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Abstract. The fluctuation-induced transport of massive Brownian particles is
investigated. Analytic approximations for their current in periodic ‘ratchet’-
potential driven additively by the Ornstein-Uhlenbeck noise are in quaiitative
agreement with the result of numeric simulations. The aoiiity to separzte parti-
cles with different masses in situations with a constant bias is discussed.

BROWNIAN PARTICLES IN RECTIFIERS

Ve consider the one-dimensional motion of a Brownian particle with coor-
dinate z = z{t), mass m, and viscous friction 7,

mi = —ni = V'(z) + F + y(t) + V2D (1) . ()

in an asymmetric periodic potential (ratchet) V' (z} of period L. F stands
for an additional ‘load force’. Both last expressions in (1) are noisy source
terms. Thermal fluctuations are modelled bv the Gaussian white noise £(¢).
[ts intensity D is given due to an Einstein relation by D = nkgT = n/fJ
and, hence, the particle performs Brownian motion in a thermal bath with
temperature 7. Furthermore, we introduce the action of external fluctuating
forces y(t) on the particle which exposes the system out of equilibrium.

We assume y(t) to be an Ornstein-Uhlenbeck-process with zero average
and correlation time 7. The intensity [{y(t)y(0))dt is labelled by @ and is
independent of the correlation time +. It is convenient to express ) in units
of the thermal noise strength D introducing R by @ = R D.

Overdamped situations » — oo of eq.(1) with different types of y(t) was the
topic of a lot of studies {1,2], recently, pointing in their application to biological
svstems. A rich material for several physical situations of driving, either by
periodic or by stochastic forces y, was investigated in detail (for review see
'21). Also the fluctuation induced transport was verified experimentally {3].

Less well elaborated is the case where inertial effects of the particles come
into play. Only in [4] a compiex behaviour of the current for a periodic exter-
aal force without thermal noise was reported. The inclusion of inertial effects.
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however, would generalize the effect of stochastic ratchets and achieves im-
portance in technical applications, especially if particles should be separated
by ratchets.

The quantity of foremost interest is the steady state particle current (z)
(1]- [4]. For zero load F = 0 in two limits, in the white noise limit 7 — 0
as well as in the zero amplitude limit 7 — oo, an equilibrium-like situation
is approached. The stationary distribution achieves a canonical like shape
Pst = P(H) with H being the Hamilton-function of the particle. The mean
current vanishes in both limits. In the intermediate regime 0 < 7 < oo the
external force y(t) violates the detailed balance in the systems and the non
equilibrium situation will exhibit a non-vanishing current (z) [2].

In the following sections two different approximation schemes are presented
and compared with results of numerical simulations. Specifically, we will ad-
dress the dependence of the current (£) upon the correlation time = and the
particle mass m, assuming thereby all other parameters are kept fixed. In
numerical evaluations we use the special potential: V(z) = —[sin(27z) +
0.25sin(4wz)]/(27).

UNIFIED COLORED NOISE APPROXIMATION

The unified colored noise approximation (UCNA) has originally been devel-
oped for overdamped stochastic dynamics driven by OUP. Later refinements
and generalisations have been elaborated [5]. It has proved to vield good ap-
proximations over wide parameter regimes in different situations [6] and was
applied already to fluctuation induced transport [7).

The objective in the UCNA is to find an approximate Markovian description
of the generally intractable non-Markovian dynamics (1) {6]. First a non-linear
coordinate transformation to (approximately) decoupling stochastic variables
is performed. In a second step, a separation of time scales for those new
variables is established, thus admitting the adiabatic elimination of the ‘fast’
ones.

Adapting this general line to (1) we find expressions for small correlation
times 7 and, simultaneously, for a strongly overdamped dynamics m/n — 0.
Within these restrictions, the following approximate Langevin equation (in
Stratonovich interpretation) as Markovian approximation of (1) is derived:

ng(z)t=-V'(z) + F+/2D(1+ R) £(t) (2)
where the state- and mass-dependent dressing g(z) of the friction reads
d r R[V'(z) - F]

glz) =1+ —

dr (1+R)(n+2)+rV"(z)’ 3)

The steady state probability current J in (2) follows by means of a standard
calculation [8]. With () = J L we arrive at
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L(1+R) [1 - e?*®)]

(@ =— =z ~ (@)
On [ dz g(z) e=7%2) [ dyg(y) eS*W)
0 E
Here we introduced an effective potential
7 9(y) n
(z)= | ==V -F . 5
(z) /0 V') - Fldy (5)

In the white noise limit 7 — 0, the current (), predicted by (4) is indepen-
dent of m and coincides with the exactly solvable case F # 0, 7 =0, m =0 [8].
If F' =0, the current is generically non-zero if 0 < 7 < oc for non-symmetric
potentials V' (z). The asymptotic behaviour of (4) for small 7 and zero load
F =0 is obtained as

LR

L T
L S it SR -t 1 2 2 e 6
() naA(HR),/O VOV'GYdy = (6)
L z+L
A= / dz / dy PV W=V @ +E—)FI/0+R) (7)
0 z

Thus a 72 decay for moderately small 7 is predicted, crossing over to a 7*
decay for extremely small 7. The m-dependence of the UCNA result (4)
can be completely absorbed into the renormalised correlation time 7, for this
reason the maximum of (z) is independent of m.

To verify the approximative results we performed numerical simulations of
the Langevin equation (1) using the algorithm of Fox [9]. For each set of
parameter values we integrated the stochastic dynamics over 107 time steps
At = 1072, This was repeated 20 times to obtain the average current and
its estimated accuracy. Since the relative numerical error increases both with
decreasing n and decreasing 7 we could not reach the deep asymptotic regime,
assumed in our derivation of the UCNA result (4). The comparison for mod-
erately large 7 and moderate-to-small 7 of the UCNA with the simulations is
depicted in Fig. 1 (left) for different m-values. The maximum of the CCNA
shifts in 7 with increasing mass while the simultaneous decreasing of the max-
imum is not predicted.

PATH INTEGRAL APPROACH

In this section we aim the calculation of the steady state current by help
of path-integrals. As in quantumn mechanics the re-formulation of stochastic
dynamics yields a compact representation [10,11]. In practise, however, a
further analytical evaluation of the resulting expressions is possible for weak
noise only, i.e. for situations where the (effective) potential barriers between
adjacent local minima are large compared to the strength of the fluctuations.
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FIGURE 1. Particle current vs. correlation time. Left figure: UCNA (dashed) and nu-
merical simulations (solid). From left to right: m = 0.5,1,1.5. (n =2, D = 5/8 = 0.1,
Q = RD = 0.5, F =0). Right figure: Path-integrals (dashed) and simulations {solid).

Within this restriction the current can be approximated by
() =Llks — k-], (8)

where k. (k_) are the hopping rates to the right (left) between neighbouring
local minima.

For small temperatures (large §) these rates approach an Arrhenius-like
dependence k. = (4 exp ~SA®, where A®, are temperature-independent
‘effective’ potential barriers. The (4 are prefactors with a much weaker tem-
perature dependence.

In the case of small 7 [12] we obtain

_ za —o* 00
A‘I’i(f)=v(xf) ij*l;(* ” ) ”+77'2 (111;)2 /_ wc‘z‘i(t) dt, (9)

where z# is one of the local maxima of V(z) —zF and z, and z_ =z, — L its
neighbouring local minima to the right and left, respectively. The functions
g+(t) are the trajectories found from mgs(t) = —nd+(t) — V'(g+(t)) + F with
boundary conditions ¢4 (t = —00) = z# and ¢+ (t = o0) = 4.

Concerning (; we restrict ourselves to the 0-th order approximation ¢(7) ~
¢(r = 0) with the effective temperature T(1 + R). Closer inspection involving
detailed-balance arguments as well as explicit perturbation calculations [13]
have shown that the identity (,(7 = 0) = {-(7 = 0) should hold true in the
spatial diffusion regime whenever the concept of an escape rate makes sense.
We thus infer that (with A®YY being the second term in (9))

(&) = B[e-afzm“’ _ e-p{#m‘_"+w/(1+m}] (10)

and where B = Lk, (r = 0). We will utilise here our observation from the
previous section that the current (Z).—g is apparently almost m-independent.
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FIGURE 2. Same as in Fig.1 but for F = ~0.01, Q = 0.25, m = 0.5 (curve, that reaches
first the maximum), m = 1.5. The arrow indicates a T-value allowing for mass separation.

So, the same m-independence is inherited by B and by setting m = 0 we
obtain the approximative prefactor

B=L(1+R)/fnA (11)

and A is due to (7). For zero load F = 0 this yields the leading order small-r
behaviour

. LR
@ =1 / [d+ (2 — §-(8)?] at. (12)

The comparison of the path integral prediction (10), (11) with numerical
simulations is shown in Fig. 1. The agreement is rather satisfactory up to
about 7 = 0.5. The shift and the decreasing of the maximum are well de-
scribed. In particular, the asymptotics (12) seems to agree better with the
numerics than that from the UCNA approach (7).

MASS SEPARATION

Above we obtained a displacement of the maximal current for increasing
values of the mass m. This shift can be used with the purpose to separate
mesoscopic particles with different masses. Beside a size-depending separation
due to different friction constants of the particles, the separation by mass is a
new and independent possibility, as easy to survey in the case of particles of
different masses but of the same size.

With zero load F' = 0 flux reversals do not occur in the considered case. Oth-
erwise, adding a constant force against the preferred direction of the ratchet a
flux reversal will be exhibited in a finite region of 7. Beginning from a value 7y
until a second value T, the noise-induced current overcompensates the action
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of the (small) load force. Both values, 7, and 7, depends on the mass of the
particle. Hence for two different values of the mass non-overlapping regions of
the flux reversals are possible which yields the separation of the two species
of particles.

Results of simulations and of the estimations from the UCNA and the path-
integral approach are depicted in Fig. 2. For a specific range of 7 the particles
have different signs of velocity, and hence flow in the average in different
directions. An increase of the differences of the masses would strengthen the
speed of separation and enlarge the region of possible correlation times.

In conclusion we have investigated inertial effects of Brownian particles in
sawtooth-like potential. In the region of moderate to strong damping and for
small correlation times of the considered external forces we found numerically
a shift of the maximal flux with increasing mass towards larger 7. The ob-
servation was confirmed by two approximation schemes. This dependence of
the flux on the mass can be exploited for separation of particles with different
inertial properties.
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