Persistent current induced by magnetic impurities
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Abstract. We calculate the average persistent current in a
normal conducting, mesoscopic ring in the diffusive regime.
In the presence of magnetic impurities, a contribution to
the persistent current is identified, which is related to fluc-
tuations in the electron spin density. Assuming a spin-flip
scattering rate which is comparable to the Thouless energy
E. and low temperature, this new contribution to the per-
sistent current is of the order I ~ E?/(kT¢o), which is
considerably larger than the persistent current induced by
the electron-electron interaction.

PACS: 05.30.Fk; 72.10.Fk; 71.25.Mg

I. Introduction

At low temperature, the magnetic response of small rings
has a component which changes periodically with the ap-
plied magnetic flux [1-4]. Although this phenomenon, i.e.
the existence of a persistent current, was predicted many
years ago [5—7], the magnitude of the effect is not well un-
derstood: The experimentally determined persistent currents
in metallic rings [1-3] are much larger than theory [8-26]
predicts. For systems where the electron motion is diffu-
sive, i.e. the mean free path [ is much smaller than the cir-
cumference of the ring L, important theoretical results for
the average persistent current are the following: For non-
interacting electrons, the current is of the order I ~ A/ ¢y,
where A is the mean level spacing at the Fermi energy,
A= 47"°)~", with 4 the density of states per spin and
7" the volume, and ¢o = h/e is the flux quantum [11-13].
This result applies for temperatures below the Thouless en-
ergy, which is given by E. = hD/L?, D = vrl/3, but large
compared to the mean level spacing. For interacting elec-
trons, the Coulomb interaction contributes to the persistent
current [14, 15], namely I ~ p*E./¢o, where p* character-
izes the strength of the interaction. For the metallic rings in
the experiments the inequalities A < k7', E. were fulfilled.

The experimental results can be fitted almost perfectly
with the ‘interacting’ theory of [14] if we choose p* = £0.3.
However the precise value of the interaction constant is not

known from theory. To first order in the screened Coulomb
interaction, the interaction constant is of the correct order
compared to experiment, however, a repulsive interaction
scales downwards when higher order corrections are taken
into account [27, 28, 15]. For example, for copper, the ma-
terial of which the average persistent current has been mea-
sured, 1* has been estimated [15] to be smaller than the bare
value of 0.3 by a factor of about five to ten.

Many recent studies of persistent currents were devoted
to the understanding of the interplay of disorder and electron-
electron interaction [16-25].

In the present article we study a new mechanism which
may induce a persistent current, namely magnetic impurities.
This is a novel phenomenon: While the sensitivity of the per-
sistent current to magnetic scattering has been predicted [15,
29-31] in previous studies, we point out that these investi-
gations started from the theory of persistent currents without
magnetic impurities, and introduced magnetic defects as an
additional perturbation. In such an approach, an enhance-
ment of the persistent current is never to be found.

In contrast, in our recent article where we concentrated
on persistent current fluctuations, we already concluded that
there should exists a new contribution to the average persis-
tent current induced by magnetic impurities. Let us recall the
argument [31]: In a diffusive ring, the stochastic fluctuations
of the persistent current are of the order ((§1)*) ~ (E./¢o)*.
Changes in the impurity potential lead to a variation of the
persistent current with this order of magnitude. Consider-
ing magnetic impurities as a spin-dependent scattering po-
tential, which changes slowly due to spin relaxation pro-
cesses, one finds temporal current fluctuations of the order
{((61)?) ~ (E./¢o)* on the time scale of the spin relaxation
time Tx. Using the fluctuation-dissipation theorem we re-
late these current fluctuations to the dynamic linear response
x(w) to a time-dependent magnetic flux ¢(w) with the re-
sult Imy(w ~ 1/7x) ~ (E./d0)*(h/7x)/kT. This suggests
that at low frequency, there is also a contribution to the real
part of x of the order x(w — 0) ~ (E./¢o)*/kT. In the
static limit  is the derivative of the persistent current with
respect to the flux: y(w = 0) = 951(¢). In the present paper,
we confirm this earlier suggestion [31] explicitly, namely
I~ E2/(KT o).
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In Sect. II, we start with a few simple considerations,
which demonstrate that a flux-dependence of the free energy
induced by magnetic impurities may indeed exist. Then we
extend the calculations and discuss (1) the role of spin-orbit
scattering, (2) strong spin-flip scattering due to high con-
centrations of magnetic impurities, and (3) strong spin-flip
scattering due the Kondo effect.

II. Weak spin scattering

We start from the free energy of a free spin (S = 1/2), given
by

kT

The spin is coupled to the conduction electrons; we as-
sume the usual local exchange Hamiltonian H = Js(R) - S,
where s(R) is the spin density of the conduction electrons
at the impurity site. To first order in .J, this coupling is
equivalent to an additional magnetic field for the impu-
rity spin, and thus leads in Eq. (1) to the replacement
2upH — 2upH+Js*(R). For electrons on a ring, the local
spin density depends on the magnetic flux ¢ penetrating the
ring. As a consequence the free energy is flux-dependent,
and a persistent current J = —0g {2 exists.

For the explicit calculation, we decompose the electron
spin density in its flux-independent mean value plus the flux-
dependent fluctuations, s*(R) = (s*(R)) + 6s*(R, ¢). Then
we expand (2 with respect to 6s* and average over disorder,
with the result

2=—kTh (2cosh ”BH> (1)

1
(2) = 2((s7)) — S X2 T2 (85* (R)OS*(R)) + - - -, 2)

where x** = —9% 2 is the (longitudinal) susceptibility of the
impurity. These rather simple considerations already lead to
a novel contribution to the persistent current.

Equation (2) is valid for an arbitrary geometry. We con-
sider a ring of circumference L and transverse dimension
L, <« L. We assume diffusive motion of the electrons, i.e.
the (elastic) mean free path is much smaller than the cir-
cumference of the ring, [ < L.

We evaluate the fluctuations of the local spin-density
using the standard Green’s functions technique. We aver-
age over impurity configurations, keeping only the diagrams
with one particle-particle ladder, i.e. one cooperon, as shown
in Fig. 1. The flux sensitivity is determined by the long-
wavelength, low-frequency contribution of the cooperon.
The result is (R =Fk = 1)

(65*(R)6s*(R)) =
1\, o
<J7> . ;k%:qszs:/USS(TS'SICSS'SS’(qvwm)
XGS(i€,k)GS/(i(E — w)7 _k+q) (3)

xGs(ie, KNGy (i(c — w), —K +q),

where 7 is the volume and G the averaged Green’s func-
tion for electrons with spin s, and € and w are odd and
even Matsubara frequencies. The relevant components of
the cooperon, including the Zeeman effect, are given by

€k e-w, -k +q

Fig. 1. One-cooperon contribution to the fluctuations in the local spin den-
sity
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provided e(e — w) < 0; otherwise no singular contribution
arises. As usual, ws =2upH denotes the Zeeman splitting;
see also App. A, where we summarize the results for the
cooperon including spin-flip and spin-orbit scattering. For
simplicity, we consider the limit 1/7, = 1/75, = 0 for the
moment. The diffusion constant, D, is given by D = U%—vT /3,
where 7 denotes the elastic scattering time.

Equation (3) is similar in form to the expression for the
fluctuations of the local electron density, which have been
evaluated in [14] in order to determine the Coulomb inter-
action contribution to the persistent current. In [14] both
Hartree and exchange contribution to the persistent current
are calculated. The results presented here and below corre-
spond to the Hartree terms; we neglect the exchange con-
tributions, which are insignificant in most cases. In order to
evaluate Eq. (3) we rely on the results given in [14].

For the ring geometry, the transverse dimensions of q are
frozen out, such that it can be considered one-dimensional,
assuming the values ¢ = 2m(n +2¢/¢o)/L, where ¢o = h/e
is the flux quantum and n is an integer number. The sum-
mations over k and k are converted into integrals, and from
each integration we find a factor (27./47). The € summa-
tion is then feasible since the ¢ dependence is only due to
the condition that e(e — w) < 0. Finally we arrive at

(65*(R)5*(R)) =
4.1, 1 1
7 TZwXq: (w+Dq2 a Rew+Dq2+iws) ©)

w>0

The spin fluctuations are periodic in ¢ with periodicity h/2e,
and can thus be represented as a Fourier series,

(6s*(R)8s*(R)) =

m=—

A, exp2rimae / ¢o). 7

Note that only the even components are non-zero, with the
result

Ao (T, ws) =

2/16 * —2mimx
%.To;w/_oodxe (8)
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Fig. 2. Second harmonic of the grand potential normalized by the Thouless
energy as a function of temperature and Zeeman splitting. The spin-flip
scattering rate is chosen equal to the Thouless energy; no spin-orbit scat-
tering
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All even coefficients are related to the second coefficient
at rescaled temperature and Zeeman energy, A, (1, ws) =
Ay(m*T,mPws)/Im|?, so it is sufficient to calculate A,.
Since A, = A_,, only terms proportional to cos(2mmae/¢o)
survive in Eq. (7). The Fourier series of the grand potential
is

<-Q> = <-QO> + Z<Qm> COS(27T’m¢/¢O), )

m=1

with (02,,) = —x**J*A,,, /4u%. Finally, the Fourier compo-
nents of the persistent current are given by (I,,) = em((2,,).

Numerical results for the first non-vanishing Fourier
component of the grand potential, ({2,), as a function of
temperature and for different values of the Zeeman energy
are shown in Fig. 2. For a finite but small concentration
of magnetic impurities, we have to multiply the result with
the number of impurities N;. In Fig. 2 we choose the con-
centration such that the spin-flip scattering rate equals the
Thouless energy: 1/7, = 2mn,. 49 J>S(S + 1) = E,. We find
that ((2,) goes to zero both in the limit of a weak and a
strong magnetic field: For a weak magnetic field, there is no
electron spin polarization and consequently no fluctuations
in the spin polarization, while for a strong magnetic field
(ws > T), ({22) goes to zero since the susceptibility goes
to zero. The maximum value is found for intermediate val-
ues of the magnetic field, where there are fluctuations in the
electron spin density but the impurity spins are not yet fully
polarized, such that xy** # 0.

II1. Strong spin scattering

In the case of strong spin-orbit scattering or strong spin-
flip scattering, there are fluctuations in the local electron
spin density even without Zeeman effects and we find a
significantly enhanced persistent current.

A. Strong spin-orbit scattering

Let us consider spin-orbit scattering, assuming that spin-flip
scattering is weak. In this case it is straightforward to gener-
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alize the calculations described above. We take into account
that there exist fluctuations in the electron spin density not
only in z-direction, but also in z- and y-direction. Equation
(2) generalizes to

(02) = ((s*)) — %Jz (X*% (657657 +4x ™ (657 657))
8up

(10)

with the susceptibilities given by

1 1

BLEPVS I~ tanh® 2 ) 11
4, % = g (1 5 (b
[
—X = t h— 12
43" T 2w, Mar (12)

The fluctuations in the local spin density are

2T
(657657 = > Z —(271' P77 Y 02,025 Casrssr (13)
7 w>0 q,s,s’
2T .
(65°657) = %(2%%7)2 Yo (14)
w q

with the expressions for the cooperon given in App. A.

In the limit of zero spin-orbit scattering, C'_,_ is zero
and thus the transverse spin fluctuations are zero. Then the
longitudinal fluctuations are identical to the expression given
in Eq. (6). For very strong spin-orbit scattering, on the other
hand, (1/75, > E. and w? < E./7s,), the cooperon sim-
plifies considerably: Cirvy =~ 0, 2mMT2Ch_s = 1/2N,,
and 27 JoT*C._ _+ ~ —1/2 Ny, where Ny = |w|+ Dg?*. The
flux-dependent part of the thermodynamic potential is then
given by

(x**(6s*6s%) +4x (65~ 6s")) = (15)
8#3
1 ) Ws 4T w 1
n [5 (1w’ 37) 5., tanhﬁ] 22 2wt D

Figure 3 shows the amplitude of the second harmonic, (12,),
for the same values of w, T, and 1/7, as in Fig. 2. Spin-
orbit scattering changes the sign of (£2;), it does not go
to zero for ws — 0, and especially the amplitude of ((2)
is much larger than without spin-orbit scattering. For low
temperature, the flux-dependence due to magnetic impurities
dominates the flux-dependence due to the Coulomb interac-
tion. The latter for low temperature is given by [14] ({2,) =
(4/m)p* E. exp(—T/3E.). In the figure we use the estimated
value for the effective interaction, u* = 0.3/5 = 0.06.

We note that for the temperatures in the figure, the flux-
dependence of the grand potential due to magnetic impurities
is well approximated by

11 AT w,\ E.
D)= (1 tanh® 22 + 7 tann &2
(02 TST< 2T w, 2T> 302

~T/3E._

(16)

The exponential law, exp(—1/3E,), reflects the decay of
the flux-dependence of the spin fluctuations, while the other
factors are due to the temperature dependence of the impu-
rity susceptibility. At low temperature (1" < E.), and weak
magnetic field (ws < T), (£2,) is thus proportional to the
inverse temperature,
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Fig. 3. Second harmonic of the grand potential as a function of temperature
and Zeeman splitting. The spin-flip scattering rate and the Zeeman energy
are the same as in Fig.2, but here we consider the limit of strong spin-
orbit scattering. For comparison we also plot (£2,) due to the Coulomb
interaction [14, 15]. Apparently, the impurity-spin induced contribution is
dominant at low temperature

Fig. 4. Higher order Feynman diagram. The curly line represents scattering
at magnetic impurities
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The 1/T-divergence is cut off for T' < ws, where we find
4 11
H)y=———FE.. 18
< 2> 37T2 Ts Ws c ( )

B. Strong spin-flip scattering — high concentration
of impurities

It is well known that the cooperon is sensitive to magnetic
scattering. As a consequence, Egs. (2) and (10) are only
applicable in the limit of weak spin-flip scattering, i.e. for a
low concentration of magnetic impurities. However, simply
inserting the cooperon including spin-flip scattering leads to
incorrect results, since when calculating the thermodynamic
potential within the diagrammatic approach, special care has
to be taken with symmetry factors.

A typical diagram for the higher order corrections is
shown in Fig. 4. The curly line represents scattering at mag-
netic impurities. We consider w, = 0. In this case, the curly
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Fig. 5. Second harmonic of the grand potential as a function of the spin-flip
scattering rate

line does not transfer energy, since the thermal average of
two spin-operators is time independent, e.g. (S*(7)S%(0)) =
S(S+1)/3. The summation over all contributions of the type
shown in Fig. 4 leads to

Wi o= 1 —1/7 "
2=-y s 1
(2) qw477n n \ |w|+Dg*+1/7s (19)
lw| = 1 1/37, "
-3 — .
;}477; |w|+Dg?+1/75+4/374

Performing the n-summation, we find
Z |(U| |w|+Dq2+2/Ts (20)
wl+Dg?+1/7

[w| + Dg? +2/37,+4/37, )’
Wi+ D@+ 1/7,+4/370 ) |

An expression of this form has been found for the persistent
current fluctuations [29, 31], and we use results given there
in order to evaluate the Fourier expansion of the average
persistent current. We find

Ty

q, w>0

6 o bl
05y D cosammo o @1
m=1

ln(M +Dg’ +) =

for low temperature (T < E.,7),

B0, () = e~V /B (1 +\/ym?/E, + z’g ) (22)

Using these relations, we can expand Eq. (20) as follows:

(02) = T% Z T cos(4mma/ o), (23)
with
P = h9,(2/75) + 309, (2/375 +4/375,)

—ho (1/75) = 3h0, (1/75 +4/375,). (24)

Flux-independent terms have been dropped again. Note that
in Eq. (23) the prefactor 1/1" appears which is due to the
impurity susceptibility, resulting in rather large Fourier com-
ponents at low temperature. Expanding Eq. (24) in the limit



of weak spin-flip scattering, but strong spin-orbit scatter-
ing, we find hy = —1/675F,, recovering the result given
in Eq. (17) for the grand potential. For vanishing spin-orbit
scattering and weak spin-flip scattering, the leading term is
quadratic in the spin flip scattering rate: hy = (1/7,£.)*/18.
This agrees with our result that the contribution to ({2;)
which is linear in 1/75 vanishes in the limit ws; — 0.

For further illustration, we plot the second harmonic of
the grand potential as a function of the spin-flip scattering
rate in Fig. 5. The absolute values of (f2,) are compara-
ble in size for weak and strong spin-orbit scattering. Over a
large range of the spin-flip scattering rate, we roughly have
|(£,)| ~ 0.1E%/T. Without spin-orbit scattering, the persis-
tent current is diamagnetic for small magnetic flux, whereas
the persistent current is paramagnetic in the case of strong
spin-orbit scattering.

In the limit of very strong spin-flip scattering, the persis-
tent current approaches zero. Without spin-orbit scattering,
the dominant term in Eq. (24) is h,, ~ 3h%,(2/37). In
the limit of strong spin-orbit scattering, hy,, ~ —h? (1/7)
is dominant. Thus the persistent current, as a function of
the spin-flip scattering rate, approaches zero much faster for
strong spin-orbit scattering than without spin-orbit scatter-
ing, as is apparent in the figure.

C. Strong spin-flip scattering — the Kondo effect

Perturbation theory in the coupling constant .J, as in Egs. (2)
and (10), only works well far above the Kondo temperature,
which is given by Tk ~ epexp(—1/2|J].Jg). In this sec-
tion, we describe the magnetic impurities in the framework
of the single impurity Anderson model, and calculate the
grand potential to first order in the on-site interaction U. In
averaging over impurities, we again only keep diagrams with
one cooperon. Following the ideas of Hewson’s renormal-
ized perturbation expansion [32], we introduce the renormal-
ized Green’s functions and a renormalized interaction. This
allows calculation of the persistent current for temperatures
far below the Kondo temperature. We consider low concen-
tration of paramagnetic impurities, and ws = 1 /75, = 0.

The contribution to the grand potential to first order in
the Coulomb repulsion between d-electrons is given by

Ungingy = UT? Y Gap(ie)Gay (iea). (25)

€1€2

Here, G4 is the Green’s function of d-electrons of the non-
interacting Anderson model. The d-electrons are coupled to
conduction electrons on a disordered ring. The d-Green’s
function averaged over disorder in the conduction band is
given by

3 —1
G o (iw) = iw—ed+,1,+|V|2/(‘21:)300(iw,k)] (26)

1
= 27
iw — eq + pu+idsgn(w)’ @7)

where V is the hybridization of the d-electrons with the
conduction band, and ¢ the broadening of the d-level due to
hybridization. Note that the averaged d-Green’s function in
this approximation does not depend on disorder. However
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Fig. 6. Graphical representation of the phase sensitive contribution to the
grand potential in the Anderson model. The double line represents the d-
electron Green’s function, the wavy line is the on-site interaction U, and
the cross denotes the hybridization V'

the average of the product of two Green’s functions also
involves fluctuations; in averaging Eq. (25), we keep the
diagrams shown in Fig. C, with the result

VAUT?
(@) ="

3" (Gar(i0)* (Gayliw — ie))’
% Z(zm’%‘r)zc+,+,(q, w, ). (28)

q

The flux-dependence of this equation is due to the low en-
ergy singularity of the cooperon. Flux independent contribu-
tions to the grand potential have been dropped. In order to
calculate the flux-dependence of (2 for temperatures below
the Kondo temperature, we generalize this equation replac-
ing G, (i€) with the exact Green’s function Gy, (ie,,) of the
clean Anderson model, and replacing U with the exact ir-
reducible, antisymmetrized four-point vertex function. This
leads to

VAT? 5 W2 RS
(D) = 5+ D (Garlie)” (Gayliw — ie))

€,w

x Il (i€, ie, iw — i€, iw — ie) (29)
xS @r Ve (g, 0)

q

In the limit where the Kondo temperature is large compared
to the Thouless energy and temperature, we can evaluate Eq.
(29) explicitly, since for low energy and temperature, ana-
lytic expressions for the d-Green’s function and the vertex
are known [32, 33]:

Gaolie) ~ m (30)
/}0,0,0,0) ~ U €2))
with
€4 = W, 5= ATy /7w = T NgV?z, U= 71'5/22; (32)

w =~ 0.41 is the Wilson number. The flux-dependence of
Eq. (29) arises from energies of the order of the Thouless
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energy, so for Tx > FE.,T, we approximate the d-Green’s
functions and the vertex by the constant values which they
assume for ¢ — 0. The flux-dependent contribution to the
grand potential is then given by

W w 1
(20)) = M; o %EW' (33)

)

This is of the same structure as the flux-dependence in the
weak coupling limit, see Egs. (10) and (15); thus (£2(¢))
contains the following factors:

1. The scattering amplitude of electrons with the impurities.
For T' <« Tk the scattering amplitude is given by the
unitarity limit for s-wave scattering. The explicit result
for the scattering rate is 1 /75 = 2N, /n. 7.

2. The magnetic susceptibility of the impurity, which is
proportional to the inverse Kondo temperature, x =
phw/Tk.

3. A factor which describes the diffusive motion of the elec-
trons around the ring.

From Eq. (33), we determine the Fourier components of the
grand potential (7" — 0)
2w A E,

<92m> :Ns7ﬁ$’ (34)
where we assumed a finite number of impurities; recall that
A=12.7".

In the presence of spin-orbit scattering we determine the
flux-dependence of the grand potential from a product of
spin—dependent vertex function and cooperon of the form

Fo'lo'z
0304
0'10’20’30’4

U
5 (C+—+— +C_iy —

0’1(7'2(7'30'4 -

Covie —Ciill). (35)

In this combination of the components of the cooperon,
which is the singlet component, spin-orbit scattering drops
out.

IV. Discussion

We showed that magnetic impurities contribute significantly
to the average persistent current in mesoscopic rings. The
persistent current is proportional to the impurity suscepti-
bility. Assuming a Curie law, the persistent current thus be-
comes large for low temperature and dominates the Coulomb
interaction contribution to the persistent current. The persis-
tent current induced by magnetic impurities is large for a
wide range of parameters, i.e. in the presence or the absence
of spin-orbit scattering and also for rather high concentra-
tions of impurities.

Even if the impurity spins are screened due to the Kondo
effect, a contribution to the persistent current remains. For
example for 10* impurities with Tx ~ 1K we find from
Eq. (34) ({%) ~ 0.5E,, when we insert A = 0.2mK which
has been reported in the experiment [1]. This is close to
the experimental result, where (£2,) ~ 0.3E.. However, we
have to mention that for large concentration of magnetic
impurities there are deviations from the linear dependence

of the persistent current on the concentration of impurities
which is assumed in Eq. (34).

A precise calculation of the persistent current as a func-
tion of concentration of magnetic impurities is not easy,
since one has to take impurity-impurity interactions into ac-
count. Especially, one needs the full energy dependence of
the d-Green’s functions and of the vertex /. In order to esti-
mate the current, we approximate G4 and I" by constants, up
to a cut-off energy of the order of Tx. Thus the dimension-
less effective electron-electron interaction due to magnetic
impurities is given by

/0N| * , |Galiw = 0)[*1"[(0,0,0,0) (36)

Aw w
N2 3
2T a Tk (37

with ny = Ny/Z" the concentration of impurities, and Eq.
(34) reads

) =T 38
(@2 =T 30 s (38)

q,w>0

Including impurity self-energy diagrams in the calculation
of the cooperon leads to a renormalization of the diffusion
pole [31],

w+Dg* — (1+v)w+ D¢, 39)
and finally, higher order terms renormalize v logarithmically
[28, 34, 15],

14

vori= g [v/(1+ )] InTx /E." (40)

However, in any real metal there is the Coulomb interaction
and the electron-phonon interaction which complicate our
situation further. For low concentration of magnetic impuri-
ties, the contribution to the persistent current due to Coulomb
interaction and magnetic impurities simply adds, but at a
high concentration, this certainly is not the case. In order to
estimate the current, we approximate the interactions in the
conduction band introducing a second interaction constant
u. If the Coulomb interaction is dominant, y is positive and
the cut-off for the interaction is of the order of the Fermi
energy, w. ~ €p. If the phonons dominate, y is negative
with a cut-off of the order of the Debye energy, w. ~ wp.
We assume that the relation w. > Tk > E. holds. Having
two different interactions, we first renormalize ¢ down to
the Kondo temperature,

* 1
S S 41
A e/ Tr) “n

and then the sum of both is scaled down to E., with the
final result

v+t
(2)=2 1+[(v+ ,u*)/(l +)In(Tx /E.)
xT Z (1+1/)w+Dq “42)

The Fourier components of the grand potential (and of the
persistent current) as a function of concentration of magnetic
impurities are then given by (T = 0)
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Fig. 7. Graphical representation of the equation defining the cooperon. Here,
the dashed line represents scattering at both magnetic and non-magnetic
impurities
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With the parameters used above, v ~ 0.5, and there are
already strong deviations from a linear dependence of ({25, )
on v as given in Eq. (34).

In conclusion we have shown that magnetic impurities
contribute significantly to the persistent current. Thus we
predict that future experimental studies of persistent currents
in the presence of magnetic impurities promise to yield most
interesting results — and in particular a clear test of the the-
oretical concepts.

Appendix A: Cooperon in the presence of spin-effects

The spin dependence of the cooperon has been discussed at
various places in the literature [35, 28, 34]. We assume that
the rate for scattering at non-magnetic impurities, denoted
here for clarity by 1/7, is large compared to the spin-flip
scattering rate, the spin-orbit scattering rate, and the Zeeman
splitting, i.e. 1 /79 > 1/75,1/7s0,ws. The components of the
cooperon are determined from the equation

CCVB’Y& = Cgﬁw + C&BMVHMVCMV'Y& (Al)

see Fig. 7; summation over p and v is implied here. The
bare cooperon is given by

1 1 /1 1
0 _
Ca[}"/é = T—O(Saw,(‘jﬁé + 5 (T—S — a) O ay036- (AZ)
The quantity I7,,,, is determined from the product over two
Green’s functions, integrated over momentum,
&Sk . .

WG“(K, k)G, (i€ — iw, -k + q), (A3)
where p,v = 1 are spin indices. In the long-wavelength,
low-frequency limit the result is

m,, =2r 47 [1 =7 (|w| + D¢* +i(p — V)wssgn(w)/2)]
(A4)

Hm/ =

where 1/7 = 1/79+ 1/7s +1/7s,. For the summery of the
results we define

No = |w| + Dg? +2/7, (AS)
Ny = |W|+Dq2+2/37—s+4/37-3m (A6)

to express the non-zero components of the cooperon in a
concise way:
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20 M7 Clir = 1/ Ny (A7)
20 MGr2Ch—i = [Ny + Ny — 2iw,sgn(w)] /27 (A8)
27 M7 Cim i = (N — NY) 27 (A9)
with & = NyN; +w?, and
Crs=Ci,, Cu =Ci +, C.___=Ci,

. (A10)
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