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Dynamical mass of a quantum vortex in a Josephson junction array
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The real-time response to a small external perturbation of a vortex in a quantum Josephson junction array,
with long-range Coulomb interaction between Cooper pairs, is analyzed. While the static damping is zero for
vortex velocities below some threshold valg (which implies the possibility of ballistic motiona dynami-
cal friction due to the coupling to the plasma oscillations is always present for frequencies higher than a given
thresholdwy, . The latter approaches zero when the velocity increaseg tdHowever, radiative dissipation of
the vortex affects the threshold for ballistic motion. We discuss the conditions under which a mass can be
defined for the vortex as a quantum particle.

[S0163-18207)05942-0

I. INTRODUCTION namic massM, , which is nothing but the second variation
of the imaginary time action with respect to the vortex tra-
A current distribution in form of vortices can be induced jectory, was studied in detail before. In particular, it was
in a two-dimensional superconducting Josephson junction anoticed that, by increasingy, the vortex mass vanishes at a
ray (JJA) by applying a small uniform magnetic field or- critical value, which can be taken as the signature of the
thogonally to the lattice. A bias current sets the vortex insuperconductor-insulator phase transition. This quantum
motion, and, under suitable conditions, it can move ballisti-phase transition has been predicted in Ref. 3 and indeed was
cally, thus behaving as a quantum particle that is characteexperimentally observetl An indicator of the “quantum-
ized by a mas$? We analyze here these conditions, and weness” of the vortex motion is the lengthfor charge-charge
find that when a dynamical mas,q,, can be defined, it is correlations, which increases withand diverges at the tran-
in general not identical to the thermodynamic miks(usu-  sition.
ally derived from a vortex effective action in imaginary In Sec. Il we study the equation of motion for the vortex
time).® The dynamical mass relates the acceleration of theoordinate in real time, which is derived from the Euclidean
vortex to a small external perturbating force, and, in particu-action using standard analytical continuatitsee, for ex-
lar, it is an increasing function of the vortex velocity. ample Ref. 9. The frequency-dependent linear response is
In a high-quality JJA, where ohmic dissipation is negligi- analyzed in Sec. lll, while in Sec. IV we consider the non-
bly small, two mechanisms are responsible for dissipationlinear response of the moving vortex when the junctions in
The first is excitation of quasiparticles; however this effect isits wake emit radiation at the plasma frequency. The back
frozen out at low temperatures and low vortex velocities.action of the radiation on the vortex motion is responsible for
The second, which is relevant to our discussion, is the couenhanced dissipation. A brief summary and conclusions are
pling to the plasma oscillations: a moving vortex can losegiven in Sec. V.
kinetic energy by emitting “spin waves”, which restricts the
ballistic regime.(Here and in the following, we consider the
limit where the nearest-neighbor capacitanCeg, is much

larger than the capacitance to the grou@g, such that the The effective action in imaginary time for a vortex with

screening lengthy = yC;/Cy, is much larger than the lattice vorticity + 1 and coordinate(7), added to the array, is given
spacing) It has been showh? that the spin-wave damping is byt07

strongly nonlinear, and it is active for vortex velocities larger
than a certain thresholdy, . 1

The first estimate of the mas¥lgg= 724 %/4E, was ob- So=— fd dr't M (P —r1(7) . 7— 7T (7
tained in Ref. 1 in the so-called classical limE;>E. o2 aEB AT IMglr (1) =1 (), 7= 711 ()
Here E; is the Josephson coupling, afid=e?%/2C; is the
charging energy; all lengths are in units of the lattice spac- +ih , J drV O[r(r)—r.]F .(7)
ing. Decreasing the rati;/Ec (such thata=E/8E; EI qlg OLr rel

II. EQUATION OF MOTION

~1), the quantization of the charge on the islands has to be

taken into account, for example, numerically and analytically - J drf-[Zxr(7)]. )
within the self-consistent harmonic approximati@CHA),®

or using a lower expansior. The low- expansion yields, in

contrast to the SCHA—but physically correct— the Eckern-Here the first term is the kinetic energy of the vortex, which
Schmid resultMgs, when o goes to zero. The thermody- arises from integration of the charge fluctuations; it is ex-
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pressed in terms of the vortex mass tensigr (7),7]. The R d’k . .

second term is the contribution of a static background of gaﬁ[r(t),t]=f K+ (23K)o(2XK) g

external chargegthe islands are labeled by the indéx

=(ix,iy)]. Finally, the third term takes into account a uni- do o —iwtHiker(t)

form external current, with f=hl/2e. In the second term X 20 A ' ®)
the phase configuration around a vorte®;; =arctar(y;

—Yj)/(x—x))], has been defined. However, we do not include R - . .
any offset charges in this work, and hence drop the seconﬁurthermore’gk*w is the retarded continuation @, and

term in what follows. Qﬁwz —i wQE’w. From Eq.(4), the equation of motion fol-
The vortex mass tensor is given by lows to be
_ ! o R + o0 d )
Maﬁ[r(T) r(r"),r— '] (fXZ)a:f dtr(&ggﬁ[r(t)_r(t/)'t_t/]rﬁ(t/)

=2 VOIr(N—11Q .V 0[r,—r(7)], (2
' — POV Gl T (O —r(t) t—t' 1) . (6)

where the connected charge-charge correlation function in

the Fourier spac@, ,, is assumed to be of the same form asThis equation simplifies for a vortex moving with constant

given by the SCHA anlpproximatio‘h: velocity, orthogonal to the driving currefif, which we
choose asf=(0,fy). In particular, Eq.(6) reduces tof
=qv [v=(v,0)], with the static “friction coefficient” »

w, Kk given by

Q™ 8a wzk-i- cu?n ®
k2 :
a2 & R
with wf=wi(1+¢%k?); w,=BECE; is the Josephson ”_Jd K k4deQk’w5(w+kxv)' @)

plasma frequency. The dimensionless correlation leggih

(see, e.g., Ref. )6characterizes the stiffening of the spin- g expression clearly describes the spin-wave damping of
wave spectrum due to quantum corrections. The above forg,q ortex moving in the arrayQR is the retarded continua-

for the charge-charge correlation function, E8), provides tion of the correlator defined in E¢3)
the correct smalk limit as calculated within the love ex- '

pansion, and displays also the expected form for large values
of a.” The correlation length(a) can be calculated within
different approximations. We assume that it is zero dor
=0, that is for the classical system, and an increasing func-
tion when «a increases, diverging at the superconductor-
insulator transition, i.e., for a critical value that we denote by

k2
R _24R _
Qk,w k g (O),k) EJ wk_(w+i0+)2‘ (8)

Due to parity, only the imaginary part of survives thek,
integration, which yields a real value for.

ac.
We perform the continuation to real times of the action
Serr @s described, e.g., in Ref. 9. The resulting action is a ) k§ 20 2
functional of x(t)=r,—r,, and r(t)=(r,+r,)/2, where n= WEJf d%k 12 @bk ™= i) 9)

r.(t) and r,(t) are the coordinates defined on the two

branches of the Keldysh contour, respectively. We then de- . L . .

rive the semiclassical equation of motion. Because the sadd/E!S duantity is nonvanishing only for velocities above a
point occurs forx(t) =0, we are ignoring the possibility of certain thresholdvth_. This _thresho_ld velocify de_pend_s on
decoherence effects, which are included in the off-diagonai"® Cutoff chosen in th& integration, as described in the
terms withr;#r, (that is with x#0). In the equation of Next section: the sharp cutoff procedure yields,
motion that follows,r(t) can be interpreted as the classical = @pVé"+ 1/4m=vy,, while the soft cutoff givesuvy,
coordinate of the center of mass of the vortex. Then, the= @pé. For velocities smaller thany,, ballistic motion is
real-time action generating the equation of motion for thePossible.

vortex is (T=0)

Ill. FREQUENCY-DEPENDENT LINEAR RESPONSE

S= 1 j dtf dt"r“(t)gﬁﬁ[r(t)—r(t’),t—t’]'rﬁ(t’) Let us now assume that, while the vortex is moving with
2 constant velocity, it is subjected to a small harmonic ex-
ternal perturbation. The trajectory of the vortex can be writ-
+f dtf-[zxr(t)], (4)  ten asr(t)=vtx+ dr(t) where sr(t) is a slowly varying
function of time. By linearizing indr = (6x,dy) and trans-
forming to Fourier space, the equation of motion, E4),
where becomes
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FIG. 1. 27 ImM(w)/Mgs Vs w/w, with sharp cutoff of thek FIG. 2. 27 ImMM(w)/Mgs VS w/w, with soft cutoff of thek

integration foré=0.5 and some values of the velocity below thresh- e gration foré=0.5 and some values of the velocity below thresh-
old, Uth - v/§wp=0 (a), 035(b), 103(C), 114(d) The range of old, U= pr: U/fa)p=0 (a)’ 0.8 (b), 0.9 (C), Ogg(d)
frequencies where Ig,#0 increases with increasing velocity.
There is no damping (Iy,=0) below a threshold frequenayy,, k2 (kxv)2
- J d?k — ] : (13

which decreases with increasing so thatwy(v =vy) =0. —
k Wy — (kyv)

(fym))_(xx:m) 0 )(5*““)). 10 2

_ = -1 k
fx() 0 Xyy ()]} 0y(@) ImX;Xl(w)=—7TEJJ dzkk—g wiﬁ((w—i—kxv)z—wﬁ).
Explicitly, (14

The zero-frequency limit of these equations shows that there

K2 is no real part of the response when the vortex is in steady-

—1, N _ 2, Y "R state motion, while the imaginary part yields the result given

=—i| d°k +k +kyv,k ; o
Yoo (@) f k2 (@ ke)gilotke.k) in Eq. (9). However, the zero frequency limit of

- Re)(x_xl(w)/a)2 is related to the dynamical mass of the mov-

2
+if d2k % ko gR(k,0,K) , (12) ing vortex and is nonvanishing.

A. Imaginary part
. The imaginary part of the response describes the “dy-
1N 2, Kx L2V iR namical spin-wave damping” of the vortex. When the fre-
Xyy (@)= 'f 0% 12 (0ke=vky)g (@ + ke k) quency is nonzero, damping is present also below the thresh-
old velocity, provided the frequency is higher than a

s Kok . Rik.o.K) threshold valuev,, which depends on velocity. This thresh-
k2 g7k, old frequency vanishes when the velocity approachgs
Performing a change of variable,(k,)— (ky.,k), Eq.(14)
+vf d2k( ok~ k2 (w0 + ke k) becomes
wﬁ k
+vzf d2kkogR(ke k) . (12 ImX;Xl(a))=—27TEJJ dk -~ fﬁkdkxx/kz—kxz

The kernelgR is defined in Eq(8). Equation(10) shows that X & (w+kew)?— wﬁ] (15)

a Hall contribution does not appear within linear response, sQ 1 1 .
Clearly, because I, (w)=—Imy,, (—w), we may restrict

that thex and they component of the equation of motion can

be considered separately. Therefore, we concentrate on t&irselves ta=0 in the following. Two different procedures
are used to make the integral ovierconvergent at large

2Ls|ttst:aquatlon,fy(w) Xooc (@) Ox(w), with the following re values of the wave vector. The integration can be cut sharply
atk=k, choosingk= 47 in order to preserve the area of
the first Brillouin zone. Alternatively, the integral is ex-
K2 (0+Kp)?2 tended up to infinity but with an exponentially decrgasing
Rey ()= —E, j d2k —é 2—X2 factor (soft cutoff, see, e.g., Ref)4From Eq.(15), we find
. k* wii— (0 +ke) for v=0:
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2 2
TEjw L
_mﬁ_ﬂ((u_wp)[l_'ﬂ(w—wp)] sharp cutoff
Iyt (@)= oo (16)
TEjw — — " «
—W EX}C[—\/((» —wp)/Zﬂ'wp§ ] (w—wp) soft cutoff,
p
|
whered(x) is the unit step function and,= \4mvy,. Thus 0 SETIN
IM (@) =0 for <wy,, where the threshold frequenay, wp(v)= T 07007 v=vy (18)

coincides in the limitv =0 with the plasma frequency,, .

With increasing v, the range of frequencies where We plot—Im)(x‘xl(a;)lqrEJw2 Vs w, for a fixed value o£=0.5

Imy(w)#0 increases with increasing velocity. No dynami- and various velocities below threshold, in Figs. 1 and 2. The

cal damping appears below,(v), which depends on veloc- sharp cutoff procedure is adopted in Fig. 1, while the results

ity and vanishes fov =vy,. Explicitly, for the sharp cutoff, ~with the soft cutoff are shown in Fig. 2. The quantity shown
in this figure is directly related to the imaginary part of the
frequency Fourier transform of the mass tensor, see(Hg.

0 U i.e., it equals Zr IMM(w)/Mgs.
wp(v)=\ wp—vV4T V=0 = VAm(wpé) ),
o B. Real part
wpxll—vzl(wpf)z vS\/47T(wp§)2/wp ) .
(17) The real part of the response, given by Ef3), is an
even function of frequency; again=0 in the following. For
while for the soft cutoff, v=0, we obtain
WE‘]wZ 2 27, .2 27, .2 h f
BT In[(1+ 47— 0® wp) (1- 0l wp)] sharp cuto
_ p
Rex ()= mEjw? [ — 19
-5 f x dxe 2™ (1- w?/w)) +x2]7 1 soft cutoff.
é: wp 0
For 0<v<uvy, (or vg), in a first step, we find
V(o + a))z—kzvz—Z\/wE—kzu2 if |owx—o|<kv<wy
w
Re)(x_xl(w)=7TEJf dkk—vkz (ot 0)2— K202 =2 \w2— k?v? (20)

+sign wy— ) V(w— 0)?>—k?v? if |o—o|>kv.

In Figs 3 and 4, we show—Rex'(w)ws/ TE0? ) ) Ko .
=27ReM(w)/Mgs Vs ol w, (sharp cutoff: Fig. 3; soft cut-  R&u (0=0)=—w WEJf dk m*o(w ).
off: Fig. 4), for the same values 0f=0.5 andv below (21)
threshold as in Figs. 1 and 2. Note that Jim,Rey ()
=M Eswf,- As is apparent from the figures, the real part has
logarithmic divergencéalgebraic ifé=0) whenv =0, which
disappears for finiter. The maximum of 2r ReM(w)/Mgg
increases in magnitude, and moves to lower frequencie
with increasing vortex velocity. In Fig. 5, we plot the same
qguantity as in Fig. 4, for a much larger value §f&=10.
Clearly, at small velocities, the response flattens over a lar Q/' RADIATIVE DISSIPATION OF A QUANTUM VORTEX
Ys , p 9
range of frequencies, and the maximum almost disappears. In the previous section, we have studied the linear re-
Going back to real time, this means that increasing thesponse of a vortex to an external sinusoidal perturbation,
charge-charge correlation length implies a decrease of thehile it is moving with constant velocity. There is one case,
response in time of the system. In the limit of low frequen-however, in which linear response is unsatisfactory, namely,
cies, Eq.(20) leads to when the spin wave emitted by the vortex is reabsorbed

4n Fig. 6 we plot the zero-frequency limit as the ratio
Mgyn/Mes vs velocity, where we defineM y,,=M(w=0)
(sharp cutoff. In particular,M, diverges forv —vy,. This
divergence corresponds to the vanishing of the acceleration
Yf the vortex while entering the diffusive regime.
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FIG. 3. 27 ReM(w)/Mgs Vs wlw, with sharp cutoff of thek ’ P e * 0
integration foré=0.5 and some values of the velocity below thresh-
old: v/¢w,=0 (&), 0.35(b), 0.8(c), 1.03(d), 1.14(e). The diver- FIG. 5. 27 ReM(w)/Mgs Vs w/w, with soft cutoff of thek
gences at zero velocity disappear when0. integration foré=10 and some values of the velocity below thresh-

old: v/éw,=0.3(a), 0.8(b), 0.9(c).
again, so that the nonlinearity of the back action cannot be
neglected. To understand how this happens physically, let ugortex trajectory, which will be of the fornx(t) =xq+uvt
consider the classical case, so that the dispersion of the spir=y coswt. We have definedy=(2eaV,/whw;) as the
wave spectrum can be ignored. The spectrum then consissrength of the coupling between radiation and vortex. Be-
of just one single-frequency,, that is a localized mode for cause no power can be extracted from the moving vortex, the
each separate junction. When the vortex passes a junctioflfiving force times the velocity has to be positive at any
the phase difference at the junction left behind changes by #me, which impliesy<v/w,. This mechanism of radiative
value of orders, and according to the Josephson relation adissipation for a moving vortex was considered already in
voltage pulse of amplitud¥,~ mfiv/2e arises. If we denote Ref. 11 for the classical case. Its contributiap,, to the
the response of the junction to this pulse by (t)  viscosity of the vortex motion in strongly underdamped ar-
=V;sinwt, we expect a phase difference at the junc-rays (McCumber parameteﬁc=2wlcR§C/¢o> 1) was es-
tion left behind that is roughly ¢o(t)=¢g+vwt/a  timated to be much larger thangg, the viscosity in the
+(2eV,/fiwy)coswt. This implies a perturbation of the Bardeen-Stephen modeh(= 7esVBc27).

25 T T T T

15 |- a -
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= c T
3 10 |- | .
5 \
T Mayn/Mgs
@~

0 0.5 1 1.5 2 25 3
w/wp

FIG. 4. 2m ReM(w)/Mgs Vs w/w, with soft cutoff of thek FIG. 6. Normalized dynamical masd 4,,/Mes [M gyn=M (w
integration foré=0.5 and some values of the velocity below thresh- =0)] vsv/¢w,,, for §£=0.5(a), 1.0(b), 2.5(c) (sharp cutoff of the
old: v/éw,=0 (a), 0.8(b), 0.9(c), 0.99(d). k integration.
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FIG. 7. Zero-frequency component of the external current OF|G- 8. Zero-frequency component of the external current
h1%2eE; vs velocityv/¢w, below threshold, fog=0.5, 1.0, 3.0;  hI"/2eE; vs velocityv/{w,, below threshold, fog=0.5, 1.0, 3.0;
y=0.2. y=04.

In the quantum case, using E@) and assuming again the couplingy fixed. There is no sharp velocity threshold for
that the motion is orthogonal to the driving force, we have diffusive motion, especially at low. A stationary driving
force is required during the radiation process to sustain the
F(t)= J’ g2k J’ 8 ie)QR J’ dt’ drift motion. This constant current has to increase steadily
2 K w with increasingy. Therefore, ballistic motion becomes frag-
ile when ¢ is small. For largeré¢ values, the threshold be-
><X(tf)eiw(t’*t>+ikx[><<t’>*><(t>]_ (22) tween ballistic and diffusive motion remains sharp. How-
ever, it is shifted to lower velocities when the coupling
increasegsee Fig. 8.
It can be easily understood why the ballistic window is
K robust only for larget values, i.e., high quantumness of the
f(w)=2mi D 5(w_mwp)j d2k _y4 vortex. For small¢, the spin-wave excitation spectrum has
k little dispersion. According to a Galilei’s transformation, to
X [(n+m) w, — kv 208 excite spin waves, thk components of the moving vortex
P k.(n+mwy,—kyw have to satisfy the inequality,— kv <0. When¢ is small,
S i™3, (K y) ds (K y) (23  SPin waves can be excited, provided- wp/\4m, and the
dissipation increases steadily with velocity, but remains
For v equal to zero, only the term with=m=0 survives, rather low. On the contrary, whehincreases, the most sub-
corresponding to the constant-velocity result of Ef). Us-  stantial contribution, coming from smakl vectors, require
ing that the real part o©® is even inw, while the imaginary large velocities to be excited. Instead, a large maximum of
part is odd, we rewrite the constant current contributiondissipation is developed, close above the threshold velocity
given by them=0 term, as Ui, @S S00Nn as spin waves are available for excitafsme
Fig. 9).

Fourier transforming both with respect toand tot’, we
arrive at

2

K
f(0)= —27720 (2— 5n,o)f d2k # (Nwp—kew)233(key)
- X V. SUMMARY AND CONCLUSION

R . . .
XIMQ(nw,—kyv). (24) The real-time equation of motion of a quantum vortex

We denote byf,,, one of the terms of this sum. Inserting the moving in a Josephson junction array has been ipvestigated
imaginary part ofQR as obtained from Eq(8), we obtain for any a=Ec/8E;, up to the superconductor-insulator

2

wp [k dky 400 T T T T

= - - 05—
k —k kx 350 | ¢ e

300 E

on=— (27)2E (2~ 50,n)f0 dke ke

X k2= k2I2(kyy) Sl (Nwp—ky0)2— 0] (25)

The integral overk, is performed straightforwardly, while
the integral ovek is turned into an integral over the energy

250 [ 4

200 |- -

RIO(w)/2eE;

150 | : y=05 T “

of the spin-wave modes. The sum over integers converges wlk i 4

rapidly (n=5 is sufficienj, because the coupling is as- ok f

sumed to be small. Under this change of variables, the range N

of frequencies to be integrated over is restricted by éhe 0 2 ot

functions, and further by the cutoff to values betwegyand

wp FIG. 9. Zero-frequency component of the external current

The average component of the current is plotted in Fig. hi°2eE, vs velocity v/£w, above the threshold velocity, fof
vs the velocity of the vortex, for various values@§fkeeping =0.5, 1.0, 3.0;y=0.5.
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phase transition.By increasinge, the correlation lengtié  trajectory for the vortex at frequency,. This describes
increases, and quantum effects become more and more iremission of radiation by the junctions in the wake of a mov-
portant; ¢ diverges at the transition. The equation of motioning vortex, which acts back onto the vortex itself. The zero-
is nonlocal in time, clearly not of the form of Newton’s law frequency component of the current gives information about
(even when a damping force is addledhe frequency- the resulting additional dissipation. The ballistic window be-
dependent response to an external driving current has be@omes fragile, particularly for smadl In fact, dissipation is
analyzed in the linear response regime. At small frequencieqresent for smalf almost over the whole range of velocities,
guantum effects produce a rather flat response, that is thend the sharp threshold between ballistic and diffusive mo-
response becomes more and more instantaneous. In fact, ten of the vortex is lost. A rather clear crossover between
kernel oscillates with time, and shows a first peak at a timehe two regimes is found whehis large, and the coupling of
which is roughly the delay time for the system. By increasingthe vortex to the driving field is small.
¢, the peak becomes sharper, and the delay decreases. OurWe point out that because a single vortex is considered
interpretation is that at highef values, the vortex behaves here, Eq.(22) is not periodic in the vortex trajectorgin
more like a quantum particle. Both the delay time and thecontrast to the Josephson current in a single junction, where
width go to zero wherg— . In this limit a phenomenologi- the phase difference is the corresponding varjafdlais im-
cal Newton's law,f=Mg,v, for the vortex is recovered, plies that there is no lock-in betwe#fy and the frequency of
which defines the dynamical masd,,,. This mass differs radiation, and therefore no Shapiro stéwhich appear when
from the thermodynamical mass,M,, introduced a singlejunction is exposed to microwave radiatjorThe
previously®’ The latter is not to be expected to govern theabsence of any sharp features in the vortex characteristics is
quantum dynamics; it only coincides witl 4, indepen- related to the fact that quantum fluctuations imply a retarda-
dent of the approximation used to evaluate it, when the vortion between current and voltage, and the integration over
tex experiences the perturbing force while being initially atfrequencies smears out any sharp matching.
rest. On the other hand/ 4, is velocity-dependent and in-
creases with the initial velocitisee Fig. 8. It is found to be
larger thanMgg close to the threshold velocityy, only, at
which purely diffusive motion sets in. This result is qualita- We thank G. Falci, R. Fazio, J. Kissner, and A. van Ot-
tively in agreement with what follows from recent experi- terlo for discussions. The authors enjoyed the hospitality of
ments on vortex dynamicg, which estimate larger vortex the Institute of Scientific InterchangéSl), Torino, where
masses than those calculated theoretically up to now. part of this work was performed. Financial support by CNR
Beyond linear response, we also considered an oscillatingtaly) (Contract No. 115.22594s also acknowledged.
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