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Abstract. Periodic structures that lack reflection symmetry act - when peri-
odically rocked by external forces - as rectifiers for Brownian motion. Here we
investigate the role of a global coupling (of the ‘Kuramoto-type’) among such
rectifiers. We demonstrate that the coupling strength K acts as a control on the
sign (it yields a realization for current reversal) and the magnitude of the directed
average velocity of Brownian particles. Moreover, raising the coupling strength
K, results in an effective reduction of ambient noise. This intriguing effect is
revealed in a striking manner for the mean velocity vs. load characteristics.

INTRODUCTION

In recent vears, the study of directional Brownian motion in periodic po-
tentials that lack reflection symmetry (ratchets) has attracted considerable
attention (for the major ideas and a recent review with more references, see
{1]). Such ratchets provide models for molecular motors. but in addition also
carry a potential for novel technological applications in the worlds of micro-
and nano-physics {1.2]. Due to the fact that motion is directed, particles can
move uphill against a load with finite velocity; thus they serve as archetype
systems that are able to act as rectifiers (i.e., identical direction of the velocity
upon varying the bias around zero) on a level of Brownian noise. In the previ-
ous literature a variety of ratchet mechanisms have been identified [1]. Here,
our focus is on the interplay of ratchet devices that are mutually coupled with
each other. Thus far, such coupling effects have rarely been addressed [3,4].
The focus in this work will be on globally coupled rocking ratchets.

MODEL

We start from the overdamped dynamics of N interacting particles in a
ratchet potential V(z), i. e.
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;= —M - 5 sin(2m(z; — ;)] + F + AsinQt + \/Efi(t), (1)

dl‘,‘ N i=1
where ¢ = 1,...,.N. The dot denotes the derivative with respect to time ¢.
The particles are forced by a static bias F and, additionally, by periodic
driving with angular frequency Q and amplitude 4. Each particle experiences
thermal fluctuations of strength D, modelled by independent Gaussian white
noise sources &;(t) of zero average, and correlations (£;(t) £;(s)) = 26;;0(t —s).
We adopted the global interaction between particles of strength X/V in eq.(1)
from the well known ‘Kuramoto model’ [5.6] describing excitable systems.

In this work we consider a ratchet potential being constructed from two
Fourier modes [7], V(z) = —3(sin27z + {sindnz). Equation (1) can be
simulated numerically. This method has the disadvantage that for small noise
strength D it is intrinsically rather time consuming. Thus. we look for an
alternative route to the solution of our problem. An equivalent description of
the noisy dynamics (1) is given by the N-dimensional Fokker-Planck equation,
ie.,
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For small vV, this equation can effectively be solved by the method of Matriz-
Continued- Fractions [2,7]. Further, to investigate the limit of many particles,
N > 1, we turn to a mean field description: For the mean particle density
W(z;t) = limyoe 3 T8, 8(z — z:(t)) we find the one dimensional Fokker-
Planck equation

2w
QVV(z;t) = { 9 {dV(I) + K/ dz'W(z';t)sin2r(z ~ z') — F — AsinQt
0

ot oz | dz
62
+£§D} W(I; t), (3)

which is nonlinear in W(z;t). We solve this equation numerically for periodic
boundary conditions by expanding into Fourier modes, i.e.,

W(z,t) = i a(t)e?™. (4)

{=—c0

This yields an infinite set of nonlinear ordinary differential equations for the
expansion coefficients ¢;(t), which are solved by standard methods.
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FIGURE 1. The asymptotic stationary mean field probability distribution Wy(z) in a
tilted potential (shown in the inset) is calculated within the mean field approximation (—)
and compared to Langevin simulations for ¥ = 8(s), .V = 256(0) at model parameters
F=05D=01,and K = 1.

RESULTS

At this point we can ask, how large the particle number IV must be, in
order for the mean field to be a sensible valid approximation. For the un-
driven case 4 = 0 of a tilted potential V(x) — Fz we compare in Fig. 1 the
asymptotic stationary mean field solution Wy(z) = lim;_,o, W(z;t) calculated
by the solution of (3) with Langevin simulations, cf. Fig. 1.

Next, we turn to the investigation of the mean asymptotic particle velocity

t+27/Q v

(#),= lim , dt’Zz’i(t’)/N. (5)

t—o0,N =0

Numerical results for the directed velocity versus coupling strength K are
depicted with Fig.2. Clearly the interaction between particles can increase
the current significantly, cf. Fig. 2(a). Moreover, the direction of transport
can be reversed due to the coupling, cf. the large K-values in Fig. 2(a).
We remark, that such a reversal emerges already for the periodically rocked
thermal ratchet in absence of coupling [3,7]. In the limit of adiabatically slow
driving, © — 0, we can apply an adiabatic approximation in order to calculate
{2} from (3), cf. (7], see Fig. 2(b).

In Fig. 3 we depict the dependence of (T),, in absence of a bias versus noise
strength D for various coupling strengths K: The coupling can induce an
Increase for the absolute value of the current (e.g. (Z),, at moderate-to-large
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FIGURE 2. Numerically evaluated average particle velocity (z},, versus coupling strength
K for parameter values given in the figures. (a) for non adiabatic driving, (b) for adiabatic
rocking (—), which favourably compares with the adiabatic analytical theory (- - -).
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FIGURE 3. The numerically evaluated mean field particle velocity (£),, is shown versus
the Gaussian white noise strength D, for various coupling strengths K.
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FIGURE 4. The numerically evaluated velocity (£),, in presence of an external bias force
F versus different coupling strengths K. The inset presents an enlargement: The () ,-F
characteristics exhibits a devils staircase for large coupling X.

D in Fig. 3), as well as a decrease (at low noise level D). Increasing the
coupling K shifts the point of current reversal to higher D-values.

In order to investigate the efficiency with which particles are performing
work in a coupled rocking ratchet we study the mean velocity versus a nonva-
nishing external bias F # 0. In [2] we presented results for the velocity-bias
characteristic for zero coupling K, which exhibits a devils staircase behavior,
being increasingly smoothed out with increasing noise (not shown). In Fig. 4
we depict the load curves for the same parameters as in [2] for various values
of coupling strength K. ! We observe that an increase in K yields a more
pronounced step-behavior. The coupling induced, extended plateaus can be
utilized for the design of rectifiers operating with Brownian noise. Thus, the
magnitude of the coupling strength can be used to control the smoothing level
of load curves; a large value of K effectively reduces the bare noise level D.

CONCLUSIONS

In conclusion, we have investigated analytically (adiabatic limit) and nu-
merically the physical role of mutual coupling among Brownian rectifiers that
individually act as rocking ratchets. The effects of coupling are multifacetted:
The presence of finite coupling KX can induce a reversal of velocity; K acts

h ?.'he potential U'(Z) chosen in [2] (denoting all variables in [2] with a tilde) has a different
periodicity and height than in this work: Rescaling the variables in [2] by £ = 27z, U(%) =
2V(z/2x), A= A F=F,{= 2t Q=0/2r, D = 21D yields (%), =(%), = @)
when X = . * :
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as a control for the sign and the magnitude for directed movement of Brow-
nian particles. Its role for the load-characteristics is particularly intriguing:
Increasing the global coupling strength effectively diminishes the influence of
strong ambient noise forces, such as strong thermal noise D. Our system in (1)
can likely be realized with arrays of Josephson junctions with internal asym-
metry [2| due to the equivalence with a Kuramoto-dynamics as exemplified
recently by Wiesenfeld, Colet, and Strogatz [6].
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