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Characteristic Crossing Points in Specific Heat Curves of Correlated Systems
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Attention is drawn to the observation that in many correlated systems (e.g.,3He, heavy
fermion systems, and Hubbard models) the specific heat curves, when plotted for different va
of some thermodynamic variable (e.g., pressure, magnetic field, and interaction), cross al
precisely at one or two temperatures. A quantitative explanation of this phenomenon, b
on the form and the temperature dependence of the associated generalized susceptibiliti
presented. [S0031-9007(97)02432-0]

PACS numbers: 71.27.+a, 67.55.Cx, 71.28.+d
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In 1959 Breweret al. [1] noticed that the specific heat
curvesCsT , Pd of liquid 3He measured at different pres
suresP all intersect at a temperatureT1 . 0.16 K, and
that CsT , Pd increaseswith increasing pressure below
T1. Greywall’s high-precision measurements of the sp
cific heat at constant volumeV provided striking evidence
for the sharpness of the crossing point atT1 . 160 mK
[see Fig. 1(a)] [2]. At this temperature the specific he
is obviously independent of volume or pressure. It w
unclear, however, whether special significance should
attached to this finding [2,3]. Recently, Georges an
Krauth [4] observed the same conspicuous crossing p
nomenon in quite a different system, namely, in the par
magnetic phase of the Hubbard model, the simplest mo
of correlated electrons, in infinite dimensions. For sma
to intermediate values of the local interactionU the spe-
cific heat curvesCsT , Ud, calculated by iterated perturba
tion theory, were found to intersect almost at the sam
temperatureT1 . 0.59tp, wheretp is the scaled hopping
amplitude of the electrons (Fig. 2) [5]. Clearly the exis
tence of these peculiar points of intersection calls for
explanation.

In this Letter we illustrate that crossing points such a
the ones described above can actually be observed in

FIG. 1. Specific heatCsT , Pd of 3He [2]: (a) CyT vs T ,
(b) CyT vs P.
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specific heat of many correlated systems. Furthermor
we discuss the origin of this phenomenon.

To be able to discuss the problem in a sufficiently
general framework we define a general free energ
FsT , Xd, where X can be any thermodynamic variable
(here we choose intensive variables), e.g., pressuresPd,
magnetic fieldsBd, and on-site interactionsUd. The con-
jugate extensive variable associated withX is jsT , Xd 
2≠FsT , Xdy≠X. Pairs of variablessX, jd are, for
example, sP, 2V d, sB, Md, and sU, 2Dd, with M as
the magnetic moment, andD as the number of doubly
occupied sites in Hubbard models. With the entropy
SsT , Xd  2≠Fy≠T one obtains the Maxwell relation

≠SsT , Xd
≠X


≠jsT , Xd

≠T
. (1)

A search of the literature reveals that there exists quite
number of systems, both in theory and experiment, whe
the specific heat curvesCsT , Xd  T≠SsT , Xdy≠T versus
T when plotted for different, not too large values ofX in-
tersect at one or even two well-defined, nonzero temper
tures. Apart from normal-liquid3He it can be observed
in heavy fermion systems with and without Fermi liquid

FIG. 2. Specific heatCsT , Ud of the paramagnetic phase of
the Hubbard model ind  ` dimensions calculated by iterated
perturbation theory [5].
© 1997 The American Physical Society 1307
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behavior, for example, in CeAl3 [6] [Fig. 3(a)] and UBe13
[7] upon change ofP, in UPt32xPdx [8] and CePtSi12xGex

[9] as x is varied, and in CeCu62xAux s0.2 # x # 0.5d
when eitherP [10] or B [11] [Fig. 3(b)] is varied. It
is also found in Eu0.5Sr0.5As3, a semimetal with compet-
ing interactions, upon change ofB [12]. In particular,
all theoretical models of Fermi and Luttinger liquids in
vestigated beyond the low-temperature regime show t
feature: the one-dimensionalsd  1d Hubbard model in
a magnetic field [13], the1yr Hubbard ind  1 in the
metallic phase when the interactionU is changed [14],
and the Hubbard model ind  ` discussed above [4].

To explain the origin of the crossing points we separa
the problem into two questions: (i) Why do specific he
curves cross at all? (ii) How wide is the region where th
curves cross? Turning to the first question, we note th
any crossing of specific heat curvesCsT , Xd implies

≠CsT , Xd
≠X

Ç
T1sXd

 T1sXd
≠2jsT , Xd

≠T2

Ç
T1sXd

 0 . (2)

Thus crossing occurs wherejsT , Xd versus T has a
turning point. In general the crossing temperatureT1sXd
still depends onX. Only if T1 is independentof X for
some range ofX values do the curves intersect at on
point. Crossing of specific heat curves may be inferr
from a sum rule for the change of the entropySsT , Xd
with respect toX in the limit T ! `

hX  k21
B lim

T!`

≠SsT , Xd
≠ ln X


X
kB

Z `

0

dT 0

T 0

≠CsT 0, Xd
≠X

.

(3)
1. Lattice models (X ; U).—Equation (3) implies

hU  0 for any kind of Hubbard model sinceS ap-
the
FIG. 3. Specific heat (a)CsT , PdyT of CeAl3 [6] (for T . 8 K we took the running average of the data points to reduce
scatter), (b)CsT , Bd of CeCu5.5Au0.5 [11].
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proaches a constant forT ! `. At high temperatures,
T ¿ U, CsT , Ud ~ UyT , i.e., ≠Cy≠U . 0. Hence
≠Cy≠U must become negative at intermediate tempe
tures, i.e., the specific heat curves must cross at leas
one temperature, for the integral to vanish identical
We note that this is a genuinecorrelation effect origi-
nating from the existence ofU2 and higher terms in an
expansion of the internal energyEsT , Ud, and hence of
CsT , Ud  ≠Ey≠T , in powers ofU.

2. Continuum systemssX ; Pd.—Here Eq. (3) im-
plies hP  21 since S approaches the ideal-gas valu
for T ! `. Apparently≠Cy≠P , 0 at most (especially
high) temperatures [15].

In the Fermi liquid phase of3He [1,2] and in the para-
magnetic phase of the Hubbard model at low temperatu
[4,13] the entropy is known toincreasewith Xs; P, Ud,
i.e., ≠Cy≠X . 0. At sufficiently low T , whenSsT , Xd 
CsT , Xd  gT , this impliesdgydX . 0. This may be
attributed to the excitation of low-energy (spin) degre
of freedom in the correlated system [16]. Hence, t
specific heat curves will cross at some low temperatu
T1sXd. (In 3He T1 practically coincides with the tem-
perature above which Fermi liquid theory breaks dow
[17].) Equation (3) then implies that in the Hubbar
model the specific heat curves will cross twice altogeth
(Fig. 2). These two systems only consist of a sing
species of particles. By contrast, heavy fermion syste
are basically two-component systems consisting of co
duction and localized electrons which may hybridize. Th
strength of the hybridization is determined by an am
plitude VhybsPd which increases with pressure. By hy
bridizing, the electrons may gain an energykBTK , where
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TK sPd ~ exps2constyV 2
hybd is a different (“Kondo”) low-

energy scale. BelowTK the specific heat is linear, the
coefficient being given bygsPd ~ 1yTK , where now
dgydP , 0. Hence at low temperatures the specific he
decreaseswith pressure [18]. This is also the case a
higher temperatures when crystal field excitations [1
or phonons become important. In the interval betwe
these temperatures the specific heat must thereforein-
creasewith pressure for the entropy to be conserved. Th
implies that the specific heat curves will cross attwo tem-
peraturesT1 and T 0

1. This is precisely what is seen in
several heavy fermion systems, e.g., in CeAl3 [6] [T1 .
5 K, T 0

1 . 17 K; see Fig. 3(a)] and UBe13 [7] (T1 .
2.5 K, T 0

1 . 9 K). Yet another reason for specific hea
curves to cross is the vicinity of a second-order pha
transition where the discontinuity inCsT , Xd is changed
with X as in CeCu62xAux [11] with X as the magnetic
field.

We now turn to the question concerning the width o
the crossing region. We expandCsT , Xd in an (asymp-
totic) series inX 2 X0, with X0 chosen at convenience,

CsT , Xd . CsT , X0d 1 sX 2 X0dT
≠2j

≠T2

Ç
X0

1
1
2

sX 2 X0d2T
≠2

≠T2

≠j

≠X

Ç
X0

1 . . . , (4)

where we used Eq. (2). AtT1sX0d Eq. (4) implies
CsT1, Xd . CsT1, X0d

£
1 1 WX0 sXd

§
where the (relative)

width of the crossing region,jWX0 sXdj  jD
s1d
X0

sXd 1

D
s2d
X0

sXd 1 . . . j, is determined by the numbers

D
snd
X0

sXd 
sX 2 X0dn11T1

sn 1 1d! CsT1, X0d
≠2

≠T 2
x sndsT , X0d

Ç
T1

, (5)

with x sndsT , Xd  ≠njy≠Xn. For jD
snd
X0

sXdj ø 1 the
CsT , Xd curves will intersect at a well-defined point. The
width is seen to be determined by the curvature (wi
respect toT) of the linearsn  1d and nonlinearsn . 1d
susceptibilitiesx sndsT , Xd at T1 and X0. There are two
particularly relevant sufficient conditions under which th
Dsnd are small.

(i) Weak T dependence ofx snd: For X  P, j  2V
the susceptibilityx s1d  2≠Vy≠P  kT V is essentially
the isothermal compressibility of the system. In th
strongly correlated, high-density quantum liquid3He
the volume V sT , Pd and the change of volume with
pressurex s1dsT , Pd depend only very weakly on tem-
perature forall T & 2.5 K [20]. The Maxwell relation
(1) then implies that the curvature ofCsT , PdyT vs P,
≠2fCsT , PdyT gy≠P2  ≠2x s1dy≠T2, is also small for all
T ; Fig. 1(b) (T # 0.3 K) shows that this is indeed the
case. It is the small curvature and its change of si
from negative to positive (Fermi gas behavior) togeth
with the change of the slope ofCsT , PdyT vs P from
positive at T , T1 to negative atT . T1 that is the
origin of the pointlike crossing region atT1. For 3He and
at
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heavy-electron liquids we can estimateD
snd
P0

sPd at T1sPd
from the linear specific heat coefficientgsPd (a zero-
temperature quantity). Using≠2x sndy≠T2 . gsndsPd,
with gsndsXd  ≠ngy≠Xn, we obtain D

snd
P0

sPd . fs1 2

PyP0dn11ysn 1 1d!g fPn11
0 gsn11dsP0dygsP0dg. For 3He

[2] (with P0  15 bar, P2
0gs2dsP0dygsP0d . 5 3 1022d

we find jW sPdj & 0.03 for 0 # P # 30 bar; i.e., on the
scale of Fig. 1(a) the crossing region atT1 . 160 mK is
indeed essentially confined to a point. Similarly, for th
crossing atT1 . 5 K in CeAl3 [6] [with P0  4.8 kbar,
P2

0gs2dsP0dygsP0d . 0.4] we obtainjW sPdj & 0.2 for P
between0.4 8.2 kbar, implying a rather narrow crossing
region [Fig. 3(a)].

(ii) Linear X dependence ofx s1d: The situation is
particularly clearcut if j is a linear function of X,
i.e., jsT , Xd  x s1dsT dX, as in linear-response theory
Then the crossing condition, Eq. (2), takes the for
d2xsT1dydT2  0, whereT1  T1sX0  0d. This im-
plies that D

snd
0 vanishes identically forn $ 1. In this

caseall specific heat curves intersect exactly at one poin
The width jW0sXdj becomes finite only throughnonlin-
ear terms in jsT , Xd  x s1dsT dX 1

1
3! x

s3dsTdX3 1 . . . ,
wherex sndsTd  x sndsT , X  0d. The lowest-order con-
tribution to the width is given byD

s3d
0 sXd. For small

enoughX (this depends on the system), i.e., in the lin
ear regime, the specific heat curves must thereforenec-
essarily cross at a well-defined point. This is seen t
be the case in the specific heat curvesCsT , Bd of the
d  1 Hubbard model atU  const [13] whereB is
rather small, as well as in CeCu62xAux [12,21] where
the crossing region is only sharp forB & 3 T [Fig. 3(b)].
The same arguments apply toCsT , Ud of the paramag-
netic phase of Hubbard models [4,14] where we no
choosej  D̃sT , Ud 

1
4 2 DsT , Ud at half filling such

that D̃sT , 0d  0. To a good approximatioñDsT , Ud is
linear in U for not too largeU at all temperatures [22].
We find jW sUdj & 0.05 for U & 2.5tp in the d  `

Hubbard model [23].
In Hubbard models the intersection ofCsT , UdykB 

fsTyt, Uytd curves is sharp only athigh temperatures. At
low temperatures the generation of low-energy excitatio
leads to a renormalized energy scalet ! teff ø t. Hence
a perturbation expansion ofEsT , Ud or CsT , Ud to second
order in U will be valid only for a small range ofU
values, implying a wide crossing region,jW sUdj , 1, at
low temperatures.

In summary, we showed that the remarkable crossi
of specific heat curvesCsT , Xd vs T for different ther-
modynamic variablesX, first observed in3He [2] and the
Hubbard model [4], is not accidental but can be foun
in many correlated systems. The width of the crossi
region is found to give explicit information about the tem
perature dependence of the generalized susceptibilities
sociated withX. A related observation, that for Hubbard
models the value of the specific heat at the crossing po
is almost universal, will be discussed elsewhere [24].
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