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Abstract. We investigate quantum Brownian motion in adiabatically rocked
ratchet systems. Above a cross-over temperature T, tunneling events are rare;
yet they already substantially enhance the classical particle current. Below T,
quantum tunneling prevails and the classical predictions grossly underestimate
the transport. Upon approaching T = 0 the quantum current exhibits a tunnel-
ing induced reversal, and tends to a finite limit.

INTRODUCTION

Traditional heat engines are devices to extract useful work out of thermal
fluctuations by way of transferring heat between equilibrium baths at differ-
ent temperatures. More realistic set-ups, involving also non-thermal forces,
have been addressed quantitatively only since a few vears under the label of
“Brownian mortors”, “molecular motors”, or “ratchets” [1.2]. Besides their
principal interest and the diverse astonishing effects thev can produce. they
also entail a variety of interesting technological applications {2.3], and may be
of relevance for intracellular transport as well [4]. In this note we highlight
the intriguing features of a Brownian motor when quantum effects start to
play an important role [5]. At sufficiently low temperatures, our predictions
should be observable in mesoscopic structures such as the superconducting
quantum interference device (SQUID) proposed in [6]. Using recent technical
developments [7], semiconductor superlattices could be designed which, too.
exhibit a quantum ratchet effect. On top of that, our results are also of po-
tential relevance for biological transport phenomena that involve transfer of
light particles such as electron- or protons-reactions.
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MODEL
Our starting point is the system-plus-bath Hamiltonian
H(t) = p?/2m +V(x) —x f(t) + Hp . (1)

where x, p, and m are the coordinate operator, momentum operator. and mass
of the quantum particle, respectively. Furthermore, the “ratchet”-potential
V'(z) is assumed to be asymmetric and periodic, for instance (cf. Fig. 1)

V(z) = Vy [sin(2rz/L) — 0.22 sin(drz/L)} . (2)

and f(t) represents an unbiased non-thermal driving force. Finally, Hp de-
scribes the heat bath interacting with the particle and we adopt its usual
modelization by an ensemble of harmonic oscillators at thermal equilibrium
with a coupling bilinear in the bath and particle coordinates (8]
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where q; and p; are the coordinate and momentum operators of the bath
oscillators. The effect of the remaining model parameters m;, w;, and c; are
completely fixed in the continuum limit .V — oo by the spectral density
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FIGURE 1. Solid: ratchet potential V'(z) in (2). Dashed and dotted: “tilted washboard
potentials” U*(z) in (8) with Fl =02V, | = L/2=.
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J(w) =

o} 3

o0 C2- N
3~ d(w - wj) . (4)
j=1 MjW;
Focusing on so-called Ohmic friction (8], i.e.,

Jw)=wn, (3)

the bath oscillators can be integrated out and the dynamics of the quantum
particle in (1) can be rewritten as operator-valued quantum Langevin equation

m&(t) = —nx(t) - V'(x(8)) + f(£) + £(t) - (6)

Here, 7 is the viscous damping coefficient and £(t) a self-adjoint thermal
noise operator with a Gaussian statistics of vanishing mean (£(¢)) and a sym-
metrized correlation 3(£(1)€(0) + £(0)&(t)) = ksTn% coth(zkpT t/h) (fluctu-
ation dissipation theorem with T, kg, and # representing temperature, Boltz-
mann’s constant, and Planck’s constant over 2x, respectively).

The quantity of foremost interest in our above defined ratchet dynamics is
the particle current in the steady state

J = lim (x(t)) , (M)

where { ) denotes the quantum statistical mechanical expectation value to-
gether with a time average over the driving force.

In general, this requires the solution of a highly non-trivial far from equi-
librium problem. To simplify matters, we restrict ourselves to very slowly
varying forces f{t) such that the system can always adiabatically adjust to
the instantaneous thermal equilibrium state (accompanying equilibrium}. We
furthermore assume that f(¢) is basically restricted to the values & F', i.e., the
transitions between £F occur on a time scale of negligible duration in com-
parison with the time the particles in (6) are exposed to either of the “tilted
washboard” potentials

U*(z) =V(s) FFs (8)

see also Fig. 1. As a final assumption we require a positive but not too
large F', such that U*(z) still display a local maximum and minimum within
each period L. Apart from these premises, the driving f(¢) can be either of
stochastic or of deterministic nature. In particular, our results presented in
the next section are valid both for stochastic and deterministic choices of f(¢).

To completely fix the model, we still have to specify the 5 parameters m, 7,
Vo, F,and ;= L/27 in (2),(6),(8). We do this by prescribing 5 dimensionless
numbers as follows: First, we fix Vg, F, { and thus U*(z) through FI/V5 = 0.2,
AU™" [ Vy = 1.423, and |UY|{?/V, = 1.330, where U denotes the curvature
of U™ (x) at a local maximum and AU™" is the smallest of the 4 different
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potential barriers between adjacent local minima of U'*(z) and U~ (z). This
choice of Vg, F, and | = L/27 corresponds to the situation depicted in Fig.
1. Next we choose n/mQy = 1 with Qg := [V3/{*m|"/2, meaning a moderate
damping as compared to inertia effects. To see this, we notice that {y approx-
imates rather well the true ground state frequency wyg in the potential U*(z),
wg = 1.153, and similarly for U~(z). In particular, n/mQ, = 1 rules out
the occurrence of “deterministically running classical solutions” both in U*(z)
and U~ (z). Before specifying our last dimensionless number we remark that
the temperature T will not be fixed but rather used as control parameter.
We, however, will restrict ourselves to thermal energies kg7 much smaller
than AU™" (so-called semiclassical condition) such that meaningful transi-
tion rates between adjacent minima of U*(z) can be defined and employed to
determine the transport property (7) of our ratchet dynamics {5]. It then can
be shown [8] that in the potential U™ (z) genuine quantum tunneling events
“through” the potential barrier are rare above a crossover temperature

+ n? +=4mjlt| -
T+ hu +_ V7 icL] Tlr 9)

€ =27rk3’ = 2m

while for T < T tunneling yields the dominant contribution to the transition
rates. An analogous crossover temperature 7 arises for the potential U~ (z)
which is typically not identical but rather close to 7. With the definitions

Tcma: = maX{Tc+: Tc_} ’ Tgniﬂ =mln{Tc+ TC—} (10)

we now fix our last dimensionless quantity through AU™"/kgT™* = 10.
In this way, the weak noise condition is safely fulfilled for T < 2T7%%%, j.e.,
up to temperatures well above both 7" and T;. At the same time, the so-
called semiclassical condition [8] can be taken for granted when evaluating
the quantum mechanical transition rates for all 7 < 27/°%*. Adopting a
path integral treatment of the full system-plus-bath problem (1) this condition
allows one to work within a saddle point approximation scheme [8]. For more
details regarding the calculation of those rates and their relation to the current
(7) we refer to [3].

RESULTS

We performed in our work [5| the first numerical dissipative, low-
temperature calculations to tackle the involved saddle point problem arising in
the determination of the exponentially leading contribution (bounce action) to
the transition rates in a generic ratchet potential (2); moreover. we have eval-
uated the full prefactors (ratios of functional determinants) which dominate
the non-exponential contributions to the incoherent, dissipative quantum tun-
neling rates in the semiclassical approximation. Our results for the quantum



ratchet model as specified in the previous section are depicted in Fig.2. Shown
are the current J, from the above sketched quantum mechanical treatment
together with the result J that one would obtain by means of a purely classi-
cal calculation. The small dashed part in Jy, in a close vicinity of the crossover
temperatures T** and T™" from (10) signifies an increased uncertainty of
the semiclassical rate theory in this temperature domain.

Our first observation is that even above T."**, quantum effects may enhance
the classical transport by more than a decade. They become negligible only
beyond several T7***. In other words, significant quantum corrections of the
classically predicted particle current set in already well above the cross-over
temperature T, where tunneling processes are still rare. (They can be asso-
ciated to quantum effects other than genuine tunneling “through” a potential
barrier.) With decreasing temperature, T < T™", quantum transport is even
much more enhanced in comparison with the classical results [1b,le]. A fur-
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FIGURE 2. The quantum mechanical steady state current Jym from (7) and its classical
counterpart J.; for the ratchet potential from Fig. 1 in dimensionless units J/QyL. Note
the change of sign, the finite T — 0 limit, and the non-monotonicity of Jym. For more
details see main text.



ther remarkable feature caused by the intriguing interplay between thermal
noise and quantum tunneling is the inversion of the quantum current direction
at very low temperatures. In a classical description, such a reversal for adia-
batically slow driving is ruled out. Finally, Jm approaches a finite (negative)
limit when T — 0, implying a finite (positive) stopping force {2,6] also at
T = 0. In contrast, the classical prediction Jy remains positive but becomes
arbitrarily small with decreasing T. A curious detail in Fig. 2 is the non-
monotonicity of Jgm around T7%* /T =~ 2.5, caused by a similar resonance-like
T'-dependence in one of the underlying quantum mechanical transition rates.
A better understanding of this issue is the subject of ongoing work.

We also studied other parameter values than those used in Fig. 2 as well as
somewhat modified potentials (2). Basically, the same qualitative results are
found except that the non-monotonous temperature dependence disappears
for sufficiently large AU™" /kgT™*® values. Thus all the above described
novel features appear to be typical for a large class of quantum ratchet sys-
tems. Such effects clearly become of paramount importance for applications
in mesoscopic systems at low temperatures. Note that T, can reach values
larger than 100K in some physical and chemical systems, while it is in the mK
region in Josephson systems (8.
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