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Abstract. We consider the problem of sliding motion of a charge-density-wave subject to static
disorder within an elastic medium model. Starting with a ficld-theoretical formulation, which allows
exact disorder averaging, we propose a self-consistent approximation scheme to obtain results be-
yond the standard large-velocity expansion. Explicit calculations are carried out in three spatial di-
mensions. For the conductivity, we find a strong-coupling regime at electrical fields just above the
pinning threshold. Phase and velocity correlation functions scale differently from the high-field re-
gime, and static phase correlations converge to the pinned-phase behaviour. The sliding charge-den-
sity-wave is accompanied by narrow-band noise.
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1 Introduction

The peculiar dynamics of charge-density-wave (CDW) systems has aitracted attention
for more than two decades [1]. Among the most prominent transport properties ob-
served is the non-linear electric current response to a constant electric field, the pin-
ning of the CDW below finite threshold, harmonic and subharmonic mode-locking in
an additional oscillating drive, and hysteretic effects. It is well established that this
behaviour has its very origin in the interaction of the CDW with quenched disorder
in the parent substance.

The CDW state is formed through the instability of the quasi one-dimensional
electron system with respect to static density modulation below the Peierls transition,
induced by electron-phonon interaction. It is characterized by a complex order param-
eter, the amplitude being proportional to the amplitude of uniaxial electron density
modulation, and the phase modes as low-energy collective excitations describing
deformations [2]. Microscopic theory {3] shows the classical character of phase dy-
namics, which is usually overdamped. Therefore, the intriguing difficulties of theoret-
ical approaches to CDW dynamics, stem from the many degrees of freedom coupled
non-linearly to disorder. We limit ourselves to phase dynamics throughout this paper,
and neglect a possible influence of topological defects as well.

In the following we focus on the sliding motion of the CDW driven by a constant
field. The simplest picture describes the dynamics by a single variable. Its equation
of motion is assumed to be that of an overdamped particle in a one-dimensional peri-
odic potential supplementary pulled by a constant force. (Note the analogy to the dy-
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namics of Josephson junctions.) Though this model renders correctly qualitative fea-
tures as the non-linear force-velocity dependence and even pinning, the periodic po-
tenttal is an unknown input and a sinusoidal potential (independent of particle
velocity) yields quantitatively incorrect results, especially for exponents. Also it does
not give any information on correlation functions.

A perturbative approach to the problem, including the spatial degrees of freedom
of the phase, was performed by Sneddon et al. [4], inspired by earlier work on vortex
lattices in type-Il superconductors [5]. The disorder, which is considered as perturba-
tion to the overdamped motion, is modelled by a static random potential with vanish-
ing mean. In three space dimensions the authors found in second order a correction
to Ohm’s law proportional to the square root of the field. Generalizing to arbitrary di-
mensions d, the perturbation expansion breaks down at small fields for d <4.

The more recent view of the depinning transition as a dynamic critical phenomen-
on requires a dynamic field theory, i.e. a formulation where disorder averaged dy-
namics is mapped exactly on a self-interacting system [6, 7]. Thus the apparatus of
renormalization group theory can be deployed [8]. Interestingly, non-standard ele-
ments remain, e.g. the effective periodic force correlator has to be given assertively a
cusp at its maximum.

Recent numerical [9, 10] and experimental [11] work seems to reveal a more com-
plex scenario above threshold. The aim of this paper is to formulate and work out
self-consistent approximations within the dynamic formalism, which has several ad-
vantages compared to the standard approach [12, 13].

In the next Section we introduce elementary notions of phase dynamics and conve-
nient reduced variables. Our starting point for further investigation of non-linear dy-
namics is the formulation of Eckern et al. [7], which is presented in Sec. 3. This
functional integral representation of the generating functional combines the dynamic
variables of forward and backward time evolution in independent external fields. Due
to a peculiar normalization property, exact disorder averaging is feasible, resulting in
an effective interaction. In Sec. 4 we prove a functional differential equation for the
generating functional of connected Green’s functions, on which self-consistent ap-
proximation schemes can be based. It is neither restricted to a particular interaction
term nor to a definite field-theoretical formulation. We define especially the mean
field and the self-consistent Hartree approximation. The latter is used in Sec. 5 to ex-
tract the behaviour of the CDW close to threshold. Finally, conclusions are given in
Sec. 6. In an appendix we mention a different line to systematic approximations
based on functional Legendre transforms, applied e.g. in [14], and prove equivalence
of a specific approximation to one of ours.

2 Phase dynamics

The CDW represents a typical low temperature state of highly anisotropic materials.
Due to the nesting property, the electron-phonon interaction induces correlated scat-
tering of electrons between two opposite parts of the Fermi surface, leading to both a
spatial modulation of the electron density and a lattice distortion o cos(Qx) with
Q = 2ky. The CDW direction is chosen along the x-axis, and kr denotes the Fermi
wave number. Thereby a gap A for quasi-particle excitations is opened. In case of in-
commensurability with lattice vectors the CDW 1is free to move along the x-axis.
This can be described by a continuous phase shift ¢ in the density modulation
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x cos{Qx + ¢). Consequently, the CDW current density is related to the phase via
J = enygOyp/Q, where ny is the condensate density.

Omitting for the moment damping effects, the dynamics of the collective phase
mode, allowing for slow temporal and spattal variations, is covered by the phase Ha-
miltonian {2] or, alternatively, by the action (3, 15}

_ 3 hmp \zﬁh?}}? 2 huy eEy
(1)

The first part includes inertia, elastic energies, and the electric field component Ej.
The condensate density calculated from microscopic theory reads ny =
hupNpQ(1 — Y), where vp, Np, and Y denote Fermi velocity, density of states per
spin at the Fermi surface, and the Yoshida function. The prefactor of the txme deriva-
tive is enhanced by the Frohlich mass ratio mp = 1 + 4A%/[MF%0d (1 — Y)]. It de-
pends on the dimensionless electron- phonon strength A, and the p%onon frequency
wg. Typically, the transverse velocity v, is much smaller than vr. The second part,

ngwj&&u%mmm@L (2)

contains the influence of disorder, which breaks translational invariance. The density
np = 2NpA/ 2 represents the amplitude of the electron density modulation. In the ap-
propiate weak-pinning limit, disorder is simulated through static complex random
fields &£ They can be chosen to have zero mean value, and correlations

(£&)=({'¢) =0 and

h
2ntoNp

(& et()) = o(r —r), (3)

where 7 is the characteristic time for scattering processes between opposite parts of
the Fermi surface. Regarding damping effects, investigations of phase dynamics can
be based, motivated phenomenologically, on the equation of motion

0
noy Onp = === (4)

thereby introducing the damping constant .

Typically, disorder leads to suppression of long-range order. This can easily be
demonstrated in the present case by calculating the equal-time phase-phase correla-
tions up to second order in £. In three dimensions and specializing to the static case
E. =0, they are given by

(Lo, 0) = 9(0,00P) = v/ (x/Lo)* + (1 /L - 5)

The quantities Ly = 47° TohNpvpuy nO/QZ and L, = /vy /vp Ly determine the
length scale, where disorder becomes relevant Apart from a numerical factor, this
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scale follows as well from minimizing elastic and disorder energy [2, 16}. The linear
dependence on spatial separation persists to all orders in perturbation theory [17}]. 1t
has, however, become clear that perturbation theory must fail, because the pinned
CDW can access a multitude of metastable configurations. More sophisticated
approaches indicate a logarithmic growth with distance on long scales [18-21].

The quantities Ly, Ly, fy=20L3y/vr, Ep »-iivp/2el,0, and &y = hopng/
ZQLOnQ, suitable for overdamped motion, are used to introduce reduced variables for
the x-coordinate, transverse coordinates, time, electric field, and random fields. From
now on we use exclusively these reduced variables, but maintain notatton. For later
convenience some of the above equations are displayed again. The action is then
written as

= A [ {5 @) -5 (V07 + Ule) + B}, (©
where

U{p) = Re[¢exp(ip)]- (7)
Correlations are given by

(£0) & ()) = Bmdlr ), ®

and the equation of motion reads
pOrp + O — Vip = E + U'(p). (9)

The prefactor p=mp[20°L%y* is typically small compared to one. Whereas
A = LyL? ngy being large, indicates a strong suppression of thermal phase fluctua-
tions. For numerical values, especially concerning NbSes, we refer to [7, 15].

3 Generating functional

The essential building block of dynamical field theory {22, 23] is the contour along
which time evolution of the system is considered: It runs from ¢t = —oc¢ to 1 = +o0,
and back to f = ~oc. For convenience the contour integration is split into two ordi-
nary time integrations by introducing an additional index « denoting forward
(Oé = 1) and backward (« = 2) path. The phase variables are then combmed mto
" = (o', ¢%), where a = (a, 1,r), as well as the external fields into y” = = (', 7).
Minus signs from backward integration can be hidden in lower index quantities,
e.g. 1, = {?71, —H ) This is supplemented by the convention that only indices appear-
ing as both upper and lower ones are subject to path summation, and time and space
integration respectively.

Taking an average with respect to the initial state, the complete dynamical infor-
mation is included in the generating functional

N / D] exp(iSolie] + iSul] + i e").- (10)
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It is obvious that the exponent essentially contains the difference between the action
(6) with variables of path one and two. Specifically, the action of the free system is

1
So = 50" T (1

The free system is assumed to have been in thermal equilibrium in the infinite past,
and the disorder contribution

Sy=A / d & {U(p") - U} (12)

is switched on adiabatically. By construction, the generating functional is normalized

to one for rgl = ryz, independent of Sy. This most important feature can also be dem-
onstrated perturbatively.

A more t1ansparent formulation is achieved by transforming to sum and difference
variables ¢° via ¢” = @*Q?, the matrix Q” being defined through

O =@+ @ 2N, ot =" — @ 2A. (13)

The mcluswn of A in the transformation takes into account the smallness of fluctua-
tions in <,,o — (p In order to keep covariance of the above expressions, we introduce

new quantities 77, = Qaﬁb, and F Q‘?Q‘ffgd, and finally suppress, from now on,
the overlines. Thus, using (7), the dmorder term reads

Sy = 2A / drdr sin(g' /20) U' (). (14)

Onmitting for the moment Sy in (10), the functional integral is gaussian and can be
calculated easily:

Zoln} = exp{(—i/2)n,Gi'n,). (15)

Both operators 'Y, and G are related by '), Gi¢ = &¢, with &, the identity. They
have the matrix structure

_(rk TE s [ 0 G
rgb - (r@ 0 )3 G - Gé{ G{I}( . (I6)

The normalization property of the generating functional, now fulfilled for

%x(%); (1)

is a result related to the identity G}! = 0. This generalizes to all n-point.functions in
the interacting case. The other entries, their Fourler transforms being displayed be-
low, are the retarded and advanced components
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GR = (po® +iw - ¢*) !, G = (GB)". (18)

Finally the Keldysh component is given by the fluctuation-dissipation theorem (clas-
sical limit)

Gy = (Gy — G3)(8/w), (19)

where 6 = kpTty/Ah. Here the separation of response and correlation functions and
their possible independence in non-equilibrium is clearly visible. Thermal fluctua-
tions of the phase have white noise character with amplitude I’g = 2i6. In explicit
calculations, in addition, we have to introduce a high-frequency cut-off in order to
obtain finite local phase fluctuations. This is physically justified by the fact that the
above action is valid only for low energy phenomena.

The phase dynamics at fixed disorder potential U is characterized by the n-point
functions {¢” .. ™). Given the generating functional Zy, they follow as n-time de-
rivatives at #, = 0, normalized to the functional itself at the same point. Due to the
normalization property Zyly, = 0] =1, we may readily use the disorder-averaged
functional

Z=1{(Zy) (20)
to generate disorder-averaged n-point functions (™. "W = ((p"..™),). The
averaging procedure can be performed inside the functional integral. Using the for-

mula (exp{iSy)) = exp(—{(SySy)/2) = exp(iS;), where the last equation defines
the effective interaction

Si = 2ai / d*rdedt (2A) sin (' /2A) sin(' /2A) cos (? — ¢?), (21)
we finally obtain [7]

Zw:/Dmmm%M+memM% (22)

We remark that the field-theoretic approach to classical dynamics [24, 25], starting
from (9), leads to the contributions (14) and (21) in the limit A — oc.

4 Self-consistent approximations
In the last chapter we derived an effective action that governs the disorder-averaged
phase dynamics. However it contains the non-linear term (21), and therefore one has

to resort to an approximative analysis of the problem. The first step in our strategy is
to write (21) in the form

Si = —iTrtexp(ilj¢"). (23)

Here, the explicit structure is encoded in the symbols
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Tt = 7 / Eradeades S (Qeaza)™ (24)

s4,64=%1/2A

ct =t ) ot - e (}) - ot - 20 (%) 23

where 4 = (r4,74,74,84,84) combines internal variables being summed and inte-
grated, respectively. Then, recalling that the integral of a derwatwe vanishes identi-
cally, we perform the derivative in [Dfy] (6/5¢), exp(iS]e] + in,¢”) = 0 to get

/ Die] (;c;aS ] + %) exp(iSly] + in,”) = 0. (26)

A derivative symbol with lower index is defined as derivative with respect to the spe-
cified upper index quantity and vice versa. Representation (23) of the interaction
term leads immediately to

b
~ily, (%) Zlygl + TeCl Zlp + ' +n,2[0] = 0. (27)

Finally, introducing the generating functional W of connected Green’s functions, de-
fined through Z = exp(iW), we arrive at

(%) Wl = =Gy, — Gg> Tr'L) exp(iSW[n)), (28)
where
W] = Wiy + ] = W], (29)

This is our central result on which approximation schemes are based. Equation (28)
determines directly the response to external fields. Further derivatives allow access to
linear response and correlation functions and so on. A straightforward procedure to
obtain systematic approximations is to truncate the expansion

wi =3 a2 (5) - (5) wo EY

The lowest order approximation, from now on referred to as mean-field approxima-
tion, keeps oniy the ﬁrst term (n = 1) in (30). The quantities ¢ = (5/y)° W and

G = —(3/on)"(8/0n)*W, defined for 7, = (E,,0), are determined by (28) and its
derivative:

¢° = -Gy, — G Tr¢ exp (il ¢°)], (31)

G =GP + G&[—iTr ] exp (il )G (32)
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Straightforward calculation shows that the first equation is simply the Saddle~point
condition. In the second one the self-energy X, which equa}s the expression in
squared brackets, is merely dependent on the mean value ¢” and therefore neglects
fluctuation effects as well. We add here that the self-energy follows from Dyson
equation I' ,G" = &¢ through T a = =19 ~%,,.

The second order approximation keeps the first two terms (=1 and n = 2) in
(30). Unfortunately, the analogous equations do not form a closed system. The third
derivative of W couples to the self-energy. Omitting this we obtain the so called self-
consistent Hartree approximation:

¢ = ~Gi'n, — G Ly exp(i/ 9° — (i/ )0/ GC, (33)
G = G + G [—~i Tr 'l exp(iCd ¢ — (i/ 02606 (34)

Again the expression in squared brackets in the second equation is identified as the
self-energy. In contrast to the mean-field equations, the above approximation takes
into account gaussian fluctuations in a self-consistent manner.

5 Results and discussion

We focus now on the case where the CDW is moving uniformly with velocity ¥ in a
constant field E, i.e. {(¢)) = vr. This translates into #, = (£, 0) and c;§ (0, {en)
for the representation chosen in the preceding section. Furthermore, G which solely
depends on differences of time and space arguments, has the structure (16)

As it turns out that mean-field equations give no corrections to free motion, except
for correlations, we consider now the self-consistent Hartree approximation. Inspec-
tion of these equations shows immediately that the parameter A merely appears as a
non-relevant short-time cut-off. Therefore, we display equations (33, 34) in the classi-
cal imit A — oc:

b= Ey + 47:/(1@ e MO sin(wr) GR(0, 7). (35)

The self-energies are

SR (r, ) = 4oV (OGO, 1) — (1) / eV (1) GR(0, 7)), (36)

R (r, 1) = —4nid(r)V (1), (37)
where

M (1) = i[GX(0,0) — G*(0, 1)}, (38)

V(1) = e M) cos(r). (39)
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The quantity M(r) equals the cormrelation function (1/2) ([5¢(0,1) — dp(0,0)]%),
where dp = ¢ — {)). We note that the self-energies are only frequency dependent,
s0 wave-vector integration can be executed in Fourier representations of G® and G¥.
After some algebra, the Fourier transform of (36) reads

dv o ZR
IR = 5 (=X, -5 et (40)
where
zk z*f\/,u)yz + iy~ R (41)

is specific to d = 3. By convention, Im{/ > 0, i.e. the cut is on the positive real
axis. In addition we find

dy

M(t) = 7

(1= &™) (=iT%) (82 1m Z&) ™, (42)

recall that " =T o *X. Thus the two self-energy components are interwoven in a
non-linear fashion.

From now on we neglect the temperature, i.e. we set I} = 0. In doing so we do
not miss any qualitative features, because long-range order is not destructed by ther-
mal noise for d > 2. Numerical simplifications in this case stem from the fact that
M(t) and V(1) are now periodic functions in time, without any superposed short
time transients. This is reflected by the ansatz X = —i(22)* 3= V, 8(w — nv), where
summation runs over all integers. Note that the n = 0 contribution induces time-per-
sistent correlations. The numbers V, = (/7) fff@d{ V() ™ are the Fourier coeffi-
cents of V{(r) and determine seif»consis{enﬂy M(t) = 3,00 Vall = &™)
(4Im Zﬁ,)”i. It turns out that quantities at frequencies nv, n € 7Z, are sufficient to
form a closed set of equations. In this case Eqg. (40) reads Zf@ =
(1/20) 3, Vil Z 8o — ZK.). Given 9, the values of the V,, X or ZX respec-
tively, are calculated by numerical iteration. Then the force-velocity dependence (35)
follows from

o+ (1/2)> VaImZ8 = E.. (43)

Due to the square-root in the expression (41), a small inertia y is irrelevant at not
too high velocities. That case is easily treated by neglecting the self-energies in a
first iteration of the self-consistent equations. For our purposes the limit x4 ~ 0 is ap-
propriate and used further on.

The result is shown in Figs. 1 and 2, where velocities 7 down to 107> are consid-
ered. The non-linear conductivity ¥/E, develops an upward curvature below
E,~0.5 or v~ 0.1, respectively. As shown by subsequent numerical results, this
marks the crossover between the high- and low-velocity regime. A sharp drop in ve-
locity appears at Ey ~ 0.25 in Fig. 2.

Further information is given by the equal-time phase correlation function
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Fig. 1 Non-lincar conductivity »/F, vs. clectric field £, in (a) sclf-consistent Hartree approxima-
tion, (b} Hurtree approximation using the free Green's function Gg’*, and (¢) first order perturbation
theory.
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Fig. 2 Average velocity » vs. electric ficld E, in sclf-consistent Hartree approximation. Note the
logarithmic scale on the vertical axis.

2M(r) = ([8(r, 0) - 6(0.0)*). (44)

It is connected to the Green’s function G* via M(r) = i[G*(0,0) — GX(r,0)]. The
long-range behaviour 2M (r) ~ [r[ /Ly, is determined by the length L, = 2/V,.
Hence phase coherence is absent in the driven CDW as well. In the high-velocity re-
glme where L >~ (87)" 12 this spatial dependence is valid except for short distances

lr| < 1. Figure 3 shows L as a function of velocity in the considered range, where
L; is typically one order of magnitude larger than the bare Ly. It increases again at
smaller velocities in a power law fashion L) o 17912,
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Fig. 3 Correlation length L; vs. average velocity 7 in self-consistent Hariree approximation.
Asymptotic power laws are Ly o« 7% for low, and L; oc 7" for high velocities.
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Fig. 4 Static phase correlation 2M(r) = (([dp(r, 0) — 5(0,0)]*) vs. distance r| in self-consistent

Hartree approximation. The velocities ¥ are displayed in the inset. The middle part equals asymptot-
ically 2Inr}.

The spatial dependence of phase correlations for small velocities is depicted in
Fig. 4. Clearly three regimes as a function of distance appear:

Irl for |r} S 1,
2M(r) >~ ¢ 2Injr] for1 < { r < Ly, (45)
lrl/L; for L1 < .

The prefactor two of the logarithm, here determined within an error smaller than 1%,
is identical to that in the static CDW as calculated in [20, 21] by the replica method.
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Fig. 5 Absolute value of the static velocity correlation C(r) = {{dp(r, 0)8¢(0,0))/2* vs. distance
[r| in self-consistent Hartree approximation. The velocities 7 are displayed in the inset. Sharp drops
indicate a change of sign.

At high velocities the asymptotic behaviour of the normalized equal-time velocity
correlation function,

C(r) = (J(r, 0)04(0,0))/7", (46)

is given by C(r) ~ L, exp(—7)sin(7)/F, if expressed as a function of the rescaled
distance 7 = |r|/L;. The new length L, ~ (@/2)"1’/ 2. determines the decay of the os-
cillating velocity correlations. Thus, in contrast to the phase itself, velocity coherence
is maintained in the sliding CDW.

Inspection of C{r) in Fig. 5 shows that the situation is more complex in the low-
velocity regime. Diverging relative on-site fluctuations with an approximate power
law C(0) < 7797 are found. In the following, we define a length L, as in the high-
velocity regime. On shorter distances a velocity-independent exponential attenuation
is exhibited, which changes on larger distances into an exponential-like decay super-
posed by oscillations. The long-range part of C(r) at different velocities can be pro-
jected on a single curve by rescaling distance through 7 = |r|/L,. Surprisingly, L,
exhibits a similar power law as L; as a function of %, although the prefactor is some-
what smaller. A rather good choice for the overall functional form is

~ § CO)exp(—|r|/2) for |r| S L,
Clr) =~ {exp(—-ej‘f)psin(?l) /r fif’ ILZ < lrﬁ. (47)

Our length L, corresponds to ¢ as introduced in Eq. (1.5) in [8]. From the static
distortions of the phase (1.20) in [8], we read off the correspondence of our L; to
&, where the exponent #, = 0 is given in (1.21). This is in contradiction to our sce-
nario, which would give #, = 1, and also to known resuits for the pinned CDW.

The frequency spectrum of velocity correlation shows narrow-band-noise due to
time-persistent correlations: The zero wave-vector component of the Fourier trans-
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Fig. 6 Absolute value of the renormalized force correlation ¥ () vs. time over one period 27/% in
self-consistent Hartree approximation. The high velocity limit is V(¢) =~ cos{@r). The velocities o
are displayed in the inset. Sharp drops indicate a change of sign. '

formed C(r,t) = (0p(r, 1)0p(0,0)) /%%, determines the noise spectrum S(w) =
[d*rde C(r, £) exp(ioot). We obtain S(w) = i(w/ @)2Géw2§6’4w. This expression
contains only peaks at integer multiples of 7, i.e. S(w) = (2m)" )", 4 Sy 5g69 ~ nv),
reflecting the periodicity of the shiding state. Its first harmonic S} is o< 97 at high,
and approximately o< 77%7 at low velocities.

Now we relate the quantities characterizing the velocity correlations to the velocity
coherence length L,. Thus C(0) oc L, at high, and Lg at low velocities. Corre-
spondingly, S oc L3 at high, and o L3 at low velocities, which is in agreement with
the behaviour of dynamic correlations (1.18) in [8].

In closing this section, we discuss the time dependence of force correlations. The
interaction term (21) contains the fluctuation component ' quadratically (for
A — o0) and the force-force factor cos(p? — ?) in which the center-of-mass compo-
nent ? appears. It follows that its mean value is proportional to the second deriva-
tive of the vertex functional with respect to ¢! or the self-energy component Zj,
respectively. Actually, V' (¢) = ((cos[p(0, 1) — ¢©(0,0)])) coincides with the definition
(39). Its renormalization from the high-velocity limit V'(¢) ~ cos(%f) is shown in
Fig. 6, where the peak at 7 = 0 sharpens considerably at low velocities. Except for
this singular behaviour, the primary dependence at low velocities appears to be a
scaling of the global amplitude ox 7*'4. Whether the width of the peak vanishes on
further lowering v has to remain open.

6 Conclusions

We have considered the sliding CDW in presence of quenched disorder within phase
dynamics. Our starting point is a field theoretical technique, which allows disorder
averaging directly in the generating functional, thereby introducing an effective inter-
action. To obtain explicit results, we have developed a self-consistent approximation
scheme. In three space dimensions, the sliding regime at average velocity @ is charac-
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terized by linearly growing phase fluctuations with spatial distance. The scale is set
by the diverging phase correlation length L; o 9/ for high, and L; o 7 %2 for
low velocities. For low velocities a range with logarithmic increase with distance de-
velops, as known from the pinned CDW. Nevertheless, velocity coherence is main-
tained, and the sliding CDW is accompanied by narrow-band-noise. Velocity correla-
tions show oscillating decay with distance under an exponential-like envelope. The
corresponding length L, is o 7~ 1/2 for high, and « 57%1? for low velocities. The
high-velocity behaviour of correlations is known from perturbation theory. For low
velocities, the exponents of L; and L, coincide within few percent. In addition the
above behaviour of the velocity correlation is only the asymptotics for long distances
= L, whereas for distances <1, an exponential attenuation on a velocity-indepen-
dent characteristic length appears. The amplitude of the first harmonic of the narrow-
b%nd—noise normalized to the mean velocity is proportional to the coherence volume
L.

2Our approximation has identified a new regime at low velocities with different
scaling properties, although it is possibly not applicable in the critical regime close to
threshold. Direct comparison with experiment is difficult because of the possibility of
phase slip and finite size effects in real materials, but numerical simulations appear
to give a similar picture. Finally, we represented a distinct approach to systematic ap-
proximations and proved equivalence to our approximation scheme.

We thank J. Miillers for several helpful discussions, and P. Schmitteckert for computational advice.

Appendix

In this paper the pivotal element for generating systematic approximation is a func-
tional differential equation for W. Evaluation proceeds in assuming that interaction-
induced fluctuations W are restricted to a finite order Taylor expansion. First order
expansion leads straightforwardly to a mean-field description. Whereas to second or-
der an additional approximation has to be executed, namely omitting third order deri-
vatives of W, to close the equations.

Recently Miillers and Schmid [14] applied functional Legendre transform techni-
ques to improve analysis of vortex dynamics in disordered type-II superconductors.
Therein a Legendre transform is performed for both an external field #, and a quad-
ratic source K ;. Of course the essential approximation lies in the fact that the action
functional is calculated to first order perturbation theory. In the following we show
equivalence of the above to our self-consistent Hartree apprcximation. Starting from
the generating functional

Wi, K] = —iln / Dig] exp(iSie] + ing® + (i/2)0°K "), (48)

new variables ¢ and G* are defined via

(g}) W= ¢, (gf,—(-) W= (/26 + ), )



609

At the end of the calculation one sets K, = ( to extract physical information. The
desired action functional

Alp, G] = Wi, K] = 1,¢° — (1/2)¢°K 0" — (1/2)K ,G™ (50)

is the Legendre transform of (48), where 5, and K, are to be eliminated using (49).
The derivatives obey the inverse relations

(5@ A== Kad', (3"2";) A= =(/2)Ky, (51)

In order to pmceed the action S{pp] = Splpp] + S| is now composed of a free part

= (1/2)$*T%,¢" and an interaction S; = —i Tr exp(i¢? ). It has been shown
that

A9, G =816 - /08867 - i72) (a1 - 0 ) (55) 1)

~itn [ Diglexp((i/2)¢ Tuns + iS:l, 1), 52)

where the functional integral is normalized to its free part, and the new interaction
term S2[¢, @] equals S;[¢p + ] minus its Taylor expansion up to second order in ©°.
The index 2PI restricts a diagrammauc perturbation theory to two partzcle irreducible
contributions. As usual, I ,G be = o¢. Finally, expanding the logarithm in (52) up to
first order in S5, the followmg result is found:

Alp, Gl =(1/2)¢*T¢" — (i/2)80 InT5,G“ — (i/2)(528 ~ T2,G*)
—iTr' exp(i} ¢ — (i/2)4 G, (53)

Performing the derivatives (51) of this quantity leads to the conditions (33) and (34).

To compare the two approaches, one may argue that both determine minimal self-
consistent approximations including fluctuations. Whereas the above Legendre trans-
form is truncated at first order in the interaction, our method restricts explicitly inter-
action-induced fluctuations to gaussian ones.
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