liquid. In a recent wofR, & was related to
ditions, though there is no general probléemcept enhanced the “dressed charge” of theclean model, with the result
computing time to include twisted boundary conditions. 6=Z?=m/4n, where 75, related to V through
Since the DMRG is a local method, disorder is easily in-V=—2cos(2j), parametrizes the interaction. The expression
cluded, though disorder averages of course require consideé= w/47 is also shown in Fig. 2, and is in almost perfect
able computing time. For example, the data given in Fig. 3agreement with our numerical data, except ¥or 1 where
are based on roughly 300 CPU days on a high-end workstawe find that the oscillations decay more weakly than pre-
tion. Further details, e.g., the adaption to nonreflection symeicted. This seems to be related to the cross¢faera weak
metric models, are discussed in Ref. 18. impurity, andV>0) found in Ref. 19, i.e., for the system
sizes studied we may not yet be in the asymptotic regime.
We have preliminary results showing that for a strong impu-
rity, 8 tends to increase towards the asymptotic result given

The decay of the density oscillations induced by a defect? Ref. 20.
is a long-standing problem in solid state physics. This phe-
nomenon, called Friedel or Ruderman-Kittel oscillatiddes-
pending on the contekxtis closely related to the singularity
in the response function for wave vectors close kg 2t is
expected that asymptotically, the induced density decays as

FRIEDEL OSCILLATIONS

on(x)~ —C0$2k5?+ 7¢) . (4)

exp{ln MAE)V=1.0 —— X
1071 £=14 —-m X
exp{ln MAE),V=0.0 ----

Using the DMRG, we have computeth(x) for a system of 1o-s Lt K \ . . .
200 sites and various interaction strengths and, as a test for 10 20 30 40 50 60
the accuracy of our calculation, for systems wih=500 system size

andV_= +1,2. The impurity is Choser_1 antisymm_etrically for FIG. 3. Phase sensitivity of the ground-state energy vs system
technical reasong, = — ey . We consider a half-filled band, gj;e for a repulsive interactionvis 1.0, W=2.0, N=M/2). This

.e., ZKex; = 7], wherej is the distancein units of the lat-  yajue ofW corresponds tg,~ 26 for the noninteracting case. The
tice spacing from the defect. A sample of our results is gecay length ig~14.
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samples. We findInMAE)=—2.54 ando= 1.5 from our data. The
FIG. 4. Phase sensitivity vs system size for an attractive intereontinuous line is the corresponding Gauss curve.
action (V=-1.0, W=2.0, N=M/2). The decay length i§~100.

sive interaction ¥Y=1.2). Using~350 samples, we find a

PHASE SENSITIVITY reasonably smooth distribution of MAE) values, as shown
Concerning the phase sensitivity of the ground-state en Fig. 5. These data can be fitted well with the correspond—.
ergy, let us recall the free-electron result for ddd ing Gauss curve, computed from the average and the vari-
' ance as given in the figure caption; these values were com-

puted from their definition.

E( ) —E(0)Jg= 2 UF 42 5
[E($)—E(0)]lo=5_¢ 5

CONCLUSIONS
to be continued periodically outside the intervakr- - - .

For an even number of particle¢— ¢— & in this equation.
In our units, and for a half-filled band, we have

In conclusion, we have demonstrated that, using the
DMRG algorithm, it is possible to obtain very accurate re-
sults for the ground-state properties of interacting one-
hvp/L—2/M; thus AEo=(~1)"[E(0)~E(m)lv=0=7/M  gimensional systems with defects, as, e.g., is apparent from
for the clean., noninteracting system. . . the comparison of numerical and analytical results for the

Disorder is introduced by taking the on-site energiesya ay of the Friedel oscillations. In particular, system sizes
1€} as random quantities, uniformly distributed over the ¢ 5 few hundred sites are sufficient to obtain asymptotic
range—WI/2- - - W/2, which corresponds fozr free fermions to results, except when the decay is very slow, kex~ 2 or
a conductance localization lengfh~105M7, i.e., the aver-  gioer. Our results for the phase sensitivity are consistent
age conductglrme decreases @~ exp(—2M/&) for a wire  \ih what is expected for spinless fermiofsee Ref. 12 and
of length M.”* We consideredV=2 only, hence{o~26.  roterence therejn The attractive and the repulsive ground
Naturally, we first studied noninteracting fermions, usinggiates both contain density fluctuations, but the attractive
500 samples, i.e., 500 different realizations of the dl'/iordebround state also contains superconducting fluctuations. The
for each system size. Interestingly, we fillEo)~(9)™,  |atter screen the disorder, leading to an increase of the phase
but we also see that theE distribution is rather asymmetric, gensiivity, i.e., a localization length larger than in the nonin-
in contrast to the distribution of IMAE). The average teracting case, for an attractive interaction. On the other
(IN(MAE,)) decreases as consM/¢, with §~29, close to  hand, the phase senstivity is reduced for a repulsive interac-
the conductance localization length. tion. As pointed out in Ref. 12, however, these trends are just

In Fig. 3 we present our results, i.84AE versusM, for  gpposite to what should be expected for “realistic’ models,
a repulsive interactiony=1.0. The 40-(50-,60) site sys- je. models that tend to homogenize the density for a repul-
tems have been calculated using=190 (375,373 states  gjye interactionas, e.g., is the case for the Hubbard madel
and performing three finite lattice sweeps. The accuracy igve plan to study this question further. We are not aware,
better than 105 for the 60-site SyStemS. The phase SenSitiV'however, of any evidence that the phase Sensitivity can be-
|ty AE is pOSitive for all Samples. The dashed line, Obtainedcome |arger than in the clean, noninteracting case.
by fitting {IN(MAE)) as described above, representtl/¢
with £~ 14, about half of the free-fermion value. The error in
& may be about 20%We feel that forM =60, the number
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