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Abstract This paper proves continuity of f-projections and the continuous
dependence of the limit matrix of the iterative proportional fitting procedure
(IPF procedure) on the given matrix as well as the given marginals under
certain regularity constraints. For discrete spaces, the concept of f-projections
of finite measures on a compact and convex set is introduced and continuity
of f-projections is proven. This result is applied to the IPF procedure. Given
a nonnegative matrix as well as row and column marginals the IPF procedure
generates a sequence of matrices, called the IPF sequence, by alternately
fitting rows and columns to match their respective marginals. If the IPF
sequence converges, the application of the previous result yields the continuous
dependence of the limit matrix on the given matrix. By generalized convex
programming and under some constraints, it is shown that the limit matrix
of the IPF sequence continuously depends not only on the given matrix but
also on the marginals.
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1 Introduction
The concept of f-divergence and f-projection plays a key role in statistics. Especially
I-divergence, a special case of f-divergences, is helpful for the analysis of the iterative
proportional fitting procedure (IPF procedure). The procedure aims to solve the following
problem: Given a nonnegative k × ` matrix A and given positive marginals, find a
nonnegative k × ` matrix B which fulfills the given marginals and is biproportional
to A. To this end, the IPF procedure generates a sequence of matrices, called the IPF
sequence, by alternately fitting rows and columns to match their respective marginals.
The procedure is in use in many disciplines for problems such as calculating maximum
likelihood estimators in graphical log-affine models (Lauritzen [13, Chapter 4.3.1]), ranking
webpages (Knight [11]) or determining passenger flows (McCord et al. [15]).

In many applications, the entries of the matrix A and the given marginals are ob-
servations and may vary or have errors. If the IPF sequence converges to some limit
matrix, then it is of interest, whether this limit matrix continuously depends on the
input variables, that is the matrix A and the given marginals. The dependence on the
matrix A fits into the more general question of continuity of f-projections.
The concept of f-divergence and f-projection has been introduced independently by

Csiszár [6] and by Ali and Silvey [1]. An extensive overview of its properties can be found
in the book by Liese and Vajda [14]. Among the family of f-divergences, I-divergence
turns out to be fruitful for the analysis of the IPF procedure as shown by Csiszár [7],
who proves necessary and sufficient conditions for convergence of the IPF procedure for
nonnegative matrices. If these conditions are not fulfilled, Gietl and Reffel [9] have shown
that the even-step IPF subsequence and the odd-step IPF subsequence still converge.
The IPF procedure has been known since 1937 (Kruithof [12]) and has become popular
due to the work of Deming and Stephan [8].

Section 2 introduces f-divergence and f-projections of finite measures on discrete spaces.
The essential properties of f-divergence and f-projections are developed, leading to a short
proof of continuity of f-projections. Section 3 defines the IPF procedure in detail, quotes
necessary and sufficient criteria for its convergence and categorizes its limit matrices into
direct and limit biproportional fits. The limit matrix is characterized as an I-projection,
a special case of f-projection, and the section concludes with the continuous dependence
of the limit biproportional fit on the given matrix A. To deal with varying marginals, the
problem of finding the IPF limit matrix is put in the class of generalized convex programs,
which is properly introduced in Section 4. An important corollary by Rockafellar [17]
on the continuous dependence of the optimal value on the parameters is quoted. By
restricting to direct biproportional fits, this corollary is applied to the IPF procedure in
order to obtain the continuous dependence not only on the matrix A but also on the given
marginals. Section 5 concludes the results and gives perspectives for further research.
In the sequel, all indices i belong to the set {1, . . . , k} whereas all indices j belong to

the set {1, . . . , `}. A + as a subscript indicates the summation over the index that would
otherwise appear in its place. A set as a subscript denotes the summation over all entries
belonging to that set, i. e. rI =

∑
i∈I ri. The symbol � expresses dominance in the sense

of measure theory. Thus, for two vectors s and t the statement s � t is equivalent to
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ti = 0 implying si = 0 for all i. The symbol ≈ expresses equivalence of two measures.
Thus, two vectors s and t are equivalent when they have the same zero entries. The
notation carries over for nonnegative matrices.

2 Continuity of f-projections
The family of f-divergences contains various popular distances and distance-like functions
between measures, e. g. I-divergence, χ2-divergence, total variance or Hellinger distance.
Liese and Vajda [14] present an abundance of properties of f-divergence for probability
measures on arbitrary measurable spaces. For finite spaces, we extend some of their
results to nonnegative vectors, which can be interpreted as finite measures. This leads
to the section’s main result, the continuity of f-projections on appropriate compact and
convex sets. The outline of this section is partly based on Section 2 of Gietl and Reffel [9].

Let f : [0;∞)→ R be some convex and (in 0) continuous function. We then define the
function f : [0;∞)2 → R ∪ {∞} by

f(v, w) :=


w · f

(
v
w

)
if v ∈ [0;∞), w ∈ (0;∞),

v · limx→∞
f(x)
x if v ∈ (0;∞), w = 0,

0 if v = 0, w = 0.
(2.1)

By Proposition A.24 of Liese and Vajda [14] the limit limx→∞ f(x)/x exists in R ∪ {∞}.
The function f is lower semicontinuous for all (v, w) ∈ [0;∞)2 (see Liese and Vajda [14,
Proposition A.35]). For fixed v ≥ 0, the function f is continuous in the second argument.
For v = 0, the claim is trivial since f(0, w) = w · f(0). For v > 0, only continuity in w = 0
has to be checked, because f is continuous on [0;∞). It holds

lim
w↘0

f(v, w) = lim
w↘0

w · f
(
v

w

)
= lim

w↘0
v ·

f
(
v
w

)
v
w

= v · lim
x→∞

f(x)
x

= f(v, 0). (2.2)

Obviously, for all w > 0 the function f(v, w) is strictly convex in the first argument, if
and only if f is strictly convex.
For two vectors s, t ∈ Rk≥0 the f-divergence of s relative to t is defined by

Df (s | t) :=
∑
i

f(si, ti). (2.3)

The definition of f-divergence carries over for nonnegative matrices. It holds Df (s | t) <∞
if s � t. In most of the pertinent literature, properties of f-divergence are proven for
probability measures only (Liese and Vajda [14]). Clearly, our vectors s and t can be seen
as finite measures. We continue to work with finite measures in the form of nonnegative
vectors and nonnegative matrices. The following theorem summarizes the properties of
f-divergence inherited from the function f and needed in the sequel.

Theorem 2.1 (Continuity and convexity of f-divergence). Let Df be the f-divergence as
defined by equation (2.3). Then the following three statements hold:
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(i) The function (s, t) 7−→ Df (s | t) is lower semicontinuous for all s, t ∈ Rk≥0.

(ii) For fixed s ∈ Rk≥0, the function t 7−→ Df (s | t) is continuous on Rk≥0.

(iii) For fixed t ∈ Rk≥0, t 6= 0, the function s 7−→ Df (s | t) is strictly convex for
all s ∈ Rk≥0 with s� t, if and only if f is strictly convex.

Proof. (i),(ii) Follows directly from the discussion of the function f above.
(iii) The constraints in (iii) imply all summands of Df (s | t) being finite and at least

one component of s being positive within the convex combinations.

Let t ∈ Rk≥0 andM ⊆ Rk≥0 be a compact and convex set. An element s∗ ∈ M is an
f-projection of t onM when

Df (s∗ | t) = inf
s∈M

Df (s | t) . (2.4)

Lemma 2.2 (Existence and uniqueness of f-projections). Let t ∈ Rk≥0 andM⊆ Rk≥0 be
a compact and convex set. Then the following three statements hold:

(i) There exists an f-projection of t onM.

(ii) If f is strictly convex and s� t holds for all s ∈M, the f-projection of t onM is
unique.

(iii) If f is strictly convex and limx→∞ f(x)/x = ∞ and s � t for some s ∈ M, the
f-projection of t onM is unique.

Statements (i) and (iii) can also be found in Vajda and van der Meulen [22, Theorem 1].
Furthermore, their Theorem 1 generalizes our statement (ii). Nevertheless, we give a
short self-contained proof.

Proof. (i) As shown in Theorem 2.1 (i), f-divergence is lower semicontinuous in both
arguments. Then f-divergence is also lower semicontinuous in the first argument when
keeping the second argument constant. On compact sets, each lower semicontinuous
function attains its minimum (Bauschke and Combettes [3, Theorem 1.28]).

(ii) If f is strictly convex and s� t holds for all s ∈M, the strict convexity shown in
Theorem 2.1 (iii) together with the convexity ofM yields uniqueness.

(iii) With limx→∞ f(x)/x =∞, it holds f(si, 0) <∞ if and only if si = 0. Hence, the
f-projection on M coincides with the f-projection on {s ∈M| s� t} 6= ∅. Thus, the
claim follows from statement (ii).

Example 2.3. We cannot expect uniqueness of f-projections if the function f is not strictly
convex but only convex. Let the function f be given by f(x) = |x− 1|. This f-divergence
is better known as the total variance, since

Df (s | t) =
∑
i

f(si, ti) =
∑
i

|si − ti| =: ‖s− t‖1 . (2.5)
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Let t = (1, 1) ∈ R2
≥0 and the convex and compact setM be defined by

M :=
{
m ∈ R2

≥0

∣∣∣m+ = 1
}
. (2.6)

It holds m ∈ [0; 1]2 for all m ∈M, hence we have

‖m− t‖1 = |m1 − t1|+ |m2 − t2| = t1 −m1 + t2 −m2 = t+ −m+ = 1. (2.7)

for all m ∈M. Thus, all elements ofM are f-projections of t onM. ♦

For all vectors s ∈ Rk≥0 we define the support of s by supp(s) := {i | si > 0}. Thus,
the condition s � t for some t ∈ Rk≥0 and all s ∈ M ⊆ Rk≥0 will simply be written as
M⊆ Rsupp(t)

≥0 :=
{
s ∈ Rk≥0

∣∣∣ supp(s) ⊆ supp(t)
}
. Now we are able to present this section’s

main result: f-projections on appropriate compact and convex sets are continuous.

Theorem 2.4 (Continuity of f-projections). Let the f-divergence Df be defined by a
function f that is strictly convex on [0;∞). Let (tn), tn ∈ Rk≥0, be a sequence converging
to some t ∈ Rk≥0. LetM⊆ Rk≥0 be a compact and convex set. Then the following three
statements hold:

(i) If M ⊆ Rsupp(t)
≥0 , then for n large enough, the f-projection of tn on M and the

f-projection of t onM exist and are unique.

(ii) If limx→∞ f(x)/x = ∞ and M ∩ Rsupp(t)
≥0 6= ∅, then for n large enough, the f-

projection of tn onM and the f-projection of t onM exist and are unique.

(iii) Under the conditions of statement (i) or statement (ii), the f-projections sn,∗ of tn
onM converge to the f-projection s∗ of t onM,

sn,∗
n→∞−→ s∗. (2.8)

Vajda and van der Meulen [22, Theorem 6] have proven a statement similar to state-
ment (iii), which is restricted to f-divergences with limx→∞ f(x)/x <∞ and sequences
(tn) along the line segment connecting the limit t and the uniform distribution.

Proof. (i) By Lemma 2.2 (i) the f-projections of tn onM and the f-projection of t onM
always exist. Since t, tn ∈ Rk≥0 and tn n→∞−→ t, there exists a constant N ∈ N such that
t� tn for all n ≥ N . FromM⊆ Rsupp(t)

≥0 we concludeM⊆ Rsupp(tn)
≥0 for all n ≥ N . The

strict convexity of the function f and application of Lemma 2.2 (ii) yield uniqueness of
s∗ and sn,∗ for n ≥ N .
(ii) By Lemma 2.2 (i) the f-projections of tn on M and the f-projection of t on M

always exist. Since t, tn ∈ Rk≥0 and tn n→∞−→ t, there exists a constant N ∈ N such that
t� tn for all n ≥ N . FromM∩ Rsupp(t)

≥0 6= ∅ we conclude the existence of some s ∈M
such that s � t and s � tn for all n ≥ N . The strict convexity of the function f and
application of Lemma 2.2 (iii) yield uniqueness of s∗ and sn,∗ for n ≥ N .
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(iii) Compactness ofM guarantees the existence of a convergent subsequence (sηn,∗)
with limit s∗∗ ∈ M, say. Lower semicontinuity of f-divergence (Theorem 2.1 (i)),
minimality of the f-projection (2.4) and continuity of f-divergence in the second argument
(Theorem 2.1 (ii)) yield

Df (s∗∗ | t) = Df

(
lim
n→∞

sηn,∗
∣∣∣ lim
n→∞

tηn

)
(2.9)

≤ lim inf
n→∞

Df (sηn,∗ | tηn) (2.10)

≤ lim inf
n→∞

Df (s∗ | tηn) (2.11)

= Df (s∗ | t) . (2.12)

Since s∗ is the unique f-projection of t onM, we conclude s∗∗ = s∗. Thus, all accumulation
points of the sequence (sn,∗) coincide and the sequence (sn,∗) converges to s∗.

3 Limit fitting problems with fixed marginals
We specify the IPF procedure in full detail. Thereafter, we quote necessary and sufficient
criteria for its convergence and categorize its limit matrices B∗ into direct and limit
biproportional fits. Our notation sticks to Pukelsheim [16] as close as possible. After
that, we introduce I-divergence as a member of the family of f-divergences and quote a
statement by Csiszár [7] regarding the equivalence between limit fits and I-projections.
We then use this equivalence statement to prove continuous dependence of the limit
matrix B∗ on the input matrix A in the case of fixed marginals c and r.

The IPF procedure takes as input an arbitrary nonnegative matrix A = ((aij)) ∈ Rk×`≥0
with positive row sums, ai+ > 0, and positive column sums, a+j > 0, and two vectors
with positive entries r = (r1, . . . , rk) ∈ Rk>0 and c = (c1, . . . , c`) ∈ R`>0. The matrix A is
referred to as the input matrix, whereas the vector r is called the row marginals and the
vector c is called the column marginals.

The procedure is initialized by setting A(0) := A. Subsequently, the IPF sequence
(A(t)) is calculated by iteratively repeating the following two steps:

• Odd steps t+ 1 fit row sums to row marginals. To this end, all entries in the same
row are multiplied by the same multiplier yielding

aij(t+ 1) := ri
ai+(t) · aij(t) for all entries (i, j). (3.1)

• Even steps t+ 2 fit column sums to column marginals. To this end, all entries in
the same column are multiplied by the same multiplier yielding

aij(t+ 2) := cj
a+j(t+ 1) · aij(t+ 1) for all entries (i, j). (3.2)

By induction, for all steps t ≥ 0 the inequality aij(t) > 0 holds if and only if aij > 0
holds. Consequently, all row sums ai+(t) and all column sums a+j(t) always stay positive.
Thus, the IPF procedure is well defined.
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We say that the IPF procedure converges, when the IPF sequence (A(t)) converges.
This does not depend on the exact entries of the input matrix A. Instead, it is sufficient to
know which entries are positive and which entries equal 0. Knowing this, the set JA(I) :=
{j ∈ {1, . . . , `} | ∃i ∈ I : aij > 0} of all columns connected to the row subset I in A can
be computed for all row subsets I ⊆ {1, . . . , k}. The input (A, c, r) can then be checked
according to the following theorem.

Theorem 3.1 (Convergence of the IPF procedure). Let A be an input matrix and let c
and r be positive marginals. Then the IPF procedure converges, if and only if c+ = r+
holds and all row subsets I ⊆ {1, . . . , k} fulfill the flow inequalities

rI ≤ cJA(I). (3.3)

Proof. See Hershkowitz, Hoffman and Schneider [10, Theorem 3.2] or Pukelsheim [16,
Theorem 5].

In the case of convergence, the limit matrix B∗ := limt→∞A(t) has three decisive
properties. First, it fulfills column marginals, i. e. b∗+j = cj holds for all columns j. Second,
it fulfills row marginals, i. e. b∗i+ = ri holds for all rows i. Third, B∗ is biproportional
to A, i. e. there exist sequences of multipliers ρi(t) > 0 and σj(t) > 0 such that bij =
limt→∞ ρi(t)aijσj(t) holds for all entries (i, j). These sequences can be computed as
products of the row and column multipliers used in equations (3.1) and (3.2). We call
each matrix matching those three properties a limit biproportional fit of A to c and r.
Pukelsheim [16, Theorem 1], however, shows, that limit biproportional fits are unique.
Moreover, if there exists a limit biproportional fit, the inequalities (3.3) hold. Hence, the
inequalities (3.3) are a necessary and sufficient condition for the existence of the limit
biproportional fit.

When the sequences (ρi(t)) and (σj(t)) can be replaced by constant multipliers ρi > 0
and σj > 0, the limit biproportional fit B∗ is called the direct biproportional fit of A to c
and r. Directness of B∗ can be checked more easily if the input matrix A is connected.
We call a nonnegative matrix C connected when it is not disconnected. A nonnegative
matrix D is disconnected when there exists a permutation of rows and a permuation of
columns such that D acquires block format,

D =
( J J ′

I D(1) 0
I ′ 0 D(2)

)
, (3.4)

where at least one of the subsets I ⊆ {1, . . . , k} or J ⊆ {1, . . . , `} is nonempty and proper.
Here, the prime indicates the complement of a set. If the input matrix A is disconnected,
it can be decomposed into several connected matrices and the marginals c and r can be
decomposed accordingly. Running the IPF procedure on the resulting decomposed inputs
yields the same results as running the procedure on the original input (A, c, r). However,
for the decomposed inputs, directness can be checked according to the following theorem.
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Theorem 3.2 (Directness of biproportional fits). Let A be a connected input matrix,
let c and r be positive marginals and let B∗ be the limit biproportional fit of A to c and r.
Then B∗ is a direct biproportional fit, if and only if the flow inequalities (3.3) are strict
for all nonempty and proper row subsets I, ∅ ( I ( {1, . . . , k}.

Proof. See Rothblum and Schneider [18, Theorem 2] or Pukelsheim [16, Theorem 2].

The input (A, c, r) of the IPF procedure as defined above is called a fitting problem.
When there exists a limit biproportional fit, we call (A, c, r) a limit fitting problem. When
there exists a direct biproportional fit and A is connected, we call (A, c, r) a direct fitting
problem.
In the analysis of fitting problems, the f-divergence derived from the strictly convex

and continuous function f : [0,∞) → R, x 7→ x log x with f(0) := 0, which fulfills
limx→∞ f(x)/x = ∞, is prevalent (see Csiszár [7], Brown, Chase and Pittenger [4],
Rüschendorf [19] and Cramer [5]). We call this f-divergence the information divergence
(I-divergence) and denote it by I (· | ·). The corresponding f-projections will be called
I-projections. In the pertinent literature, I-divergence is also known as Kullback-Leibler
divergence, relative entropy or information gain.
LetM denote the set of all nonnegative matrices B fulfilling the marginals c and r,

M :=
{
B = ((bij)) ∈ Rk×`≥0

∣∣∣ ∀i : bi+ = ri and ∀j : b+j = cj
}
. (3.5)

This set M is compact and convex. I-projections on M turn out to be equivalent to
biproportional fits to c and r.

Theorem 3.3 (Equivalence between biproportional fits and I-projections). Let A be an
input matrix, c and r be positive marginals and let the set M be defined according to
equation (3.5). Then B∗ is the limit biproportional fit of A to c and r if and only if B∗
is the unique I-projection of A toM.

Proof. See Csiszár [7, Theorem 3.2].

Remark 3.4. Theorem 3.3 does not hold for f-projections in general. Let the direct fitting
problem (A, c, r) be defined by

A =
(

1 1
2

1 1

)
, c = (1, 2) and r = (2, 1) . (3.6)

Then, the biproportional fit B∗ of A to c and r is given by

B∗ =
(

3−
√

5
√

5− 1√
5− 2 3−

√
5

)
. (3.7)

Taking the convex function f : x 7→ |x− 1| as in Example 2.3, f-divergence coincides with
total variation ‖·‖1. It holds

‖B∗ −A‖1 = 2
√

5− 5
2 ≈ 1.972. (3.8)

8
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Yet, the matrix B∗ is not the f-projection of A onM since

D =
(

1 1
0 1

)
∈M and ‖D −A‖1 = 3

2 < ‖B∗ −A‖1 . (3.9)

When taking the strictly convex function f : x 7→ (x − 1)2, which also fulfills the
equation limx→∞ f(x)/x =∞, f-divergence Df coincides with the χ2-divergence, since
f(v, w) = (v − w)2/w. It holds

Df (B∗ |A) = 93
2 − 20

√
5 ≈ 1.779 (3.10)

Yet, the matrix B∗ is not an f-projection of A onM since

D =
(

1 1
0 1

)
∈M and Df (D |A) = 3

2 < Df (B∗ |A) . (3.11)

♦

Due to Theorem 3.3 we can now apply Theorem 2.4 to the IPF procedure and state
our main result regarding limit fitting problems with fixed marginals.

Theorem 3.5 (Limit fitting problems with fixed marginals). Let the triple (A, c, r) be
a limit fitting problem, (An) a sequence of input matrices with An n→∞−→ A. Moreover,
let B∗ be the limit matrix of the IPF procedure applied to (A, c, r). Then the following
two statements hold:

(i) For n large enough, the triple (An, c, r) is a limit fitting problem with the limit
biproportional fit Bn,∗.

(ii) The limit biproportional fits Bn,∗ of An to c and r converge to B∗,

Bn,∗ n→∞−→ B∗. (3.12)

Proof. (i) Since the marginals c and r are fixed, convergence of the IPF procedure solely
depends on the support of the input matrix An as stated in Theorem 3.1. Moreover, as
the sequence (An) converges to A, we have A � An for n large enough. This entails
cJA(I) ≤ cJAn (I) for all I ⊆ {1, . . . , k} and for n large enough. By Theorem 3.1, (A, c, r)
being a limit fitting problem then implies the triple (An, c, r) for n large enough being a
limit fitting problem as well.

(ii) By Theorem 3.3, the limit biproportional fit Bn,∗ of An to c and r is the I-projection
of An on the compact and convex set M ⊆ Rk×`≥0 defined according to equation (3.5).
The same holds true for the input matrix A. The limit biproportional fit B∗ of A to c
and r preserves the zero entries of A. Therefore,M∩ Rsupp(A)

≥0 6= ∅ holds. Furthermore,
for I-divergence it holds limx→∞ f(x)/x = ∞. Hence, application of Theorem 2.4 (iii)
establishes the claim.
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Remark 3.6. For limit fitting problems (A, c, r) with square input matrices A ∈ Rk×k≥0
and uniform marginals c = r = (1, . . . , 1) ∈ Rk>0, Sinkhorn [21, Corollary 3] has already
shown that the limit matrix B∗ of the IPF procedure continuously depends on the input
matrix A. However, his proof is based on results about doubly stochastic matrices and
their permanents. For this reason, we cannot see how it could be generalized.
Example 3.7. The assumption of Theorem 3.5 that (A, c, r) is a limit fitting problem is
essential. We present an example of a fitting problem for which the IPF procedure does
not converge. This example can be verified easily. Let the sequence (An) be defined by

An =
(

1 n−1

1 1

)
for all n ∈ N (3.13)

with fixed column marginals c = (1, 2) and row marginals r = (2, 1). Applying the IPF
procedure to (limn→∞A

n, c, r) yields the two accumulation points (Gietl and Reffel [9,
Theorem 5.3])

C∗ =
(

1 0
0 2

)
and R∗ =

(
2 0
0 1

)
. (3.14)

The bottom left entries of C∗ and R∗ have to be 0, since the multipliers r2/a2+(t) and
c1/a+1(t+ 1) used in scaling steps (3.1) and (3.2) are bounded from above by 1/2.
When applying the IPF procedure to (An, c, r), the IPF sequence converges to the

I-projection

Bn,∗ =
(

2− bn bn

bn − 1 2− bn

)
, (3.15)

where

bn = n− 4 +
√
n2 + 8n

2(n− 1) . (3.16)

This arises from the minimization of I (B |An) over all B ∈M in which the setM has
only one degree of freedom. It holds bn n→∞−→ 1 and therefore

Bn,∗ n→∞−→
(

1 1
0 1

)
. (3.17)

Hence, neither Bn,∗ n→∞−→ C∗ nor Bn,∗ n→∞−→ R∗ holds. Another example is found in
Balinksi and Demange [2, Example 2]. Further examples for doubly stochastic matrices
are found within the remarks of Sinkhorn [20]. ♦

Varying the marginals c and r cannot be allowed in Theorem 3.5, since the set M
depends on c and r and, thus, the inequality I (Bηn,∗ |Aηn) ≤ I (B∗ |Aηn) cannot be
guaranteed (see equations (2.10) and (2.11)).
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4 Direct fitting problems with varying marginals
In order to examine the continuous dependence of the IPF limit matrix not only on the
input matrix A, but also on the marginals c and r, a new concept is introduced. The
equivalence between biproportional fits and I-projections (see Theorem 3.3) allows us
to interpret each fitting problem (A, c, r) as a convex minimization problem where the
objective function and the constraints depend on the parameters A, c and r. Therefore,
we take a closer look at these so-called generalized convex programs, which are examined
by Rockafellar [17, Section 29] using the notion of bifunctions. When restricting to direct
fitting problems, this allows us to prove the continuous dependence of the limit matrix of
the IPF procedure on the input matrix as well as the given marginals.

A bifunction from Rp to Rq is a mapping F assigning to each vector u ∈ Rp a function
Fu : Rq → [−∞,+∞]. This function Fu maps each vector x ∈ Rq to a number (Fu)(x).
The bifunction F is called convex, when the function (u, x) 7→ (Fu)(x) is convex. The
effective domain of F , domF , is the set of all u ∈ Rp, for which the function Fu is not
the constant function ∞, hence

domF := {u ∈ Rp | ∃x ∈ Rq : (Fu)(x) <∞} . (4.1)

The function (inf F ) : Rp → [−∞,+∞] , u 7→ infx∈Rq (Fu)(x) mapping the parameters u
to the optimal value infx∈Rq (Fu)(x) is called the perturbation function. The operator int
denotes the interior of a set. For an arbitrary set U , we define

intU := {u ∈ U | ∃ε > 0 : u+B(0, ε) ⊆ U} , (4.2)

where B(0, ε) := {x | ‖x‖ ≤ ε}. Rockafellar [17] examines continuity of the perturbation
function inf F .

Theorem 4.1 (Continuity of the perturbation function). Let F be a convex bifunction
from Rp to Rq with 0 ∈ int(domF ) ⊆ Rp. Then there exists an open convex neighbor-
hood U(0) of 0 ∈ Rp, such that the perturbation function (inf F ) : Rp → [−∞,+∞] is
continuous on U(0).

Proof. See Rockafellar [17, Corollary 29.1.5].

In order to apply Theorem 4.1, we restrict ourselves to sequences ((An, cn, rn)) con-
verging to a direct fitting problem (A, c, r) when n tends to ∞. Furthermore, we assume
A ≈ An and cn+ = rn+ for all n ∈ N. Hence, we lose one degree of freedom and vary only
cn and rn1 , . . . , rnk−1 while setting rnk := cn+ − (rn1 + · · ·+ rnk−1). This section’s main result
then reads as follows.

Theorem 4.2 (Direct fitting problems with varying marginals). Let (A, c, r) be a direct
fitting problem, ((An, cn, rn)) a sequence of fitting problems with (An, cn, rn) n→∞−→ (A, c, r),
An ≈ A and cn+ = rn+ for all n ∈ N. Let B∗ be the limit matrix of the IPF procedure
applied to (A, c, r). Then the following two statements hold:

11
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(i) For n large enough, the triple (An, cn, rn) is a direct fitting problem with the limit
matrix Bn,∗.

(ii) The direct biproportional fits Bn,∗ of An to cn and rn converge to B∗,

Bn,∗ n→∞−→ B∗. (4.3)

Proof. We proceed in six steps. Steps I to IV establish the applicability of Theorem 4.1.
Statement (i) is proven within step V. Finally, step VI shows statement (ii).
I. We define m to be the minimal difference of the flow inequalities (3.3),

m := min
∅6=I({1,...,k}

{cJA(I) − rI}. (4.4)

By Theorem 3.2, m is positive.
II. Let u = (s, v, w) ∈ Rsupp(A)+(k−1)+` and define the bifunction F from

Rsupp(A)+(k−1)+` to Rk×` by

(u, x) 7→ I (x |A+ s) + δ(x|S(u)), (4.5)

where

δ(x|S(u)) :=
{

0 if x ∈ S(u),
∞ otherwise

(4.6)

and

S(u) :=
{
x ∈ Rk×`≥0

∣∣∣xi+ = ri + vi ∀i ∈ {1, . . . , k − 1}, (4.7)

x+j = cj + wj ∀j ∈ {1, . . . , `}
}
. (4.8)

The notion of bifunctions requires the function I-divergence I (· | ·) to be defined not
only for the nonnegative matrices. Therefore, we set I (x |A+ s) =∞ whenever one of
the two arguments has a negative entry. The set S(u) depends only on the components
v, w of the vector u. However, the notation S(v, w) is a bit bulky for proving convexity.
In the following, we show that F is convex (step III) and that 0 ∈ int(domF ) holds
(step IV).

III. I-divergence is convex as a function of both arguments on the convex set Rk×`≥0 ×R
k×`
≥0

(Gietl and Reffel [9, Theorem 2.1 (i)]). Setting I-divergence to ∞ for negative entries
does not change the function’s epigraph and preserves convexity. Hence, the function F
is convex, if δ(x|S(u)) is a convex function in x and u. For all u1, u2 ∈ Rsupp(A)+(k−1)+`,
all x1, x2 ∈ Rk×` and all λ ∈ (0; 1) we show

δ(λx1 + (1− λ)x2|S(λu1 + (1− λ)u2)) ≤ λδ(x1|S(u1)) + (1− λ)δ(x2|S(u2)). (4.9)

If x1 /∈ S(u1) or x2 /∈ S(u2) the inequality (4.9) is trivial. Thus, let x1 ∈ S(u1) and
x2 ∈ S(u2). Then it holds

λx1
i+ + (1− λ)x2

i+ = λ(ri + v1
i ) + (1− λ)(ri + v2

i ) (4.10)
= ri + (λv1

i + (1− λ)v2
i ) (4.11)

12
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for all i ∈ {1, . . . , k − 1} and

λx1
+j + (1− λ)x2

+j = λ(cj + w1
j ) + (1− λ)(cj + w2

j ) (4.12)
= cj + (λw1

j + (1− λ)w2
j ) (4.13)

for all j ∈ {1, . . . , `}. Thus, λx1 + (1−λ)x2 ∈ S(λu1 + (1−λ)u2) and the inequality (4.9)
is fulfilled. Hence, the bifunction F is convex.
IV. It holds

domF =
{
u ∈ Rsupp(A)+(k−1)+`

∣∣∣ ∃x ∈ Rk×` : I (x |A+ s) + δ(x|S(u)) <∞
}

(4.14)

=
{
u ∈ Rsupp(A)+(k−1)+`

∣∣∣ ∃x ∈ S(u) : I (x |A+ s) <∞
}
. (4.15)

Restricting s to the set (
− min

(i,j)∈supp(A)
aij/2;∞

)supp(A)

(4.16)

yields supp(A+ s) = supp(A). For such s we show that there exists a matrix x ∈ S(u)
with I (x |A+ s) <∞, if |vi| ≤ m/(4(k−1)k) for all i ∈ {1, . . . , k−1} and |wj | ≤ m/(4k`)
for all j ∈ {1, . . . , `}, where m is defined by equation (4.4). Defining

vk := w+ −
k−1∑
i=1

vi (4.17)

we have

|vk| ≤ |w+|+
k−1∑
i=1
|vi| ≤ `

m

4k` + (k − 1) m

4(k − 1)k = m

2k . (4.18)

Consequently, it holds |vi| ≤ m/(2k) for all i ∈ {1, . . . , k} and |wj | ≤ m/(2`) for all
j ∈ {1, . . . , `}. From the definition (4.4) of m the inequality

vI − wJA(I) ≤ (k − 1)m2k + `
m

2` = m− m

2k < cJA(I) − rI (4.19)

follows for all I, ∅ 6= I ( {1, . . . , k}. The strict inequality (4.19) is equivalent to

rI + vI < cJA(I) + wJA(I) (4.20)

for all I, ∅ 6= I ( {1, . . . , k}. Thus, the marginals ri + vi, i = 1, . . . , k, and cj + wj ,
j = 1, . . . , ` fulfill the flow inequalities (3.3). By Theorem 3.1 the fitting problem
(A+s, r+v, c+w) is a limit fitting problem. With Theorem 3.3 there exists a nonnegative
matrix x that fulfills the marginals, x ∈ S(u), and is dominated by A + s, x � A + s.
Therefore, it holds I (x |A+ s) <∞. Hence, we have

domF =
{
u ∈ Rsupp(A)+(k−1)+`

∣∣∣ ∃x ∈ S(u) : I (x |A+ s) <∞
}

(4.21)

⊇
(
− min

(i,j)∈supp(A)
aij/2;∞

)supp(A)

(4.22)

×
[
− m

4(k − 1)k ; m

4(k − 1)k

]k−1
×
[
− m

4k` ; m4k`

]`
. (4.23)
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It holds 0 ∈ int(domF ). Together with step III, the assumptions of Theorem 4.1 are
fulfilled.

V. We apply Theorem 4.1 to the bifunction F . Consequently, the perturbation function

u 7→ inf
x∈Rk×`

I (x |A+ s) + δ(x|S(u)) = inf
x∈S(u)

I (x |A+ s) (4.24)

is continuous in u on a neighborhood of 0. We define the sequence (un) := ((sn, vn, wn))
by snij := anij − aij for all (i, j) ∈ supp(A) and vni := rni − ri for all i ∈ {1, . . . , k − 1}
as well as wn := cn − c. Pursuant to step IV the problem (An, cn, rn) fulfills the flow
inequalities (4.20) when n is large enough. By Theorem 3.2, the problems (An, cn, rn) are
direct fitting problems when n is large enough. This proves statement (i). We define Bn,∗

to be the limit matrix of the direct fitting problem (An, cn, rn). Due to Theorem 3.3 it
holds

inf
x∈S(un)

I (x |A+ sn) = I (Bn,∗ |An) . (4.25)

For n being large enough, the sequence (un) is in a neighborhood of 0. Therefore, we
conclude

I (Bn,∗ |An) n→∞−→ I (B∗ |A) . (4.26)

VI. This part is similar to part (iii) of Theorem 2.4 and therefore a bit skimped. Because
of cn+

n→∞−→ c+ <∞, there exists an integer N ∈ N and a constant K such that cn+ ≤ K
for all n ≥ N . Thus, the sequence (Bn,∗) stays within a compact set, Bn,∗ ∈ [0;K]k×l.
Hence, there exists a convergent subsequence (ηn) such that Bηn,∗ n→∞−→ B∗∗ ∈ M.
Applying Theorem 3.3, statement (4.26) and the lower semicontinuity of I-divergence
(Theorem 2.1 (i)) we get

inf
B∈M

I (B |A) = I (B∗ |A) = lim
n→∞

I (Bηn,∗ |Aηn) ≥ I (B∗∗ |A) . (4.27)

Consequently, it holds I (B∗ |A) = I (B∗∗ |A). The uniqueness of the I-projection
(Lemma 2.2 (iii)) yields B∗ = B∗∗. Thus, all accumulation points of the sequence (Bn,∗)
coincide and the sequence (Bn,∗) convergences to B∗.

Remark 4.3. Let (A, c, r) be a limit fitting problem with a positive input matrix A ∈ Rk×`>0
and limit matrix B∗. If the sequence ((An, cn, rn)) with An ∈ Rk×`>0 and cn+ = rn+ is
converging to (A, c, r), then Balinski and Demange [2, Corollary to Theorem 3] have
shown that the limit matrices Bn,∗ of the fitting problems (An, cn, rn) converge to B∗.
Since An, A ∈ Rk×`>0 imply strict flow inequalities (3.3), the triples (A, c, r) and (An, cn, rn)
are direct fitting problems for all n ∈ N. Hence, this case is included in Theorem 4.2.

When relaxing the restriction A ∈ Rk×`>0 to A ∈ Rk×`≥0 in the setting above, Balinski and
Demange [2, Theorem 3] have proven that the limit matrices Bn,∗ still converges to some
B̃∗ � A fulfilling the given marginals. However, they have left open whether B̃∗ equals
the limit matrix of the limit fitting problem (A, c, r). ♦
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5 Conclusion and perspectives
In this paper, we have proven that unique f-projections as defined by Liese and Vajda [14]
are continuous (Theorem 2.4). Applying the special case of I-projections to the analysis
of the IPF procedure, we have shown that for limit fitting problems (A, c, r) the limit
matrix continuously depends on the input matrix A (Theorem 3.5). When restricting to
direct fitting problems (A, c, r), we were able to allow variation in the input matrix as
well as in the given marginals c and r. Applying Rockafellar’s [17] results on generalized
convex programs we have proven that the limit matrix continuously depends on the input
(A, c, r) (Theorem 4.2).

However, several questions remain open. Can the assumption A ≈ An for all n ∈ N
in Theorem 4.2 be omitted? And is the assumption cn+ = rn+ necessary? In the more
general case of limit fitting problems, what happens when varying the marginals, that is
(A, cn, rn) n→∞−→ (A, c, r)? In the even more general case, when the fitting problem (A, c, r)
is not a limit fitting problem, the even-step IPF subsequence still converges (see Gietl and
Reffel [9, Theorem 5.3]). In this case, what happens with the sequence of even-step limit
points (Cn,∗) of the fitting problem (A, cn, rn) when (A, cn, rn) is converging to a non
limit fitting problem (A, c, r)? Numerical examples suggest that in any above mentioned
cases it holds B∗,n n→∞−→ B∗ respectively C∗,n n→∞−→ C∗. However, we do not see how our
proof extends in that direction, since either the set S(u) is not convex anymore or 0 is
not in the interior of the domain of the bifunction.
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