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Abstract

We introduce a smooth variation of Baas-Sullivan theory, yielding an in-
terpretation of singular homology and connective real K-theory by smooth
manifolds with additional structures on their boundaries, called singular
manifolds. This enables us to give a proof of the so-called Homology Theo-
rem (with 2 inverted) which in many cases reduces the existence question of
positive scalar curvature metrics on closed manifolds to the study of the sin-
gular homology resp. connective real K-theory of their fundamental groups.
Subsequently, we consider the question of positive scalar curvature on simply
connected singular manifolds and show existence theorems corresponding to
statements in the closed case. Within the scope of our treatment of non-
simply connected singular manifolds, we finally introduce the notion of a
positive homology class, and we show that the atoral classes of the singular
homology of an elementary Abelian p-group, p an odd prime, are positive.

vii





Chapter 1

Introduction

1.1 Survey on Positive Scalar Curvature

An important area of differential geometry is concerned with the curvature
of Riemannian manifolds. Curvature provides information about the local
geometry of manifolds. Fundamental curvature invariants are sectional cur-
vature, or equivalently, the Riemannian curvature tensor, Ricci curvature
and scalar curvature.

Let (M, g) denote a smooth Riemannian manifold. Among the three curva-
tures mentioned above, sectional curvature contains the most information.
Let v and w denote two linearly independent tangent vectors located at a
point p ∈ M . The sectional curvature associates to v and w the classical
Gauß curvature of the small surface S in M which is swept by shortest
curves, geodesics, emanating from p tangent to the plane spanned by v and
w. The Gauß curvature itself has in turn many characterizations. Up to
a factor it can be identified with the scalar curvature of S at p which we
will describe below. Sectional curvature makes strict demands on the ge-
ometry of the manifold. In the case of constant sectional curvature, it even
determines the metric g locally.

If one fixes a single tangent vector v at p, one can consider the average of
all sectional curvatures involving v. This yields the Ricci curvature in the
direction v. Geometrically, it measures the change of the volume element in
the direction v. Positive (negative) Ricci curvature in the direction v means
that the volume of a small conical region around v in M is smaller (larger)
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2 1 Introduction

than the volume of the corresponding Euclidean standard cone.

Finally, averaging over the Ricci curvatures of all tangent vectors at p, we
obtain the scalar curvature at p. It is the weakest, and from the algebraic
point of view simplest, curvature invariant. It is just a real valued function

scalg : M → R

which is defined, rephrasing the above said, as the twofold contraction of
the Riemannian curvature tensor. An intuitive geometric interpretation can
be given by comparing the volume of a small geodesic ball of radius r in
the manifold, Vg(Br(p)), with the corresponding standard volume of an Eu-
clidean ball, Vstd(Br(0)). More precisely, if the dimension of M is n, then
there is an expansion

Vg(Br(p))

Vstd(Br(0))
= 1−

scalg(p)

6(n+ 2)
· r2 + · · ·

(see e.g. [Gra73, Theorem 3.1]). In particular, positive scalar curvature at
p means that the volume of a sufficiently small ball in M centered at p is
smaller than its Euclidean counterpart. This holds vice versa for negative
scalar curvature.

For the remainder of this section M shall denote a smooth closed manifold.
One poses the following question. Under which algebraic- resp. differential-
topological conditions does M admit a metric g such that scalg is of a
particular form. Problems concerning scalg are analytic by nature; namely,
scalg involves the derivatives of g up to the second order. An answer of
the foregoing question must therefore lead to connections between analytic,
continuous considerations and, typically discrete, topological invariants.

For manifolds of dimension two a prototypal answer in this direction is
given by the classical Gauß-Bonnet Theorem. If χ(S) denotes the Euler
characteristic of an oriented surface S equipped with a metric g, then the
Gauß-Bonnet formula reads

∫

S
scalg = 4πχ(S).

For a given surface it is easy to compute its Euler characteristic. For the
sphere S2, the torus T 2 and the connected sum Γk of k tori, one has χ(S2) =
2, χ(T 2) = 0 and χ(Γk) = 2 − 2k. We conclude, for example, that S2 does
not admit a metric of non-positive scalar curvature. Further information
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could be obtained together with the Uniformization Theorem telling us that
any surface admits a metric of constant scalar curvature. Let us note that in
dimension two sectional, Ricci and scalar curvature coincide, up to a factor.

We now consider manifolds of arbitrary dimensions. The two dimensional
case vaguely suggests that one divides manifolds into the three following
classes:

1. Manifolds admitting metrics whose scalar curvatures are non-negative
and not identically 0.

2. Manifolds admitting metrics of vanishing scalar curvature which do
not lie in Class 1.

3. Manifolds which do not lie in Classes 1 or 2.

This separation is explained by the following theorem. As usual, let C∞(M)
denote the set of all smooth functions on M . We set C∞

− (M) for the subset
of C∞(M) containing functions which are negative at least at one point. In
addition, the subset of C∞(M) of all functions occurring as scalar curvature
functions at all is denoted by SC(M). Kazdan and Warner (see [KW75a,
KW75b, KW75c]) proved to following remarkable

Trichotomy Theorem. Let M be a connected manifold of dimension
greater or equal than three.

1. If M lies in Class 1, then SC(M) = C∞(M).

2. If M lies in Class 2, then SC(M) = C∞
− (M) ∪ {0}.

3. If M lies in Class 3, then SC(M) = C∞
− .

We note in particular that all manifolds of dimension greater or equal than
three admit metrics of negative scalar curvature. This was already proved
by Aubin [Aub70].

According to the Trichotomy Theorem, the question of whether a given
manifold M lies in Class 1 or not is equivalent to the concise

Question 1.1.1. Does M admit a positive scalar curvature metric or not?

This problem is addressed in the sequel. We will not go into the remaining
problem of whether M lies in Class 2 or not. Results of Futaki [Fut93]
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and Dessai [Des01] indicate that manifolds in Class 2, so-called strongly
scalar-flat manifolds, seem to be quite special.

A lot of work has been done towards Question 1.1.1. It turns out that
bordism theory is an important approach to this problem. Bordism theory
is concerned with the question of whether for two given closed manifolds M
and N there exists a compact manifold W such that the boundary of W
coincides with the disjoint union of M and N .

On the one hand, the relationship between the existence of positive scalar
curvatures metrics and bordism theory is established by the Surgery Lemma,
which was proved by Gromov-Lawson [GL80] and, independently, by
Schoen-Yau [SY79]. It says that under mild conditions the existence of
a positive scalar curvature metric is invariant under bordism. On the other
hand, a certain characteristic number α(M), which is also invariant under
(spin) bordism, yields an obstruction against positive scalar curvature met-
rics (see [Lic63, Hit74]). In this regard, the key observation is that according
to the Atiyah-Singer index theorem, α(M) can be interpreted as the index of
the Dirac operator which in turn is related to the scalar curvature function
via the Weizenböck formula. This relationship is explained in more detail
in Subsection 4.3.1.

The connection to bordism theory is very useful since via the Thom-
Pontrjagin construction (see [Tho54]), bordism theory paves the way to
stable homotopy theory, a branch where considerable tools of computation
are available. Taken to an extreme, instead of having to solve complicated
problems about partial differential equations or relations on manifolds, one
can perform easy, or at least easier, algebraic computations in stable homo-
topy theory.

With respect to Question 1.1.1 the fundamental group of M plays an essen-
tial role. Manifolds with ‘small’ fundamental groups rather admit positive
scalar curvature metrics than manifolds with ‘big’ fundamental groups. In
order to give an overview of the answers of Question 1.1.1, let us first assume
that the manifold in question is simply connected.

Due to the classification of surfaces, a simply connected manifold of dimen-
sion two is necessarily diffeomorphic to S2, it therefore admits a positive
scalar curvature metric. In fact, ‘round’ spheres of dimensions greater or
equal than two are just the basic example spaces of positive (scalar) cur-
vature. Much less trivial than in the two dimensional case, the Poincaré
conjecture, proved by Perelman, implies that a simply connected manifold
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of dimension three is also diffeomorphic to the sphere.

A comprehensive answer of the question which, even simply connected, four
dimensional manifolds admit positive scalar curvature metrics is not known.
Perhaps the main problem is that the Surgery Lemma rather rarely applies.
In addition, there are obstructions against positive scalar curvature metrics,
Seiberg-Witten invariants, which only occur in dimension four.

In dimension greater or equal than five, the crucial observation is that
we now are in a situation where surgery techniques from the so-called s-
cobordism theorem are available. That often makes the Surgery Lemma
applicable. We have the following

Theorem 1.1.2. Let M be a closed simply connected manifold of dimension
greater or equal than five, then the following hold:

1. If M admits a spin structure, then M admits a positive scalar curva-
ture metric if and only if α(M) vanishes.

2. If M does not admit a spin structure, then M admits a positive scalar
curvature metric.

Theorem 1.1.2 completely answers Question 1.1.1 for simply connected man-
ifolds of dimension greater or equal than five. Its proof excellently demon-
strates the role of bordism theory in this context. Gromov and Lawson
showed that the topological demands placed onM make the Surgery Lemma
applicable (see [GL80]). This means that in case M is spin resp. oriented
bordant to a manifold which admits a positive scalar curvature metric, then
the same holds for M .

In the non-spin case, according to classical works on bordism theory, one
knows explicit generators of the oriented bordism groups (see [Tho54],
[Tho59, Mil60] for the torsion free part, see [Wal60, And66] for the tor-
sion part). It is not difficult to construct positive scalar curvature metrics
on these manifolds (see again [GL80]).

For the spin case, we noted above that the α-invariant yields an obstruction
against positive scalar curvature metrics. It therefore remains to prove that
a spin manifold M with vanishing α-invariant is spin bordant to a manifold
admitting a positive scalar curvature metric. At odd primes this can be
deduced from results in [Miy85]. Although explicit generators of the spin
bordism groups at the prime 2 are not known, the task at hand is solved in
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the notable work [Sto92]. Stolz translated the question into a stable homo-
topy theoretic problem which is then solved by using the Adams spectral
sequence.

For the sake of completeness, we note that both points of Theorem 1.1.2 are
true in dimension two and three (see above) but wrong in dimension four
(see [Weh03, Proposition 5.13]).

Now let us consider manifolds which are not necessarily simply connected.
In contrast to the simply connected case, we do not have a complete an-
swer of Question 1.1.1, in the fashion of Theorem 1.1.2. A comprehensive
result can be found in [RS94, Theorem 3.3]. Loco cit. it is discussed how
one can combine the Surgery Lemma with methods from the proof of the
s-cobordism theorem to obtain the Bordism Theorem. To formulate the lat-
ter, let us consider the bordism groups ΩG∗ (X) of a space X. An element
[N, g] ∈ ΩGn (X) is a bordism class of continuous maps g : N → X where
N is a smooth closed manifold of dimension n equipped with a tangential
structure G. We are interested in spin structures (G = Spin) and ordinary
orientations (G = SO). Let us set

+ΩGn (X) =
{
[N, g] ∈ ΩGn (X) |N admits a positive scalar curvature metric

}
.

In ΩGn (X) addition is given by the disjoint union of manifolds and taking
inverses by reversing the spin structure resp. orientation. Hence +ΩGn (X) in
fact becomes a subgroup of ΩGn (X).

Bordism Theorem. Let M be a closed connected manifold of dimension
n greater or equal than five with fundamental group π. Furthermore, let Bπ
be the classifying space of π, and let f : M → Bπ be the classifying map of
the universal cover of M , then the following hold:

1. If M admits a spin structure, then M admits a positive scalar curva-
ture metric if and only if [M, f ] ∈ +ΩSpinn (Bπ).

2. If M is orientable and totally non-spin, i.e. its universal cover does
not admit a spin structure, then M admits a positive scalar curvature
metric if and only if [M, f ] ∈ +ΩSOn (Bπ).

There is a corresponding statement for non-spin manifolds whose universal
covers do admit spin structures as well as for manifolds not being orientable
(see [Sto, Definition 2.6], [RS94, p. 249]).
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Note that the Bordism Theorem is not as conclusive as Theorem 1.1.2.
Although it reduces the question of positive scalar curvature to the study of
certain bordism groups, we cannot yet restrict ourselves to the computation
of characteristic numbers. To show that a given manifoldM with classifying
map f admits a positive scalar curvature metric, one is faced with the task
of constructing manifolds of positive scalar curvature in the bordism class
of [M, f ]. In addition, the Bordism Theorem does not yield obstructions
against positive scalar curvature metrics.

It is desirable to pass from the bordism groups of Bπ to simpler groups
which are easier to compute. Let H∗(X) denote the singular homology of
X with integer coefficients. There is a map

U : ΩSOn (X) → Hn(X)

sending an element [M, f ] to the image of the fundamental class [M ] ∈
Hn(M) under the induced map of f in homology. One has a corresponding
map in the spin case, the Atiyah-Bott-Shapiro orientation (see [ABS64])

A : ΩSpinn (X) → kon(X)

where kon(X) denotes the connective real K-theory of X. We note that the
Atiyah-Bott-Shapiro orientation evaluated at a point coincides with the α-
invariant. One sets ko+n (X) = imA|+ΩSpin

n (X)
and H+

n (X) = imU |+ΩSO
n (X).

Theorem 4.11 in [RS01] states:

Homology Theorem. Under the same assumptions as in the Bordism The-
orem, the following hold:

1. If M admits a spin structure, then M admits a positive scalar curva-
ture metric if and only if A[M, f ] ∈ ko+n (Bπ).

2. If M is orientable and totally non-spin, then M admits a positive
scalar curvature metric if and only if U [M, f ] ∈ H+

n (Bπ).

The advantage of the Homology Theorem is that ko∗(Bπ) and H∗(Bπ) are
much smaller than the corresponding bordism groups. For example, it is not
difficult to see that lens spaces, discrete quotients of spheres, generate the
homology of BZk. Since curvature is a local property, lens spaces inherit
positive scalar curvature metrics from the covering spheres, in dimensions
greater than one. We may conclude that all orientable, totally non-spin
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manifolds of dimension greater or equal than five with fundamental group
Zk admit positive scalar curvature metrics.

As explained more precisely in the next section, a complete proof of the
Homology Theorem has not appeared in the literature so far. The present
thesis will provide missing details.

There is, once again, a refinement of the Homology Theorem. Rosenberg
introduced a more general Dirac operator which takes account the funda-
mental group of the manifold. The corresponding index now takes values in
KO∗(C

∗(π)), the real K-theory of the C∗-algebra of π. It can be interpreted
as the composition

αR : Ω
Spin
∗ (Bπ)

A
−→ ko∗(Bπ)

per
−−→ KO∗(Bπ)

A
−→ KO∗(C

∗(π))

(see [Ros86]) where per denotes the periodization map from connective
to periodic real K-theory and A the assembly map (see again [Ros86]).
The Gromov-Lawson-Rosenberg Conjecture claims that M admits a posi-
tive scalar curvature metric if and only if αR[M, f ] = 0. Rosenberg proved
that αR defines an obstruction against positive scalar curvature metrics.
The vanishing of αR[M, f ] is in general, however, not sufficient for the ex-
istence of a positive scalar curvature metric on M . In [Sch98] Schick gave
a corresponding counterexample by using the minimal hypersurface method
(see [SY79]), the only known tool (in dimensions greater or equal than five)
to disprove the existence of positive scalar curvature metrics, when index-
theoretic obstructions vanish. Nevertheless, the GLR Conjecture could be
verified for several fundamental groups (for an overview, see e.g. [Sto95]).
We note that the minimal hypersurface method applies only in cases where
the fundamental groups are infinite. Therefore no counterexamples to the
GLR Conjecture with finite fundamental groups are known.

The most far reaching general result about the existence of positive scalar
curvature metrics on spin manifolds of dimension greater or equal than five
is presented by Stolz in [Sto02, Theorem 3.10]. Under the assumption of
the injectivity of the Baum-Connes map (see [BCH94]), Stolz sketched the
proof of the stable Gromov-Lawson-Rosenberg Conjecture, which takes into
account the periodic nature of the indices involved. Let B denote an ar-
bitrary closed spin manifold of dimension eight such that α(B) is a gen-
erator of ko8 ∼= Z (such a B with trivial fundamental group is typically
called Bott-manifold). One can show that the Bott periodicity isomorphism

KOn(Bπ)
∼=
−→ KOn+8(Bπ) is given by multiplication with B.
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Stable GLR Conjecture. Assume that the Baum-Connes map for π is
injective. If αR[M, f ] vanishes, then the product of M with sufficiently many
copies of B admits a positive scalar curvature metric.

Let KO+
n (Bπ) denote the image of ⊕k≥0ko

+
n+8k(Bπ) under the periodiza-

tion map. By periodicity, we may consider KO+
n (Bπ) as a subgroup of

KOn(Bπ). Stolz confirmed the stable conjecture by showing that the kernel
of A lies in KO+

n (Bπ), under the assumption placed on π. We note that
there exist elements in the kernel of the periodization map which are not
representable by manifolds of positive scalar curvature (see [DSS03]).

The Gromov-Lawson(-Rosenberg) Conjecture for orientable, totally non-
spin manifolds claims that all those manifolds of dimension greater or equal
than five admit positive scalar curvature metrics. Again, this is wrong in
general. By using the minimal hypersurface method, one can show, for ex-
ample, that the orientable, totally non-spin manifolds T 6 ♯ (S2 × CP2) and
T 8 ♯CP4 do not admit positive scalar curvature metrics. Let us note that a
corresponding stable conjecture is trivially true because B is oriented bor-
dant to a manifold of positive scalar curvature.

If one tries to verify the conjecture for a given group π, one must study
how much of H∗(Bπ) is exhausted by H+

∗ (Bπ). For example, if π is an
elementary Abelian p-group for some prime p, one can show that U [M, f ]
lies in H+

∗ (Bπ) provided that U [M, f ] is atoral (see [BR02, Theorem 5.8]).
In Chapter 5 we will prove a more general version of this statement for p
odd.

Further information about the positive scalar curvature question can be
found in the (survey) papers [RS94, Sto95, RS01, Sto02, Ros07].

1.2 Overview and Main Results

This thesis is concerned with the existence question of positive scalar curva-
ture metrics on closed and, more generally, singular manifolds. Our treat-
ment of this question involves a smooth variation of Baas-Sullivan theory,
which is potentially of independent interest and is presented in Chapter
2. Among other things, classical Baas-Sullivan theory provides a geometric
description of singular homology by manifolds with singularities. A brief
survey on this subject is given in Section 2.1.
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Let P be a family of smooth closed manifolds. In Section 2.2 we introduce
a homology theory P∗( ) which we call the bordism spanned by P. Let
X be an arbitrary space. Elements in P∗(X) are represented by smooth
closed manifolds, which are built up using the elements of P, together with
specified maps to X. These representatives are called P-manifolds in X.

In Section 2.3 we then define a related theory ΩP
∗ ( ), called singular P-

bordism. An element in ΩP
∗ (X) is represented by a map from a smooth

compact manifold toX whose restriction to the boundary is a P-manifold in
X. The label singular P-bordism is suitable since ΩP

∗ ( ) is in fact a smooth
version of the homology theory introduced by Baas in [Baa73], which goes
by the name of bordism with singularities. We call the representatives of
elements in ΩP

n (X) singular P-manifolds in X.

Let Ω∗( ) denote ordinary bordism theory. Elements of Ω∗(X) are rep-
resented by continuous maps from smooth closed manifolds to X. The
relationship of these homology theories is best expressed by the so-called
generalized Bockstein exact sequence

· · · → Pn(X)
ι
−→ Ωn(X)

π
−→ ΩP

n (X)
∂
−→ Pn−1(X) → · · · (1.2.1)

where ι associates to a P-manifold its underlying smooth closed manifold,
π interprets a closed as a singular P-manifold (the defining condition is
empty), and ∂ denotes the obvious boundary map.

In Section 2.4 we show that the map ι is injective on coefficients, provided
that P is a regular sequence. As a consequence, we can determine the
coefficients P∗ and ΩP

∗ in our cases of interest.

We finally show in Section 2.5 that there exist families Pu resp. Pα of
oriented resp. spin manifolds such that, after inverting 2, the singular Pu-
resp. Pα-bordism can be identified with singular homology resp. connective
real K-theory.

We note that our treatment of P∗( ) and ΩP
∗ ( ) is self-contained and can be

considered as an alternative approach to Baas-Sullivan theory.

Chapter 3 is concerned with general existence questions of positive scalar
curvature metrics on closed manifolds. In Section 3.1 we recall consequences
of the Surgery Lemma, these include the Bordism Theorem mentioned
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above. We give a proof of the Bordism Theorem, correcting a minor mistake
in [RS95, Proof of Theorem 1.5].

It turns out that in order to deduce the Homology Theorem from the Bor-
dism Theorem, one has to show that the elements in the kernels of the
orientation maps

A : ΩSpinn (Bπ) → kon(Bπ) and U : ΩSOn (Bπ) → Hn(Bπ)

could be represented by manifolds of positive scalar curvature. This can be
shown by proving it localized at 2, i.e. after tensoring the groups involved
with Z(2) =

{
a
b ∈ Q | b prime to 2

}
and after inverting 2, i.e. after tensoring

the groups involved with Z
[
1
2

]
.

1. kerA⊗Z(2) ⊂
+ΩSpin∗ (Bπ)⊗Z(2) is proved by Stolz by means of split-

ting results of MSpin-module spectra (see [Sto94]) relying on compu-
tations in [Sto92]).

2. kerU ⊗ Z(2) ⊂ +ΩSO∗ (Bπ) ⊗ Z(2) can be deduced from the Atiyah-
Hirzebruch spectral sequence (sketched in [RS01]).

After inverting 2 it is mentioned in [RS01] that there is a proof by Rainer
Jung [Jun], for both the spin and the oriented case, based on Baas-Sullivan
theory. To the best of our knowledge, experts in this field agree that Jung’s
proof is probably correct. However, this proof is not available to the public
(and in fact unknown to us). Hence one cannot verify its details, it is unclear
how much technical effort is needed and generalizations or modifications
cannot be carried out. One matter of our thesis is to fill this gap in the
literature.

We show that with 2 inverted the transformations A and U coincide with the
map π in the Bockstein exact sequence (1.2.1) - under the identifications of
singular Pα- resp. Pu-bordism with connective realK-theory resp. singular
homology, obtained at the end of Chapter 2. This implies that the elements
in the kernel of A resp. U are representable by Pα- resp. Pu-manifolds.

The crucial statement for our proof of the Homology Theorem, which is
shown in Section 3.2, is

Theorem 1.2.1. Let P denote a locally finite family of closed manifolds
admitting positive scalar curvature metrics. Then a P-manifold, considered
as a smooth manifold with additional structure, also admits a positive scalar
curvature metric.
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It turns out that the families Pu and Pα can be chosen to consist of
manifolds admitting positive scalar curvature metrics. This completes the
proof of the Homology Theorem.

In Chapter 4 we address the question of positive scalar curvature on simply
connected singular Pu- and Pα-manifolds. Our aim is to show under which
conditions the particular positive scalar curvature metrics on the boundaries
of these manifolds, constructed in the proof of Theorem 1.2.1, extend to posi-
tive scalar curvature metrics on the whole manifolds. In this case we speak
of positive scalar curvature metrics on singular Pu- and Pα-manifolds.

In Section 4.1 we show that after having fixed positive scalar curvature
metrics on the elements of some family of closed manifolds P, the afore-
mentioned particular positive scalar curvature metrics on P-manifolds are
canonical with respect to the bordism relation in P∗( ).

Afterwards, in Section 4.2, we are able to prove an analogue of Gromov and
Lawson’ Theorem on simply connected non-spin manifolds (see Theorem
1.1.2 above) for singular Pu-manifolds.

Theorem 1.2.2. Let M be a simply connected singular Pu-manifold of
dimension greater or equal than five which does not admit a spin structure.
Then M admits a positive scalar curvature metric.

In Section 4.3 we turn to the spin case. There is an obvious index theoretic
obstruction

αPα

: ΩPα

∗ → ko∗

against positive scalar curvature metrics on singular Pα-manifolds. Al-
though we could not show (or refute) that the kernel of αPα

is generated by
singular Pα-manifolds of positive scalar curvature (the analogue for closed
manifolds is true, see Theorem 1.1.2 above), we do have the following, more
restrictive statement which treats the case of a single singularity.

Theorem 1.2.3. Let R ∈ Pα and let M denote a simply connected singu-
lar R-manifold of dimension greater or equal than five. Then M admits a
positive scalar curvature metric if and only if αR(M) vanishes.

The question of positive scalar curvature on singular spin manifolds is also
treated in [Bot01], from a slightly different point of view. We show that
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under certain assumptions a sufficient obstruction to the existence of positive
scalar curvature metrics, defined loc. cit., always vanishes.

Chapter 5 is based on joint work with Bernhard Hanke. We consider the
question of positive scalar curvature on non-simply connected singular man-
ifolds. In Section 5.1 we introduce our notion of a positive homology class.
Singular Pu-manifolds represent elements in H∗(X). A homology class will
be called positive if it is representable by a singular Pu-manifold of positive
scalar curvature, and the subgroup of positive homology classes is denoted
by H⊕

∗ (X). That is, we enlarge the groups H+
∗ (X) by adding classes which

are not representable by closed manifolds but by singular Pu-manifolds of
positive scalar curvature. The benefit of our broader definition of positivity
becomes apparent by our success in proving the following theorem.

Let p denote an odd prime. For an elementary Abelian p-group of rank
r ≥ 1, i.e. Zrp = Zp × · · · × Zp, r factors, we show in Section 5.2

Theorem 1.2.4. The atoral classes of H∗(BZrp) are positive, i.e.

Hatoral

∗ (BZrp) ⊂ H⊕
∗ (BZrp).

Here atoral classes are defined as a complement to the elements of H∗(BZrp)
which are represented by sums of tori (see Definition 5.1.4).

To indicate the advantage of our notion of positivity, we note that the proof
of Theorem 1.2.4 uses the Künneth formula for singular homology. If one
tries to prove a similar statement involving H+

∗ (BZrp), one will be faced with
the more complicated Künneth formula for oriented bordism (see [BR02,
Theorem 5.8]).

Our notion of positive homology enables us to draw conclusions for the
question of positive scalar curvature on closed manifolds. It turns out that in
the Homology Theorem, H+

∗ (Bπ) can be replaced by H⊕
∗ (Bπ). We therefore

obtain the following

Corollary 1.2.5. Let M be a closed connected orientable totally non-spin
manifold of dimension greater or equal than five with fundamental group Zrp,
and let f : M → BZrp be the classifying map of the universal cover of M .

Then M admits a positive scalar curvature metric if f∗[M ] ∈ Hatoral
∗ (BZrp).
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This was proved before by Botvinnik-Rosenberg in [BR02, Theorem 5.8].

We believe that our notion of positive homology, and its analogue for the
spin case, positive connective real K-theory, are suitable to prove further
existence theorems concerning positive scalar curvature metrics.

The proof of the Homology Theorem (with 2 inverted), which is carried
out in Chapter 2 and Section 3.2, has been accepted for publication in
Mathematische Zeitschrift (see [Füh]).
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Chapter 2

A Smooth Variation of

Baas-Sullivan Theory

2.1 Introduction

Baas-Sullivan theory is located at the intersection of geometric and algebraic
topology. In the latter one associates algebraic objects to topological spaces,
and these objects should be invariant under deformations of the spaces in-
volved. Perhaps the most basic invariant is the singular homology H∗(X)
of a space X. In case X is a CW-complex, it is quite easy to determine.
Namely, using cellular homology, it turns out that one merely has to count
the cells of X according to their dimensions and compute the mapping de-
grees of the attaching maps. In spite of their simplicity, singular homology is
a powerful tool in, most notably, homotopy theoretic problems, for example
if one wants to determine whether two spaces are homotopy equivalent or
not.

An algebraic invariant with a more geometric flavor is the oriented bordism
ΩSO∗ (X). An element of ΩSO∗ (X) consists of an equivalence class of pairs
[M, f ] where M is a smooth closed oriented manifold and f : M → X is
a continuous map. The pair (M, f) is called an oriented manifold in X1.
Let (M, f) and (N, g) denote two oriented manifolds in X. They are called
equivalent or bordant if there exists a compact oriented manifold W , an ori-

1We note that in the present paper the term singular manifold in X is reserved for
objects introduced in Section 2.3.

15
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entation preserving diffeomorphism φ : M ∪̇ (−N) → ∂W and a continuous
map h : W → X such that h ◦ φ = f ∪ g. Connor (see [Con79, p. 11-13])
showed that oriented bordism shares formal properties of singular homol-
ogy, i.e. he verified the so-called Eilenberg-Steenrod axioms. In contrast to
singular homology, bordism does not satisfy the dimension axiom, which
makes bordism groups more difficult to compute than singular homology
groups. As mentioned in the introduction, bordism groups apply in Rie-
mannian geometry. They play an important role in the theory of positive
scalar curvature metrics.

How can one relate ΩSOn (X) to Hn(X)? The first step is to construct a
fundamental class [M ] ∈ Hn(M). For this take an arbitrary triangulation
of M . Then the sum of the coherent oriented simplices defines the desired
class. In this way one obtains the orientation map

U : ΩSOn (X) → Hn(X), [M, f ] 7→ f∗[M ].

Much work has been devoted to the study of U . An overly naive desire would
be to think that U is an isomorphism. Namely, the singular homology of a
point is concentrated in the zeroth degree, but there exist in general non-
trivial elements in ΩSOn for n > 0; there are manifolds that are not the
boundary of another manifold, for example the complex projective space
CP2. More surprisingly, it turns out that U is not even surjective. According
to [Tho54] (see e.g. also [Rud98, Theorem 7.35]), there exists an element in
H7(K(Z3, 7)) which does not lie in the image of U , here K(Z3, 7) is an
Eilenberg-MacLane space.

In his work on the Hauptvermutung (see [Sul67], [Sul96]), Sullivan intro-
duced objects, called polyhedra, in order to represent homology classes by
such polyhedra. Let P denote a closed oriented manifold. A polyhedron of
singularity type P is a space of the form

M ∪∂M (CP ×B)

where B is a closed oriented manifold, M is a compact oriented manifold
with boundary ∂M = −P × B, and CP is the cone over P . Sullivan sug-
gested to consider a homology theory where polyhedra should play the role
of closed manifolds.

Baas successfully accomplished this idea in [Baa73]. Let S = (P1, P2, . . .)
denote a sequence of closed manifolds. Baas introduced a bordism theory of
manifolds with singularity type S, denoted by MG(S)∗( ), where G refers
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to some kind of tangential structure. Baas proved that MG(S)∗( ) defines
a homology theory, i.e. he verified that MG(S)∗( ) satisfies the Eilenberg-
Steenrod axioms. In the case of unitary bordism, and S a sequence of
generators of ΩU∗ , he computed MU(S)0 = Z and MU(S)n = 0 for n 6= 0.
One can show (see e.g. [Hat02, Theorem 4.59]) that if the coefficients of a
homology theory are concentrated in the zeroth degree, then the theory is
uniquely determined by them. This implies that MU(S)∗( ) coincides with
singular homology, with integer coefficients.

Apart from a geometric description of singular homology, Baas-Sullivan the-
ory, and hence its smooth variation carried out below, allows interpretations
and constructions of various more theories, like Johnson-Wilson theories (see
[JW73]), Morava K-theories (see [JW75]) or elliptic homology (see [Tho99]).
Baas-Sullivan theory also provides a geometric description of connective real
K-theory (after inverting two), which we will obtain as a byproduct in Sec-
tion 2.5.

Another characterization of the homology theory MG(S)∗( ) can be ob-
tained by removing neighborhoods of the singularities. This description is
explained by Botvinnik (see [Bot92, Chapter 1]). Elements in the resulting
homology theory are now represented by manifolds with corners, which carry
specified structures on their boundaries. Let us call this theory MGS∗ ( ). In
the next section but one we will give a smooth variation of MGS∗ ( ). Ele-
ments in our theory will be represented by smooth manifolds right away.

Also in [Bot92, Chapter 1] the homology theory which is related to MGS∗ ( )
via the generalized Bockstein exact sequence (1.2.1) is introduced and dis-
cussed. Our smooth description of this related theory is denoted by P∗( ).
We find it convenient to begin our constructions with P∗( ).

2.2 The Bordism Spanned by P

We start with some preliminary remarks. Recall that in bordism theory
one typically considers manifolds equipped with some kind of tangential
structure G. By a tangential structure G one understands a sequence of
compatible fibrations over the classifying spaces BO(n). Such fibrations
are usually induced by a sequence of compatible group homomorphisms
G(n) → O(n). For example, in the next chapters we are interested in
ordinary orientation, G(n) = SO(n) and spin structures, G(n) = Spin(n).
Until the end of Section 2.4 we fix a tangential structure G, and we assume
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that every manifold is equipped with G which means that a sequence of
classifying maps of normal bundles, being induced by an embedding of the
manifold in Euclidean space, can be lifted compatibly to the BG(n)’s (see
e.g. [Swi02, Chapter 12]). In addition, we assume that all diffeomorphisms
between manifolds preserve these G-structures.

Let Hn
i = {(x1, . . . , xn) ∈ Rn |xi ≥ 0} denote the i-th upper half space. As

usual, a smooth n-dimensional manifold M with boundary is modeled on
Hn
n.

We call subsets N1, . . . , Nk of M a transverse family of submanifolds if for
all 1 ≤ i1 < · · · < il ≤ k around every point in Ni1 ∩ · · · ∩Nil there exists a
chart ψ : U → Hn

n of M and an injective map s : {1, . . . , l} → {1, . . . , n− 1}
such that

ψ(U ∩Nij ) = ψ(U) ∩Hn
s(j)

simultaneously for all 1 ≤ j ≤ l.

Let M and N denote smooth manifolds and let A ⊂M be a subset. A map
f : A→ N is called smooth if f is the restriction of a smooth map M → N .

Now let P = (P1, P2, . . . , Pk) be a finite family of smooth closed manifolds.
For I ⊂ {1, . . . , k} we set PI =

∏
i∈I Pi.

Definition 2.2.1. An n-dimensional P-manifold consists of a tuple
(M, (Ai)1≤i≤k, (BI , φI)I⊂{1,...,k}) such that

• M is a smooth n-dimensional manifold,

• A1, . . . , Ak is a transverse family of smooth n-dimensional submani-
folds, closed as subsets, such that the interiors of Ai cover M ,

• for all I ⊂ {1, . . . , k}, BI is a subset of some smooth manifold CI and
φI is a map AI = ∩i∈IAi → PI × CI which is a diffeomorphism onto
PI ×BI ,

• for all J ⊂ I the map

φJ ◦ φ−1
I : PJ × PI−J ×BI = PI ×BI → PJ ×BJ

is of the form (x, y) 7→ (x, φIJ(y)) where x ∈ PJ , y ∈ PI−J × BI and
φIJ : PI−J ×BI →֒ BJ is some map.
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We assume that Hn
n always denotes the model space of the ambient manifold

M . Let us call Ai ⊂M the Pi-part of a P-manifold M . If all Bj are empty
except Bi, we call M a Pi-manifold.

Definition 2.2.2. Let X be a space and A ⊂ X. An n-dimensional P-
manifold in (X,A) is a tuple (M, f, (Ai)1≤i≤k, (BI , φI)I⊂{1,...,k}, (fi)1≤i≤k)
such that

• the tupel (M, (Ai)1≤i≤k, (BI , φI)I⊂{1,...,k}) is a compact n-dimensional
P-manifold,

• f : (M,∂M) → (X,A) and fi : Bi → X are continuous maps such that
the diagram

Ai
f

//

φi
��

X

Pi ×Bi
prBi

// Bi

fi

OO

commutes for all i.

In the sequel we fix a family P = (P1, P2, . . . , Pk) of smooth closed manifolds
and write (M, f,Ai, BI , φI , fi), (M, f,Ai) or (M, f) short for a P-manifold
in (X,A).

Definition 2.2.3. An n-dimensional P-manifold (M, f,Ai, BI , φI , fi) in
(X,A) is said to P-bord if there exists a tuple (M̂, f̂ , Âi, B̂I , φ̂I , f̂i) such
that

• (M̂, Âi, B̂I , φ̂I) is a smooth compact (n+1)-dimensional P-manifold,

• M ⊂ ∂M̂ and Âi ∩M = Ai for all i; moreover, each

φ̂i ◦ φ
−1
i : Pi ×Bi → Pi × B̂i

is of the form (x, y) 7→ (x, ωi(y)) for some map ωi,

• f̂ : M̂ → X and f̂i : B̂i → X are continuous maps such that f̂(∂M̂ −
M) ⊂ A, f̂ |M = f and the diagram

Âi
f̂

//

φ̂i
��

X

Pi × B̂i
pr

B̂i
// B̂i

f̂i

OO

commutes for all i.
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We call (M̂, f̂ , Âi, B̂I , φ̂I , f̂i), (M̂, f̂ , Âi) or (M̂, f̂) a zero P-bordism for
(M, f).

One then proceeds as in ordinary bordism homology. The disjoint union of
two P-manifolds in (X,A) is again a P-manifold in (X,A). We say that two
P-manifolds (M, f) and (N, g) in (X,A) are P-bordant if (M, f) ∪̇ (−N, g)
P-bords.

Lemma 2.2.4. P-bordism defines an equivalence relation.

Proof. Let (M, f,Ai, BI , φI , fi) be a P-manifold in (X,A). For the proof
of reflexivity we consider

(M × [0, 1], f ◦ prM , Ai × [0, 1], BI × [0, 1], φI × id, fi ◦ prBi
). (2.2.1)

By ‘straightening the angle’ [Con79, p. 8], M × [0, 1] can be given a differen-
tiable structure. By doing so, A1× [0, 1], . . . , Ak× [0, 1] becomes a transverse
family of submanifolds. There is an induced straightening of BI for all I,
and thus (2.2.1) becomes a P-bordism between (M, f) and itself.

The symmetry relation is obvious.

To prove transitivity, let (M, f) and (N, g) resp. (N, g) and (O, h) be P-
bordant n-dimensional P-manifolds in (X,A), say via (V, F,Ai, BI , φI , fi)
resp. (W,G,Ci, DI , ψI , gi). Because of transversality, one finds charts of V
around AI ∩ ∂V and of W around CI ∩ ∂W in which the respective inner
boundaries ∂Ai − ∂V and ∂Ci − ∂W of the Pi-parts lie on a common ∂Hn+1

j ,
for some j ≤ n depending on i. Hence, for all i we can glue Ai and Ci along
(Ai∩∂V )|N ∼= (Ci∩∂W )|N such that A1∪C1, . . . , Ak∪Ck becomes a family of
smooth manifolds. The definitions of the smooth structures involve choices
of collar neighborhoods of Ai∩∂V and Ci∩∂W . Since collar neighborhoods
are unique up to isotopy, the smooth structures on the overlaps of Ai ∪ Ci
and Aj ∪ Cj coincide, for all i, j. We therefore obtain an induced smooth
structure on V ∪ W , and A1 ∪ C1, . . . , Ak ∪ Ck is a transverse family of
submanifolds. Let the Pi-part of N be diffeomorphic to Pi × Ei. By means
of point two of Definition 2.2.3, one recovers Ei as a submanifold of Bi and
Di. Thus, for all i we can also glue Bi and Di along Ei. One obtains an
induced gluing of BI and DI for all I. Now the desired P-bordism between
(M, f) and (O, h) is given by

(V ∪W,F ∪G,Ai ∪ Ci, BI ∪DI , φI ∪ ψI , fi ∪ gi).
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Denote by Pn(X,A) the set of all P-bordism classes of n-dimensional P-
manifolds in (X,A). Via the disjoint union it becomes an Abelian group
with zero element the P-bordism class which P-bords. A map g : (X,A) →
(Y,B) induces a group homomorphism Pn(X,A) → Pn(Y,B) by [M, f ] 7→
[M, g ◦ f ]. If (M, f) is a P-manifold in (X,A), then the boundary of M
becomes a P-manifold in A by restriction. It is denoted by ∂(M, f). We
then have an induced map ∂ : Pn(X,A) → Pn−1(A) defined by [M, f ] 7→
[∂(M, f)].

Proposition 2.2.5. The bordism spanned by P

P∗(X,A) =
⊕

n≥0

Pn(X,A)

is a homology theory.

Proof. We have to show that P∗(X,A) satisfies the Eilenberg-Steenrod ax-
ioms. One proceeds in the same way as in the case of ordinary bordism
homology (see [Con79, p. 11-13]) and additionally takes the local product
structures into account. As expected, the proof of the excision property
requires the most work.

Obviously, P∗( ) is a functor from the category of pairs of topological spaces
(with continuous maps as morphisms) to the category of Abelian groups. It
remains to show:

Homotopy axiom. Let g and h : (X,A) → (Y,B) be homotopic maps,
and let H : (X,A)× [0, 1] → (Y,B) be a homotopy between g and h. Then
g∗ = h∗ : Pn(X,A) → Pn(Y,B).

Let (M, f,Ai, BI , φI , fi) be a P-manifold in (X,A). We define

G : M × [0, 1] → Y, (x, t) 7→ H(f(x), t).

By straightening the angle, M × [0, 1] can be equipped with the structure of
a P-manifold. Then

(M × [0, 1], G,Ai × [0, 1], BI × [0, 1], φI × id, H ◦ (fi × id))

becomes a P-bordism between (M, g ◦ f) and (M,h ◦ f).

Exactness axiom. Let i : A →֒ X and j : (X, ∅) →֒ (X,A) denote the
inclusions, then the sequence

· · ·
∂
−→ Pn(A)

i∗−→ Pn(X)
j∗
−→ Pn(X,A)

∂
−→ Pn−1(A)

i∗−→ · · ·



22 2 A Smooth Variation of Baas-Sullivan Theory

is exact.

It is clear that ∂ ◦ j∗ = 0 and i∗ ◦ ∂ = 0. Let [M, f ] ∈ Pn(A). A zero
P-bordism for (M, j ◦ i ◦ f) is given by (M × [0, 1], j ◦ i ◦ f ◦ prM ), hence
j∗ ◦ i∗ = 0.

Let [M, f,Ai, BI , φI , fi] ∈ Pn(X,A) be in the kernel of ∂. Then ∂(M, f)
bords in A, i.e. there exists a zero P-bordism (W, g,Ci, DI , ψI , gi) for
∂(M,F ) in A. As in the proof of transitivity in Lemma 2.2.4, we can glue Ai
and Ci along Ai∩∂M ∼= Ci∩∂W , for all i, to obtain a closed P-manifold N
and a map (f ∪ g) : N → X. Now (N × [0, 1], (f ∪ g) ◦ prN ) is a P-bordism
between (N, j ◦ (f ∪ g)) and (M, f) in (X,A). The cases ker j∗ ⊂ im i∗ and
ker i∗ ⊂ im ∂ are obvious.

Excision axiom. Let U be an open subset of X such that U ⊂ Å, then
the inclusion i : (X − U,A− U) →֒ (X,A) induces an isomorphism

i∗ : Pn(X − U,A− U)
∼=
−→ Pn(X,A).

We first show that i∗ is epic: Let (M, f,Ai, BI , φI , fi) be a P-manifold
in (X,A). We are looking for a smooth submanifold N ⊂ M such that
f−1(X − A) ⊂ N and f−1(U) ∩ N = ∅. In addition, N should respect
the local product structures in the sense that φI(AI ∩ N) = PI × CI for
some CI ⊂ BI . It then follows that N inherits a P-structure of M by
restricting the Ai’s and the φI ’s to N . Now (N,F |N ) defines an element in
Pn(X − U,A− U), and

(M × [0, 1], f ◦ prM , Ai × [0, 1], BI × [0, 1], φI × id, fi ◦ prBi
)

is a P-bordism between (N, i ◦ f |N ) and (M, f) in (X,A).

The construction of N requires a preliminary observation. Until the end of
this proof, we shall denote the ‘inner’ boundary ∂Ai − ∂M by δAi, likewise
for comparable sets. If δAi × [0, 1] is a collar neighborhood for δAi ⊂ Ai,
say δAi × {0} = δAi, we set

Ati = Ai − (δAi × [0, t))

for all 0 ≤ t ≤ 1 (see Figure 2.1). One now observes that for all i there exist
collar neighborhoods δAi × [0, 1] such that for any two arbitrary sequences
of numbers 0 ≤ t1, . . . , tk ≤ 1 and 0 ≤ t′1, . . . , t

′
k ≤ 1

(
M, f,Atii

)
and

(
M, f,A

t′i
i

)
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become P-bordant P-manifolds in (X,A), by suitable restrictions.

Let us turn to the construction of N . We set Q = f−1(X − Å) and R =
f−1
I (U). One can show (see [Con79, Lemma 3.1]) that there exists an n-
dimensional submanifold N0 ⊂ M , closed as a subset, such that Q ⊂ N0

and R ∩N0 = ∅. Of course, N0 does not have to respect the local product
structures. Therefore we shall modify N0 as follows. Set

B′
i = prBi

(φi (N0 ∩Ai))

and consider the saturation of the Pi-fibers

N1 =
k⋃

i=1


 ⋃

b∈B′
i

φ−1
i (Pi × {b})


 .

Due to the condition ∩i∈IAi ∼= PI ×BI , the set N1 respects the local prod-
uct structures. In addition, as f locally factors over BI , one concludes
f(N0) = f(N1). Now N1 is the union of manifolds modeled on H1 ∩ H2.
The non-smooth points of N1 only occur on C1 := ∪ki=1 δAi. With respect
to the metric induced by the collar neighborhoods, let U1 be an open 1/k-
neighborhood of C1. One finds a smooth submanifold N ′

1 ⊂ M such that
N ′

1 − U1 = N1 − U1. In view of continuity, N ′
1 can be chosen such that fur-

thermore Q ⊂ N ′
1 and R ∩N ′

1 = ∅. Note that N ′
1 respects the local product

structures except on U1.

We now replace Ai by A
1/k
i for all i and repeat the above procedure. The

saturations of the Pi-fibers with respect to the A
1/k
i ’s yield an N2 ⊂ M .

One merely has to perform this saturation step on U1. Again, non-smooth

points only appear on ∪ki=1δA
1/k
i . Hence the non-smooth points of N2 occur

on an open 1/k-neighborhood U2 of

C2 : = C1 ∩

(
k⋃

i=1

δA
1/k
i

)

=
⋃

1≤i,j≤k

(
δAi ∩ δA

1/k
j

)
.

In a similar way as above, we find a smooth submanifold N ′
2 ⊂ M which

satisfies N ′
2 − U2 = N2 − U2 and Q ⊂ N ′

2, R ∩N ′
2 = ∅.

Proceeding in this fashion k − 2 more times, in each step replacing A
t/k
i by

A
(t+1)/k
i , we obtain a smooth submanifold N ′

k ⊂M which satisfies the local
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C1 C2

U1 U2 C3 = ∅ and U3 = ∅

δAi δAj δA
1/k
i δA

1/k
j δA

2/k
i δA

2/k
j

Figure 2.1: Saturation and missing product structures after smoothing

product structures except on an open 1/k-neighborhood Uk of

Ck :=
⋃

1≤i1,...,ik≤k

(
δAi1 ∩ δA

1/k
i2

∩ · · · ∩ δA
(k−1)/k
ik

)
.

But now Ck is empty. In fact, on the one hand, for 1 ≤ i1, . . . , ik ≤ k pairwise

disjoint, the interiors of Ai1 , A
1/k
i2
, . . . , A

(k−1)/k
ik

cover M . This implies that,

for example δAi1 lies in the interior of A
1/k
i2

∪ · · · ∪ A
(k−1)/k
ik

. On the other

hand, if an index ij occurs twice, one has δA
s/k
ij

∩ δA
t/k
ij

= ∅ because then

necessarily s 6= t. One concludes that Ck = ∅, and thus we may take N ′
k to

be N (see Figure 2.1).

Similarly one sees that i∗ is monic: Let (M, f) be an n-dimensional P-
manifold in (X − U,A − U) and i∗[M, f ] = 0. Then there exists a zero
P-bordism (W, g) for (M, i ◦ f) in (X,A). As above we can find an (n+1)-
dimensional submanifold N which respects the local product structures, and
for which we have g(N)∩U = ∅ and g−1(X−Å) ⊂ N . It follows that (N, g|N )
is a zero P-bordism for (M, f) in (X − U,A− U).

2.3 Singular P-Bordism

Once and for all we assume that P0 denotes a point. Let P = (P1, . . . , Pk)
be a finite family of smooth closed manifolds and P0 = P ∪ {P0}.
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Definition 2.3.1. An n-dimensional singular P-manifold is a smooth
manifoldM such that ∂M is an (n−1)-dimensional P0-manifold. A singular
P-manifold M is called closed if the P0-subset of ∂M is empty.

In the sequel let M be a singular P-manifold and

∂M =
(
∂M, (Ai)0≤i≤k, (BI , φI)I⊂{0,...,k}

)
.

Definition 2.3.2. Let X be a space and A ⊂ X. An n-dimensional singular
P-manifold in (X,A) is a pair (M, f) whereM is a singular P-manifold and
f : (M,A0) → (X,A) is a continuous map such that f |∂M is a P0-manifold
in X.

Definition 2.3.3. An n-dimensional singular P-manifold (M, f) in (X,A)
is said to singular P-bord if

• there exists a zero P0-bordism (N, g, (Ci)0≤i≤k) for (∂M, f |∂M ) in X
such that g(C0) ⊂ A,

• there exists an ordinary zero bordism (W,h) for the closed manifold
(M, f) ∪∂M=∂N (−N, g) in X.

Such a zero singular P-bordism is denoted by (N, g,W, h).

The disjoint union of two singular P-manifolds in (X,A) is again a singular
P-manifold. We say that two singular P-manifolds (M, f) and (N, g) in
(X,A) are singular P-bordant if (M, f) ∪̇ (−N, g) singular P-bords.

Lemma 2.3.4. Singular P-bordism defines an equivalence relation.

Proof. To prove reflexivity, let (M, f) be a singular P-manifold in (X,A).
As in the proof of Lemma 2.2.4, (∂M× [0, 1], f |∂M ◦pr∂M ) can be considered
as a P0-bordism between (∂M, f |∂M ) and itself. Then, after straightening
the angle, (∂M × [0, 1], f |∂M ◦ pr∂M ,M × [0, 1], f ◦ prM ) is a singular P-
bordism between (M, f) and itself.

The symmetry relation is obvious.

To prove transitivity, let (M, f) and (N, g) resp. (N, g) and (O, h) be sin-
gular P-bordant singular P-manifolds in (X,A), say via (V, v,W,w) resp.
(X,x, Y, y). Again, as in the proof of Lemma 2.2.4, we can glue the singu-
lar P0-bordisms (V, v) and (X,x) to obtain a P0-bordism (V ∪ X, v ∪ x)
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between (∂M, f |∂M ) and (∂O, h|∂O). Furthermore, gluing (W,w) and (Y, y)
along (N, g) yields, after straightening the angle, a zero bordism for

(M, f) ∪ (V ∪X, v ∪ x) ∪ (O, h).

We denote by ΩP
n (X,A) the set of all singular P-bordism classes of n-

dimensional singular P-manifolds in (X,A). Via the disjoint union it be-
comes an Abelian group with zero element the singular P-bordism class
which singular P-bords. A map g : (X,A) → (Y,B) induces a group homo-
morphism ΩP

n (X,A) → ΩP
n (Y,B) by [M, f ] 7→ [M, g ◦ f ].

In order to define a boundary map ΩP
n (X,A) → ΩP

n−1(A, ∅), we first prove
the following

Lemma 2.3.5. Consider a P0-manifold

(
N, (Aj)0≤j≤k, (BI , φI)I⊂{0,...,k}

)
,

and let 0 ≤ i ≤ k and R = P0 − {Pi}.

Then ∂Bi inherits the structure of an R-manifold.

Proof. Let I ⊂ {1, . . . , î, . . . , k}. There are manifolds CI ⊂ B{i}∪I such that

φ{i}∪I(∂Ai ∩AI) = Pi × PI × CI .

We then have an inclusion φ
{i}∪I
i : PI ×CI →֒ ∂Bi (see point four of Defini-

tion 2.2.1), and we observe that

⋃

j 6=i

φ
{i,j}
i (Pj × Cj) = ∂Bi.

The induced R-structure on ∂Bi is now defined by setting


∂Bi,

(
φ
{i,j}
i (Pj × Cj)

)
j 6=i

,

(
CI ,

(
φ
{i}∪I
i

)−1
∣∣∣∣
imφ

{i}∪I

i

)

I⊂{1,...,̂i,...,k}


 .
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Let (M, f) be a singular P-manifold in (X,A) with P0-manifold (∂M,Ai).
The lemma above shows that ∂A0

∼= ∂B0 inherits the structure of a P-
manifold. This implies that (∂A0, f |∂A0) becomes a P-manifold in A and,
hence, (A0, f |A0) becomes a singular P-manifold in A. It is denoted by
∂̃(M, f). The boundary map ∂̃ : ΩP

n (X,A) → ΩP
n−1(A) is then defined by

[M, f ] 7→ [∂̃(M, f)].

Proposition 2.3.6. Singular P-bordism

ΩP
∗ (X,A) =

⊕

n≥0

ΩP
n (X,A)

is a homology theory.

The homology theory ΩP
∗ ( ) is a smooth description of MG(P)∗( ), the

homology theory which was introduced in [Baa73].

Proof. The homotopy and exactness axiom could be verified using the meth-
ods of Proposition 2.2.5 and Lemma 2.3.4.

To prove the excision axiom, we may use Proposition 2.3.7 below which
relates the bordism spanned by P and singular P-bordism by means of the
long exact sequence mentioned in the introduction. Omitting the ‘G’, let
Ω∗(X,A) denote the ordinary bordism groups of manifolds equipped with
the tangential structure G. We consider the map, induced by the inclusion
(X − U,A− U) →֒ (X,A), between exact sequences

· · ·
δ
// Pn(X − U,A− U)

ι
//

∼=
��

Ωn(X − U,A− U)
π
//

∼=
��

ΩP
n (X − U,A− U)

δ
//

i∗
��

· · ·

· · ·
δ

// Pn(X,A)
ι

// Ωn(X,A)
π

// ΩP
n (X,A)

δ
// · · · .

We have the indicated isomorphisms since P∗( ) and Ω∗( ) satisfy the exci-
sion axiom. It now follows from the five lemma that also i∗ is an isomor-
phism.

Let us reveal the relationship between the bordism spanned by P on the one
hand and singular P-bordism on the other. We have the following three
natural transformation. First there is a map

ι : Pn(X,A) → Ωn(X,A),
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defined by forgetting the P-structure. Next we may interpret a manifold
(M,∂M) in (X,A) as a singular P-manifold in (X,A) by setting A0 = ∂M .
Hence one obtains a map

π : Ωn(X,A) → ΩP
n (X,A).

Furthermore, there is a boundary map

δ : ΩP
n (X,A) → Pn−1(X,A), [M, f ] 7→

[
∂M − Å0, f |∂M−Å0

]
,

where Å0 is understood with respect to A0 ⊂ ∂M .

Proposition 2.3.7. The sequence

· · · → Pn(X,A)
ι
−→ Ωn(X,A)

π
−→ ΩP

n (X,A)
δ
−→ Pn−1(X,A) → · · ·

is exact. It is called the generalized Bockstein exact sequence.

Proof. Although it is proved using a straightforward gluing procedure, we
shall give a detailed proof of Proposition 2.3.7. As noted above, the verifi-
cation of the excision property for singular P-bordism relies on it. For the
sake of convenience, we will omit signs.

• π ◦ ι = 0: Let (M, f) be a P-manifold in (X,A). Its structure as a
singular P-manifold is given by A0 = ∂M . After straightening the
angle, ∂(M × [0, 1]) = (∂M × [0, 1]) ∪ (M × {0, 1}) becomes a smooth
closed manifold. On (∂M×[0, 1])∪(M×{1}) we define a P0-structure
as follows: For 1 ≤ i ≤ k we may extend the given Pi-parts onM×{1}
a bit to (∂M × [0, 1]) ∪ (M × {1}). More precisely, we first choose an
outer collar neighborhood ∂M × [0, ǫ] of M × {1} in ∂(M × [0, 1]). If
Ai denotes the Pi-part ofM , we get an induced Pi-part Ãi of ∂M . We
then take

((
Ãi × [0, ǫ]

)
∪Ai∩∂M Ai

)
⊂ ∂(M × [0, 1])

as the Pi-part of ∂(M×[0, 1]). Its P0-part is ∂M×[0, 1]. One concludes
that

((∂M × [0, 1]) ∪ (M × {1}), (f |∂M ◦ pr∂M ) ∪ f,M × [0, 1], f ◦ prM ))

is a zero singular P-bordism for (M × {0}, f).
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• δ ◦ π = 0: Let (M, f) be a manifold in (X,A). Then its structure as
a singular P-manifold is given by A0 = ∂M . This implies Å0 = ∂M ,
hence (δ ◦ π)[M, f ] = 0.

• ι ◦ δ = 0: Let (M, f) be a singular P-manifold in (X,A). Then
(∂M, f |∂M ) is a zero bordism for (∂M − Å0, f |∂M−Å0

) as f(Å0) ⊂ A.

• kerπ ⊂ im ι: Let [M, f ] ∈ kerπ. Then there exists a zero singular
P-bordism (N, g,W, h) for (M, f), regarded as a singular P-manifold
in (X,A). Let A0 denote the P0-part of the P0-manifold N . Now
(N − Å0, g|N−Å0

) is a smooth P-manifold in (X,A). In addition,

(W,h) is a bordism between (M, f) and (N − Å0, g|N−Å0
) in (X,A) as

∂W − (M ∪ (N − Å0)) = Å0 and h(Å0) ⊂ A.

• ker ι ⊂ im δ: Let [M, f ] ∈ ker ι. Then there exists a zero bordism
(W,h) for (M, f), regarded as an ordinary manifold in (X,A). Now
(W,h) can be considered as a singular P-manifold in (X,A) if we
define a P0-structure on ∂W as follows. As above, we may extend
the given P-structure on M a bit to ∂W . This yields Pi-parts on ∂W
for 1 ≤ i ≤ k. As the P0-part we take A0 = ∂W − M̊ . Then one has
δ[W, g] = [M, f ].

• ker δ ⊂ imπ: Let [M, f ] ∈ ker δ. Then there exists a zero P-bordism
(N, g) for (∂M − Å0, f |∂M−Å0

), where A0 denotes the P0-part of ∂M .

We glue (M, f) and (N, g) along ∂M − Å0 and obtain (M ∪N, f ∪ g),
a smooth manifold with boundary in (X,A). We want to show that
π[M ∪N, f ∪ g] = [M, f ].

Consider

W = ∂ ((M ∪N)× [0, 1])−
((
M̊ × {0}

)
∪
((

˚M ∪N
)
× {1}

))
.

After straightening the angle, this becomes a smooth manifold which
we equip with a P0-structure as follows: For 1 ≤ i ≤ k let us extend
the given Pi-parts on N × {0} and ∂M × {0} a bit to W , and take
∂(M ∪N)× [0, 1] as P0-part. Then

(W, (f ∪ g) ◦ prM∪N |W , (M ∪N)× [0, 1], (f ∪ g) ◦ prM∪N )

is a singular P-bordism between (M×{0}, f) and ((M ∪N)×{1}, f ∪
g), bearing in mind that the latter singular P-structure is given by
taking ∂(M ∪N) as the P0-part (see Figure 2.2).
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M × {0}

Extended Pi-part

of N × {0} and
∂M × {0}

M × {1}

N × {1}

Straightened

(M ∪N)× [0, 1]

Figure 2.2: A singular P-bordism

For later use, we note the following variant of the generalized Bockstein
exact sequence. Let Q denote a closed manifold of dimension l, and let
M denote a closed singular (P ∪ {Q})-manifold in X whose Q-part of its
boundary is Q × B. By Lemma 2.3.5, we see that B becomes a closed
singular P-manifold in X, denoted by δQM . Now the sequence

· · · → ΩP
n (X)

×Q
−−→ ΩP

n+l(X)
π
−→ Ω

P∪{Q}
n+l (X)

δQ
−→ ΩP

n−1(X) → · · · (2.3.1)

is exact (see also [Baa73, Theorem 3.2]).

Remark 2.3.8. According to Brown’s representability theorem, the homology
theories P∗( ), Ω∗( ) resp. ΩP

∗ ( ) are associated to spectra P, MG resp.
MGP . In addition, ι : P∗( ) → Ω∗( ) and π : Ω∗( ) → ΩP

∗ ( ) correspond
to spectrum maps ι : P → MG and π : MG → MGP . It seems to be a
reasonable aim to show that

P
ι
−→MG

π
−→MGP

is homotopic to a cofiber sequence. This can be proved under certain as-
sumptions. In general one is faced with lim1-problems (see [Baa73, p. 297-
299] for a similar discussion), which we do not want to address. However,
by the methods of Section 2.5, one could show that in the situations treated
in the next chapters, we in fact encounter cofiber sequences.

Let us finally note that everything mentioned so far immediately generalizes
to possibly infinite families P. In fact, we denote the family of all finite
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subsets of P by F. The bordism spanned by F ∈ F is denoted by F∗( ).
By taking inclusions, F becomes a directed set, and thus we can form the
direct limit

P∗( ) = lim
F∈F

F∗( ).

Since the direct limit preserves exactness, P∗( ) is again a homology theory.
The same obviously works for singular P-bordism. After these general con-
structions, we turn in the next section to the computation of the coefficients
P∗ and ΩP

∗ .

2.4 Computation of Coefficients

From now on we will assume that the Cartesian product of manifolds
(equipped with a tangential structure G) induces a ring structure on Ω∗.
It is apparent that this holds for oriented and spin bordism. In addition, for
the remainder of this section we fix a regular sequence P = (P1, P2, . . .) of
closed manifolds. This means by definition that

Ω∗/ ([P1], . . . , [Pi−1])
×[Pi]
−−−→ Ω∗/ ([P1], . . . , [Pi−1]) (2.4.1)

is injective for all i ≥ 1, where ([P1], . . . , [Pi−1]) denotes the ideal generated
by [P1], . . . , [Pi−1]. One can show (see [CW11, Proposition 2.7.1.]) that in
our situation any permutation of P1, P2, . . . is again a regular sequence.

Recall the natural transformation of homology theories ι∗ : P∗( ) → Ω∗( )
defined by forgetting the P-structure. The following proposition is the
crucial step in determining the coefficients.

Proposition 2.4.1. The map ι∗ : P∗ → Ω∗ is injective.

Proof. Let Rk denote the family of all subsets of P consisting of k elements.
For R ∈ Rk we have the bordism spanned by R, denoted by R∗( ), and the
forgetful map ιR∗ : R∗( ) → Ω∗( ). We shall prove the following statement
by induction on k from which Proposition 2.4.1 follows immediately:

Let R ∈ Rk, then ι
R
∗ : R∗ → Ω∗ is injective.

For the initial step we consider R ∈ R1. In this case a closed R-manifold
M is diffeomorphic to Pl × Bl for {Pl} = R. If ιR∗ [M ] = 0 then [Bl] = 0 in
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Ω∗, because [Pl] is not a zero divisor. Hence Bl = ∂W for some manifold
W . Now the Pl-manifold Pl ×W establishes a zero R-bordism for M .

We next turn to the induction step. Assume that ιS∗ : S∗ → Ω∗ is injective
for all S ∈ Rk−1. Let R = {Pi1 , . . . , Pik} ∈ Rk and let

(
M, (Aij )1≤j≤k, (BI , φI)I⊂{i1,...,ik}

)

be a closed R-manifold. One has to show that [M ] = 0 in R∗ if ιR∗ [M ] = 0.
Our strategy will be to apply surgery to the submanifolds ∂Aij ⊂ M in
order to obtain an R-bordism between M and some R-manifold consisting
of a disjoint union of Pij -manifolds. Afterwards, an almost purely algebraic
consideration yields the claim.

For all 1 ≤ j ≤ k we have diffeomorphisms

φij : ∂Aij → Pij × ∂Bij .

The induction hypothesis becomes applicable by means of Lemma 2.3.5.
Namely, if S = R − {Pij}, i.e. S ∈ Rk−1, then ∂Bij inherits the structure
of an S -manifold.

In the first surgery step we consider ∂Ai1 . Since [Pi1 ] is not a zero divisor,
[∂Bi1 ] vanishes in Ω∗. Hence, by the induction hypothesis, ∂Bi1 is zero
S -bordant with S = R − {Pi1}, i.e. there exists an S -manifold (N,Ci)
with ∂N = ∂Bi1 . By abuse of notation, we shall use the indices {1, . . . , k}
instead of {i1 . . . , ik} from now on. Fix bicollar neighborhoods ∂Ai× [−1, 1]
of ∂Ai ⊂M , say ∂Ai×{−1} ⊂ Ai, such that (∂Ai× [−1, 1])∩Aj is a bicollar
neighborhood for (∂Ai) ∩Aj in Aj for all j.

We now attach P1 ×N × [−1, 1] to M × [0, 1] by identifying

(x, y, 1) ∈ (∂A1 × [−1, 1]× [0, 1]) ⊂ (M × [0, 1]) with

(φ1(x), y) ∈ (P1 × ∂N)× [−1, 1]

to obtain a manifold W , admitting a tangential structure G which restricts
on M ×{0} ⊂ ∂W to the given one on M . It is well-known that the corners
of W can be smoothened in a canonical way.

Let us equip W with the structure of an R-manifold (see Figure 2.3). On
M × [0, 1] we simply set A′

i = Ai × [0, 1]. On P1 × N × [−1, 1] we define
A′′

1 = P1 ×N × [−1, 0] and, for i > 1, A′′
i = P1 × Ci × [−1, 1]. We now take

Âi = A′
i ∪ A

′′
i as the Pi-part of W for all i. Note that this R-structure on

W induces the given one on M × {0}.
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M>1

M1

A1Ai

Â1Âi M × [0, 1]

P1 ×N

Âi ∩ Â1

Figure 2.3: R-structure of W

By construction, W is an R-bordism between M and the disjoint union of

• M1 := A1 ∪ (P1 ×N) glued along φ1(∂A1) = ∂(P1 ×N),

• M>1 := (M−Å1)∪(P1×N) glued along φ1(∂(M−Å1)) = ∂(P1×N).

The trace of the bordism induces an R-structure on M>1 with an empty
P1-part. A priori, W induces an R-structure on M1 with non-empty Pi-
parts for all i ≥ 1. However, M1 is completely covered by the P1-part
P1 × (B1 ∪ N). The following lemma shows that we can ignore redundant
subsets Ai, more precisely:

Lemma 2.4.2. Let (M, (Ai)1≤i≤k) denote a closed R-manifold, and let 1 ≤
j ≤ k and M = ∪ki=1,i 6=jAi.

Then (M, (Ai)1≤i≤k) is R-bordant to (M, (A′
i)1≤i≤k) where A

′
i = Ai for i 6= j

and A′
j = ∅.

Proof. Let Aj be diffeomorphic to Pj × Bj . Choose a collar neighborhood
∂Bj×[−1, 0], say ∂Bj×{0} = ∂Bj , such that for the induced collar neighbor-
hood ∂Aj× [−1, 0] it is true that (∂Aj× [−1, 0])∩Ai is a collar neighborhood
for (∂Aj) ∩Ai in Ai for all i. Let γ : [−1, 0] → [−1, 0]× [0, 0,5] be a smooth
injective convex curve with γ(t) = (t, 0,5) for t < −0,9 and γ(t) = (0,−t)
for t > −0,1. We now define the desired R-bordism (see Figure 2.4) by

M × [0, 1] =
k⋃

i=1

Ai,
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M without Pj-part

Aj

M

Aj

Figure 2.4: Redundant Aj-part

where we set Ai = Ai × [0, 1] for i 6= j and Aj equal to




(x, s) ∈ Aj × [0, 1] | s ≤





0,5 if x ∈ Aj − (∂Aj × [−1, 0])

γ(t)2 if x = (y, t) ∈ ∂Aj × [−1, 0)

max
{t | γ(t)1=0}

γ(t)2 if x ∈ ∂Aj × {0}




.

Applying this statement (k − 1)-times to M1, it follows that M1 becomes
a P1-manifold. As noted above, any permutation of P1, P2, . . . , Pk is again
a regular sequence. We can therefore repeat the above surgery procedure
applied to the R-manifoldM>1. This yields an R-bordism betweenM>1 on
the one hand and a P2-manifold M2 resp. an R-manifold M>2 with empty
P1- and P2-parts on the other. In this fashion we obtain an R-bordism
between M and a disjoint union

(P1 ×Q1) ∪̇ · · · ∪̇ (Pk ×Qk) (2.4.2)

where each Pi ×Qi is as a R-manifold a Pi-manifold.

To complete the induction step, we have to show that if ιR∗ [M ] = 0 in Ω∗

then [M ] = 0 in R∗. In Ω∗ we observe the following: Since M is zero
bordant, it follows that for all 1 ≤ j ≤ k

∑

i

[Pi ×Qi] = 0 mod ([P1], . . . , [P̂j ], . . . , [Pk]),
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hence [Pj×Qj ] ∈ ([P1], . . . , [P̂j ], . . . , [Pk]). Regularity then implies that [Qj ]

lies in ([P1], . . . , [P̂j ], . . . , [Pk]). It follows that for all 1 ≤ s, t ≤ k there exists
a closed manifold Qst such that M is bordant to

∑
s,t P{s,t}×Qst. Next, for

all 1 ≤ j, l ≤ k we consider
∑

s,t

[P{s,t} ×Qst] = 0 mod ([P1], . . . , [P̂j ], . . . , [P̂l], . . . , [Pk]),

and conclude [P{s,t} × Qst] ∈ ([P1], . . . , [P̂j ], . . . , [P̂l], . . . , [Pk]) for {s, t} =

{j, l}. Again, by regularity one has [Qst] ∈ ([P1], . . . , [P̂j ], . . . , [P̂l], . . . , [Pk]).
Proceeding in this fashion, we find a closed manifold Q such that M is
bordant to P1 × · · · × Pk ×Q.

We now take into account the Pi-factors in (2.4.2). It follows from the above
procedure that there exist closed manifolds Ri such that M is R-bordant to

(P1 × · · · × Pk ×R1) ∪̇ · · · ∪̇ (P1 × · · · × Pk ×Rk), (2.4.3)

where P1×· · ·×Pk×R1 denotes the P1-manifold P1×· · ·×Pk×R1 etc. It is
not difficult to see that the specification of the Pi’s in (2.4.3) is immaterial.
In fact, Pi × Pj is R-bordant to Pi × Pj via the R-bordism [0, 1]× Pi × Pj
with

[
0, 23
]
× Pi × Pj as the Pi-part and

[
1
3 , 1
]
× Pi × Pj as the Pj-part.

We conclude that M is R-bordant to, say, P1 × · · · × Pk × Q. Now, since
[P1 × · · · × Pk] is not a zero divisor, it follows that Q is zero bordant, i.e.
Q = ∂R for some R. The P1-manifold P1× · · ·×Pk×R is the required zero
R-bordism for M . This finishes the proof of the induction step.

Remark 2.4.3. Generalizing the argument in the next-to-last paragraph, that
Pi×Pj is R-bordant to Pi×Pj , we conclude the following. Let P be a family
of closed manifolds (regularity is immaterial). Then there exists a natural
ring structure on P∗. Namely, let M = A1 ∪ · · · ∪An and N = A′

1 ∪ · · · ∪A′
n

denote two closed P-manifolds and define a P-structure on M × N as
follows: Set AMi = Ai × N for all i. The above argument ensures that
AM1 ∪ · · · ∪ AMn is P-bordant to AN1 ∪ · · · ∪ ANn , where ANi = M × A′

i.
However, we note that there is no unit map S0 → P.

2.5 Identification of Homology Theories

The aim of this section is to identify, after inverting two, singular homology
and connective real K-theory with appropriate singular bordism theories -
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compatible with the orientation maps. More precisely, we will find a se-
quence Pu of closed oriented manifolds and an equivalence Ψ: ΩPu

∗ ( ) →
H∗( ) such that

ΩSO∗ ( )
U

//

π
��

H∗( )

ΩPu

∗ ( )

Ψ

∼=
::✉

✉
✉

✉
✉

commutes. A corresponding result holds in the case of connective real K-
theory for a sequence Pα of closed spin manifolds. Of course, whenever we
talk about singular Pu- resp. Pα-bordism, we always mean oriented resp.
spin singular Pu resp. Pα-bordism.

Recall again that homology theories correspond to spectra and natural trans-
formations between homology theories correspond to maps between spectra.
In this way, the orientation maps can be obtained as follows. Let MSO
resp. MSpin denote the oriented resp. spin Thom spectrum. That is, MSO
resp.MSpin are built up by the Thom spaces of the universal oriented resp.
spin bundles.

One can choose compatible orientation classes in the integer cohomology of
the Thom spaces of the universal oriented bundles. This leads to a map
u : MSO → HZ, HZ denoting the integer Eilenberg-MacLane spectrum,
which corresponds to the orientation U : ΩSO∗ ( ) → H∗( ).

Likewise, in [ABS64] it is shown that vector bundles with a spin structure ad-
mit orientations with respect to realK-theory. This can be used to construct
a map MSpin → KO where KO denotes the real K-theory spectrum. Let
ko denote the connective cover of KO, i.e. koi vanishes for i < 0 and there
is a map per : ko → KO, called the periodization map, which induces iso-
morphisms on non-negative homotopy groups. Since MSpin also has trivial
negative homotopy groups, obstruction theory then implies that there exists
an induced map α : MSpin→ ko, corresponding to A : ΩSpin∗ ( ) → ko∗( ).

Let us start with the identification of singular homology. By results of
Averbuh [Ave59] and Milnor [Mil60], the oriented bordism ΩSO∗ contains no
odd torsion. Moreover, one can show (see [Nov60]) that ΩSO∗ modulo torsion
is a polynomial algebra. One finds closed oriented manifolds Q1, Q2, . . .,
dimQi = 4i, such that

ΩSO∗ /torsion ∼= Z[[Q1], [Q2], . . .] (2.5.1)

(see also [Sto68, p. 180]). For example, we may take complex projective
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spaces and so-called Milnor manifolds, hypersurfaces of degree (1, 1) in
CPn × CPm, as generators. Another list of generators - in analogy to the
spin case below - is given by total spaces of CP 2-bundles (see [Füh08]).

Since ΩSO∗ contains no odd torsion, we conclude

ΩSO∗ ⊗ Z
[
1
2

]
∼= Z

[
1
2

]
[[Q1], [Q2], . . .]. (2.5.2)

For the remainder of this section we consider all spectra and groups after
inverting 2.

We now set Pu = (Q1, Q2, . . .). In view of (2.5.2), Pu is a regular sequence.
Propositions 2.3.7 and 2.4.1 then imply that

ΩPu

∗ = ΩSO∗ /([Q1], [Q2], . . .),

and π∗ : Ω
SO
∗ → ΩPu

∗ is given by the obvious projection. That is, on coeffi-
cients, π can be identified with u. We have to show that this holds in general,
which can be verified by the identification of the corresponding spectra. Let
MSOPu

denote the spectrum associated to singular Pu-bordism.

Proposition 2.5.1. There is a homotopy equivalence Ψ: MSOPu ≃
−→ HZ

such that u ≃ Ψ ◦ π as maps MSO → HZ.

Proof. Let C denote the homotopy fiber of π : MSO → MSOPu
, and con-

sider the extension problem

C
ι

//MSO

π
��

u
// HZ.

MSOPu

99s
s

s
s

s

Since ΩSO1 and ΩPu

2 vanish, we conclude by using the long exact homotopy

sequence associated to C
ι
−→ MSO

π
−→ MSOPu

that also C1 vanishes. This
implies that H̃0(C) is trivial, and therefore the composition C

ι
−→ MSO

u
−→

HZ is null homotopic. By obstruction theory, it follows that there exists
a solution (even unique up to homotopy) Ψ: MSOPu

→ HZ. It is clear
that Ψ induces isomorphisms on homotopy groups. Hence, according to
Whitehead’s theorem, Ψ is a homotopy equivalence.

We turn to the identification of connective realK-theory. Since the inclusion
MSpin → MSO is a homotopy equivalence after inverting 2, there exist
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closed spin manifolds K,R2, R3, . . ., dimK = 4, dimRi = 4i, such that

ΩSpin∗
∼= Z

[
1
2

]
[[K], [R2], [R3], . . .].

By means of Bott periodicity, one can show that the coefficient ring of the
real periodic K-theory spectrum KO is given by

KO∗
∼= Z[η, ω, µ, µ−1]/(2η, η3, ηω, ω2 − 4µ),

where deg(η) = 1, deg(ω) = 4 and deg(µ) = 8 (see e.g. [LM89, p. 63 and
Chapter 3, § 10]). With 2 inverted this implies that KO∗

∼= Z
[
1
2

]
[ω, ω−1]

and ko∗ ∼= Z
[
1
2

]
[ω].

The Atiyah-Bott-Shapiro orientation α∗ : Ω
Spin
∗ → ko∗ is now given as fol-

lows. In [KS93, Section 4] it is shown that Ri can be chosen as the total
space of an HP 2-bundle, for all i ≥ 2. Moreover, these HP 2-bundles admit
positive scalar curvature metrics. By means of the index-theoretic interpre-
tation of α∗ (see Subsection 4.3.1), one concludes α∗[Ri] = 0 for all i ≥ 2. In
addition, K can be chosen to be a K3 surface of signature 16, which implies
that α∗ maps [K], properly oriented, to ω.

We now consider the regular sequence Pα = (R2, R3, . . .). Let MSpinPα

denote the spectrum associated to singular Pα-bordism. As above,
π : MSpin→MSpinPα

induces the natural projection

ΩSpin∗ → ΩSpin∗ /([R2], [R3], . . .)

= Z
[
1
2

]
[π∗[K]].

In other words, on coefficients, π can again be identified with α. The proof
of the corresponding proposition requires an additional argument, however.

Proposition 2.5.2. There is a homotopy equivalence Φ: MSpinPα ≃
−→ ko

such that α ≃ Φ ◦ π as maps MSpin→ ko.

Remark 2.5.3. At this point we recover a geometric description of ko∗( )
[
1
2

]
.

Proof of Proposition 2.5.2. The idea is that we can combine the isomor-
phism on the level of coefficients with the Conner-Floyd theorem to obtain
the desired spectrum map. A similar argument can be found in [Lan76,
p. 597]. In order to proceed in this way, one has to turn to periodic theories
first.

We shall start with a general remark. Let X be a ring spectrum and a ∈ X∗.
One can consider the ordinary ring theoretic localization X∗[a

−1]. This
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is a flat X∗-module, which implies that X∗( ) ⊗X∗ X∗[a
−1] is a homology

theory. The associated spectrum is denoted by X[a−1]. The natural map
loc∗ : X∗ → X∗[a

−1] induces a spectrum map loc : X → X[a−1]. It follows
that X[a−1] inherits the structure of an X-module spectrum.

Let us set k = π∗[K]. We now consider the MSpin-module spectrum
MSpinPα

[k−1], having the coefficients

MSpinPα

[k−1]∗ ∼= Z
[
1
2

]
[k, k−1].

It follows that there is a unique ΩSpin∗ -module isomorphism

φ : MSpinPα

[k−1]∗
∼=
−→ KO∗ (2.5.3)

such that
per∗ ◦ α∗ = φ ◦ loc∗ ◦ π∗ (2.5.4)

as maps ΩSpin∗ → KO∗.

In [HH92, Theorem 1] it is shown that the natural map

µ : ΩSpin∗ (X)⊗
ΩSpin

∗
KO∗ → KO∗(X),

induced by the MSpin-module structure of KO, is an isomorphism. Let
us note that after inverting 2, this statement is just the real Connor-Floyd
theorem (see [CF66]). Consider now

ΩSpin∗ (X)⊗
ΩSpin

∗
KO∗

id⊗φ−1

��

µ
// KO∗(X)

ΩSpin∗ (X)⊗
ΩSpin

∗
MSpinPα

[k−1]∗
η

//MSpinPα
[k−1]∗(X),

(2.5.5)

where η is induced by the MSpin-module structure of MSpinPα
[k−1]. It

follows that the natural transformation of homology theories

η ◦ (id⊗ φ−1) ◦ µ−1 : KO∗( ) →MSpinPα

[k−1]∗( )

is an equivalence. This implies that there exists a homotopy equivalence
KO ≃ MSpinPα

[k−1]. Since MSpinPα
is a connective spectrum and the

periodization map per : ko → KO induces isomorphisms on non-negative
homotopy groups, we conclude that the lifting problem

ko

��

MSpinPα
//

33❣❣❣❣❣❣❣❣❣❣❣❣❣❣

MSpinPα
[k−1]

≃
// KO



40 2 A Smooth Variation of Baas-Sullivan Theory

has a unique solution Φ: MSpinPα
→ ko (up to homotopy), which clearly

induces isomorphisms on homotopy groups. Note that the equality (2.5.4)
implies α ≃ Φ ◦ π as maps MSpin→ ko.

2.6 Concluding Remarks

Proposition 2.5.2 could also be proved from the index-theoretic point of view.
Namely, as indicated in Chapter 4, one can consider the Dirac operator on
singular Pα-manifolds in order to obtain a natural transformation

αPα

: ΩPα

∗ ( ) → ko∗( ),

which generalizes the corresponding index map for closed spin manifolds.
Then it is apparent that

ΩSpin∗ ( )
A

//

π
��

ko∗( )

ΩPα

∗ ( )

αP
α

::✉
✉

✉
✉

✉

commutes. In order to show that αPα
is an equivalence, we certainly need

the results of Section 2.4.

Let M̂SO resp. M̂Spin denote the homotopy fibers associated to the ori-
entation maps u : MSO → HZ resp. α : MSpin → ko. In a similar way as
above, we could find a geometric description of M̂SO resp. M̂Spin by Pu-
resp. Pα-manifolds, that is, Pu

∗ ( ) = M̂SO∗( ) and Pα
∗ ( ) = M̂Spin∗( ).



Chapter 3

Positive Scalar Curvature on

Closed Manifolds

3.1 The Surgery Lemma and its Implications

This chapter deals with the existence problem of positive scalar curvature
metrics on non-simply connected manifolds. As a preliminary point, and
in order to emphasize the importance of the Surgery Lemma, let us ask in
general which manifolds actually admit metrics of positive scalar curvature.

First, basic spaces in geometry naturally come equipped with positive scalar
curvature metrics, including ‘round’ spheres or projective spaces with the
Fubini-Study metric. More generally, symmetric spaces of compact type
carry metrics of positive scalar curvature.

With these standard examples at hand, new spaces of positive scalar cur-
vature can be constructed as follows. Scalar curvature behaves nicely with
respect to products. Namely, if g0 resp. g1 are metrics on M resp. N , then

scalg0×g1 = scalg0 + scalg1 .

In addition, for ǫ > 0 one has scalǫg = ǫ−1scalg. We conclude that if M and
N are compact, and N admits a positive scalar curvature metric, then so
does M × N . This observation can be generalized to ‘twisted’ products as
follows. Let F → E → B denote a fiber bundle of closed manifolds. If the
associated structure group acts by isometries on the fibers, and the fiber F
admits a metric of positive scalar curvature, then so does the total space E.

41



42 3 Positive Scalar Curvature on Closed Manifolds

This is a consequence of the O’Neill formulas (see e.g. [Bes87, Theorem 9.59
and Proposition 9.70d]).

We therefore see that based on certain standard spaces, there are several
manifolds admitting positive scalar curvature metrics. However, these ex-
amples of course cover only a small part of the wild world of manifolds.

The Surgery Lemma is now the crucial tool to construct positive scalar
curvature metrics on manifolds not having such a ‘symmetric flavor’. We
recall the basic surgery process. LetM be a closed manifold of dimension n,
and assume that φ : Sk ×Dn−k →֒M is an embedding. Then one considers

N :=
(
M − φ

(
Sk × D̊n−k

))
∪φ|

Sk×Sn−k−1

(
Dk+1 × Sn−k−1

)
.

One says that N is obtained from M by performing surgery in dimension
k, or equivalently, codimension n− k. This procedure clearly breaks diverse
kinds of symmetries of M . We note that the surgery process induces a
bordism between M and N .

Theorem 3.1.1 (Surgery Lemma, [GL80],[SY79]). Let M be closed mani-
fold which admits a positive scalar curvature metric. If a closed manifold N
is obtained from M by surgery in codimension greater or equal than three,
then also N admits a positive scalar curvature metric.

For example, if two closed manifolds of dimension greater or equal than three
both admit positive scalar curvature metrics, then so does their connected
sum.

The idea of the proof of the Surgery Lemma can be sketched as follows. Let
φ : Sk×Dn−k →֒M be the characteristic embedding of the surgery process.
Assume that Sn−k−1 × [0, ǫ) is a collar neighborhood for Sn−k−1 in Dn−k.
One now shows that the positive scalar curvature metric on φ(Sk×Sn−k−1×
[0, ǫ)), induced by M , can be extended to a positive scalar curvature metric
on Dk+1 × Sn−k−1, where φ(Sk × Sn−k−1 × [0, ǫ)) is considered as a collar
neighborhood of Sk×Sn−k−1 in Dk+1×Sn−k−1. We see that the assumption
placed on the codimension makes sense since it implies that Sn−k−1 admits
a positive scalar curvature metric.

A generalization of the Surgery Lemma is given by Gajer (see [Gaj87,
p. 180]). In the situation of Theorem 3.1.1, he showed that the positive
scalar curvature metric on M can even be extended to the bordism between
M and N which corresponds to the surgery process.
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The Surgery Lemma mostly applies together with methods from the proof
of the s-cobordism theorem. In this regard, one can show the following
statement which turns out to be very useful.

Theorem 3.1.2 ([Sto95, Theorem 3.3]). Let W be bordism between two
closed n-dimensional manifolds M and N . Assume that n is greater or
equal than five and that the inclusion N →֒ W is a two equivalence, i.e.
the induced map on the i-th homotopy group is an isomorphism for i = 0, 1
and is surjective for i = 2. Then any positive scalar curvature metric on M
extends to a positive scalar curvature metric on W .

In Chapters 4 and 5 we will need the following statement which generalizes
Theorem 3.1.2 to the case that M and N are allowed to have a common
boundary.

Corollary 3.1.3. Let M and N denote compact n-dimensional manifolds
with the same boundary, and let W be compact manifold such that ∂W =
M ∪∂M=∂N (−N). Assume that n is greater or equal than five and that the
inclusion N →֒ W is a two equivalence. Then any positive scalar curvature
metric on M extends to a positive scalar curvature metric on W .

This is an immediate consequence of the proof of Theorem 3.1.2 since the
surgery process does not affect the boundary of M .

As explained in the introduction, with the Surgery Lemma at hand the
question of positive scalar curvature is solved for closed simply connected
manifolds of dimension greater or equal than five. In order to treat the case
of non-simply connected manifolds, we recall that for any discrete group π
there is an associated classifying space Bπ, which can assumed to be a CW
complex. One has π1(Bπ) = π and πi(Bπ) = 0 for i ≥ 2, implying that Bπ
is unique up to homotopy equivalence. In addition, for a locally finite CW
complex X with π1(X) = π, the universal cover of X is classified by a map
X → Bπ, which is unique up to homotopy and induces an isomorphism on
fundamental groups.

An important consequence of Theorem 3.1.2 is the Bordism Theorem from
the introduction (see [RS94, Theorem 3.3]).

Theorem 3.1.4 (Bordism Theorem). Let M be a closed connected manifold
of dimension n greater or equal than five with fundamental group π. Fur-
thermore, let Bπ be the classifying space of π, and let f : M → Bπ be the
classifying map of the universal cover of M . Then the following hold:
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1. If M admits a spin structure, then M admits a positive scalar curva-
ture metric if and only if [M, f ] ∈ +ΩSpinn (Bπ).

2. If M is orientable and totally non-spin, i.e. its universal cover does
not admit a spin structure, then M admits a positive scalar curvature
metric if and only if [M, f ] ∈ +ΩSOn (Bπ).

Proof. For the spin case let (W,h) be a spin bordism between (M, f) and
(N, g) where N admits a positive scalar curvature metric. Now W is in
particular oriented, and h restricted to M induces an isomorphism on fun-
damental groups. By means of Morse theory, one can show that W has the
homotopy type of a finite CW complex. Hence π1(W ) is finitely generated.
We conclude that we may assume by surgery that h∗ : π1(W ) → π1(Bπ) is
an isomorphism. Since W is also spin, one also tends to kill the elements in
the kernel of h∗ : π2(W ) → π2(Bπ) by surgery (see e.g. the proof of Theorem
1.5 in [RS95]). Then, since f : M → Bπ is a two equivalence, it would follow
that also the inclusion M →֒ W is a two equivalence, and we could apply
Theorem 3.1.2 to equipM with a positive scalar curvature metric. However,
the second homotopy group of a compact manifold is in general not finitely
generated.

Instead one proceeds as follows. Consider M as a subspace of W . Then
the pair (W,M) is 1-connected. The relative Hurewicz theorem (see e.g.
[Bre93, Theorem 10.7]) implies that the Hurewicz homomorphism induces
an isomorphism between the orbit space of the π1(M)-action on π2(W,M)
and H2(W,M). Since H2(W,M) is a finitely generated Abelian group, it
follows that π2(W,M) is finitely generated as a π1(M)-module. By means
of the long exact homotopy sequence of the pair (W,M),

· · · → π2(M)
i∗−→ π2(W ) → π2(W,M)

∂
−→ π1(M)

∼=
−→ π1(W ) → · · · ,

we see that the cokernel of i∗ is isomorphic to π2(W,M). Now, killing
an embedded two sphere by surgery, always annihilates the whole π1(M)-
orbit of this sphere. Hence we achieve by surgery that i∗ : π2(M) → π2(W )
becomes surjective.

In the case of orientable, totally non-spin manifolds, one has to refine this
argument slightly. We first state a

Lemma 3.1.5. Let ξ → Σ be a vector bundle of rank n greater or equal than
three over some surface Σ (or any other two dimensional complex). Then ξ
is trivial if and only if its first and second Stiefel-Whitney classes vanish.
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Proof. The obstructions against a section in the associated n-frame bundle
vanish (see [MS74, p. 140, 143]).

Now let (W,h) be an oriented bordism between (M, f) and (N, g) whereM is
totally non-spin and N admits a positive scalar curvature metric. As above,
we see that the cokernel of π2(M) → π2(W ) is a finitely generated π1(M)-
module. However, its elements may be represented by two dimensional
spheres having non-trivial normal bundles.

Let p : M̃ → M be the covering map, and let τ : M → BSO resp. τ̃ : M̃ →
BSO be the classifying maps of the stable tangent bundles. Then we have
τ ◦ p ≃ τ̃ . Now, since the universal cover M̃ is not spin, and M̃ is by
definition simply connected, one concludes (see [LM89, Corollary 2.11]) that

there exists at least one embedded two dimensional sphere in M̃ with non-
trivial normal bundle. The normal bundle of such a sphere has vanishing first
Stiefel-Whitney class. Then Lemma 3.1.5 implies that the second Stiefel-
Whitney class of this bundle does not vanish. It follows that τ̃∗ : π2(M̃) →
π2(BSO) is surjective, and hence so is τ∗ : π2(M) → π2(BSO). We conclude
that there exists an embedded two dimensional sphere also in M , say S2

∗ ,
with non-trivial normal bundle. Then, by taking finitely many connected
sums, in W , of S2

∗ and generators of the cokernel of π2(M) → π2(W ), we
achieve that π2(M) → π2(W ) becomes surjective.

Remark 3.1.6. In contrast to the treatment of simply connected manifolds,
the so-called twisted case occurs. By this one understands manifolds which
do not admit spin structures but their universal covers do. To the twisted
case we also include unoriented manifolds. In order to handle the twisted
case, Stolz introduced so-called γ-structures (see [Sto, Definition 2.6]). By
means of these γ-structures one can formulate and prove a corresponding
twisted Bordism Theorem (see also [RS94, p. 249]).

As announced in the introduction, we want to complete the proof of

Theorem 3.1.7 (Homology Theorem). Under the same assumptions as in
the Bordism Theorem, the following hold:

1. If M admits a spin structure, then M admits a positive scalar curva-
ture metric if and only if A[M, f ] ∈ ko+n (Bπ).

2. If M is orientable and totally non-spin, then M admits a positive
scalar curvature metric if and only if U [M, f ] ∈ H+

n (Bπ).



46 3 Positive Scalar Curvature on Closed Manifolds

Remark 3.1.8. The treatment of a twisted version of this statement is more
complicated. It involves the notion of parametrized homology theories, which
are e.g. discussed in [MS06]. Let B denote a fix space. A parametrized ho-
mology theory over B associates an Abelian group to a space X which comes
along with a map X → B. In case B is a point, one recovers an underly-
ing ordinary homology theory. For orientable, non-spin manifolds whose
universal cover is spin, it turns out that one has to consider parametrized
homology theories over K(Z2, 2); in the unoriented case in addition over
K(Z2, 1). The formulation and the 2-local proof of the twisted Homology
Theorem is the subject of the doctoral thesis of F. Hebestreit [Heb].

We note that the discussion of the unoriented case is from the outset purely
2-local. In addition, after inverting 2, K(Z2, 2) is homotopy equivalent to a
point. This suggests that with 2 inverted the twisted Homology Theorem
can be deduced from the untwisted spin case, which we handle in the sequel.

3.2 The Homology Theorem

Consider the orientation maps

A : ΩSpinn (X) → kon(X) and U : ΩSOn (X) → Hn(X).

In order to deduce the Homology Theorem from the Bordism Theorem, one
has to show

Theorem 3.2.1. kerA ⊂ +ΩSpin∗ (Bπ) and kerU ⊂ +ΩSO∗ (Bπ).

In fact, assume that A[M, f ] lies in ko+n (Bπ). Then there exists an element
[N, g] ∈ +ΩSpinn (Bπ) such that A[M, f ] = A[N, g]. This means that [M, f ]−
[N, g] lies in the kernel of A. According to Theorem 3.2.1, this element
is then represented by a closed spin manifold (O, h) in Bπ admitting a
positive scalar curvature metric. We conclude that (M, f) is bordant to
(N, g) ∪̇ (O, h). By means of the Bordism Theorem, one can now extend
the positive scalar curvature metric on N ∪̇O to M . The orientable, totally
non-spin case works analogously.

As explained in the introduction, it remains to give a proof for the 2 inverted
part. In the previous chapter we saw that with 2 inverted A resp. U can
be identified with the projection ΩSpin∗ (Bπ) → ΩPα

∗ (Bπ) resp. ΩSO∗ (Bπ) →
ΩPu

∗ (Bπ). By the Bockstein exact sequence, or by the very definition of
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singular P-bordism, we may now assume that elements in the kernel of A
resp. U are represented by Pα- resp. Pu-manifolds.

Let us call a family of manifolds locally finite if it contains only finitely many
elements of dimension n for all numbers n. The main statement is now

Theorem 3.2.2. Let P = (Pi)i∈I be a locally finite family of closed mani-
folds admitting positive scalar curvature metrics. Then a closed P-manifold,
considered as a smooth manifold with additional structure, also admits a
positive scalar curvature metric.

We note that neither orientability and spin structures nor regularity (see
2.4.1) are needed. Before proving Theorem 3.2.2, we first complete the
proof of Theorem 3.2.1 with 2 inverted. We have to show that the elements
of the locally finite families Pu and Pα admit positive scalar curvature
metrics.

Proof. As mentioned in Section 2.5, with 2 inverted the kernel of u∗ : Ω
SO
∗ →

HZ∗ is generated by projective spaces and hypersurfaces of degree (1, 1) in
CPn × CPm. In [GL80] it is explained why these manifolds admit positive
scalar curvature metrics: The standard Fubini-Study metric on CPn is of
positive scalar curvature. Hypersurfaces of degree (1, 1) in CPn × CPm are
projective space bundles over projective spaces, and the associated structure
group acts by isometries on the fibers. The O’Neill formulas now guaran-
tee that these total spaces can be equipped with positive scalar curvature
metrics.

In [KS93, Section 4] it is proved that with 2 inverted the kernel of
α∗ : Ω

Spin
∗ → ko∗ is generated by total spaces of HP 2-bundles, once again

with isometric actions of the structure group.

Before starting the proof of Theorem 3.2.2, we begin with some preliminary
remarks. First, we remind the reader that a collar metric on a manifold M
with boundary is a collar neighborhood ∂M × [0, 1] together with a metric
on M which restricts to g × dt2 on ∂M × [0, 1], where g is some metric on
∂M and dt2 is the standard metric on [0, 1]. All metrics are assumed to be
of this form.

Furthermore, we recall that two positive scalar curvature metrics g0 and g1
on a closed manifold M are called
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• isotopic if g0 and g1 lie in the same path component of R+(M), the
space of positive scalar curvature metrics onM equipped with the C∞

topology,

• concordant if there exists a positive scalar curvature metric H onM×
[0, 1] such that H|M×{0} = g0 and H|M×{1} = g1.

It is well known fact that isotopy implies concordance (see e.g. [Weh03,
Lemma 4.3]. The proof proceeds as follows. If γ : [0, 1] → R+(M) is an
isotopy between g0 and g1, then the metric on M × [0,K] which is given
by γ(s/K) × dt2 at a point on M × {s}, s ∈ [0,K], is of positive scalar
curvature. This metric can be pulled back to a positive scalar curvature
metric on M × [0, 1].

We now fix an arbitrary family (gi)i∈I of positive scalar curvature met-
rics on (Pi)i∈I . The crucial step in the proof of Theorem 3.2.2 is a simple
concordance argument which can easily be demonstrated in the case of a
P-manifold M consisting of two Pi-parts, i.e.

(
M, (Ai)1≤i≤2, (BI , φI)I⊂{1,2}

)
.

According to the definition of a P-manifold, there is an inclusion map

φ
{1,2}
2 : P1 ×B{1,2} →֒ B2 such that

A1 ∩A2
�

�

//

φ{1,2}
��

A2

φ2
��

P2 × P1 ×B{1,2}
�

�

id×φ
{1,2}
2

// P2 ×B2

commutes. We see that there exist submanifolds Q ⊂ ∂B{1,2} and B′
2 ⊂

B2 such that φ{1,2}(∂A1) = P2 × P1 × Q and φ2(A
′
2) = P2 × B′

2, where

A′
2 := A2 − Å1. Moreover, by a slight abuse of notation,

φ
{1,2}
2 : P1 ×Q→ ∂B′

2

is a diffeomorphism.

Let g1 and g2 be positive scalar curvature metrics on P1 and P2, respectively.
We equipM with a positive scalar curvature metric as follows. First, choose

a metric h on Q and extend φ
{1,2}
2 ∗(g1×h) to a metric h2 on B

′
2. Then there

exists ǫ2 > 0 such that G2 := (ǫ2g2) × h2 is a positive scalar curvature
metric on φ2(A

′
2). Next, choose a collar neighborhood ∂B × [−1, 0] of ∂B
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G1 on P1×B
′
1

G2 on P2 ×B′
2

Concordance metric on P1×P2×Q×[−1, 0]

∂A1

Figure 3.1: Construction of a positive scalar curvature metric on A1 ∪A2

and extend φ
{1,2}
1 ∗((ǫ2g2)× h) to a metric h1 on B1 such that h1 restricted

to ∂B× [−1, 0] is given by φ
{1,2}
1 ∗((ǫ2g2)×h)×dt

2. We now find ǫ1 > 0 such
that G1 := (ǫ1g1)×h1 is a positive scalar curvature metric on φ1(A1). Being
collar metrics, φ∗1(G1) and φ∗2(G2) restricted to ∂A1 are of positive scalar
curvature. It is obvious that they are isotopic, thus concordant. To obtain
the desired positive scalar curvature metric on M , we use the concordance
metric on ∂A1×[−1, 0] ⊂ A1 to join φ

∗
1(G1) restricted to (A1−(∂A1×[−1, 0])

and φ∗2(G2) on A
′
2 (see Figure 3.1, we set B′

1 = B1 − (∂B1 × [−1, 0])).

The main work in the proof of Theorem 3.2.2 for P-manifolds consisting of
more Pi-parts merely lies in the fact that metrics on several submanifolds
have to be chosen in a compatible way.

For simplicity we omit diffeomorphisms in the sequel. Let M denote an
arbitrary P-manifold. Since P is locally finite, M is covered by finitely
many Pi-subsets, say

M = A1 ∪ · · · ∪Ak.

As above, fix bicollar neighborhoods ∂Ai × [−1, 1] of ∂Ai ⊂ M , say ∂Ai ×
{−1} ⊂ Ai, such that (∂Ai × [−1, 1]) ∩ Aj is a bicollar neighborhood for
(∂Ai)∩Aj in Aj for all j. Define a new covering by A′

1 := A1 and, for i > 1,
A′
i := Ai − (∪j<iÅj). Then one has A′

i = Pi ×B′
i for appropriate B

′
i ⊂ Bi.

We set Aj = ∪ki=jA
′
i. Note that Aj is modeled on Hn

1 ∩ · · · ∩ Hn
j−1, for all

1 < j ≤ k. In addition, Aj inherits collar neighborhoods (∂Ai ∩ A
j)× [0, 1]

for all i < j. By a collar metric on Aj we understand a metric which

• extends to a smooth metric on M ,
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• restricts for all i < j to a product metric on (∂Ai ∩ A
j) × [0, 1] with

the standard metric on the second factor.

The same notation is used for other manifolds modeled on intersections
of half spaces, like A′

j , B
′
j and QjI (defined below). All metrics on these

manifolds are assumed to be collar metrics.

For all 1 ≤ j ≤ k and

I = {i1, . . . , is}, 1 ≤ i1 < · · · < is ≤ j − 1 (3.2.1)

there exists a manifold QjI such that

(⋂

i∈I

∂Ai

)
∩A′

j = Pi1 × · · · × Pis × Pj ×QjI . (3.2.2)

With this notation we have Qi∅ = B′
i. Since (∩k−1

i=1 ∂Ai) lies in A′
k, we note

that (
k−1⋂

i=1

∂Ai

)
= P1 × · · · × Pk ×Qk{1,...,k−1}.

The manifold Q := Qk{1,...,k−1} can be described as some kind of ‘deepest’

point of M (see Figure 3.2). Recall that (gi)i∈I denotes an arbitrary family
of positive scalar curvature metrics on (Pi)i∈I . We now need the above
concordance argument in the following form.

Lemma 3.2.3. Assume that there exist 1 ≤ j < k and a positive scalar
curvature metric Gj+1 on Aj+1. One finds an R ⊂ ∂B′

j such that ∂Aj ∩

Aj+1 = Pj ×R. In fact,

R =
k⋃

i=j+1

Pi ×Qij

(see Figure 3.2). Assume further that Gj+1|Pj×R = gj × hj |R for some
metric hj on B

′
j. Then there exists an extension of Gj+1 to a positive scalar

curvature metric Gj on Aj.

Proof. There exists ǫj > 0 such that (ǫjgj)×hj is a positive scalar curvature
metric on A′

j . Since Gj+1 and (ǫjgj) × hj are collar metrics, gj × hj |R and
(ǫjgj) × hj |R are positive scalar curvature metrics. It is obvious that they
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A′
2

A′
3

A′
1

P2 × P3 ×Q3

2

P1 × P3 ×Q3

1

P1 × P2 ×Q2

1

P1 × P2 × P3 ×Q

Figure 3.2: P-manifold and deepest point neighborhood

are isotopic, hence concordant. Denote by G the concordance metric on
(Pj ×R)× [−1, 0]. We then define a positive scalar curvature metric on

Aj = Aj+1 ∪ (Pj ×R× [−1, 0]) ∪ (A′
j − (Pj ×R× [−1, 0]))

by

Gj+1 ∪G ∪
(
(ǫjgj)× hj |B′

j−(R×[−1,0])

)
.

Let us describe our strategy of how to construct a positive scalar curvature
metric on M in terms of a P-manifold with three Pi-parts (see Figure 3.2).
Take a metric h on Q, and recall that we chose arbitrary positive scalar
curvature metrics gi on Pi, for 1 ≤ i ≤ 3. We then:

1. Extend g2 × h to a metric h31 on Q3
1 and extend g1 × h to a metric h32

on Q3
2.

2. Extend (g1 × h31) ∪ (g2 × h32) to a metric h3 on B′
3.

3. Choose ǫ3 > 0 such that G3 := (ǫ3g3)×h3 is a positive scalar curvature
metric on A′

3.

4. Extend (ǫ3g3) × h to a metric h21 on Q2
1 and (g1 × h21) ∪ ((ǫ3g3) × h32)

to a metric h2 on B′
2.
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5. Apply Lemma 3.2.3 to extend G3 to a positive scalar curvature metric
G2 on A′

2 ∪ A′
3. Observe that Lemma 3.2.3 gives us a metric f1 on

P2 ×Q2
1 such that G2|P1×(P2×Q2

1)
= g1 × f1.

6. Extend ((ǫ3g3)× h31) ∪ f1 to a metric h1 on B′
1.

7. Apply Lemma 3.2.3 to extend G2 to a positive scalar curvature metric
G1 on A′

1 ∪A
′
2 ∪A

′
3.

Let us turn back to the general case. For the construction below, it is very
helpful to keep Figure 3.2 in mind. Let 1 ≤ j ≤ k and 1 ≤ r < j. One
verifies that

∂Aj =

j−1⋃

r=1

(
∂Ar ∩A

j
)

and

∂Ar ∩A
j = Pr ×




k⋃

i=j

Pi ×Qir


 .

The following statement is then proved by induction on j, starting with j = k
and ending with j = 1, from which Theorem 3.2.2 follows immediately.

Lemma 3.2.4. There exists a positive scalar curvature metric Gj on Aj with
compatible product structures on ∂Aj which means that for all 1 ≤ r < j
there are metrics f jr on ∪ki=jPi ×Qir such that

Gj |∂Ar∩Aj = gr × f jr , (3.2.3)

where gr are the fixed positive scalar curvature metrics from above.

Proof. For the initial step, which corresponds to the steps (1) - (3) above,
one has to consider A′

k. We first define a metric hk on B′
k. Observe that for

J ( {1, . . . , k − 1}

∂QkJ =
⋃

{S⊂{1,...,k−1} | J⊂S, |S|=|J |+1}

PS−J ×QkS . (3.2.4)

Step by step, starting with |J | = k − 2 and ending with J = ∅, we extend
the metric h on the deepest point Q to metrics hkJ on QkJ such that

hkJ |(Pr×Qk
J∪{r}

)⊂∂Qk
J
= gr × hkJ∪{r}
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for {r} = I − J .

In this way one obtains a metric hk := hk∅ on B′
k = Qk∅ such that for all

1 ≤ r < k
hk|(Pr×Qk

r )⊂∂B
′
k
= gr × hkr . (3.2.5)

Now choose an ǫk > 0 such that Gk := (ǫkgk) × hk is a positive scalar
curvature metric on A′

k. Set fkr := (ǫkgk) × hkr . By means of (3.2.5) the
condition (3.2.3) is satisfied. This proves the initial step.

We turn to the induction step which corresponds to the steps (4) - (5) resp.
(6) - (7) above. For 1 ≤ j < k let Gj+1 be a positive scalar curvature metric
on Aj+1 such that (3.2.3) is satisfied. We first define a metric on

∂B′
j =

(
j−1⋃

r=1

Pr ×Qjr

)
∪




k⋃

i=j+1

Pi ×Qij




as follows. As above one finds metrics hjr on Q
j
r and we consider gr × hjr on

Pr ×Qjr for all r ≤ j − 1. According to the induction hypothesis, there is a
metric f j+1

j on ∪ki=j+1Pi ×Qij . Now extend

(
j−1⋃

r=1

gr × hjr

)
∪ f j+1

j

to a metric hj on B
′
j .

Finally we apply Lemma 3.2.3 to obtain a positive scalar curvature metric
Gj on Aj . We note that the concordance metric in Lemma 3.2.3 does not
alter the gr factor on Pr × Pj × Qjr. Hence, for all r ≤ j − 1, there is an

induced metric fr on Pj ×Qjr such that Gj |
Pr×(Pj×Q

j
r)

= gr × fr. By means

of the induction hypothesis, one verifies that the condition (3.2.3) is satisfied
with f jr := fr ∪ f

j+1
r on ∪ki=jPi ×Qir .
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Chapter 4

Positive Scalar Curvature on

Singular P-Manifolds

4.1 Introduction

According to the fundamental theorems of Gromov-Lawson [GL80, Corol-
lary C] in the non-spin case and Stolz [Sto92, Theorem A] in the spin case,
the question of the existence of positive scalar curvature metrics on closed
simply connected manifolds of dimension greater or equal than five is com-
pletely solved. The previous chapter was concerned with this question in
the presence of non-trivial fundamental groups. We have completed the
proof of the Homology Theorem. In doing so, we constructed on Pu- and
Pα-manifolds positive scalar curvature metrics. In other words, we encoun-
tered closed singular Pu- and Pα-manifolds which admit positive scalar
curvature metrics on their boundaries.

We have the following general definition. Assume that P is an arbitrary
locally finite family of closed manifolds equipped with positive scalar curva-
ture metrics.

Definition 4.1.1. Let M be a closed singular P-manifold, and let g be a
positive scalar curvature metric on ∂M obtained by Theorem 3.2.2. We say
that M admits a positive scalar curvature metric if g can be extended to a
positive scalar curvature metric on M .

In the sequel we will show that this definition depends only on the chosen

55
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positive scalar curvature metrics on the elements of P, and not on further
choices made in the proof Theorem 3.2.2.

Our aim is to address the question of positive scalar curvature on singular
manifolds, in the sense of Definition 4.1.1. This problem is not only of
theoretical interest. Singular homology and connective real K-theory admit
a description by singular manifolds, at least after inverting 2. This means
that our notion of positive scalar curvature for singular manifolds yields
an a priori definition of positivity for these homology theories; avoiding
the detour over ordinary bordism classes of closed manifolds which admit
positive scalar curvature metrics. This will be important in the next chapter.
In this chapter we study the question of positive scalar curvature on simply
connected singular Pu- and Pα-manifolds.

As a preliminary point we want to show that the positive scalar curvature
metrics obtained by Theorem 3.2.2 are canonical with respect to P-bordism
in the following sense.

Proposition 4.1.2. Let P = (Pi)i∈I be a locally finite family of closed
manifolds with fixed positive scalar curvature metrics (gi)i∈I . Equip two
closed P-manifolds M and N with the positive scalar curvature metrics
obtained by Theorem 3.2.2. If W is a P-bordism between M and N , then
W admits a positive scalar curvature metric which extends the given metrics
on M and N .

On P-manifolds we will therefore speak of the canonical positive scalar
curvature metric with respect to (gi)i∈I .

Proof. LetW be a zero P-bordism for a P-manifoldM . We will show that
a positive scalar curvature metric g on M , obtained by Theorem 3.2.2, can
be extended to a positive scalar curvature metric G on W .

It is straightforward to construct a positive scalar curvature metric on W
using the proof of Theorem 3.2.2. We note the following: Let 1 ≤ j ≤ k and
I ⊂ {1, . . . , j− 1}, and let Q̂jI denote the corresponding Q

j
I -manifolds of W .

This means that

(PI × Pj × Q̂jI) ∩ ∂W = PI × Pj ×QjI .

If we apply the proof of Lemma 3.2.4 to W , one additional term, namely
QkJ , occurs in (3.2.4), i.e. for J ( {1, . . . , k − 1} we have

∂Q̂kJ = QkJ ∪
⋃

{S⊂{1,...,k−1} | J⊂S, |S|=|J |+1}

PS−J × Q̂kS .
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For the deepest points one has ∂Q̂ = Q. There is the metric h on Q from the
construction of the positive scalar curvature metric on M , and we extend h
to some metric ĥ on Q̂. The extension procedure after (3.2.4) now looks as
follows. Again there are the metrics hkJ on QkJ from the construction of the
positive scalar curvature metric on M , and we extend stepwise

hkJ ∪
⋃

{S⊂{1,...,k−1} | J⊂S, |S|=|J |+1}

gS−J × ĥkS

to metrics ĥjJ on Q̂jJ .

In the induction step we proceed analogously and obtain a positive scalar
curvature metric G on W .

The positive scalar curvature metric G|∂W may not coincide with g because
in the construction of G we chose different scalings (ǫ̂i)i∈I than in the con-
struction of g. However, G|∂W and g are concordant so that M × [0, 1] and
W glued along M × {1} ∼= ∂W can be equipped with a positive scalar cur-
vature metric which extends g on M ×{0} and G on W . We shall show this
concordance in the case of two singularities.

The situation is presented in Figure 4.1 where we use the notations of Figure
3.1 for M (the thick left bar), and the corresponding sets in the description
of W (the light gray part) are equipped with a ‘̂ ’ (we replace [−1, 0] by
[0, 1]). By the construction of G and g, we have

g|Pi×B′
i
= (ǫigi)× hi and G|(Pi×B̂′

i)∩∂W
= (ǫ̂igi)× hi

for i = 1, 2. These metrics are concordant, hence (P1×B
′
1∪P2×B

′
2)× [0, 1]

(the dark gray part) can be equipped with a positive scalar curvature metric
which extends the given restrictions of g and G. We can assume that at
a point on Pi × B′

i × {s}, s ∈ [0, 1], this concordance metric is given by
((1− s)ǫi + sǫ̂i)gi × hi × dt2.

It remains to construct a positive scalar curvature metric on P1 × P2 ×Q×
[0, 1]2 (the blank square) which extends the given metric on its boundary.
This will be a consequence of the following lemma which is a generalization
of the statement that isotopy implies concordance. We proceed similarly to
the proof of [Weh03, Lemma 4.3].

Recall that R(N) denotes the space of all metrics on some manifold N ,
equipped with the C∞ topology. The scalar curvature is a continuous func-
tion on R(N), and the subspace of positive scalar curvature metrics on N ,
R+(N), is an open subset of R(N).
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P1 ×B′
1

P2 ×B′
2

P{1,2} ×Q× [0, 1]

P1 × B̂′
1

P2 × B̂′
2

P{1,2}×Q̂×[0, 1]

Figure 4.1: Positive scalar curvature metric on (M × [0, 1]) ∪W

Lemma 4.1.3. Let f : [0, 1]2 → R+(N) be a continuous map such that
h := f(x, y)×dt2x×dt

2
y is a positive scalar curvature metric in a neighborhood

of N × ∂([0, 1]2). Then there exists a positive scalar curvature metric on
N × [0, 1]2 which extends h restricted to N × ∂([0, 1]2).

Proof. We shall show that there is a number K > 0 such that

hK := f

(
(x, y)

K

)
× dt2x × dt2y

is a positive scalar curvature metric on N × [0,K]2, where (x, y) ∈ [0,K]2.
Consider then the diffeomorphisms φt : N × [0, 1]2 → N × [0, 1+ t(K − 1)]2,
(n, s) 7→ (n, (1 + t(K − 1))s), for all t ∈ [0, 1]. The family

ht := φ∗t

(
f

(
(x, y)

1 + t(K − 1)

)
× dt2x × dt2y

)
,

(x, y) ∈ [0, 1 + t(K − 1)]2, defines an isotopy between h and φ∗1(h
K), all

metrics restricted to N×∂([0, 1]2). By gluing the corresponding concordance
metric on N × ∂([0, 1]2)× [0, 1] and φ∗1(h

K), we obtain the desired positive
scalar curvature metric on N × [0, 1]2.

We may assume that f extends to a neighborhood U ⊂ R2 of [0, 1]2. Choose
ǫ > 0 such that for all δ ∈ [−ǫ, ǫ]2 the point ν+λδ lies in U , for all ν ∈ [0, 1]2
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and λ ∈ [0, 1]. On Z := N × [−ǫ, ǫ]2 we consider the metric hν,λ where hν,λ
at a point on N × {δ}, δ ∈ [−ǫ, ǫ]2, is given by

f(ν + λδ)× dt2x × dt2y,

ν ∈ [0, 1]2 and λ ∈ [0, 1]. Since hν,0 is a positive scalar curvature metric,
and R+(Z) is open in R(Z), there exist δν > 0 and λν > 0 such that hν′,λ′

is a positive scalar curvature metric for all (ν ′, λ′) ∈ Bδν (ν)× (0, λν), where
Bδν (ν) denotes the open ball of radius δν centered at ν. By compactness we
can assume that [0, 1]2 is covered by finitely many balls Bδνi (νi), for some

νi ∈ [0, 1]2. Now let Λ := min(λνi). Then hν,λ is a positive scalar curvature
metric on Z for all (ν, λ) ∈ [0, 1]2 × [0,Λ].

We now choose K ≥ Λ−1. Any point of N × [0,K]2 is contained in some
Zd := N × (d+ [−ǫ, ǫ]2) with d ∈ [0,K]2. But now the map

(p, x) 7→ (p, x− d), p ∈ N and x ∈ d+ [ǫ, ǫ]2,

is an isometry between (Zd, h
K |Zd

) and (Z, hd/K,1/K), and the latter Rie-
mannian manifold is of positive scalar curvature by the choice of K. This
finishes the proof of Lemma 4.1.3.

Now let us equip P1×P2×Q× [0, 1]2 with a positive scalar curvature metric.
We can assume that at a point on P1 × P2 × Q × {0} × {t}, t ∈ [0, 1], the
concordance metric of the restriction of g is given by (t + (1 − t)ǫ1)g1 ×
ǫ2g2 × dt2. Analogously, at a point on P1 × P2 × Q × {1} × {t}, t ∈ [0, 1],
the concordance metric of the restriction of G is given by (t+(1− t)ǫ̂1)g1 ×
ǫ̂2g2 × dt2.

The positive scalar curvature metric on ((M × [0, 1])∪W )−P1×P2× (0, 1)2

constructed above induces a metric g on ∂(P1 × P2 ×Q× [0, 1]2) which can
now be described as follows. Let (s, t) ∈ ∂([0, 1]2), and let h denote the
metric on Q. Then there is a function

f : ∂([0, 1]2) → R+(P1 × P2 ×Q)

such that at a point on P1 × P2 ×Q× {(s, t)} the metric g is given by

f1(s, t)g1 × f2(s)g2 × h× dt2

where f1(s, t) := t+ (1− t)((1− s)ǫ1 + sǫ̂1), f2(s) := (1− s)ǫ2 + sǫ̂2 and dt2

is either the standard metric on [0, 1]× {0, 1} or on {0, 1} × [0, 1]. Since

f1(s, t) ≤ max(1, ǫ1, ǫ̂1) and f2(s) ≤ max(ǫ2, ǫ̂2)
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for all (s, t) ∈ [0, 1]2, it follows that f can be extended to a map

[0, 1]2 → R+(P1 × P2 ×Q).

We can now apply Lemma 4.1.3 to equip P1×P2×Q× [0, 1]2 with a positive
scalar curvature metric which extends the given metric on the ambient mani-
fold. As in the proof of Theorem 3.2.2, for several singularities Proposition
4.1.2 now follows by induction.

Corollary 4.1.4. Let P = (Pi)i∈I and (gi)i∈I be as above. Then the con-
cordance class of the positive scalar curvature metric on a P-manifold M ,
obtained by Theorem 3.2.2, does not depend on the choices made in the proof
of Theorem 3.2.2.

Proof. Let M × {0} and M × {1} be equipped with - possibly different -
positive scalar curvature metrics, obtained by Theorem 3.2.2. ThenM×[0, 1]
can be considered as a P-bordism on which these metrics extend to positive
scalar curvature metrics.

We conclude that Definition 4.1.1 does not depend on the choices made in
the proof of Theorem 3.2.2, apart from the positive scalar metrics (gi)i∈I .

4.2 Non-Spin Manifolds

Unless otherwise stated, we assume that all singular manifolds are closed
in the sense of Definition 2.3.1. Recall the following fundamental result of
Gromov and Lawson.

Theorem 4.2.1 ([GL80, Corollary C]). Let M be a closed simply connected
manifold of dimension greater or equal than five which does not admit a spin
structure. Then M admits a metric of positive scalar curvature.

We remind the reader that Pu = (Q1, Q2, . . .) denotes a sequence of gener-
ators of ΩSO∗ modulo torsion which admit positive scalar curvature metrics.
For the remainder of this section, we fix an arbitrary sequence (g1, g2, . . .)
of positive scalar curvature metrics on (Q1, Q2, . . .). The aim of this section
is to prove the following singular version of Theorem 4.2.1.

Theorem 4.2.2. Let M be a simply connected singular Pu-manifold of
dimension greater or equal than five which does not admit a spin structure.
Then M admits a metric of positive scalar curvature.
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Remark 4.2.3. We note that we neither assume that ∂M is simply connected
nor that ∂M does not admit a spin structure.

The main geometric arguments come from the proof of Theorem 4.2.1 and
Proposition 4.1.2. In addition, we need

Lemma 4.2.4. The sequence Pu of polynomial generators of ΩSO∗ modulo
torsion is - even without inverting 2 - a regular sequence in ΩSO∗ .

Proof. The multiplicative structure of ΩSO∗ is described in [Pen82]. We first
need some preliminaries. According to Theorem 2.1 loc. cit., there exist
elements yi ∈ Hi(MSO;Z2) such that H∗(MSO;Z2) = Z2[y2, y3, . . .]. One
introduces the subalgebra

C = Z2[y4, y5, . . . , yn, . . .], n 6= 2 and n 6= 2j − 1.

Let ∂ denote the differential on C which is dual to the action of the first
Steenrod square on cohomology. It turns out that the kernel of ∂ is the
subalgebra ofH∗(MSO;Z2) consisting of all primitive elements, with respect
to the comodule structure of H∗(MSO;Z2) over the dual Steenrod algebra.
The Hurewicz homomorphism is then a map Q : ΩSO∗ → ker ∂. Furthermore,
the image of ∂ is an ideal in the kernel of ∂.

Recall again that ΩSO∗ modulo torsion is a polynomial algebra over the in-
tegers with certain generators û4i ∈ ΩSO4i , i ≥ 1. Above we mentioned that
we may take û4i = [Qi]. Theorem 3.4 in [Pen82] states that there is a group
isomorphism

ΩSO∗
∼= Z[û4, . . . , û4i, . . .]⊕ im ∂,

and multiplication in ΩSO∗ is given by

(a1, b1) · (a2, b2) = (a1a2, Q(a1, 0)b2 +Q(a2, 0)b1 + b1b2).

In addition, Q(û4i, 0) = u4i where we set

u4i =

{
y4i if i = 2j

y22i otherwise
.

Now let us turn to the proof of the regularity of the sequence Q1, Q2, . . ..
Let [a2, b2] ∈ ΩSO∗ /((û4, 0), . . . , (û4(n−1), 0)). Then we have

[Qn] · [a2, b2] = (û4n, 0) · [a2, b2]

= [û4na2, Q(û4n, 0)b2]

= [û4na2, u4nb2].
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N

W O

M

Figure 4.2: Extending a positive scalar curvature metric to M

Assume that [Qn] · [a2, b2] vanishes. Since Z[û4, . . . , û4i, . . .] is a polynomial
ring, we first conclude that a2 lies in the ideal spanned by û4, . . . , û4(n−1).

Second we see that

u4nb2 =
n−1∑

i=1

u4ici (4.2.1)

for appropriate ci ∈ im ∂. Consider (4.2.1) as an equality in the polynomial
algebra C. It follows from the definition of the u4i’s that u4n is relatively
prime to each u4, . . . , u4(n−1). We deduce that ci = u4ndi for appropriate
di ∈ im ∂. Since C is an integral domain, one now concludes that b2 =∑n−1

i=1 u4idi. Summarizing, we have shown that (a2, b2) lies in the ideal
generated by (û4, 0), . . . , (û4(n−1), 0).

Proof of Theorem 4.2.2. Let M be a simply connected singular non-spin
Pu-manifold of dimension greater or equal than five. By Lemma 4.2.4
Proposition 2.4.1 applies, and the Bockstein exact sequence (see Proposition
2.3.7) then implies that π : ΩSO∗ → ΩPu

∗ is surjective. It follows that M is
singular Pu-bordant to a closed manifold N . Since ΩSO∗ is generated by
manifolds of positive scalar curvature (see [GL80]), we may assume that N
comes equipped with a positive scalar curvature metric. Now let W be a
singular Pu-bordism between M and N . Then we have

∂W = N ∪̇ (M ∪∂M (−O))

where O is a zero Pu-bordism for ∂M (see Figure 4.2). According to Propo-
sition 4.1.2, the canonical positive scalar curvature metric on ∂M extends
to some positive scalar curvature metric on O.

We briefly recall the arguments from [GL80] to make M →֒ W into a two
equivalence. Clearly, we may assume that W is connected. Since W is
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oriented, we can kill π1(W ) by surgery. The classifying map of the stable
tangent bundle ofW induces a homomorphism τ : π2(W ) → π2(BSO) ∼= Z2,
and elements in the kernel of τ can again be killed by surgery. Note that
π2(W ) = H2(W ) is finitely generated (compare the proof of the Bordism
Theorem). The tangent bundle of W restricted to M splits as the sum
of the tangent bundle of M and the trivial bundle. This implies that the
classifying map of the stable tangent bundle of M induces the map

π2(M)
incl∗−−−→ π2(W )

τ
−→ π2(BSO).

Since M does not admit a spin structure, this composition is surjective, and
τ is an isomorphism. We conclude that incl∗ is surjective as well. That is,
the inclusion M →֒ W is a two equivalence, and we may apply Corollary
3.1.3 to extend the positive scalar curvature metric on N ∪ O to a positive
scalar curvature metric on M .

4.3 Spin Manifolds

4.3.1 Survey on the Closed Case

In contrast to the non-spin case, a closed simply connected spin manifold
of dimension greater or equal than five might not admit a positive scalar
curvature metric. As explained below, one encounters index-theoretic ob-
structions. A reference for the following remarks is [LM89].

Atiyah and Singer defined on any Riemannian spin manifold (M, g) a first or-
der elliptic differential operator, the so-called Dirac operator /D (see [AS63]).
Lichnerowicz found the following Weizenböck-type formula

/D
2
= ∇∗∇+

scalg(M)

4

(see [Lic63]). Here, ∇ : C∞(/S) → C∞(T ∗M ⊗ /S) is the covariant derivative
of the spinor bundle /S, and ∇∗ is its adjoint with respect to the Hilbert
space structure on C∞(/S) resp. C∞(T ∗M ⊗ /S) induced by g.

This observation establishes a very important relationship between the index
of Dirac operators and positive scalar curvature metrics: If scalg(M) is
strictly positive, then /D is a positive operator, that is, the index of /D
vanishes.



64 4 Positive Scalar Curvature on Singular P-Manifolds

The index of the (graded) Dirac operator can be computed by the Atiyah-
Singer index theorem, which tells us that it coincides with the Â-genus ofM ,
a certain characteristic number defined by means of the Pontrjagin classes of
M . The Â-genus is therefore an appropriate obstruction against a positive
scalar curvature metric onM in case the dimension ofM is divisible by four.

Hitchin generalized the arguments to arbitrary dimensions (see [Hit74]).
He considered families of operators to define a refined version of the Dirac
operator. More precisely, one has a Dirac operator, by abuse of notation
again denoted by /D, acting on the sections of a canonical associated Clifford
bundle, and /D commutes with the action of the Clifford algebra of M . This
implies that the index of /D is a module over the Clifford algebra. Using the
Atiyah-Bott-Shapiro isomorphism (see [ABS64]), which relates equivalence
classes of Clifford modules to KO-theory, one obtains for any n-dimensional
spin manifold M the Clifford index α(M) ∈ kon. According to a family
version of the Atiyah-Singer index theorem, the Clifford index only depends
on the spin bordism type of M . The resulting map

α : ΩSpin∗ → ko∗ (4.3.1)

is the index-theoretic interpretation of the Atiyah-Bott-Shapiro orientation
MSpin→ ko.

Stolz showed that in the simply connected case the vanishing of α(M) is
also sufficient for the existence of a positive scalar curvature metric. The
spin counterpart of Theorem 4.2.1 is therefore

Theorem 4.3.1 ([Sto92, Theorem A]). Let M be a closed simply connected
spin manifold of dimension greater or equal than five. Then M admits a
positive scalar curvature metric if and only if α(M) = 0.

4.3.2 Singular Manifolds

As in the case of non-spin manifolds, it is our intention to prove a corre-
sponding relative version of Theorem 4.3.1. However, it turns out that the
treatment of the spin case is more complicated, and we only obtain partial
results. Our first aim shall be to define a singular version of the index map
(4.3.1).

For the moment let us consider an arbitrary compact spin manifold M of
dimension n admitting a positive scalar curvature metric g on its boundary.
On M we shall define the Dirac operator as follows. Attach the cylinder
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R≥0×∂M toM to obtain a spin manifold M̃ . Now extend g to an arbitrary

metric in the interior of M and to dt2 × g on the cylinder. In this way, M̃
becomes a complete spin manifold. On M̃ we consider the Clifford linear
Dirac operator /D.

The obstruction argument from the closed case carries over. Theorem 3.2
in [GL83] implies that /D is a Fredholm operator. If g can be extended to
a positive scalar curvature metric in the interior of M , the corresponding
metric on M̃ is strictly positive, hence the Lichnerowicz argument implies
that the index of /D vanishes.

We will need the singular bordism invariance of this index. For this reason
we briefly introduce a relative bordism group Rn as follows. Elements in Rn
consists of equivalence classes of pairs (M, g) where M denotes a compact
spin manifold and g a positive scalar curvature metric on ∂M . An element
bounds if

• there exists a spin zero bordism N for ∂M ,

• g can be extended to a positive scalar curvature metric on N ,

• M ∪∂M=∂N (−N) is spin zero bordant.

Remark 4.3.2. IfM is simply connected one may use Corollary 3.1.3 to show
that g extends to a positive scalar curvature metric on M if [M, g] = 0 in
Rn. To treat the case of non-trivial fundamental groups, Hajduk introduced
groups Rn(π) (see [Haj91]). Hajduk (see Theorem 7.1 loc. cit.) and Stolz
(see [Sto, Theorem 1.1]) showed that g extends to a positive scalar curvature
metric on M if [M, g] = 0 in Rn(π).

Now it is a consequence of the Clifford linear version of Gromov and Law-
son’s relative index theorem (see [GL83, Theorem 4.18]) that /D induces a
homomorphism

θ : Rn → kon. (4.3.2)

This is proved by Bunke in the more general situation taking non-trivial
fundamental groups into account. In the simply connected case the index
map in [Bun95, Theorem 1.17] reduces to (4.3.2).

We now turn to singular Pα-manifolds. Recall that Pα = (R2, R3, . . .)
denotes a sequence of closed spin manifolds which admit positive scalar cur-
vature metrics and which generate ker(α : ΩSpin∗ → ko∗) with 2 inverted.
We first consider an arbitrary sequence of positive scalar curvature metrics
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g = (g2, g3, . . .) on (R2, R3, . . .). We equip the boundary of some singu-
lar Pα-manifold M with the associated canonical positive scalar curvature
metric. If M is zero singular Pα-bordant, we have a pair (N,W ) where N
is a zero Pα-bordism of ∂M and W a zero bordism for M ∪∂M=∂N (−N).
According to Proposition 4.1.2, the canonical positive scalar curvature met-
ric on ∂M extends to a positive scalar curvature metric on N , hence one
obtains a well-defined map φ : ΩPα

∗ → R∗. We then define the singular index
map as

α(Pα,g) : ΩPα

∗
φ
−→ R∗

θ
−→ ko∗. (4.3.3)

We note that the composition of π : ΩSpin∗ → ΩPα

∗ with α(Pα,g) coincides
with (4.3.1). As long as the family g can be chosen arbitrarily, we will write
αPα

instead of α(Pα,g).

As noted above, αPα
is an obstruction against positive scalar curvature

metrics on singular Pα-manifolds.

Corollary 4.3.3. Let M denote a singular Pα-manifold admitting a posi-
tive scalar curvature metric. Then αPα

(M) = 0.

This is the ‘only if’ part of our

Conjecture 4.3.4. Let M be a simply connected singular Pα-manifold
of dimension greater or equal than five. Then M admits a positive scalar
curvature metric if and only if αPα

(M) = 0.

For the remainder of this chapter the ‘if’ part of Conjecture 4.3.4 is proved
in several cases. Because of the complicated multiplicative structure of the
spin bordism ring, we are not able not prove Conjecture 4.3.4 completely.

We need

Proposition 4.3.5. Let M be a singular Pα-manifold equipped with the
canonical positive scalar curvature metric g on its boundary. If there exists
a spin zero bordism N for ∂M such that g|∂M=∂N extends to a positive scalar
curvature metric on N , then Conjecture 4.3.4 is true for M .

Proof. Let W =M ∪∂M=∂N (−N). Then we have

α(W ) = αPα

(M)− αPα

(N).

We must show that M admits a positive scalar curvature metric if
αPα

(M) = 0. Since N admits a positive scalar curvature metric, we have
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αPα
(N) = 0. Hence, if αPα

(M) = 0 then also α(W ) = 0. Killing the
elements of π1(W ) by surgery, we obtain a spin bordism V between W and
a simply connected spin manifold W ′. Then α(W ′) = 0, and according to
Theorem 4.3.1, W ′ admits a metric of positive scalar curvature. By surgery
we may assume once more that the inclusion M →֒ V is a two equivalence.
We can now apply Corollary 3.1.3 to extend the positive scalar curvature
metric on W ′ ∪̇N to one on M .

An immediate consequence is

Corollary 4.3.6. Let M be a singular Pα-manifold such that [M ] lies in
the image of π : ΩSpin∗ → ΩPα

∗ , i.e. M is singular Pα-bordant to a closed
manifold, then Conjecture 4.3.4 holds for M .

Proof. If M is singular Pα-bordant to a closed manifold, then there exists
a zero Pα-bordism N for ∂M . By Proposition 4.1.2 the canonical positive
scalar curvature metric on ∂M extends to N .

The crucial difficulties in the spin case arise from the fact that

π : ΩSpin∗ → ΩPα

∗ (4.3.4)

is not surjective in general - in contrast to the oriented case. The reader may
have noticed that Pu was assumed to be a sequence of polynomial genera-
tors of ΩSO∗ modulo torsion, and Pα is merely any sequence of polynomial
generators of ΩSpin∗ with 2 inverted. However, it turns out that we never
achieve that (4.3.4) becomes surjective, even if Pα is chosen with caution.

In order to give an example of a singular Pα-manifold which is not singular
Pα-bordant to a closed manifold, we consider characteristic numbers for
spin bordism. Besides the Stiefel-Whitney numbers, which we shall call
Z2-characteristic numbers, so-called KO-characteristic numbers are crucial.
First, we have to know that an n-dimensional closed spin manifold M has a
spin orientation class [M ] ∈ KOn(M) (see [ABS64]). Second, for j ≥ 0 one
can define KO-Pontrjagin classes πj ∈ KO0(BSpin) (see [ABP66]). Now
let J = (j1, . . . , jk) denote a sequence of integers, set πJ = j1 · · · jk, and let
f : M → BSpin be the classifying map of the stable tangent bundle of M .
In the same way as for other characteristic numbers, the Kronecker pairing

πJ(M) :=
〈
f∗(πJ), [M ]

〉
∈ KOn
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yields the desired KO-characteristic numbers for M . We recall at this point

KO∗
∼= Z[η, ω, µ, µ−1]/(2η, η3, ηω, ω2 − 4µ)

where deg(η) = 1, deg(ω) = 4 and deg(µ) = 8. Let us note that π0(M)
coincides with the image of α(M) under the periodization map.

Structure results about spin bordism are given in the fundamental work
[ABP67]. Corollary 2.4 loc. cit. states that M is spin zero bordant if and
only if all its Z2- and KO-characteristic numbers vanish.

Example 4.3.7. Consider the 13-dimensional spin manifold R3×S
1, where

R3 is any polynomial generator of ΩSpin∗ (with 2 inverted) of dimension
12, and S1 is equipped with its non-trivial spin structure, i.e. [S1] 6= 0 in
ΩSpin1 . Recall that KOn is trivial for n ≡ 3, 5, 6, 7 mod 8. Hence all KO-
characteristic numbers of R3 × S1 vanish for dimension reasons. Since S1

has vanishing Z2-characteristic numbers, so does R3 × S1. One concludes
that R3 × S1 is spin zero bordant, say via W . Then W defines a singular
R3-manifold. Now, [W ] does not lie in the image of π : ΩSpin∗ → ΩR3

∗ because
δR3 [W ] = [S1] does not vanish in ΩSpin1 (compare the long exact sequence
(2.3.1)).

We conclude that Ri is in general a zero divisor, and the sequence R2, R3, . . .
is far from being regular. One may say that singular Pα-manifolds appear
in a greater diversity than singular Pu-manifolds, which are always singular
Pu-bordant to closed manifolds (as a consequence of Lemma 4.2.4).

In other words, the treatment of singular Pα-manifolds turns out to be more
complicated than the treatment of singular Pu-manifolds. Even for man-
ifolds with a single Ri-singularity the problem is non-trivial, and a fortiori
for several singularities. Therefore, for the remainder of this chapter, we
will concentrate on Pα-manifolds M with a single Ri-part on its boundary.
That is, ignoring indices, we assume from now on that M is a compact spin
manifold with ∂M = R×B, for some R ∈ Pα and some spin manifold B.

Since ΩSpin∗ modulo torsion is the subalgebra of some polynomial algebra
(see [Sto66, Theorem 1]), ΩSpin∗ modulo torsion is an integral domain. In
addition, R is of infinite order in ΩSpin∗ . It follows that R × B can be zero
bordant only if B is a torsion element.

The natural mapMSpin→MSO is a homotopy equivalence after inverting
2, and ΩSO∗ contains no odd torsion. This implies that the spin bordism ring
ΩSpin∗ contains no odd torsion either. The remaining 2-primary torsion is
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described in [ABP67]. To explain these results, we recall the spin bordism
groups up to dimension eight. For the remainder of this chapter let S1 be
equipped with its non-trivial spin structure. Then ΩSpin1

∼= Z2 is generated

by S1, ΩSpin2
∼= Z2 is generated by S1 × S1, ΩSpin4

∼= Z is generated by a K3

surface, denoted above by K, ΩSpin8
∼= Z⊕Z is generated by the quaternionic

projective space HP 2 and the Bott manifold B (recall that α(B) in ko8 ∼= Z
is a generator). The bordism groups ΩSpin3 , ΩSpin5 , ΩSpin6 and ΩSpin7 are
trivial.

In [ABP67] it is shown (see also [Sto68, p. 339])

Theorem 4.3.8. Let J = (j1, . . . , jk) denote a sequence of integers with
k ≥ 1 and ji ≥ 2, set n(J) = j1+ · · ·+ jk. There exist characteristic classes
zi ∈ H∗(BSpin;Z2) such that the following hold:

For J above with n(J) even there are spin manifolds MJ of dim4n(J) and
of infinite order in ΩSpin∗ such that πJ(MJ) is odd, as a multiple of the KO∗

generators. All further KO-characteristic numbers of MJ and all zi(MJ)
(zi evaluated on the HZ2-fundamental class of MJ) vanish.

For J above with n(J) odd there are spin manifolds NJ of dim4n(J)−2 and
of order two in ΩSpin∗ , and spin manifolds MJ of dim4n(J) and of infinite
order in ΩSpin∗ , such that πJ(NJ) and π

J(MJ) are odd, as a multiple of the
KO∗ generators. All further KO-characteristic numbers of NJ , MJ and all
zi(NJ), zi(MJ) vanish.

In addition, there are spin manifolds Zi of dim |zi| and of order two in ΩSpin∗

with vanishing KO-characteristic numbers such that zi(Zj) is non-trivial if
and only if i = j.

A list of additive generators for ΩSpin∗ ⊗ Z2 is then given by

1. [MJ ]× [B]k × [S1]i, k ≥ 0, 0 ≤ i ≤ 2, n(J) even,

2. [MJ ]× [K]× [B]k, k ≥ 0, n(J) even,

3. [Zi],

4. [NJ ], n(J) odd,

5. [MJ ]× [B]k, k ≥ 0, n(J) odd,

6. ([MJ ]× [K])/4× [B]k × [S1]i, k ≥ 0, 0 ≤ i ≤ 2, n(J) odd.
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We saw that B has to be 2-torsion if R × B is zero bordant. In the list
above, we detect the torsion elements under the items 1 (with i 6= 0), 3, 4
and 6 (with i 6= 0). It follows that B is bordant to a spin manifold of the
form

(S1 × C) ∪̇D

where α(S1 × C) 6= 0 (C is some spin manifold which we do not specify
further) and D is a sum consisting of appropriate Zi’s, NJ ’s and S1 × X
with α(S1 × X) = 0 (X is some spin manifold which we do not specify
further). Let us note that α(D) = 0 since the α-invariant vanishes for all
Zi, NJ and S1 ×X.

The following extension problem will be solved in the next two subsections.

Theorem 4.3.9. Assume that R×D and R× S1 × C are zero bordant.

1. Let g be an arbitrary positive scalar curvature metric on R, and let
hD be a metric on D such that g × hD is of positive scalar curvature.
Then there exists a zero bordism D̂ for R×D such that g×hD extends
to a positive scalar curvature metric on D̂.

2. There exist a metric hC on S1 ×C, a zero bordism Ĉ for R× S1 ×C
and a positive scalar curvature metric g on R such that g × hC is a
positive scalar curvature metric on R × S1 × C which extends to one
on Ĉ.

For a single singularity, Conjecture 4.3.4 can now be deduced from Theorem
4.3.9, with a specific positive scalar curvature metric on the singularity.

Corollary 4.3.10. Let M be a simply connected singular R-manifold of
dimension greater or equal than five. Then there exists a positive scalar
curvature metric g on R such that M admits a positive scalar curvature
metric if and only if α(R,g)(M) = 0.

Before proving Corollary 4.3.10, we mention one result concerning the ring
structure of ΩSpin∗ . Let R∗ be the ring

Z[x4i, Y8j+2, θ1 | i ≥ 1, j ≥ 1]

modulo the relations

2θ1 = 2Yt = YtYr = θ31 = 0, Y8j+2x4 = x8j+4θ
2
1, Y8j+2x8l+4 = Y8l+2x8j+4.
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In addition, let I∗ denote the subset of ΩSpin∗ consisting of all classes for
which allKO-characteristic numbers vanish. By the Cartan formula, πi(M×
N) =

∑
j+k=i π

j(M)πk(N), one sees that I∗ is an ideal in ΩSpin∗ . The ring

structure of ΩSpin∗ /I∗ is determined in [ABP67, Theorem 2.10] (see also
[Sto68, p. 344]).

Theorem 4.3.11. The ring ΩSpin∗ /I∗ is isomorphic to the subring of R∗

generated by the Y ’s, θ1, the R8k’s and 2R8k+4’s.

Proof of Corollary 4.3.10. Let ∂M = R × B and recall that B is bordant
to a disjoint union (S1 × C) ∪̇D. We first want to show that R × S1 × C
and R ×D themselves have to be zero bordant. Note that M is a bordism
between R× S1 × C and R×D. Hence it suffices to show that all Z2- and
KO-characteristic numbers of R× S1 × C vanish.

The Z2-characteristic numbers of S1 vanish, and in turn those of R×S1×C.

If dimR ≡ 4 mod 8, then the KO-characteristic numbers of R× S1 vanish
for dimension reasons, and in turn those of R× S1 × C.

Let dimR ≡ 0 mod 8. The projection of the spin bordism class of a closed
spin manifold X in ΩSpin∗ /I∗ is denoted by X. By means of Theorem 4.3.11
we conclude the following: If R is odd, as a multiple of the ΩSpin∗ /I∗-
generators, then R is not a zero divisor. Since R× S1 × C = R×D, it
would follow that S1 × C = D which implies that the KO-characteristic
numbers of S1 × C and D coincide; in particular α(S1 × C) = 0 which we
excluded above, however. If R is even, then R× S1 × C is zero, implying
that all KO-characteristic numbers of R× S1 × C vanish.

We conclude that R × S1 × C and R × D are zero bordant. According
to Theorem 4.3.9, there exist zero bordisms Ĉ and D̂ for R × S1 × C and
R×D, respectively, and a positive scalar curvature metric g on R such that
g× hC and g× hD extend to positive scalar curvature metrics on these zero
bordisms.

Now letM be as in Corollary 4.3.10. Equip ∂M = R×B with the canonical
positive scalar curvature metric with respect to g, i.e. choose a metric hB

on B such that g × hB is of positive scalar curvature. Take any bordism W
between B and (S1 × C) ∪̇D. It follows that

(R×W ) ∪R×((S1×C) ∪̇D) (−(Ĉ ∪̇ D̂))

is a zero bordism for ∂M , and g× hB extends to a positive scalar curvature
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metric on this zero bordism. We can now use Proposition 4.3.5 to finish the
proof of Corollary 4.3.10.

Remark 4.3.12. We assumed that R is a polynomial generator of kerα ⊂
ΩSpin∗ with 2 inverted. One may ask for which R there actually exist singular
R-manifolds that do not lie in the image of π : ΩSpin∗ → ΩR∗ . An answer
would involve a detailed analysis of the KO- and Z2-characteristic classes
of the specifically chosen R, which we do want to address at this point. We
note the following. One could replace any R by R ∪̇R, then R ×B bounds
for any torsion element B. In contrast, even if we choose R such that [R]
is not divisible by 2 in ΩSpin∗ , we would not prevent [R] from being a zero
divisor (see Example 4.3.7).

4.3.3 First Extension Problem

We begin with a general remark. To a map of spectra A → X, one can
associate its mapping cone or homotopy cofiber X ∪CA, which comes along
with a natural map X → X ∪CA (see [Swi02, Chapter 8]). This assignment
is functorial in the following sense. If A → X and B → Y denote maps
between spectra such that

A //

��

X

��

B // Y

commutes, then one gets an induced map f : X ∪CA→ Y ∪CB. Likewise,
one obtains an induced map g : B ∪ CA → Y ∪ CX, and the homotopy
cofibers of f and g coincides, i.e. there is a natural homotopy equivalence

(Y ∪ CB) ∪ C(X ∪ CA) ≃ (Y ∪ CX) ∪ C(B ∪ CA). (4.3.5)

An analogue statement holds for homotopy fibers.

Let P denote a closed spin manifold. We remind the reader that the Thom-
Pontrjagin construction yields an isomorphism π∗(MSpin) ∼= ΩSpin∗ . Let
φ : SdimP → MSpin correspond to P . According to [Baa73, Theorem 4.2],
MSpinP is homotopy equivalent to the homotopy cofiber of

ω : SdimP ∧MSpin
φ∧id
−−−→MSpin ∧MSpin

mult
−−−→MSpin, (4.3.6)

where mult denotes the multiplication of the ring spectrum MSpin. We
note that the associated long exact sequence is given by (2.3.1).
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We obtain a further spectrum koP as the homotopy cofiber of

η : SdimP ∧ ko
φ∧id
−−−→MSpin ∧ ko

α∧id
−−−→ ko ∧ ko

mult′
−−−→ ko, (4.3.7)

where mult′ denotes the multiplication of the ring spectrum ko.

Since α is a map of ring spectra, these cofiber sequences induce a map
MSpinP → koP and, on coefficients, an ‘index’ map

α : ΩP∗ → koP∗ .

The main result of this subsection is

Proposition 4.3.13. Let N denote a compact simply connected singular P -
manifold of dimension greater or equal than five with ∂N = P ×Q. Assume
that P admits a positive scalar curvature metric g, and let hQ be a metric
on Q such that g × hQ is a positive scalar curvature metric on ∂N .

If α[N ] vanishes, then g × hQ extends to a positive scalar curvature metric
on N .

Let us note that α does not define an obstruction against positive scalar
curvature metrics. As a consequence of the second part of Theorem 4.3.9, the
singular R3-manifold W in Example 4.3.7 admits a positive scalar curvature
metric. However, it follows from Diagram 4.3.8 below and α(S1) 6= 0 that
α[W ] does not vanish.

Before verifying Proposition 4.3.13, we give the

Proof of Theorem 4.3.9, Part 1. Recall that R × D is assumed to be zero
bordant, and α(D) = 0. We will use Proposition 4.3.13 with P = R and
Q = D. There is a map between exact sequences

· · · // ΩSpin∗
π

//

α

��

ΩR∗
δR

//

α

��

ΩSpin∗−dimR−1

α

��

// · · ·

· · · // ko∗
π̃

// koR∗
δ̃R

// ko∗−dimR−1
// · · · .

(4.3.8)

Let V be any zero bordism for R×D. We may consider V as a singular R-
manifold. Since (α ◦ δR)[V ] = α[D] vanishes, it follows that α[V ] lies in the
kernel of δ̃R, hence in the image of π̃. As α : ΩSpin∗ → ko∗ is surjective, there
exists [W ] ∈ ΩSpinn such that (π̃◦α)[W ] = α[V ]. This implies that [V ]−π[W ]
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lies in the kernel of α. We note that taking the connected sum of V and
(−W ) leads to a singular R-bordism between V ∪̇ (−W ) and V ♯ (−W ). In
addition, after surgery we may assume that V ♯ (−W ) is simply connected
(again, this surgery process corresponds to a singular R-bordism). We now
have α[V ♯ (−W )] = 0. According to Proposition 4.3.13, the product of
an arbitrary positive scalar curvature metric on R with a metric hd on D
extends to a positive scalar curvature metric on V ♯ (−W ). We can therefore
take V ♯ (−W ) as D̂ to prove Theorem 4.3.9.

The proof of Proposition 4.3.13 heavily depends on a result of Stolz (see
Theorem 4.3.14 below), we shall briefly recall the associated construction
presented in [Sto92]. Stolz’ proof of Theorem 4.3.1 as well as his proof of
the 2-local part of the Homology Theorem depends on it. In addition, we
note that in [KS93, Section 4] this construction yields the generators of
ker(α : ΩSpin∗ → ko∗) with 2 inverted, which we used in the proof of the
Homology Theorem.

The projective symplectic group G = PSp(3) acts on HP 2 with isotropy
group H = P (Sp(2)× Sp(1)). Hence we obtain a fiber bundle

HP 2 = G/H →֒ BH
p
−→ BG.

Let f : X → BG denote a closed spin manifold in BG. Consider its pullback
f∗(BH) in BH composed with the projection BH

pr
−→ pt, i.e.

f∗(BH) //

��

BH

pr

��

pr
// pt

X
f

// BG.

Then f∗(BH) is the total space of an HP 2-bundle. It turns out that the
(unique) spin structure of HP 2 induces a spin structure on the tangent
bundle along the fibers over BH. Now it is not difficult to see that there is
an induced map on bordism groups

ψ : ΩSpin∗−8 (BG) → ΩSpin∗ , [X, f ] 7→ [f∗(BH)]. (4.3.9)

By means of Thom-Pontrjagin theory and a homotopy theoretic interpre-
tation of transfer maps (see [BG75]), one obtains a good understanding of
ψ. In fact, using results of [Boa66] (also carried out in [Füh08, Proposition
2.22]), Stolz showed that ψ is induced by a spectrum map

T : MSpin ∧ Σ8BG+ →MSpin, (4.3.10)
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here we have the suspension isomorphisms Ω̃∗−8(BG+) ∼= Ω̃∗(Σ
8BG+) in

mind. Let M̂Spin denote the homotopy fiber of α : MSpin→ ko. One can
show (see [Sto92, Proposition 1.1]) that α ◦ T is null homotopic, hence T

lifts to a map T̂ : MSpin ∧ Σ8BG+ → M̂Spin. Using techniques from the
Adams spectral sequence and splitting results of MSpin-module spectra,
Stolz proved [Sto94, Proposition 8.3]

Theorem 4.3.14. The map T̂ is a 2-local split surjection of spectra.

As mentioned above, in [KS93, Section 4] it is shown that with 2 inverted
T̂∗ is a surjection, i.e. the sequence

ΩSpin∗−8 (BG)
[
1
2

] ψ
−→ ΩSpin∗

[
1
2

] α
−→ ko∗

[
1
2

]
(4.3.11)

is exact.

The construction of ψ also works in the singular case: Let (S, f) be a singular
P -manifold inBG, say ∂S = P×B. By definition there is a map f̃ : B → BG
such that f |∂S = f̃ ◦ prB. That is, we have ∂(f∗(BH)) = P × f̃∗(BH) and
we obtain a map

ψP : ΩP∗−8(BG) → ΩP∗ , [S, f ] 7→ [f∗(BH)].

Proof of Proposition 4.3.13. The first step will be homotopy-theoretic by
nature. Taking homotopy fibers, ω : SdimP ∧MSpin → MSpin (see 4.3.6)

induces a map ω̂ : SdimP ∧ M̂Spin→ M̂Spin. In the following diagram, the
left part commutes, and one obtains a map T̂P between homotopy cofibers:

ΣdimPMSpin ∧ Σ8BG+
ω∧id

//

Σn(T̂ )
��

MSpin ∧ Σ8BG+
π∧id

//

T̂
��

MSpinP ∧ Σ8BG+

T̂P

��
✤

✤

✤

ΣdimP M̂Spin
ω̂

// M̂Spin // M̂SpinP .

Consider this diagram now localized at 2. Since taking homotopy cofibers
is functorial, it follows that T̂P , which is induced by the split surjections
ΣdimP (T̂ ) and T̂ , is split surjective as well. In addition, the induced map on

homotopy groups of the composition of T̂P with the inclusion M̂SpinP →

MSpinP is just given by ψP . Now observe that M̂SpinP coincides with the
homotopy fiber of α : MSpinP → koP (homotopy fiber version of 4.3.5). We
therefore proved, 2-locally,
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Lemma 4.3.15. ker
(
α : ΩP∗ → koP∗

)
⊂ im

(
ψP : ΩP∗−8(BG) → ΩP∗

)
.

With 2 inverted, Lemma 4.3.15 can easily be shown as follows. We consider
the following diagram with 2 inverted

ΩSpin∗−8 (BG)
ψ

//

π′

��

ΩSpin∗
α

//

π

��

ko∗

π̃

��

ΩP∗−8(BG)
ψP

// ΩP∗
α

// koP∗ .

Let y be in the kernel of α. First, π is surjective because [P ] is not a
zero divisor in ΩSpin∗ (see Propositions 2.3.7 and 2.4.1). Hence there exists
x ∈ ΩSpin∗ such that π(x) = y. The cofiber sequence associated to (4.3.7)
induces the long exact sequence

· · · → ko∗−dimP
η
−→ ko∗

π̃
−→ koP∗

δ̃P−→ ko∗−dimP−1 → · · · .

Since P admits a positive scalar curvature metric, α(P ) = 0, and η is the
zero map. It follows that π̃ is injective. Since α(π(x)) = α(y) vanishes, the
element x lies in the kernel of α. According to (4.3.11), the first row is exact.
Then there exists u ∈ ΩSpin∗−8 (BG) such that ψ(u) = x, and ψP (π′(u)) = y.
We conclude that Lemma 4.3.15 holds without localizing.

We can now finish the proof of Proposition 4.3.13. Recall that N denotes
a compact simply connected singular P -manifold with α(N) = 0. Lemma
4.3.15 implies that [N ] lies in the image of ψP . Let (S, f) be a singular
P -manifold in BG, ∂S = P × B, such that ψP [S, f ] = [N ]. We noted
above that by the definition of a singular P -manifold in BG, there is a map
f̃ : B → BG such that f |∂S = f̃ ◦prB, and hence ∂(f∗(BH)) = P× f̃∗(BH).

We assumed that g × hQ is a positive scalar curvature metric on P × Q.
Choose a metric hB on B and extend g × hB on ∂S to a metric hS on
S. Equip HP 2 with a positive scalar curvature metric. By shrinking the
fibers, the typical fiber bundle metric gf

∗(BH) on f∗(BH) is of positive

scalar curvature. Note that there is an induced metric hf̃
∗(BH) on f̃∗(BH)

such that
gf

∗(BH)|∂(f∗(BH))=P×f̃∗(BH) = g × hf̃
∗(BH).

Take any singular P -bordism W between f∗(BH) and N . Then W com-
prises a bordism V between f̃∗(BH) and Q (see Figure 4.3). Extend the

given metrics hf̃
∗(BH) and hQ to a metric hV on V . For ǫ > 0 small enough,
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P P

Q f̃∗(BH)V
∂N ∂(f∗(BH))N f ∗(BH)

Figure 4.3: Boundary of the singular P -bordism W

(ǫg)× hV is a positive scalar curvature metric on P × V . By using concor-
dance metrics, we see that

f∗(BH) ∪∂(f∗(BH))=P×f̃∗(BH) (−P × V )

is a zero bordism for ∂N on which g × hQ extends to a positive scalar
curvature metric. Finally, we apply Corollary 3.1.3 to extend g × hQ to a
positive scalar curvature metric on N .

4.3.4 Second Extension Problem

Let us first show that if R × S1 × C is zero bordant, then either R × S1

or S1 × C has to be zero bordant. Clearly, all Z2-characteristic number of
R × S1 and S1 × C are zero. We must therefore show that either the KO-
characteristic numbers of R × S1 vanish or those of S1 × C. If dimR ≡ 4
mod 8, then all KO-characteristic numbers of R× S1 vanish for dimension
reasons. Let dimR ≡ 0 mod 8. If R (see the proof of Corollary 4.3.10)
is odd in ΩSpin∗ /I∗, then it is not a zero divisor. Hence S1 × C = 0 which
implies that the KO-characteristic numbers of S1 × C vanish. If R is even,
then R× S1 = 0, and R× S1 has vanishing KO-characteristic numbers.

If S1 × C is zero bordant, say via E, we are clearly done: Let g be an
arbitrary positive scalar curvature metric on R. We then choose a metric h
on E such that g × h is a positive scalar curvature metric on R × E. We
conclude that Theorem 4.3.9 holds with Ĉ = R×E. It therefore remains to
treat the case when R× S1 is zero bordant.

The question of positive scalar curvature on manifolds having an S1-factor
on their boundaries is treated in [Bot01]. Loco cit. a different point of view
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is adopted, namely, these manifolds are considered as spin manifolds with
S1-singularity.

It turns out that complex K-theory is the appropriate index theory when
dealing with spin manifolds with S1-singularity. Let k∗ = Z[u], deg(u) = 2,
denote the coefficients of connective complex K-theory.

Theorem 4.3.16 ([Bot01, Theorem 1.1]). There is a map

αS
1
: ΩS

1

∗ → k∗

such that the following holds: Let N denote a simply connected singular S1-
manifold with ∂N = P ×S1. Assume that P is non-empty, simply connected
and of dimension greater or equal than five.

Then N admits a positive scalar curvature metric, which restricts on ∂N to
a product of some positive scalar curvature metric g on P and the standard
metric dt2 on S1, if and only if αS

1
(N) = 0.

Homotopy-theoretically, αS
1
is defined as follows (see [Bot01, p. 687]).

Botvinnik showed thatMSpinS
1
≃MSpin∧Σ−2CP 2 and ko∧Σ−2CP 2 ≃ k,

where k denotes the connective complex K-theory spectrum. Then αS
1
is

given by

α ∧ id : MSpin ∧ Σ−2CP 2 → ko ∧ Σ−2CP 2.

Index-theoretically, αS
1
(N) can be computed in the following way (see

[Bot01, Remark 5.10]). Consider S1 as a spinc manifold and the unit disc
D2 as a spinc zero bordism for S1. Then αS

1
coincides with the index of the

usual Dirac operator on the closed spinc manifold

N ∪∂N=∂(P×D2)

(
−P ×D2

)
.

An immediate consequence of Theorem 4.3.16 is that in case the dimension
of N is odd, N admits a metric of positive scalar curvature. However, since
dimR ≡ 0 mod 4 we are interested in the case dimN ≡ 2 mod 4.

Proposition 4.3.17. Let N be a simply connected singular S1-manifold of
dimension n ≡ 2 mod 4, greater or equal than five, with ∂N = P × S1.
Assume that P admits a positive scalar curvature metric.

Then αS
1
(N) = 0, i.e. N admits a positive scalar curvature metric (in the

sense of Theorem 4.3.16).
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Proof. We consider the index map β : ΩSpin
c

∗ → k∗ induced by the usual
Dirac operator on spinc-manifolds. Let us note that the index maps α and
β are compatible in the sense that

ΩSpinn
α

//

f

��

kon

c

��

ΩSpin
c

n
β

// kn

commutes; here f associates to a spin manifold the underlying spinc mani-
fold, and c denotes the complexification map. Choose some positive scalar
curvature metric ĝ on P . We now want to consider the spinc analogue of
the singular index map (4.3.3). We apply the same procedure as in the spin
case and obtain a natural transformation

β(P,ĝ) : ΩSpin
c,P

∗ → k∗.

There is the corresponding commutative diagram for singular P -manifolds,
i.e.

ΩPn
α(P,ĝ)

//

f
��

kon

c

��

ΩSpin
c,P

n
β(P,ĝ)

// kn.

We remark that for n ≡ 2 mod 4 one has kon = Z2 or kon = 0, and kn = Z,
which implies that c ◦ α(P,ĝ) = 0.

Now let N be as in the proposition. We first consider N as a manifold with
S1-singularity. Above we noted that αS

1
(N) is given by the usual index

of the closed spinc manifold N ∪ (−P × D2). Now it is trivially true that
N ∪ (−P ×D2), considered as a spinc singular P -manifold, is spinc singular
P -bordant to N , itself considered as a spinc singular P -manifold. Namely,
P ×D2 is a zero spinc P -bordism for ∂N , and

(
N ∪

(
−P ×D2

))
× [0, 1]

is a zero spinc bordism for (N ∪ (−P × D2)) × {0, 1} (compare Definition
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2.3.3). We therefore have

αS
1
[N ] = β

[
N ∪

(
−P ×D2

)]

=
(
β(P,ĝ) ◦ π

) [
N ∪

(
−P ×D2

)]

=
(
β(P,ĝ) ◦ f

)
[N ]

=
(
c ◦ α(P,ĝ)

)
[N ]

where in the third and fourth row N is considered as a spin singular P -
manifold, and π : ΩSpin

c

∗ → ΩSpin
c,P

∗ as usual denotes the projection. It
follows that αS

1
(N) = 0 if n ≡ 2 mod 4.

One concludes that Theorem 4.3.16 yields a positive scalar curvature metric
on N which restricts on ∂N = P × S1 to g × dt2 where g is any positive
scalar curvature metric on P . We do not claim that g coincides with ĝ.

We can now finish the proof Theorem 4.3.9. Recall that R× S1 is assumed
to be zero bordant, say via V . According to Proposition 4.3.17, with P = R
and N = V , there exists a positive scalar curvature metric g on R such that
g × dt2 extends to one on V . Choose a metric k on C such that g × dt2 × k
is of positive scalar curvature. We then take V ×C as Ĉ and dt2 × k as hC

to prove the second part of Theorem 4.3.9.



Chapter 5

Positive Homology

5.1 Introduction

This chapter is concerned with the question of positive scalar curvature
on singular manifolds which are not simply connected. We will restrict
our attention to orientable, totally non-spin manifolds. As in the case of
closed manifolds, one will again have to study the singular homology of the
fundamental groups of the manifolds in question.

Let Pu denote further on a sequence of polynomial generators of ΩSO∗ mod-
ulo torsion. At first sight, it seems that the question of positive scalar curva-
ture on non-simply connected closed singular Pu-manifolds is more compli-
cated than the corresponding question for ordinary closed manifolds, closed
singular Pu-manifolds being more general objects than ordinary closed man-
ifolds. However, in view of the study of singular homology groups, it actually
seems to be more natural to consider singular Pu-manifolds because singu-
lar homology admits a description by singular Pu-bordism, at least after
inverting 2.

Although we will almost exclusively dealing with the sequence Pu, or ac-
tually with a sequence Pu′ of p-local polynomial generators of ΩSO∗ , p an
odd prime, we begin with the following general situation. Let P denote
an arbitrary locally finite family of closed oriented manifolds equipped with
positive scalar curvature metrics. As in the proof of Proposition 2.5.1, one
obtains a natural transformation

UP : ΩP
∗ ( ) → H∗( ) (5.1.1)

81
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such that the projection π : ΩSO∗ ( ) → ΩP
∗ ( ) composed with UP coincides

with the orientation map U : ΩSO∗ ( ) → H∗( ) (the regularity of the sequence
is immaterial). In other words, singular P-manifolds represent singular
homology classes. Now let X denote an arbitrary space. We have the
following basic

Definition 5.1.1. A class σ ∈ H∗(X) is called positive if σ is representable
by a closed singular P-manifold in X which admits a positive scalar curva-
ture metric. The subgroup of all positive classes is denoted by H⊕

∗ (X).

We remind the reader that a positive scalar curvature metric on a singu-
lar P-manifold is assumed to be canonical on its boundary (see Definition
4.1.1). Although omitted in this definition, H⊕

∗ (X) clearly depends on P

and the chosen positive scalar curvature metrics.

For the remainder of this section, we will now restrict our attention to P =
Pu, a family of polynomial generators of ΩSO∗ modulo torsion, equipped with
arbitrary positive scalar curvature metrics. We emphasize the difference
between H⊕

∗ (X) and H+
∗ (X), the latter being defined in the introduction as

the image of U : ΩSO∗ (X) → H∗(X) restricted to +ΩSO∗ (X). It is apparent
that H+

∗ (X) is a subgroup of H⊕
∗ (X). But H⊕

∗ (X) will presumably contain
more elements than H+

∗ (X). In fact, with 2 inverted, we know that all
homology classes are representable by singular Pu-manifolds. Let us note
also that all homology classes are representable by singular Pu-manifolds 2-
locally. In this case, the orientation map u : MSO → HZ is split surjective,
hence U is surjective and in turn UP as well.

Our point of view is that H⊕
∗ (X) seems to be a more natural object than

H+
∗ (X) sinceH⊕

∗ (X) checks all homology classes for positivity whileH+
∗ (X)

only considers homology classes which are representable by closed manifolds.
This will become clearer in the next section (compare Remark 5.2.3).

We turn to the question of positive scalar curvature on non-simply connected
Pu-manifolds. In analogy to the closed case we define

+ΩPu

n (X) =
{
[N, g] ∈ ΩPu

n (X) |N admits a positive scalar curvature metric
}
.

That is, we have H⊕
∗ (X) = imUPu

|+ΩPu
n (X). The corresponding Bordism

and Homology Theorem read as follows.

Theorem 5.1.2. Let M be a connected orientable totally non-spin closed
singular Pu-manifold of dimension n greater or equal than five with funda-
mental group π. Furthermore, let f : M → Bπ denote the classifying map
of the universal cover of M . Then the following hold:
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1. The singular manifold M admits a positive scalar curvature metric if
and only if [M, f ] ∈ +ΩPu

n (Bπ).

2. The singular manifold M admits a positive scalar curvature metric if
and only if UPu

[M, f ] ∈ H⊕
n (Bπ).

We mention the second statement of Theorem 5.1.2 only for the sake of
completeness. Below we are actually interested in p-local considerations, p
an odd prime, and in this case the two statements coincide.

Proof. The first statement can be deduced from Corollary 3.1.3 by means of
the established methods. Let us note that it obviously holds for an arbitrary
locally finite family P of closed oriented manifolds equipped with positive
scalar curvature metrics.

To prove the second part, we have to show, as above, that kerUPu
lies in

+ΩPu

n (Bπ). After inverting 2 the map UPu
is an isomorphism, so we may

work 2-locally. The claim will be a consequence of

Lemma 5.1.3. The map π : MSO →MSOPu
is a 2-local split surjection.

Proof. Recall from the proof of Lemma 4.2.4 that on homotopy groups, π
can be identified with the projection

π : ΩSO∗
∼= Z[û4, . . . , û4i, . . .]⊕ im ∂ → im ∂ = ΩPu

∗ .

Moreover, we see that this surjection splits. Since MSO localized at 2 is
a graded Eilenberg-MacLane spectrum, it follows that π is a 2-local split
surjection (see [Rud98, Lemma 7.2]).

This means in particular that π : ΩSOn (Bπ) → ΩPu

n (Bπ) is 2-locally surjec-
tive. Hence, for all x which lie in the kernel of UPu

: ΩPu

n (Bπ) → Hn(Bπ)
there exists y ∈ ΩSOn (Bπ) such that π(y) = x. But now y lies in the kernel of
U : ΩSOn (Bπ) → Hn(Bπ), which is in turn generated by manifolds admitting
positive scalar curvature metrics (compare the proof of the 2-local part of
the Homology Theorem).

Theorem 5.1.2 raises the question of how much of H∗(Bπ) is exhausted by
H⊕

∗ (Bπ). A subgroup of H∗(Bπ), for which it is difficult to decide whether
its elements are positive, consists of toral classes. A class in H∗(Bπ) is
called a toral generator if it is representable by a map T k → Bπ, where
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T k = S1 × · · · × S1 as usual denotes the standard k-torus. Let Htoral
∗ (Bπ)

denote the subgroup of H∗(Bπ) generated by toral generators. The elements
of Htoral

∗ (Bπ) are called toral classes.

We define a complement to the toral classes as follows.

Definition 5.1.4. For all k ≤ r, the cup product induces a map∧kH1(Bπ;Zp) → Hk(Bπ;Zp) whose image consists of toral cohomology
classes. A homology class in Hk(Bπ;Z) is called atoral if its projection in
Hk(Bπ;Zp) is annihilated by these toral cohomology classes. The subgroup
of atoral classes is denoted by Hatoral

∗ (Bπ).

This definition is similar to [BR05, Definition 2.1] where the notion of an
atoral class is introduced for elements of ΩSO∗ (Bπ).

In the next section we will study the homology of elementary Abelian p-
groups, p an odd prime. We will show that here atoral classes are positive.
This statement also yields consequences for positive scalar curvature metrics
on closed manifolds.

5.2 Homology of Elementary Abelian p-Groups

We fix an odd prime p. Let Zrp = Zp × · · · × Zp denote the elementary

Abelian p-group of rank r ≥ 1. We remind the reader that ΩSO∗ localized at
p is a polynomial algebra having one generator in each dimension divisible
by four. Our aim of this section is to prove

Theorem 5.2.1. There exists a family Pu′ of p-local polynomial generators
of ΩSO∗ , equipped with specific positive scalar curvature metrics g, such that

Hatoral

∗ (BZrp) ⊂ H⊕
∗ (BZrp)

where ‘⊕’ is understood with respect to Pu′ and g.

One can show that Theorem 5.2.1 also holds for p = 2, where it is a conse-
quence of [BR02, Theorem 5.8].

Theorem 5.2.1 together with Theorem 5.1.2 immediately implies

Corollary 5.2.2. Let M be a connected orientable totally non-spin closed
singular Pu′-manifold of dimension greater or equal than five with funda-
mental group Zrp, and let f : M → BZrp be the classifying map of the universal
cover of M .
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Then M admits a positive scalar curvature metric if f∗[M ] ∈ Hatoral
∗ (BZrp).

In particular, if the dimension of M is greater than r, then M admits a
positive scalar curvature metric.

Special cases of closed singular Pu′-manifolds are of course ordinary closed
manifolds. For those, Corollary 5.2.2 was proven before by Botvinnik and
Rosenberg in [BR02, Theorem 5.8]. An important component in the proof of
[BR02, Theorem 5.8] is the case r = 2. This was shown in [BG97], based on
an eta invariant calculation, and, independently, in [Sch97] using the truth
of the Segal Conjecture, among other things.

We shall start the proof of Theorem 5.2.1 by considering the case r = 1.
One shows that

Hn(BZp) =





Z for n = 0

Zp for n odd

0 otherwise

.

Moreover, the lens spaces

L2k−1 = S2k−1/Zp
ι
−֒→ L∞ = BZp, k ≥ 1,

serve as generators, where the action of Zp on S2k−1 ⊂ Ck is generated by
z 7→ exp((2πi)/p)z. For k > 1 the standard metric on S2k−1 induces a
positive scalar curvature metric on the lens space L2k−1. Furthermore, we
certainly have Hatoral

∗ (BZp) = H∗>1(BZp). It follows that

Hatoral
∗ (BZp) = H⊕

∗ (BZp).

The proof of Theorem 5.2.1 for r = 2 is carried out in the next subsection.
It turns out that the case of arbitrary r then easily follows by induction.

5.2.1 Groups of Rank 2

Being Eilenberg-MacLane spaces, B(Zp×Zp) and BZp×BZp are homotopy
equivalent. The homology of BZp × BZp can now be computed by the
Künneth formula, i.e. the split exact sequence

0 → [H∗(BZp)⊗H∗(BZp)]n
×
−→ Hn(BZp ×BZp) → [H∗(BZp) ∗H∗(BZp)]n−1 → 0

(5.2.1)
where the latter term denotes the torsion product of Abelian groups. The
proof of Theorem 5.2.1 for even n is simple. Namely, in this case [H∗(BZp)∗
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H∗(BZp)]n−1 vanishes. It follows that Hn(BZp × BZp) is generated by
products of lens spaces [Li] ⊗ [Lj ], i + j = n. But [Li] ⊗ [Lj ] is atoral only
if i or j is > 1, and in either case [Li]⊗ [Lj ] is positive.

For the remainder of this subsection let n be odd. The groupH1(BZp×BZp)
does not contain non-trivial atoral classes, therefore let n > 1. Then
Hatoral
n (BZ2

p) = Hn(BZ2
p), we must therefore show that all elements of

Hn(BZ2
p) are positive. We will distinguish two cases. It turns out that

for 1 < n ≤ 2p − 1 all elements in Hn(BZ2
p) are representable by closed

manifolds admitting positive scalar curvature metrics. This will be proved
by rather elementary methods involving the ring structure of H∗(BZp;Zp)
given by the cup product. To prove the claim for n ≥ 2p + 1, we will
construct singular Pu′-manifolds of positive scalar curvature that generate
Hn(BZ2

p), where Pu′ is a suitable sequence of p-local polynomial generators

of ΩSO∗ . This involves results about the structure of ΩSO∗ (BZp) from [CF64]
and the construction of a product for singular manifolds.

Remark 5.2.3. If one works with H+
∗ (BZrp) instead of H⊕

∗ (BZrp), a state-
ment corresponding to Theorem 5.2.1 would be that the image of the sub-
group of atoral bordism classes (see [BR05, Definition 2.1]) under the ori-
entation map is contained in H+

∗ (BZrp) (which is shown in [BR02, Theo-
rem 5.8]). The proof involves a study of the relatively complicated object
Tor∗ΩSO

∗
(ΩSO∗ (BZp),Ω

SO
∗ (BZp)). By contrast, we can work in purely homo-

logical terms in order to show that all classes of H∗(BZp) ∗ H∗(BZp) =
TorZ(H∗(BZp), H∗(BZp)) are ‘⊕’-positive, that is, we only have to consider
the torsion product of Abelian groups.

The Case n ≤ 2p− 1.

We fix an n = 2m+1 for some m ≥ 1. Let en denote an arbitrary generator
of Hn(BZp). We observe that 1× en and en × 1 lie in H⊕

n (BZp ×BZp). To
obtain further elements in H⊕

n (BZp ×BZp), we consider the map

∆l : Zp
∆
−→ Zp × Zp

·l×id
−−−→ Zp × Zp

where ∆ denotes the diagonal map and ·l denotes multiplication by a number
l. Then ∆l induces a map in homology whose image also lies in H⊕

n (BZp ×
BZp). One verifies that the dimensions of the Zp-vector spaces [H∗(BZp)⊗
H∗(BZp)]n and [H∗(BZp) ∗H∗(BZp)]n−1 are two and m, respectively. Our
aim is to show that the elements

1× en, en × 1,∆1(en),∆2(en) . . . ,∆m(en) (5.2.2)
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form a basis for the m + 2-dimensional Zp-vector space Hn(BZp × BZp),
provided that n ≤ 2p − 1. For this we will determine the representation of
these elements in another basis of Hn(BZp×BZp), which we will obtain by
considering elements coming from the Zp-homology of BZp ×BZp.

To start with recall that associated to the short exact sequences 0 → Zp
·p
−→

Zp2 → Zp → 0 resp. 0 → Z
·p
−→ Z → Zp → 0 there are Bockstein homomor-

phisms

β : H∗( ;Zp) → H∗−1( ;Zp) resp. β′ : H∗( ;Zp) → H∗−1( ;Z),

and analogously for cohomology with increasing degree. One computes
H i(BZp;Zp) ∼= Zp for all i ≥ 0. As a ring, H∗(BZp;Zp) is isomorphic to
the tensor product of an exterior and polynomial algebra. More precisely,
let us choose a generator x ∈ H1(BZp;Zp). Then y := β(x) is non-trivial in
H2(BZp;Zp) and there is a ring isomorphism

H∗(BZp;Zp) ∼= ΛZp
(x)⊗ Zp[y]

(see e.g. [Hat02, Example 3E.2]). Let ẽi ∈ Hi(BZp;Zp) be the dual of xy
i−1
2

for i odd resp. the dual of y
i
2 for i even. One then computes β(ẽi) = 0 for i

odd and β(ẽi) = ẽi−1 for i even. For 1 ≤ k ≤ m we set

ẽ(n, k) := ẽ2k−1 × ẽn−2k+1 + ẽ2k × ẽn−2k ∈ Hn(BZp ×BZp;Zp).

It is apparent that ẽ(n, 1), . . . , ẽ(n,m) are linearly independent in Hn(BZp×
BZp;Zp). By means of the derivation property of the Bockstein homomor-
phism, it follows that β(ẽ(n, k)) = 0, for all 1 ≤ k ≤ m. Consider now the
map between the Bockstein exact sequences

· · ·
·p

// H∗(BZ2
p;Z) //

��

H∗(BZ2
p;Zp)

β′
//

=

��

H∗−1(BZ2
p;Z)

pr

��

·p
// · · ·

· · ·
·p

// H∗(BZ2
p;Zp2) // H∗(BZ2

p;Zp)
β

// H∗−1(BZ2
p;Zp)

·p
// · · · .

Since pr is injective for ∗ > 1, ẽ(n, k) also lies in the kernel of β′. Hence
ẽ(n, k) is the reduction of an integral class e(n, k) ∈ Hn(BZp ×BZp;Z).

We conclude that the m+ 2 linearly independent elements

(1× en, e(n, 1), . . . , e(n,m), en × 1) (5.2.3)
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form a basis for Hn(BZp×BZp;Z), where en denotes an integral homology
class whose mod p reduction is ẽn. We shall express the elements (5.2.2)
with respect to this basis.

Lemma 5.2.4. As above, let ·l : Zp → Zp denote multiplication by a number
l, as well as the induced map on classifying spaces. Then the induced map
in homology ·l∗ : Hi(BZp;Zp) → Hi(BZp;Zp) is given by

ẽi 7→

{
l
i+1
2 · ẽi for i odd

l
i
2 · ẽi for i even

.

Proof. On H1(BZp;Zp) one recovers the given map ·l : Zp → Zp. By the
naturality of the Bockstein homomorphism β, we see that ·l also induces
multiplication by l on H2(BZp;Zp). Recall that H∗(BZp;Zp) ∼= ΛZp

(x) ⊗
Zp[y]. By duality, ·l∗(x) = l · x and ·l∗(y) = l · y. It follows that

·l∗ : H i(BZp;Zp) → H i(BZp;Zp)

is given by

xy
i−1
2 7→ l

i+1
2 · xy

i−1
2 for i odd and y

i
2 7→ l

i
2 · y

i
2 for i even.

Again by duality, the same holds in homology.

The ring structure of H∗(BZp;Zp) also implies that the diagonal map
∆: Zp → Zp × Zp induces the following map in Zp-homology

ẽn 7→ 1× ẽn + ẽ1 × ẽn−1 + · · ·+ ẽn−1 × ẽ1 + ẽn × 1.

Together with Lemma 5.2.4, we now see that ∆l : Zp
∆
−→ Zp×Zp

·l×id
−−−→ Zp×Zp

induces the following map in Zp-homology

ẽn 7→ l01× ẽn + lẽ1 × ẽn−1 + lẽ2 × ẽn−2 + l2ẽ3 × ẽn−3 + · · ·+ lm+1ẽn × 1

= 1× ẽn + lẽ(n, 1) + l2ẽ(n, 2) + · · ·+ lmẽ(n,m) + lm+1ẽn × 1.

The coordinates of ∆l(en) ∈ Hn(BZp × BZp;Z) with respect to the basis
(5.2.3) are therefore (1, l1, l2, . . . , lm+1). Of course, the coordinates of 1× en
resp. en × 1 are (1, 0, . . . , 0) resp. (0, . . . , 0, 1). We now consider the matrix
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1× en
∆1(en)
∆2(en)

...
∆m(en)
en × 1




=




1 0 · · · 0 0
10 11 · · · 1m 1m+1

20 21 · · · 2m 2m+1

...
...

...
...
...

...
...

m0 m1 · · · mm mm+1

0 0 · · · 0 1



.

The framed part is known as the Vandermonde matrix. Its determinant is
given by ∏

0≤s<t≤m

t− s.

This value is not zero modulo p for m ≤ p − 1 or, equivalently, n ≤ 2p −
1. Elementary linear algebra implies that the m + 2 positive classes 1 ×
en,∆1(en),∆2(en), . . . ,∆m(en), en×1 also form a basis for Hn(BZp×BZp),
for odd n with 1 < n ≤ 2p− 1.

The Case n ≥ 2p+ 1.

We continue to write n = 2m + 1. Recall from above that 1 × en, en × 1
together with e(n, k), k = 1, . . . ,m, form a vector space basis for Hn(BZp×
BZp). Obviously, 1 × en and en × 1 lie in H⊕

n (BZp × BZp). In the sequel
our aim will be to represent the elements e(n, k) by singular manifolds of
positive scalar curvature. The map

[H∗(BZp) ∗H∗(BZp)]n−1 → Hn(BZp ×BZp), e2k−1 ∗ en−2k 7→ e(n, k),

k = 1, . . . ,m, is a splitting for the right map in the Künneth formula (5.2.1).
Therefore we might also say that our task is to prove

[H∗(BZp) ∗H∗(BZp)]n−1 ⊂ H⊕
n (BZp ×BZp). (5.2.4)

To show (5.2.4), we may work p-locally, and that is what we shall do. Let
Pu′ denote an, initially arbitrary, sequence of p-local polynomial generators
of ΩSO∗ , and let p̂ be the closed oriented manifold consisting of p copies of a
point. In addition, let us set Pu′

p = Pu′ ∪ {p̂}. In Chapter 2 we identified,
after inverting 2, singular Pu-bordism with singular homology with integer
coefficients. Localized at an odd prime p, we may use Pu′ instead of Pu,
i.e.

ΩPu′

∗ ( ) = H∗( ;Z).
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One can also show

Ω
Pu′

p
∗ ( ) = H∗( ;Zp)

since the solution of the related extension problem (as in Proposition 2.5.1)
induces an isomorphism on coefficients, p-locally.

Recall the exact sequence (2.3.1): With Q = p̂ we have

· · · → ΩPu′

∗ ( )
×p̂
−−→ ΩPu′

∗ ( )
π
−→ Ω

Pu′
p

∗ ( )
δp̂
−→ ΩPu′

∗−1 ( ) → · · · , (5.2.5)

where we remind the reader that δp̂ associates to a closed singular Pu′
p -

manifold, having p̂×B as the p̂-part of its boundary, the closed singular Pu′-
manifold B. We observe that this sequence is just given by the Bockstein
exact sequence

· · · → H∗( ;Z)
·p
−→ H∗( ;Z)

pr
−→ H∗( ;Zp)

β′

−→ H∗−1( ;Z) → · · · .

In the sequel, when talking about manifolds or bordisms, we will generally
omit maps to BZp or BZp ×BZp. Recall that

pr(e(n, k)) = ẽ2k−1 × ẽn−2k+1 + ẽ2k × ẽn−2k.

We represent e2k−1 by a lens space L2k−1. Since [p̂ × L2k−1] vanishes in
H2k−1(BZp), there exists a zero singular Pu′-bordism W 2k for p̂ × L2k−1,
that is, W 2k is a bordism between some closed Pu′-manifold and p̂×L2k−1.
We consider now W 2k as a closed singular Pu′

p -manifold. As δp̂[W
2k] =

[L2k−1] one concludes that W 2k represents ẽ2k.

NowW 2k×Ln−2k inherits a singular Pu′
p -structure fromW 2k, and δp̂[W

2k×

Ln−2k] = [L2k−1 × Ln−2k]. Analogously, δp̂[L
2k−1 ×Wn−2k+1] = −[L2k−1 ×

Ln−2k]. We note that the proof of ker δp̂ ⊂ imπ in (5.2.5) proceeds as follows.
If M is a singular Pu′

p -manifold and δp̂M is zero singular Pu′-bordant via

V , then M ∪δp̂M V defines a closed singular Pu′-manifold which is, when

considered as a closed singular Pu′
p -manifold, singular Pu′

p -bordant to M .

We now conclude that e(n, k) is represented by the closed singular Pu′-
manifold (

L2k−1 ×Wn−2k+1
)
∪
(
W 2k × Ln−2k

)
, (5.2.6)

where the union is taken along the common p̂-part of the boundaries, L2k−1×
p̂×Ln−2k. The expression (5.2.6) (at least its non-singular version) is known
as the Toda bracket or Massey product, and is denoted by 〈L2k−1, p̂, Ln−2k〉
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(see [Ale72]). Let us note that [〈L2k−1, p̂, Ln−2k〉] ∈ Hn(BZp×BZp) does not
depend on the chosen zero singular Pu′-bordisms since β′ : H2∗(BZp;Zp) →
H2∗−1(BZp;Z) is an isomorphism. We have proven (recall n = 2m+ 1)

Proposition 5.2.5. The Toda brackets [〈L2k−1, p̂, Ln−2k〉], k = 1, . . . ,m,
form a basis for [H∗(BZp) ∗H∗(BZp)]n−1 ⊂ Hn(BZ2

p).

According to Proposition 5.2.5, for the proof of Theorem 5.2.1 we have to
show that 〈L2k−1, p̂, Ln−2k〉 admits a positive scalar curvature metric, for
all k = 1, . . . ,m. This is simple for k 6= 1 and m. Namely, in this case
L2k−1 and Ln−2k = L2m+1−2k admit positive scalar curvature metrics. The
concordance argument illustrated in Figure 3.1 (see also [BR02, Theorem
3.5]) then implies that the same is true for 〈L2k−1, p̂, Ln−2k〉. We restate
this result as

Corollary 5.2.6. For all k 6= 1 and m,

H2k−1(BZp) ∗Hn−2k(BZp) ⊂ H⊕
n (BZp ×BZp).

The proof of the corresponding statement for k = 1 and m requires more
work. The following notation is convenient.

Definition 5.2.7. A positive scalar curvature metric on a closed singular
Pu′
p -manifold M is assumed to restrict on the Pu′-manifold ∂M − int(p̂×

δp̂M) to the canonical positive scalar curvature metric and on p̂× δp̂M to p
copies of some positive scalar curvature metric on δp̂M .

We remind the reader that one example of a closed singular Pu′
p -manifold

M is of course a bordism between p̂× δp̂M and some closed Pu′-manifold.

In order to prove Corollary 5.2.6 for k = 1 and m, one tries to find a
bordism W 2m between p̂ × L2m−1 and some singular Pu′-manifold such
that W 2m admits a positive scalar curvature metric (in the sense of Defi-
nition 5.2.7). However, we are not bound at the specific generator L2m−1

of H2m−1(BZp). One might as well work with some other generator L of
H2m−1(BZp), possibly represented by a singular Pu′-manifold, and a zero
singular Pu′-bordism for p̂ × L admitting a positive scalar curvature met-
ric (see Figure 5.1; we set p = 4, the singular Z2-manifold ‘closed interval’
stands for the singular Pu′-manifold L, the zero singular Pu′-bordism for
p̂ × L is denoted by W, the zero bordism for p̂ × S1 is denoted by W , the
boundary of 〈L, p̂, S1〉 is here the Z2-manifold Z2 × (T 2 ♯ T 2)).
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× S1

L × p̂× S1

L ×

W

W

Figure 5.1: Toda bracket 〈L, p̂, S1〉

Recall that we treat the case n ≥ 2p + 1, or equivalently, m ≥ p. Since
β′ : H2m(BZp;Zp) → H2m−1(BZp;Z) is an isomorphism, the following The-
orem proves that

H2k−1(BZp) ∗Hn−2k(BZp) ⊂ H⊕
n (BZp ×BZp),

for k = 1 and m, and finishes the proof of Theorem 5.2.1 for r = 2.

Theorem 5.2.8. For all m ≥ p there exists a closed singular Pu′
p -manifold

W2m of positive scalar curvature in BZp, representing a non-trivial element
in H2m(BZp;Zp).

The proof of this statement is the most intricate part of the whole proof of
Theorem 5.2.1. We distinguish the cases m = pi and m 6= pi, m > p, for
some i ≥ 1. The first case involves results about the structure of ΩSO∗ (BZp)
from [CF64]. The second case will follow from the first one, using product
structures for singular bordism and the H-space structure of BZp; here we
will need the fact that we may work with an arbitrary singular Pu′

p -manifold
as a generator of H2m(BZp;Zp), and not only with a bordism between p
copies of a lens space and some Pu′-manifold.

Proof of Theorem 5.2.8 for m = pi, i ≥ 1. We need the following view on
ΩSO∗ (BZp) which is used in [CF64, Section 42]. Elements in ΩSO∗ (BZp) are
interpreted loc. cit. as closed oriented manifoldsM admitting an orientation
preserving fixed point free diffeomorphism T of period p. Such an element
(T,M) bords if there exists a compact oriented manifold W admitting an
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orientation preserving fixed point free diffeomorphism S of period p such
that (S|∂W , ∂W ) is oriented and equivariantly diffeomorphic to (T,M). The
correspondence to the actual definition of ΩSO∗ (BZp) is as follows. The
natural projectionM →M/T defines a principle Zp-bundle, hence we obtain
a map M/T → BZp. Vice versa, a map N → BZp induces a principle Zp-
bundle N̂ → N , meaning that N̂ admits an orientation preserving fixed
point free diffeomorphism of period p.

To avoid confusion, we note that the index k now appears in another context.
We recall a construction in [CF64, Section 42]. Consider S3 ⊂ C2 and
S2p−1 ⊂ Cp. As usual, T k = S1 × · · · × S1 denotes the k-torus. For all
k ≥ 0 one defines closed oriented manifolds L2k as quotients (S3)k/T k where
(t1, . . . , tk) ∈ T k acts on ((z1, w1), (z2, w2), . . . , (zk, wk)) ∈ (S3)k by

((t1z1, t1, w1), (t
−1
1 t2z2, t2w2), . . . , (t

−1
k−1tkzk, tkwk)).

If v lies in (S3)k, we denote this expression by σ(t1, . . . , tk; v). One now
obtains an action of T k on (S3)k × S2p−1 where (t1, . . . , tk) ∈ T k acts on
(v, (x1, x2 . . . , xp)) ∈ (S3)k × S2p−1 by

(σ(t1, . . . , tk; v), (x1, t
−1
k x2, . . . , t

−p+1
k xp)).

There is an induced (2p− 1)-sphere bundle
((
S3
)k

× S2p−1
)
/T k → L2k.

Dividing out the obvious U(1)-action on the fibers, one obtains an associated
CP p−1-bundle, whose total space is denoted by M2p+2k−2. We now fix k.
As explained in [CF64, Section 42], there is a diffeomorphism T : M2p+2k →
M2p+2k of period p whose fixed point set separates into components

M2p+2k−2,−M2p+2k−4, . . . , (−1)kM2p−2, (−1)k+1p̂.

It turns out that all normal bundles of these components are trivial. Cutting
the interiors of the associated disk-bundles, one obtains a manifold with
boundary in BZp, which is denoted by W 2p+2k. In the sequel, [M∗] denote
elements in ΩSO∗ , and we remind the reader that ΩSO∗ (BZp) is a module over
ΩSO∗ . Loco cit. (42.11)1 it is proved thatW 2p+2k provides in ΩSO2p+2k−1(BZp)
the equality

[
M2p+2k−2

][
T, S1

]
−
[
M2p+2k−4

][
T, S3

]
+ · · ·

· · ·+ (−1)k
[
M2p−2

][
T, S2k+1

]
+ (−1)k+1p

[
T, S2p+2k−1

]
= 0,

1In (42.11) there is a typing error, it should read
[

T, S2k+1
]

instead of [T, S2k−1].
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where all T are fixed point free diffeomorphism induced by T . For 1 ≤ i ≤
k + 1 the elements [T, S2i−1] are standard lens spaces. The action of T on
S2p+2k−1 is generated by

(x1, . . . , xp−1, z1, . . . , zk+1) 7→ (̺x1, . . . , ̺
p−1xp−1, ̺z1, . . . , ̺zk+1),

with ̺ = exp((2πi)/p). It follows that (T, S2p+2k−1) is a so-called general-
ized lens space in BZp; for which it is also true that it inherits a positive
scalar curvature metric from the standard metric on S2p+2k−1 and that
[T, S2p+2k−1] 6= 0 in H2p+2k−1(BZp).

Lemma 5.2.9. The manifold W 2p+2k admits a positive scalar curvature
metric which restricts

• to the product of two positive scalar curvature metrics, onM2p+2k−2i×
(T, S2i−1) for all 2 ≤ i ≤ k + 1,

• to the product of some positive scalar curvature metric on M2p+2k−2

and some metric on (T, S1), on M2p+2k−2 × (T, S1),

• to p copies of some positive scalar curvature metric on (T, S2p+2k−1),
on p̂× (T, S2p+2k−1).

Proof. We equip CP p−1 with a positive scalar curvature metric and the
CP p−1-bundle M2p+2k with the typical fiber bundle metric. By construc-
tion, the inclusions of the CP p−1-bundles M2p+2k−2i ⊂M2p+2k are induced
by inclusions L2k+2−2i ⊂ L2k+2, for all 1 ≤ i ≤ k + 1. By shrinking the
fibers, we can assume that the associated metrics on M2p+2k−2i are of posi-
tive scalar curvature for all 0 ≤ i ≤ k + 1. Having a positive scalar curva-
ture metric M2p+2k−2i, 1 ≤ i ≤ k + 1, we may assume arbitrary metrics on
(T, S2i−1). For 2 ≤ i ≤ k + 1, those could be of positive scalar curvature.

It remains to show that the induced metric on (T, S2p+2k−1) is of posi-
tive scalar curvature. This follows from an argument in [GL80, Lemma
1]. Namely, let x be a point in some n-dimensional manifold admitting a
positive scalar curvature metric g. Denote by Sn−1(ǫ) the normal sphere of
radius r around x. Then, for ǫ small enough, g|Sn−1(ǫ) is concordant to the

standard metric on Sn−1. Therefore, the induced metric on S2p+2k−1 can
be assumed to be standard which implies that it induces a positive scalar
curvature metric on (T, S2p+2k−1).
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We interpret W 2p+2k as a bordism between (−1)kp̂× (T, S2p+2k−1) and

M2p+2k−2×
(
T, S1

)
−M2p+2k−4×

(
T, S3

)
+ · · ·+(−1)kM2p−2×

(
T, S2k+1

)
.

(5.2.7)
Recall that for the proof of Theorem 5.2.8 we are looking for a closed singular
Pu′
p -manifold W2m in BZp that is non-trivial in H2m(BZp;Zp) and admits

a positive scalar curvature metric. We set k = m−p. We next try to obtain
W2m from W 2p+2k while preserving the positive scalar curvature metric.

We ask whether (5.2.7) can be regarded as a closed Pu′-manifold. A priori
this is probably not true, but we can do the following. Since the elements
of Pu′ generate ΩSO∗ localized at p, the manifolds M2p+2l−2 are bordant,
say via Vl, to some Pu′-manifolds P2p+2l−2, for all 0 ≤ l ≤ k. We join the
bordisms Vl × (T, S2k−2l+1) to W 2p+2k for all 0 ≤ l ≤ k − 1, obtaining a
bordism W2p+2k between (−1)kp̂× (T, S2p+2k−1) and

M2p+2k−2 ×
(
T, S1

)
− P2p+2k−4 ×

(
T, S3

)
+ · · ·+ (−1)kP2p−2 ×

(
T, S2k+1

)
.

(5.2.8)
According to Lemma 5.2.9, the manifolds (T, S3), . . . , (T, S2k+1) come
equipped with positive scalar curvature metrics. It follows that the positive
scalar curvature metric on W 2p+2k can be extended to W2p+2k, this posi-
tive scalar curvature metric restricts on ∂W2p+2k to product metrics, and
on P2p+2k−4, . . . ,P2p−2 we may assume canonical positive scalar curvatures
metrics.

We cannot proceed analogously forM2p+2k−2 because (T, S1) does not admit
a positive scalar curvature metric. Now, the crucial point is that for m = pi,
or equivalently k = pi − p, the manifold M2p+2k−2 is already one of the
p-local polynomial generators of ΩSO∗ . This follows from [CF64, Theorem
42.9]. Namely, loc. cit. it is proved that for t = 2pi − 2

st/4
[
M t
]
≡ p mod p2

where st/4[M
t] ∈ Z denotes a certain characteristic number. Its importance

is due to the fact that if st/4[M
t] = p, then M t would serve as one of the

polynomial generators of ΩSO∗ modulo torsion, without localizing (see e.g.
[Sto68, p. 180]). In our situation, we have

st/4
[
M t
]
= p+ sp2

= p(1 + sp)

for some number s. Since (1 + sp) is p-locally invertible, it follows that
M t can be taken as one of the p-local polynomial generators of ΩSO∗ , for
t = 2pi − 2.
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We therefore consider m = pi, so that M2p+2k−2 = M2pi−2 serves as one of
the p-local polynomial generators of ΩSO∗ . We conclude: The existence of the
closed singular Pu′

p -manifold W2pi proves the first part of Theorem 5.2.8 for

a particular sequence Pu′ = (P1, P2, . . .) of p-local polynomial generators of
ΩSO∗ . Namely, one has to take P(pi−1)/2 =M2pi−2 for all i ≥ 1. In addition,
we note that the positive scalar curvature metrics on P(pi−1)/2, which enter
into the definition of ‘⊕’-positivity, must also be chosen in a particular way
(see Lemma 5.2.9).

Proof of Theorem 5.2.8 for m 6= pi, m > p. This part involves the construc-
tion of a product for singular bordism. A priori, the Cartesian product of
two singular manifolds does not admit the structure of a singular manifold.
Under which conditions singular bordism admits a sensible multiplicative
structure, and how it can be defined, has been considered by Mironov (see
[Mir75, Mir78]). Further references are [Bot92, Chapter 2] and [Rud98,
Chapter 8, §2].

We consider the following general situation where we assume that all mani-
folds are oriented and all diffeomorphisms are orientation preserving. Let P
denote a closed manifold. One defines a closed singular P -manifold P = P×
P × [0, 1] where the P -structure on the boundary is given by distinguishing
different P -factors, i.e. by the diffeomorphism

φP : ∂(P × P × [0, 1]) = P × P × {0, 1} → P × δPP ,

(x, y, 0) 7→ (x, y, 0), (x, y, 1) 7→ (y, x, 1)

where δPP = P ×{0, 1}. In the sequel we shall drop the ‘P ’ in δP . The class
[P ] ∈ ΩP2 dimP+1 plays the role of an obstruction against the existence of a

multiplicative structure on ΩP∗ ( ). One can prove (see e.g. [Bot92, Theorem
2.2.2], [Rud98, Theorem 2.4])

Theorem 5.2.10. If [P ] vanishes in ΩP∗ , then there exists an admissible
product structure on ΩP∗ ( ), i.e. a collection of maps

×̂{(X,A),(Y,B)} : Ω
P
∗ (X,A)⊗ ΩP∗ (Y,B) → ΩP∗ (X × Y,A× Y ∪X ×B)

satisfying the usual axioms (see e.g. [Bot92, Definition 2.1.2]).

In case the conditions of Theorem 5.2.10 are satisfied, the product of two
closed singular P -manifolds M and N is defined as follows. Let Q denote
a zero singular P -bordism for P , i.e. a singular P -manifold whose singular
boundary is given by P . Below must know what this means in detail:
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First, Q is a compact manifold. Then there are compact manifolds ∂̃Q and
A with the same boundary such that

∂Q = ∂̃Q ∪∂(∂̃Q)=∂A (−A).

Furthermore, we have a compact manifold δQ, a diffeomorphism φ : A →
P × δQ and a diffeomorphism ψ : ∂̃Q→ P such that the diagram

∂(∂̃Q)
∂ψ

//

∂φ

��

∂P

φ
P

��

P × ∂(δQ)
id×ψ′

// P × δP

(5.2.9)

commutes, here ∂ψ and ∂φ indicate that the diffeomorphisms must be re-
stricted to the boundary, and ψ′ is some map.

Let ∂N× [0, 1] be a collar neighborhood of ∂N . The singular P -structures of
M , N and Q induce a diffeomorphism ω : δM×δN×∂̃Q→ ∂M×∂N×[0, 1].
We now set

M×̂N = (M ×N) ∪ω (−δM × δN ×Q). (5.2.10)

One shows that there is a diffeomorphism ∂(M×̂N) → P ×δ(M×̂N), where

δ(M×̂N) = (δM ×N) ∪ (δM × δN × δQ) ∪ (M × δN),

which turns M×̂N into a singular P -manifold (see [Rud98, p. 471]).

The construction (5.2.10) also applies to elements of ΩP∗ ( ) since we may as-
sume that the maps to background spaces, restricted to ∂M×∂N×[0, 1], fac-
tor through δM × δN . Theorem 5.2.10 generalizes to singular P-manifolds
where P = (P1, P2, . . .) as usual denotes a sequence of closed manifolds: If
[P i] = 0 for all i, then ΩP

∗ ( ) admits an admissible product structure. One
obtains M×̂N from M × N by attaching zero singular P-bordisms for P i
for all i.

We observe that for oriented bordism and P = Pu′
p all obstructions to an

admissible product structure vanish since for all P ∈ Pu′
p they lie in

ΩPi
∼= ΩSOi /([P ]), i ≡ 1 mod 4,

which is p-locally trivial.

The singular product structure in general depends on the specifically chosen
zero singular P -bordisms Q. In our situation, however, as a consequence of
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the following observation (or by Lemma 5.2.12 below), the specific choices
of Q are immaterial.

On Ω
Pu′

p
∗ ( ) = H∗( ;Zp) the ordinary cross product × and the product ×̂

defined above coincide. Namely, since both products satisfy the usual axioms
of a product on a homology theory, one can show (see [Rud98, Theorem 7.3])
that they are induced by, a priori different, ring spectrum maps

r×, r×̂ : HZp ∧HZp → HZp,

where HZp denotes the Zp-Eilenberg-MacLane spectrum. However, two
such maps are uniquely determined up to homotopy by their induced maps
on homotopy groups. Moreover, since r× and r×̂ are ring spectrum maps,
one concludes that both induced maps Zp ×Zp → Zp are given by the sum,
that is, they have to coincide.

For our purpose we now need

Proposition 5.2.11. Let M and N denote two singular Pu′
p -manifolds. If

M admits a positive scalar curvature metric, then the singular Pu′
p -bordism

class of M×̂N is represented by a singular Pu′
p -manifold of positive scalar

curvature.

Proof. According to (5.2.10), M×̂N is obtained from M ×N by attaching
δPM × δPN × Q for all P ∈ Pu′

p , Q being some zero singular P -bordism

for P . The product metric on M ×N , properly scaled, is of positive scalar
curvature. We have to show that it extends to a positive scalar curvature
metric on δPM × δPN ×Q which restricts on δPM × δPN × P × δPQ

• to p copies of some positive scalar curvature metric on δPM × δPN ×
δPQ, for P = p̂,

• to the canonical positive scalar curvature metric, i.e. to the product of
the chosen positive scalar curvature metric on P with any metrics on
δPM , δPN and δPQ, for P ∈ Pu′ .

The case P = p̂ is easy. Namely, equip M with a positive scalar curvature
metric. Then there is an induced positive scalar curvature metric on δPM .
It now follows that δPM × δPN × Q can be equipped with positive scalar
curvature metric which satisfies the conditions above.
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Now let P ∈ Pu′ . The attachment process of δPM × δPN ×Q involves only
P -parts, therefore we shall simply speak of P -manifolds and P -bordism. As
above let us drop the ‘P ’ in δP . We consider 2M = M ∪̇M . Since 2 is p-
locally invertible, it is enough to show that the singular P -bordism class of
2M×̂N is represented by a singular P -manifold of positive scalar curvature.
Let Q be a zero singular P -bordism for P . We must show that the singular
P -bordism class of

(2M ×N) ∪ω (−2δM × δN ×Q) (5.2.11)

is positive, ω : 2δM × δN × ∂̃Q→ 2∂M × ∂N × [0, 1] as above.

Let {a} and {b} denote positively oriented points. There is a particularly
easy zero singular P -bordism for 2P = P × {a, b}, namely P × [0, 1] whose
singular P -structure is given as follows. We take ∂̃(P × [0, 1]) := P ×{0, 1},
keeping orientations in mind: The interval [0, 1] induces an orientation on its
boundary, and we assume that {0} (resp. {1}) is positively (resp. negatively)
oriented. The diffeomorphism ψ : ∂̃(P × [0, 1]) → 2P (see above Diagram
5.2.9) is defined by

P × P × [0, 1]× {0, 1} → P × P × [0, 1]× {a, b},

(x, y, t, 0) 7→ (x, y, t, a), (x, y, t, 1) 7→ (y, x, 1− t, b).
(5.2.12)

Since P is even-dimensional, (5.2.12) is orientation preserving. Further-
more, we define the P -part of ∂(P × [0, 1]) by P 2 × {0, 1} × [0, 1] with the
diffeomorphism

φ : P × P × {0, 1} × [0, 1] → P × δ(P × [0, 1]),

(x, y, 0, t) 7→ (x, y, 0, t), (x, y, 1, t) 7→ (y, x, 1, t)

where δ(P × [0, 1]) = P ×{0, 1}× [0, 1]. One verifies that the corresponding
Diagram 5.2.9 commutes, so that P × [0, 1] establishes a zero singular P -
bordism for 2P .

The singular P -structures of M , N and P × [0, 1] induce a diffeomorphism

ω′ : δM × δN × ∂̃(P × [0, 1]) → 2∂M × ∂N × [0, 1]

and
(2M ×N) ∪ω′ (−δM × δN × P × [0, 1]) (5.2.13)

becomes a closed singular P -manifold which clearly admits a positive scalar
curvature metric.
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2M ×N × {0}

δM × δN × 2Q

2M ×N × {1}

δM × δN × P × [0, 1]

2M ×N × [0, 1] δM × δN × V

δM × δN × 2P × {0}

δM × δN × 2P × {1}

Figure 5.2: Singular P -bordism between (5.2.11) and (5.2.13)

Lemma 5.2.12. The singular P -manifolds (5.2.11) and (5.2.13) are singu-
lar P -bordant.

Proof. The closed singular P -manifold

(2Q) ∪∂̃(2Q)=2P×{0} (−2P × [0, 1]) ∪2P×{1}=∂̃(P×[0,1]) (−P × [0, 1])

is denoted by V . Since [V ] lies in ΩP2 dimP+2 = 0, there exists a zero singular

P -bordism V for V . Then

(2M ×N × [0, 1]) ∪δM×δN×2P×[0,1] (−δM × δN × V )

is a singular P -bordism between

(2M ×N)× {0} ∪ω (−δM × δN × 2Q)

and (2M ×N)× {1} ∪ω′ (−δM × δN × P × [0, 1])

(see Figure 5.2).

It follows that the singular P -bordism class of (5.2.11) is positive. This
finishes the proof of Proposition 5.2.11.
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We now return to the proof of Theorem 5.2.8. It remains to handle the case
m 6= pi, m > p. Choose the unique i such that pi < m < pi+1. We will
obtain W2m as a product of the closed singular Pu′

p -manifold W2pi , which
comes from the first part of the proof of Theorem 5.2.8, and an arbitrary
generator of H2(m−pi)(BZp;Zp).

We observe that the map given by addition A : Zp × Zp → Zp induces an
H-space structure on BZp and, in turn, a so-called Pontryagin product

µ : H∗(BZp;Zp)×H∗(BZp;Zp)
×
−→ H∗(BZp ×BZp;Zp)

A
−→ H∗(BZp;Zp).

It can be computed by means of the cup product structure of H∗(BZp).
Recall that its even part is the polynomial algebra Zp[β]. It follows (see e.g.
[Hat02, p. 290]) that the even part of H∗(BZp;Zp) is a divided polynomial
algebra, denoted by ΓZp

[b] where b is dual to β. Multiplication in ΓZp
[b] is

given as follows. Let bj be dual to βj , then

bjbl =

(
j + l

j

)
bj+l,

where the binomial coefficient is taken modulo p, of course. One can show
that

(
s
t

)
is divisible by p if and only if there is at least one digit in the base p

extension of t which is greater than the corresponding digit in the expansion
of s (this is known as Lucas’ Theorem). In particular,

(
m

pi

)
6≡ 0 mod p

for pi < m < pi+1. This implies that

H2pi(BZp;Zp)×H2(m−pi)(BZp;Zp)
µ
−→ H2m(BZp;Zp)

is non-trivial for pi < m < pi+1. Now let the closed singular Pu′
p -manifold

N2(m−pi) be an arbitrary generator of H2(m−pi)(BZp;Zp). It follows that

µ
[
W2pi×̂N2(m−pi)

]
∈ H2m(BZp;Zp)

is a generator. According to Proposition 5.2.11, the singular P -manifold
W2pi×̂N2(m−pi) admits a positive scalar curvature metric.

We now see that it is important to work with general Pu′
p -manifolds. Al-

though W2pi is, and N2(m−pi) can assumed to be, a bordism between p
copies of a lens space and some Pu′-manifold, their product is not such a
bordism. The boundary of the product of two connected manifolds with
disconnected boundaries is connected.
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5.2.2 Groups of Higher Rank

Before proving Theorem 5.2.1 for r > 2, we want to show that Toda brackets
generate the torsion term in the Künneth formula

0 → [H∗(BZp)⊗H∗(BZrp)]n
×
−→ Hn(BZp ×BZrp) → [H∗(BZp) ∗H∗(BZrp)]n−1 → 0.

(5.2.14)
For all 1 ≤ i ≤ n − 2, i odd, let ei ∈ Hi(BZp) be a generator, the mod
p reduction of ei is denoted by ẽi. In addition, for all 1 ≤ i ≤ n − 2, i
odd, let f i1, f

i
2, . . . , f

i
d(i) be a basis for Hn−i−1(BZrp), the mod p reduction

of f ij is denoted by f̃ ij . Although not used below, we note that d(i) =∑n−i−1
j=1 (−1)n−i−1−j

(
j+r−1
r−1

)
(see [BR02, Proposition 5.2]). We have the map

between the Bockstein exact sequences

· · ·
·p

// H∗( ;Z) //

��

H∗( ;Zp)
β′

//

=

��

H∗−1( ;Z)

pr

��

·p
// · · ·

· · ·
·p

// H∗( ;Zp2) // H∗( ;Zp)
β

// H∗−1( ;Zp)
·p

// · · · .

As above, for all 1 ≤ i ≤ n − 2, i odd, let ẽi+1 ∈ Hi+1(BZp;Zp) such
that β(ẽi+1) = ẽi. Similarly, since H∗(BZrp;Z) contains only p torsion,
multiplication by p is the zero map, and β′ : H∗(BZrp;Zp) → H∗−1(BZrp;Z)
is surjective for ∗ > 1. We conclude that there exists F ij ∈ Hn−i(BZrp;Zp)

such that β(F ij ) = f̃ ij , for all 1 ≤ i ≤ n − 2, i odd, and 1 ≤ j ≤ d(i). We
now define

ẽ(n, i, j) := ẽi × F ij + ẽi+1 × f̃ ij ∈ Hn(BZr+1
p ;Zp).

As above one shows that β′(ẽ(n, i, j)) vanishes. This implies that ẽ(n, i, j)
is the reduction of an integral class e(n, i, j) ∈ Hn(BZr+1

p ;Z). The classes

e(n, i, j), 1 ≤ i ≤ n− 2, i odd, 1 ≤ j ≤ d(i),

are linearly independent and do not lie in the image of

[H∗(BZp)⊗H∗(BZrp)]n
×
−→ Hn(BZp ×BZrp).

It follows that

[H∗(BZp) ∗H∗(BZrp)]n−1 → Hn(BZp ×BZrp), ei ∗ f
i
j 7→ e(n, i, j),
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1 ≤ i ≤ n − 2, i odd, 1 ≤ j ≤ d(i), is a splitting for the right map in
(5.2.14). We note that the classes e(n, i, j) are atoral. As above we can
represent ei, f

i
j resp. ẽi, F

i
j by singular Pu′- resp. Pu′

p -manifolds in order

to represent e(n, i, j) by Toda brackets. The singular Pu′-bordism class of
such a Toda bracket depends on the chosen elements F ij ∈ Hn−i(BZrp;Zp)
since β′ : H∗(BZrp;Zp) → H∗−1(BZrp;Z) is not injective. For our purpose
the specific choice of the F ij ’s is immaterial, however. Summerizing, we have
shown

Proposition 5.2.13. The Toda brackets 〈ei, p̂, f
i
j〉, 1 ≤ i ≤ n−2, i odd, 1 ≤

j ≤ d(i), form a basis for [H∗(BZp) ∗H∗(BZrp)]n−1 ⊂ Hn(BZr+1
p ).

Now let us turn to the proof of Theorem 5.2.1 for r > 2. We will show by
induction on r that the following holds for all r ≥ 1

Hatoral
∗ (BZrp) ⊂ H⊕

∗ (BZrp). (5.2.15)

We note that ‘⊕’ is understood with respect to the particular sequence Pu′

and the particular positive scalar curvature metrics which were chosen in
the proof of the statement for r = 2.

The cases r = 1 and 2 were proven above.

Fix r > 2 and assume that (5.2.15) holds for all r′ ≤ r. Consider again the
Künneth formula

0 → [H∗(BZp)⊗H∗(BZrp)]n
×
−→ Hn(BZp ×BZrp) → [H∗(BZp) ∗H∗(BZrp)]n−1 → 0.

Let u ∈ Hatoral
n (BZr+1

p ). By the splitting above we can write u = v + w for
some

v ∈ [H∗(BZp)⊗H∗(BZrp)]n and w ∈ [H∗(BZp) ∗H∗(BZrp)]n−1.

We shall show that v and w are positive. Let us first note that v is atoral
since u and w are. We can write v =

∑
i+j=n bi ⊗ cj for some bi ∈ Hi(BZp)

and cj ∈ Hj(BZrp). If i > 1, then bi ⊗ cj is atoral and positive. We must
therefore show that the atoral class b1 ⊗ cn−1 is positive. But b1 ⊗ cn−1 is
atoral only if cn−1 ∈ Hn−1(BZrp) is atoral. It now follows by the induction
hypothesis that cn−1 is positive. This implies that b1 ⊗ cn−1 is positive as
well.

It remains to show that any w ∈ [H∗(BZp) ∗H∗(BZrp)]n−1 is positive. We
have w = 〈x1, p̂, x〉 for some x1 ∈ H∗(BZp) and x ∈ H∗(BZrp). Bearing the
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Künneth formula for BZrp = BZp ×BZr−1
p in mind, we can write x = a+ b

for some

a ∈ H∗(BZp)⊗H∗(BZr−1
p ) and b ∈ H∗(BZp) ∗H∗(BZr−1

p ).

We shall show that 〈x1, p̂, a〉 and 〈x1, p̂, b〉 are positive. We have a = c ⊗ d
for some c ∈ H∗(BZp) and d ∈ H∗(BZr−1

p ). By the construction of the
Toda brackets (see [Ale72, Axiom 3, p. 198]), one sees that 〈x1, p̂, c ⊗ d〉 =
〈x1, p̂, c〉 ⊗ d. According to the induction hypothesis, or by the previous
subsection, 〈x1, p̂, c〉 ∈ H∗(BZp)∗H∗(BZp) is positive, and so is 〈x1, p̂, c〉⊗d.

We have b = 〈x2, p̂, x
′〉 for some x2 ∈ H∗(BZp) and x′ ∈ H∗(BZr−1

p ), and
we must show that 〈x1, p̂, 〈x2, p̂, x

′〉〉 is positive. Since any toral cohomology
class evaluates non-trivially on some toral homology class, one concludes
that there is a direct sum decomposition

H∗(BZr−1
p ) = Hatoral

∗ (BZr−1
p )⊕Htoral

∗ (BZr−1
p ).

According to the induction hypothesis, Hatoral
∗ (BZr−1

p ) is a subgroup of
H⊕

∗ (BZr−1
p ). We can therefore write x′ = y+z for some y ∈ H⊕

∗ (BZr−1
p ) and

z ∈ Htoral
∗ (BZr−1

p ). We shall show that 〈x1, p̂, 〈x2, p̂, y〉〉 and 〈x1, p̂, 〈x2, p̂, z〉〉
are positive.

In the first case we use the associativity property (see [Ale72, Axiom 6, p.
198])

− 〈〈x1, p̂, x2〉, p̂, y〉+ 〈x1, 〈p̂, x2, p̂〉, y〉+ 〈x1, p̂, 〈x2, p̂, y〉〉 = 0. (5.2.16)

The element 〈p̂, x2, p̂〉 defines a class in the even degrees of H∗(BZp). Hence
it vanishes and so does the whole middle term in (5.2.16). We can there-
fore consider 〈〈x1, p̂, x2〉, p̂, y〉. Since 〈x1, p̂, x2〉 ∈ H∗(BZp) ∗ H∗(BZp) and
y are positive, both classes can be represented by singular Pu′-manifolds
of positive scalar curvature. A modest generalization of the concordance
argument illustrated in Figure 3.1 implies that the Toda bracket of these
representatives also admits a positive scalar curvature metric.

In the second case we represent z as a linear combination of elements of the
form φ : T s → BZr−1

p . Observe that each such φ contains a factor of the
form ι : S1 → BZp, say

φ = φ′ × ι : T s−1 × S1 → BZr−2
p ×BZp.

We now have
〈
x1, p̂,

〈
x2, p̂,

[
T s−1

]
⊗
[
S1
]〉〉

=
〈
x1, p̂,

〈
x2, p̂,

[
T s−1

]〉〉
⊗
[
S1
]
. (5.2.17)
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Since 〈x1, p̂, 〈x2, p̂, [T
s−1]〉〉 ∈ H∗(BZp) ∗H∗(BZr−1

p ) is atoral, it is positive
by the induction hypothesis. It follows that (5.2.17) is positive as well. This
completes the induction step and, in turn, the proof of Theorem 5.2.1.

5.3 Concluding Remarks

We proved that
Hatoral

∗ (BZrp) ⊂ H⊕
∗ (BZrp). (5.3.1)

Subsequently, there is the question of whether equality holds here. In this
respect, we do not know any counterexamples, and we make the following

Conjecture 5.3.1.
Hatoral

∗ (BZrp) = H⊕
∗ (BZrp).

Let us note that for an elementary Abelian 2-group, the corresponding state-
ment is false (see [Joa04]).

One could ask whether (5.3.1) or Conjecture 5.3.1 holds for more general
spaces that are not necessarily aspherical. If a space X is simply connected,
then Hatoral

∗ (X) = H∗(X). It is not difficult to show that all elements
of Hn(X), n 6= 4, are positive: According to the Hurewicz Theorem, all
elements of H2(X) and H3(X) can be represented by spheres, which admit
positive scalar curvature metrics. By using surgery, one can show that all
classes of Hn(X), n ≥ 4, are representable by simply connected non-spin
singular Pu-manifolds. Those admit positive scalar curvature metrics by
Theorem 4.2.2 provided that n ≥ 5.

An equality as in Conjecture 5.3.1 is rare. Namely, for any n there is a map
Tn → Sn of degree one. It follows that a homology class in Hn(X) which
is represented by a sphere is toral. Such a class is not atoral, and it lies in
H⊕
n (X) provided that n > 1.

It is an open question whether (5.3.1), and perhaps also Corollary 5.2.2, hold
for arbitrary Abelian p-groups. In order to prove this statement, the meth-
ods of the previous section appear to be promising. In this direction, the
crucial task may be to extend Conner and Floyd’s results about the struc-
ture of ΩSO∗ (BZp), which we used in the first part of the proof of Theorem
5.2.8, to the groups ΩSO∗ (BZps), s > 1.

We fixed an odd prime p and proved (5.3.1) for a particular sequence of p-
local polynomial generators of ΩSO∗ with particular positive scalar curvature
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metrics. One might ask whether (5.3.1) holds for an arbitrary sequence of
generators of ΩSO∗ modulo torsion with arbitrary positive scalar curvature
metrics. In this case, (5.3.1) would be true for all primes simultaneously.

The first part of Theorem 5.1.2 clearly also holds in the spin case. By
contrast, the spin version of the second statement of Theorem 5.1.2 seems
difficult to prove because π : ΩSpin∗ (X) → ΩPα

∗ (X) is not surjective, as it
was the case in the oriented version. In fact, we saw in Chapter 4 that π is
not even surjective in the case that X is a single point.

However, p-local computations as in the previous section should also be
practicable in the spin case. Instead of positive homology one then has to
work with the obvious notion of positive connective real K-theory. The study
of how much of ko∗(BZrp) is exhausted by ko⊕∗ (BZrp) might then yield a new
proof of

Theorem 2.3 in [BR05]. Let M be a connected closed spin manifold of
dimension greater or equal than five with fundamental group Zrp, and let
f : M → BZrp be the classifying map of the universal cover of M . Assume
that α(M) vanishes. Then M admits a positive scalar curvature metric if
[M, f ] ∈ koatoral∗ (BZrp).

Loco cit. this is proved by showing that [M, f ] lies in ko+∗ (BZrp). The ad-
vantage of ko⊕∗ (BZrp) over ko

+
∗ (BZrp) is that the forthcoming computations

will use the Künneth formula for connective real K-theory, instead of the
more complicated Künneth formula for spin bordism.
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