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occurs also in strongly exchange-enhanced paramagnets (e.g. Ref. 4 TiBes, YCos),
heavy fermion and intermediate valence systems (e.g. CeRujSiy, UPt3), and® the
parent compound of high-T, superconductivity (LasCuQy).
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Fig. 1. Schematic H — T phase diagram for (a) a typical Ising-type metamagnet (T'CP: tricritical
point), (b) the Ising model (1) in mean field theory with R < 3/5 (CE: critical endpoint, BCE:
bicritical endpoint). Full lines: first order transition, broken lines: second order transition; AF:
antiferromagnetic phase, P: paramagnetic phase.

In this paper we will be concerned only with metamagnetism in strongly
anisotropic antiferromagnets, where a spin-flop transition does not occur. Apart
from the well-known insulating materials, e.g. FeCls, there are also conducting mate-
rials, e.g. UA;_,B, (where A =P, As; B =S, Se),? SmMn,Ge5® and TbRhy_ . Ir,Sis”
in this group. Theoretical investigations of metamagnetism in these systems were
so far restricted to the insulating systems, several of which are known to have a
very interesting H-T phase diagram (H: internal magnetic field, T: temperature).
In particular, it includes a tricritical point (TCP) at which the first order phase
transition becomes second order (Fig. 1(a)) — a feature very similar to that found
in *He—*He mixtures.®® Theoretical investigations of the multicritical behavior are
usually based on the Ising model with more than one interaction in a magnetic field,
on a simple cubic lattice,’ e.g.

H=J> S8-J > SS-HY Si. (1)
N.N.

N.N.N. %

For J,J' > 0 one has an AF coupling between the Z nearest-neighbor (N.N.) spins
and a ferromagnetic coupling between the Z’ next-nearest-neighbors (N.N.N.).10 It
was pointed out by Kincaid and Cohen'! that in mean field theory a TCP as in
Fig. 1(a) exists only for R = Z'J'/(ZJ) > 3/5, while for R < 3/5 this point sepa-
rates into a critical endpoint (CE) and a bicritical endpoint (BCE) (see Fig. 1(b)).
The latter behavior, especially the finite angle between the two transition lines at
CE and the pronounced maximum at the second order line, is qualitatively very
similar to that observed in FeBrs.'? However, the first order line between CE and
BCE has so far not been observed — neither experimentally, nor even theoretically
when evaluating (1) beyond mean field theory.!3* Most recently, by measurement
of the excess magnetization and anomalous susceptibility loss, a strip-shaped regime
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of strong non-critical fluctuations in the H, —T plane (where H, is the applied field)
of FeBr; was reported!® which is at least reminiscent of the criticalline CE — BCE.
This unusual behavior was then also found theoretically by Selke and Dasgupta'®
who evaluated (1) in the limit of weak ferromagnetic coupling (J'/J = 0.2) and
large Z using Monte Carlo techniques. )

It is the purpose of this paper to go beyond an effective, classical Ising-spin
model and to investigate the origin of metamagnetism in strongly anisotropic an-
tiferromagnets from a microscopic point of view. Our question is: Which is the
minimal electronic correlation model for metamagnetism in these systems? Since
the Hubbard model at half-filling (n = 1) is the generic microscopic model for
antiferromagnetism (both of itinerant and localized nature) in correlated electron
systems, we will study this model. For nearest-neighbor hopping of electrons on a
bipartite lattice in the presence of a magnetic field it has the form

H=—t Z é;éja+UZﬁiTﬁil_Z(#+0H)ﬁia s (2)
N.N.o ; ic

where operators carry a hat. In this paper we consider a half-filled band in which
case i = U/2 by particle-hole symmetry. From the exact, analytic solution in
dimensions d = 1 the (paramagnetic) ground state of this model is known to ex-
hibit metamagnetic behavior, i.e. dy/8H > 0 up to saturation.!” The only other
dimension in which the dynamics of the correlation problem can be treated exactly
in the thermodynamic limit is d = 00.1® In this limit, with the scaling ¢ = t*/v/Z
in (2), one obtains a dynamical single-site problem!® which is equivalent to an
Anderson impurity model complemented by a self-consistency condition,?® and is
thus amenable to numerical investigations within a finite-temperature Monte-Carlo
approach.?! This approach has recently provided valuable insight into the physics
of strongly correlated electron systems, e.g. the Mott—-Hubbard transition?? and
transport properties.?® The effect of the magnetic field H in (2) for n = 1 was also
studied.?*~2¢ In particular, Laloux et al.?® thoroughly investigated the magnetiza-
tion behavior of the paramagnetic phase, assuming the AF order to be suppressed.
For U = 3v/2t* they find a first order metamagnetic transition between the strongly
correlated metal and the Mott-insulator at a critical field H ~ 0.2¢t*. Giesekus and
Brandt®* also took into account the AF order. They considered the case where the
field H orients the staggered magnetization mg; perpendicular to itself. For isotropic
antiferromagnets this is indeed the arrangement with lowest energy. There is then
no metamagnetism.

To investigate how metamagnetism may arise in correlated electron systems with
strongly enisotropic AF order we will work in the AF phase of the Hubbard model,
too, but will constrain mg; to lie parallel to H. In this way the existence of an easy
axis e along which H is directed, such that e || mg || H, is incorporated in a natural
way.?” We will first discuss (2) in the limit of strong and weak coupling since this
will already show that the appearance of a tri- or multicritical point is a delicate
matter.
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1. Strong coupling: In the limit U > t the Hubbard model at n = 1 is equivalent
to an effective Heisenberg spin-model, Hyeis = T NN Damzy. 5‘;"5‘3’ -HY, Sz,
with an AF exchange coupling J = 4¢*/U. For this model Weiss mean field theory
becomes exact in d = oo yielding the same results as for the Ising model (1) with
J’ = 0.2% In this case the transition line in the H-T phase diagram has indeed the
form shown in Fig. 1(a) — but it is of second order for ollT > 0,ie. T, = 0. The
behavior changes if we include the next term in the effective spin-Hamiltonian, of
order */U3, involving two- and four-spin terms.?? The latter lead to an effective
ferromagnetic spin coupling J’. Then we obtain essentially the mean field theory for
the Ising model (1) with J = 4t? /U and J' « (t/U)?J < J, and thus expect to find
the transition scenario in Fig. 1(b). However, since the expansion is in /U <« 1
it is not a priori clear down to what values of U/t this behavior can actually be
observed.

2. Weak coupling: For U &« t we expect the Hartree—Fock approximation, a
static mean field theory, to give an, at least, qualitatively correct answer. Within
this approximation and for mg, || H?” we find a metamagnetic phase transition,
too — but it is of first order for all T and U, corresponding to Fig. 1(a), but
with Ty = Tn. Hence the Hartree-Fock solution cannot describe the experimental
situation. Apparently the location of the (tri-) critical point in the H-T phase
diagram, and even the transition scenario itself, depends sensitively on the value of
the electronic on-site interaction U. To study this point in greater detail we have
to go to intermediate coupling.

3. Intermediate coupling: In this interaction range we solve (2) numerically in
d = oo. In contrast to Hartree—Fock this limit provides a dynamic mean field theory.
The local self-energy £7, and propagator G¢,, where the subscript n denotes the
Matsubara frequency wn = (2n + 1)7T and a € (A, B) = (+,—) is the sublattice
index, are determined by two sets of dynamically coupled, self-consistent equations
for G and x19-20:30.

*° NO(e
Gon = [ e = (Wi 3
Here 27, = iw, + p — 27, and the thermal average in (3) is defined as a func-
tional integral over the Grassmann variables ¥, v*, with (O)a, = [ D[¢]|D[¢*]

OeAa{¥:¥7.5.GY /7 in terms of the single-site action
D I / drgi (Y (T S (4)

with Z, as the partition function. Furthermore N°(€) is the density of states of
the non-interacting electrons. As the results do not much depend on its precise
form we choose N9(e) = [(2t*)? — €*]*/2/(27t*?). From now on we will set 2t* = 1,
i.e. measure all energies in units of half the band width. For finite T and not too
large U the functional integral can be calculated numerically by Quantum Monte
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Carlo simulations.?*3% Equation (3) is solved by iteration. All calculations were
performed for U = 2 (= band width) where the Néel temperature in zero field is
close to its maximum value Ty ax = 0.10.3!
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Fig. 2. QMC-results, including error bars, for the magnetization m(H) and staggered magneti-
zation mst(H) as obtained for the d = co Hubbard model with easy axis along H at » = 1 and
U = 2 for two sets of temperatures. Curves are guides to the eye only.

The results for the magnetization m(H) and the staggered magnetization
mg(H)3? are shown in Fig. 2. The metamagnetic behavior is clearly seen: at
T = 1/12 m(H) begins to show a typical “S-shape” which becomes more pro-
nounced at 7' = 1/16 (Fig. 2(a)). For these temperatures m, is a continuous func-
tion of H (Fig. 2(b)), which vanishes at the critical field H. as mgy ~ (H. — H)*. A
least-square fit through five points (weighted with the error bars) near the transition
yields v = 0.46 3 0.05 for T = 1/12, which is compatible with a mean field exponent
v = 1/2. By contrast, at the lowest temperatures, T' < 1/32 (Figs. 2(c) and (d))
the transitions in m and mg are clearly discontinuous. Hysteresis is only weak and
is not shown. The field dependence at intermediate temperatures 1/16 < T < 1/32
is more complex: m; is almost field-independent (i. e. m ~ 0) below some field H,
decreases sharply at H_ (such that m > 0), but vanishes only at a field H, > H! in
a continuous way. Although the error bars do not permit an unambiguous interpre-
tation it seems that the order parameter decreases by two consecutive transitions:
the first one, at H/, being of first order or an anomaly and the second one, at H,
of second order.
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The results for m(H) and mg(H) are used to construct the H-T phase diagram
shown in Fig. 3. It displays all the features of Fig. 1(b). In particular, the first order
line, defined by H.(T) for T > T, continues into the ordered phase, separating two
different AF phases: AF; (where m ~ 0) and AF;; (where m > 0). The position
of its endpoint cannot, at present, be determined accurately (dotted line). We note
that the ratio of T¢p, and the Néel temperature Ty at H = 0 is Tcg /Ty ~ 0.3.
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Fig. 3. H-T phase diagram for the d = oo Hubbard model with easy axis along H at n = 1 and
U = 2 as constructed from the QMC-results for m(H) and ms:( H); same notation as in Fig. 1(b).

The H-T phase diagram in Fig. 3 is strikingly similar to the experimental phase
diagram of FeBrs,!533 although in this system one should expect U to be much
larger than the band width. In particular, the part of the first order line extending
into the ordered phase clearly resembles the regime where an anomalous, but non-
critical, behavior was observed.!® It appears that there may well exist a truely
eritical feature in this part of the H-T (rather than H, — T') phase diagram. It
would therefore be interesting to measure m (7, H) in FeBrs by neutron scattering
to see whether such a feature really exists. The results shown in Figs. 2 and 3
are qualitatively very similar to the mean field solution of the Ising model (1)
with J' <« J.11'* The applicability of mean field theory itself to FeBrs seems
to be justified by the fact that in this material the AF superexchange involves
20 equivalent sites in the two neighboring iron planes.>* We note that in FeBr,
Tce/Tn = 0.33.12

In summary, we investigated the origin of metamagnetism in strongly anisotropic
antiferromagnets starting from a microscopic model of strongly correlated-electrons,
the Hubbard model with easy axis, in a dynamical mean field theory. The H-T
phase diagram obtained for an intermediate on-site interaction (U = 2 = band
width) is qualitatively very similar to that of FeBry. Apart from calculations at U <
2, it will be interesting to calculate off half-filling. This will allow us to investigate
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the properties of metallic metamagnets, such as the Uranium-based mixed-systems,
for which a theory in terms of an itinerant electron model is mandatory.
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