
Calculating a Functional Module
for Binary Search Trees

Walter Dosch1 and Bernhard Möller2

1 Institut für Softwaretechnik und Programmiersprachen,
Medizinische Universität zu Lübeck, D–23538 Lübeck

2 Institut für Informatik, Universität Augsburg, D–86135 Augsburg

Abstract. We formally derive a functional module for binary search
trees comprising search, insert, delete, minimum and maximum opera-
tions. The derivation starts from an extensional specification that refers
only to the multiset of elements stored in the tree. The search tree prop-
erty is systematically derived as an implementation requirement.

1 Introduction

Search trees are a well-known dynamic data structure for storing and retrieving
data [AHU83, CLR90, K73, Mh84, S88]. There are various types of search trees
used in different applications. The algorithms for binary search trees are not
complex; nevertheless none of the standard text books on data structures verifies
their correctness rigorously or — more desirably — calculates them from the
specification.

In the present paper we systematically derive a functional module for binary
search trees comprising search, insertion, deletion, minimum, and maximum op-
erations. The binary tree represents a multiset, since there may be multiple
occurrences of the same element. The functions on search trees are specified by
referring only to this multiset, but not to the internal structure of trees.

In the derivation we stress algebraic calculation rather than logical deduction.
The development is carried out at the level of functional programs; it widely
exploits the algebraic properties of the underlying data structures.

The formal derivation of the algorithms gives insight into the algorithmic
principles underlying search trees. In particular, we precisely locate the simplifi-
cations originating from the binary search tree property stating that each node is
an upper (lower) bound for the nodes in the left (right) subtree. This constraint
is not imposed from the beginning; rather it is derived as an implementation
requirement. We present functional techniques for the joint development of the
data and the control structure.

Throughout the paper we show how the creative steps in the development,
viz. abstracting and generalizing subtasks, naturally arise from simple calcula-
tions using induction over the tree structure. We base the derivation on weak
assumptions; this avoids overspecification and preserves the freedom for further
refinements.

A functional algorithm for inserting elements into 2-3-trees was already given
in [HD83]. For the deletion of elements in 2-3 trees, a rigorous correctness proof
involving subtypes was provided by [R92]. In contrast to the backward oriented
verification of a given algorithm, this paper concentrates on deductive design
from the specification in forward direction.

We assume that the reader has a basic knowledge of functional program-
ming (for overviews see [B89, H89]) and of transformational program design (see
[BMPP89, Me86, P90]). Throughout the paper we use traditional mathematical
notation. Functions are defined using axioms

t =

{
t1 if α
t2 if β

with terms t, t1, t2 . Such an axiom is by definition equivalent to

((α ∧ ¬β)⇒ t = t1) ∧
((¬α ∧ β)⇒ t = t2) ∧

((α ∧ β)⇒ (t = t1 ∨ t = t2)) .

If both conditions α and β hold, the overlapping patterns do not lead to a
contradiction; rather they express an underspecification, since then the formula
is satisfied by a set of functions. It is a matter of later refinement to determine
which of these functions actually is taken as the implementation.

2 The Data Structures

Let (B;∧,∨,¬) be the Boolean algebra of truth values with B = {T, F} . Fur-
thermore let (E ; ≤, min, max , −∞, +∞) be the set of elements; it is equipped
with a linear order possessing smallest and greatest elements.

2.1 Multisets

The specification of search trees refers to the multiset of data stored. For sim-
plicity, we take as data just (atomic) elements.

The Multiset Algebra The algebra of multisets with elements from E com-
prises the set M of all finite multisets inductively generated by the following
constant and operations:

∅ ∈ M
{.} : E →M
.∪. : M×M→M

{| empty multiset |}
{| forming singleton multisets |}

{|multiset union |}

The algebra (M, .∪., ∅) forms a commutative monoid:

(m ∪ n) ∪ o = m ∪ (n ∪ o) (1)

∅ ∪m = m = m ∪ ∅ (2)

m ∪ n = n ∪m (3)

2

The containment relation .∈ . : E ×M→ B satisfies the equations

x ∈ ∅ = F (4)

x ∈ {y} = (x = y) (5)

x ∈ (m ∪ n) = x ∈ m ∨ x ∈ n . (6)

The deletion .\. : M×E →M of an element obeys the laws

∅\y = ∅ (7)

{x}\y =

{
∅ if y = x
{x} if y 6= x

(8)

(m ∪ n)\y = (m\y) ∪ n if y ∈ m ∨ y 6∈ n (9)

The premise of equation (9) can always be established using the commutativity
of multiset union (3), for example

({y} ∪ {x})\x = ({x} ∪ {y})\x = ({x}\x) ∪ {y} = ∅ ∪ {y} = {y} .

The smallest element minel : M→ E of a multiset is defined by the equations

minel(∅) = +∞ (10)

minel({x}) = x (11)

minel(m ∪ n) = min(minel(m),minel(n)) ; (12)

the greatest element maxel : M → E is defined symmetrically. This completes
the definition of the multiset algebra M .

Lower and Upper Bounds The linear order ≤ on the set E of elements induces
a lower bound relation between elements and multisets:

x v ∅ = T (13)

x v {y} = x ≤ y (14)

x v m ∪ n = x v m ∧ x v n (15)

The upper bound relation is defined symmetrically:

∅ v y = T (16)

{x} v y = x ≤ y (17)

m ∪ n v y = m v y ∧ n v y (18)

The corresponding strict lower and strict upper bound relations are defined
analogously. The bound relations are transitive in the following sense:

y < x ∧ x v m ⇒ y < m (19)

m v x ∧ x < y ⇒ m < y (20)

3

Strict bound relations allow concluding non-membership:

x < m ⇒ x 6∈ m (21)

m < x ⇒ x 6∈ m (22)

Moreover, bound relations are monotonic wrt. the deletion of elements:

m v x ⇒ m\y v x (23)

x v m ⇒ x v m\y (24)

The computation of the smallest and greatest elements of a multiset union can
be simplified if one of the multisets is a singleton {x} and the other is bounded
by x :

x v m⇒ minel({x} ∪m) = x (25)

x v m⇒ maxel({x} ∪m) =

{
x if m = ∅
maxel(m) if m 6= ∅ (26)

Symmetrically we have:

m v x⇒ maxel(m ∪ {x}) = x (27)

m v x⇒ minel(m ∪ {x}) =

{
x if m = ∅
minel(m) if m 6= ∅ (28)

Finally, the extremal elements of non-empty multisets are related to bounds. For
m 6= ∅ we have:

x = minel(m) ⇔ x ∈ m ∧ x v m (29)

x = maxel(m) ⇔ x ∈ m ∧m v x (30)

Relations (19)–(30) can all be shown by simple structural induction on multisets.

2.2 Binary Trees

The set T of binary trees with elements E as nodes is defined inductively as the
least set with

(i) ε ∈ T (31)

(ii) T × E × T ⊆ T , (32)

where× is the ternary, non-associative cartesian product. In the sequel, ε denotes
the empty binary tree while the triple 〈l, x, r〉 denotes a non-empty binary tree
with left subtree l ∈ T , node x ∈ E , and right subtree r ∈ T .

4

2.3 Representation

The multiset of elements a binary tree represents is obtained by forgetting the
tree structure. The corresponding abstraction function multi : T →M reads:

multi(ε) = ∅ (33)

multi(〈l, x, r〉) = multi(l) ∪ {x} ∪multi(r) (34)

It is the unique homomorphism from the algebra (T ; ε, 〈., ., .〉) of binary trees to
the algebra (M; ∅, .∪{.}∪ .) of multisets. The empty and all singleton multisets
are uniquely represented by trees:

multi(t) = ∅ iff t = ε (35)

multi(t) = {x} iff t = 〈ε, x, ε〉 (36)

The converse of the abstraction function multi yields a one-to-many representa-
tion relation.

2.4 Derivation Techniques

Many of our functions f on search trees are specified implicitly in the form
multi(f(t)) = E , where E is some expression in t not involving f . Our strategy
then is to find some tree t′ with multi(t′) = E as well. Then f(t) = t′ is a correct
implementation. To avoid excessive tree rearrangements, it is advantageous to
choose t′ as similar to t as possible.

3 Search

The search function for an element in a binary tree is specified by referring to
the associated multiset:

search: T × E → B
search(t, y) = y ∈ multi(t) (37)

3.1 Direct Recursion

We derive a direct recursion for the function search (37) by induction on the
tree structure (31)–(32) exploiting the laws of the containment relation. The
comments on the right-hand side justify the deduction step between the formulas
in the current and the subsequent line.

Induction basis
search(ε, y)

= y ∈ multi(ε)
= y ∈ ∅
= F

{|unfold search (37) |}
{|unfold multi (33) |}

{|by (4) |}

5

Induction step
search(〈l, x, r〉, y)

= y ∈ multi(〈l, x, r〉)
= y ∈ multi(l) ∪ {x} ∪multi(r)
= y ∈ multi(l) ∨ y ∈ {x} ∨ y ∈ multi(r)
= y ∈ multi(l) ∨ (y = x) ∨ y ∈ multi(r)
= search(l, y) ∨ (y = x) ∨ search(r, y)

=

{
T if y = x
search(l, y) ∨ search(r, y) if y 6= x

{|unfold search (37) |}
{|unfold multi (34) |}

{|by (6) |}
{|by (5) |}

{| fold search (37) |}
{| sequentialize disjunction |}

With the last transformation step, we achieve early termination when finding
an occurrence of the search element in the tree. In summary, the search can be
implemented by the cascading recursion

search(ε, y) = F (38)

search(〈l, x, r〉, y) =

{
T if y = x
search(l, y) ∨ search(r, y) if y 6= x

(39)

where both the left and the right subtrees of a composite tree are inspected.

3.2 Search Trees

The cascading recursion (39) of the function search simplifies to a linear recursion
if one of the disjuncts reduces to the neutral element F of the disjunction. Hence
we calculate a sufficient condition for the left disjunct:

search(l, y) = F
= y /∈ multi(l)
(?)⇐ y < multi(l) ∨ y = multi(l)
(??)⇐ y < x v multi(l) ∨ y > x w multi(l)

{|unfold search (37) |}
{|by (21) and (22) |}
{|by (19) and (20) |}

With the first design decision (?) we implement the test for non-membership
by the strict bound relations. In the next step (??) we introduce a cut element
to localize the test for the bound relations to the comparison of two elements.
Symmetrically, we derive for the right disjunct

search(r, y) = F ⇐ y < x v multi(r) ∨ y > x w multi(r) .

This allows refining the search function (39) as follows:

search(〈l, x, r〉, y) =

T if y = x
search(l, y) if y < x v multi(r) ∨ y > x w multi(r)
search(r, y) if y < x v multi(l) ∨ y > x w multi(l)
search(l, y) ∨ search(r, y) otherwise .

(40)

The disjuncts in condition (40) are mutually exclusive, since for a linear order
x 6= y implies either y < x or y > x. Hence equation (40) allows two solutions,

6

either

search(〈l, x, r〉, y) =

T if y = x
search(l, y) if y < x v multi(r)
search(r, y) if y > x w multi(l)
search(l, y) ∨ search(r, y) otherwise

(41)

or the symmetrical version

search(〈l, x, r〉, y) =

T if y = x
search(l, y) if y > x w multi(r)
search(r, y) if y < x v multi(l)
search(l, y) ∨ search(r, y) otherwise .

(42)

Equation (41) simplifies to a linear recursion only if the bottom case “otherwise”
never holds. To achieve this, we have to satisfy both conjuncts x v multi(r) and
x w multi(l) as assertions in the data structure.

As the decisive design decision, we therefore confine the representation to
binary trees where uniformly each node is an upper (lower) bound for the ele-
ments occurring in the left (right) subtree. This subset S of binary search trees
is defined inductively by

(i) ε ∈ S (43)

(ii) If l, r ∈ S and x ∈ E with multi(l) v x v multi(r), then 〈l, x, r〉 ∈ S . (44)

The set S of search trees is closed when forming subtrees, but not closed under
the ternary tree constructor. The search function restricted to search trees

find : S × E → B
find = search | (S × E) (45)

then allows the intended simplification of (41) to

find(ε, y) = F (46)

find(〈l, x, r〉, y) =

find(l, y) if y < x
T if y = x
find(r, y) if y > x .

(47)

The resulting search function find is tail-recursive and can be implemented by
a simple loop.

In summary, the transformation to linear recursion exhibited the search tree
property as an assertion on the data structure that allows replacing the blind
(cascading) search by a strategic search based on the local comparison of ele-
ments.

7

4 Smallest and Greatest Elements

The smallest element of a search tree is specified by referring to the multiset
representation:

minkey : S → E
minkey(t) = minel(multi(t)) (48)

We derive a direct recursion by induction on the tree structure (43)–(44) ex-
ploiting the algebraic properties of least elements of multisets.

Induction basis
minkey(ε)

= minel(multi(ε))
= minel(∅)
= +∞

{|unfold minkey (48) |}
{|unfold multi (33) |}
{|unfold minel (10) |}

Induction step, assuming multi(l) v x v multi(r) .
minkey(〈l, x, r〉)

= minel(multi(〈l, x, r〉))
= minel(multi(l) ∪ {x} ∪multi(r))
= minel(multi(l) ∪ {x})

=

{
x if multi(l) = ∅
minel(multi(l)) if multi(l) 6= ∅

=

{
x if l = ε
minkey(l) if l 6= ε

{|unfold minkey (48) |}
{|unfold multi (34) |}

{|by (25) |}
{|by (28) |}
{|by (35) |}

{| fold minkey (48) |}

Again, the search tree property allows directing the search for the smallest ele-
ment. In the resulting tail recursion

minkey(ε) = +∞ (49)

minkey(〈l, x, r〉) =

{
x if l = ε
minkey(l) if l 6= ε

(50)

the least element is found by successively visiting the left subtrees. The search
function maxkey for the greatest element

maxkey : S → E
maxkey(t) = maxel(multi(t)) (51)

can be derived symmetrically:

maxkey(ε) = −∞ (52)

maxkey(〈l, x, r〉) =

{
x if r = ε
maxkey(r) if r 6= ε

(53)

The functions find , minkey and maxkey derived so far only inspect the search
tree, but do not modify it.

8

5 Insertion

The insertion of an element into a search tree is defined by the implicit specifi-
cation

insert : S × E → S
multi(insert(t, x)) = multi(t) ∪ {x} . (54)

This specification leaves complete freedom how to restructure the search tree
after the insertion of an element. We aim at deriving a direct recursion for the
function insert . Since (54) makes sense for general trees in T as well, we first
derive some necessary conditions by induction on the tree structure (31)–(32),
exploiting properties of the multiset union.

Induction basis
multi(insert(ε, y))

= multi(ε) ∪ {y}
= ∅ ∪ {y}
= {y}

{|unfold insert (54) |}
{|unfold multi (33) |}

{|by (2) |}

With (36) we conclude insert(ε, y) = 〈ε, y, ε〉 .
Induction step, assuming 〈l, x, r〉 ∈ T .

multi(insert(〈l, x, r〉, y))
= multi(〈l, x, r〉) ∪ {y}
= (multi(l) ∪ {x} ∪multi(r)) ∪ {y}
= multi(l) ∪ {x} ∪ (multi(r) ∪ {y})
= multi(l) ∪ {x} ∪multi(insert(r, y))
= multi(〈l, x, insert(r, y)〉)

{|unfold insert (54) |}
{|unfold multi (34) |}

{|by (3) |}
{| fold insert (54) |}
{| fold multi (34) |}

Hence we may choose

insert(〈l, x, r〉, y) = 〈l, x, insert(r, y)〉

in this case. Analogously we derive the symmetric equation and may choose

insert(〈l, x, r〉, y) = 〈insert(l, y), x, r〉

as well. So for general trees the element could be inserted arbitrarily into the
left or into the right subtree. For search trees we calculate the conditions under
which insertion into the left subtree yields a search tree again.

Induction basis
〈ε, y, ε〉 ∈ S

= ε ∈ S ∧multi(ε) v y ∧ y v multi(ε) ∧ ε ∈ S
= T ∧ ∅ v y ∧ y v ∅ ∧ T
= T

{|by (44) |}
{|by (43), unfold multi (33) |}

{|by (13) and (16) |}

9

Induction step, assuming 〈l, x, r〉 ∈ S and insert(l, y) ∈ S.
〈insert(l, y), x, r〉 ∈ S

= insert(l, y) ∈ S ∧multi(insert(l, y)) v x ∧ x v multi(r) ∧ r ∈ S

= multi(insert(l, y)) v x
= multi(l) ∪ {y} v x
= multi(l) v x ∧ {y} v x
= {y} v x
= y ≤ x

{|by (44) |}

{|by assumption and induction hypothesis |}
{|unfold insert (54) |}

{|by (18) |}
{|by assumption |}

{|by (17) |}

Symmetrically, if 〈l, x, r〉 ∈ S and insert(r, y) ∈ S , then 〈l, x, insert(r, y)〉 ∈ S
simplifies to y ≥ x . This establishes the soundness of the final solution

insert(ε, y) = 〈ε, y, ε〉 (55)

insert(〈l, x, r〉, y) =

{
〈insert(l, y), x, r〉 if y ≤ x
〈l, x, insert(r, y)〉 if y ≥ x . (56)

The conditions of equation (56) overlap for x = y : an element that occurs
multiply can be added either to the left or to the right subtree. The equations
(55)–(56) do not specify a single insertion function, rather a set of possible inser-
tion functions; this leaves room for further design decisions. We can also narrow
the choice uniformly for all nodes, for example, and strengthen the condition
y ≥ x in (56) to y > x .

6 Deletion

The deletion of an element from a search tree is again specified implicitly by
referring to the associated multiset:

delete: S × E → S
multi(delete(t, y)) = multi(t)\y (57)

6.1 Direct Recursion

We try to derive a direct recursion by induction on the structure of search trees
(43)–(44) using the properties of the deletion operator on multisets.

Induction basis
multi(delete(ε, y))

= multi(ε)\y
= ∅\y
= ∅

{|unfold delete (57) |}
{|unfold multi (33) |}

{|by (7) |}

With (35) we conclude delete(ε, y) = ε .

Induction step, assuming multi(l) v x v multi(r) . To increase readability, we
separate the cases.

10

Case y < x
multi(delete(〈l, x, r〉, y))

= multi(〈l, x, r〉)\y
= (multi(l) ∪ {x} ∪multi(r))\y

= (multi(l)\y) ∪ {x} ∪multi(r)
= multi(delete(l, y)) ∪ {x} ∪multi(r)
= multi(〈delete(l, y), x, r〉)

{|unfold delete (57) |}
{|unfold multi (34) |}

{|by (9) since y 6∈ {x}∪multi(r) by (19) and (21) |}
{| fold delete (57) |}
{| fold multi (34) |}

Case y = x
multi(delete(〈l, x, r〉, y))

= multi(〈l, x, r〉)\y
= (multi(l) ∪ {x} ∪multi(r))\y
= multi(l) ∪ ({x}\y) ∪multi(r)
= multi(l) ∪ ∅ ∪multi(r)
= multi(l) ∪multi(r)

{|unfold delete (57) |}
{|unfold multi (34) |}

{|by (9) since by (5) y ∈ {x} |}
{|by (8) and design decision |}

{|by (2) |}

It is easily checked that the resulting partial solution

delete(ε, y) = ε (58)

delete(〈l, x, r〉, y) =

{
〈delete(l, y), x, r〉 if y < x
〈l, x, delete(r, y)〉 if y > x

(59)

fulfills the search tree condition:

Induction basis
delete(ε, y) ∈ S

= ε ∈ S
= T

{|unfold delete (58) |}
{|by (43) |}

Induction step for y < x , assuming 〈l, x, r〉 ∈ S and delete(l, y) ∈ S .
delete(〈l, x, r〉, y) ∈ S

= 〈delete(l, y), x, r〉 ∈ S
= delete(l, y) ∈ S ∧multi(delete(l, y)) v x ∧ x v multi(r) ∧ r ∈ S

= multi(delete(l, y)) v x
= multi(l)\y v x
⇐ multi(l) v x
= T

{|unfold delete (59) |}
{|by (44) |}

{|by assumption and induction hypothesis |}
{|unfold delete (57) |}

{|by (23) |}
{|by assumption |}

The case y > x is treated symmetrically. If the element to be deleted is found
at the root of the search tree, we arrive at a new task, viz. deleting that root.

6.2 Root Deletion

The deletion of the root of a nonempty search tree is specified by

delroot : S\{ε} → S
multi(delroot(〈l, x, r〉)) = multi(l) ∪multi(r) . (60)

11

We aim at deriving a direct recursion, for example by induction on the structure
(43)–(44) of the search tree l .

Induction basis
multi(delroot(〈ε, x, r〉))

= multi(ε) ∪multi(r)
= ∅ ∪multi(r)
= multi(r)

{|unfold delroot (60) |}
{|unfold multi (33) |}

{|by (2) |}

Induction step, assuming l 6= ε .
multi(delroot(〈l, x, r〉))

= multi(l) ∪multi(r)
= (multi(l)\some(l)) ∪ {some(l)} ∪multi(r)
= multi(delete(l, some(l))) ∪ {some(l)} ∪multi(r)
= multi(〈delete(l, some(l)), some(l), r〉)

{|unfold delroot (60) |}
{| split multi(l) 6= ∅ by introducing some |}

{| fold delete (57) |}
{| fold multi (34) |}

The choice function yields an arbitrary element of a non-empty search tree:

some: S\{ε} → E
some(t) ∈ multi(t) = T (61)

The choice is only restricted by the search tree property (l 6= ε):

〈delete(l, some(l)), some(l), r〉 ∈ S
⇒ multi(delete(l, some(l))) v some(l)
= multi(l)\some(l) v some(l)
= multi(l) v some(l)

{|by (44) and weaken conjunction |}
{|unfold delete (57) |}

{|by (61) |}

Using the characterization (30) of the maximal element, this uniquely deter-
mines the choice: some = maxkey . It is easily derived that this equation is also
sufficient for establishing the search tree property. Of course, symmetrically we
could also delete an occurrence of the smallest element in the right subtree. In
summary, the root deletion

delroot(〈l, x, r〉) =

r if l = ε
〈delmax (l),maxkey(l), r〉 if l 6= ε
l if r = ε
〈l,minkey(r), delmin(r)〉 if r 6= ε

(62)

leads to two new subtasks. The function delmax deletes a maximal node from a
non-empty search tree

delmax : S\{ε} → S
delmax (t) = delete(t,maxkey(t)) ; (63)

symmetrically delmin: S\{ε} → S deletes a minimal one. Equation (62) again
specifies a set of possible deletion functions. The remaining freedom can be
exploited to meet further implementation constraints, for example to keep the
tree balanced.

12

6.3 Deleting a Maximal/Minimal Element

We calculate a direct recursion for delmax (63), assuming 〈l, x, r〉 ∈ S .

multi(delmax (〈l, x, r〉))
= multi(delete(〈l, x, r〉,maxkey(〈l, x, r〉))
= multi(〈l, x, r〉)\maxel(multi(〈l, x, r〉))
= multi(〈l, x, r〉)\maxel(multi(l) ∪ {x} ∪multi(r))
= multi(〈l, x, r〉)\maxel({x} ∪multi(r)) = . . .

{|unfold delmax (63) |}
{|unfold delete (57), maxkey (51) |}

{|unfold multi (34) |}
{|by (27) |}

Equation (26) now suggests the following case distinction:

Case multi(r) = ∅, that is r = ε .
= multi(〈l, x, ε〉)\x
= (multi(l) ∪ {x} ∪multi(ε))\x
= multi(l) ∪ ({x}\x)
= multi(l) ∪ ∅
= multi(l)

{|unfold multi (34) |}
{|by (33), (2), (9) |}

{|by (8) |}
{|by (2) |}

Case multi(r) 6= ∅, that is r 6= ε .
= multi(〈l, x, r〉)\maxel(multi(r))
= multi(〈l, x, r〉)\maxkey(r)
= (multi(l) ∪ {x} ∪multi(r))\maxkey(r)
= multi(l) ∪ {x} ∪ (multi(r)\maxkey(r))
= multi(l) ∪ {x} ∪multi(delmax (r))
= multi(〈l, x, delmax (r)〉)

{| fold maxkey (48) |}
{|unfold multi (34) |}

{|by (9) |}
{| fold delete (57), delmax (63) |}

{| fold multi (34) |}

In summary, a maximal node is deleted by successively visiting the right subtrees:

delmax (〈l, x, r〉) =

{
l if r = ε
〈l, x, delmax (r)〉 if r 6= ε

(64)

Symmetrically, the deletion of a minimal node leads to

delmin(〈l, x, r〉) =

{
r if l = ε
〈delmin(l), x, r〉 if l 6= ε .

(65)

It is straightforward to show that delmax (64) and delmin (65) maintain the
binary search tree property.

6.4 Combining the Subdevelopments

When combining the subdevelopments from Sections 6.1 to 6.3, we expand the
auxiliary routine delroot (62) and obtain from (58)–(59)

delete(ε, y) = ε (66)

delete(〈l, x, r〉, y) =

〈delete(l, y), x, r〉 if y < x
r if y = x ∧ l = ε
l if y = x ∧ r = ε
〈delmax (l),maxkey(l), r〉 if y = x ∧ l 6= ε
〈l,minkey(r), delmin(r)〉 if y = x ∧ r 6= ε
〈l, x, delete(r, y)〉 if y > x .

(67)

13

Again, the remaining choice in equation (67) can be exploited to meet further
implementation constraints. A uniform choice taking at every node for example
the left subtree, yields

delete(ε, y) = ε (68)

delete(〈l, x, r〉, y) =

〈delete(l, y), x, r〉 if y < x
r if y = x ∧ l = ε
〈delmax (l),maxkey(l), r〉 if y = x ∧ l 6= ε
〈l, x, delete(r, y)〉 if y > x .

(69)

6.5 Merging Multiple Tree Traversals

The function delete (68)–(69) traverses the successive left subtrees twice: once
for calculating the greatest element and once more for deleting it. Hence we
merge the two subtasks delmax and maxkey into a single function delmaxkey
using function tupling:

delmaxkey : S\{ε} → S × E
delmaxkey = [delmax ,maxkey] (70)

It is now straightforward to derive a direct recursion:

Induction basis
delmaxkey(〈l, x, ε〉)

= (delmax (〈l, x, ε〉),maxkey(〈l, x, ε〉))
= (l, x)

{|unfold delmaxkey (70) |}
{|unfold delmax (64), maxkey (53) |}

Induction step, assuming r 6= ε .
delmaxkey(〈l, x, r〉)

= (delmax (〈l, x, r〉),maxkey(〈l, x, r〉))
= (〈l, x, delmax (r)〉,maxkey(r))
= d(s, k) = (delmax (r),maxkey(r)); (〈l, x, s〉, k)c
= d(s, k) = delmaxkey(r); (〈l, x, s〉, k)c

{|unfold delmaxkey (70) |}
{|unfold delmax (64), maxkey (53) |}
{| introduce constants s ∈ S, k ∈ E |}

{| fold delmaxkey (70) |}

This yields the final version

delete(ε, y) = ε (71)

delete(〈l, x, r〉, y) =

〈delete(l, y), x, r〉 if y < x
r if y = x ∧ l = ε
〈delmaxkey(l), r〉 if y = x ∧ l 6= ε
〈l, x, delete(r, y)〉 if y > x

(72)

where

delmaxkey(〈l, x, r〉) =

{
(l, x) if r = ε
d(s, k) = delmaxkey(r); (〈l, x, s〉, k)c if r 6= ε .

(73)

Both functions delete and delmaxkey show a linear, but non-tail recursion.

14

6.6 Realization

This completes the calculation of the functional module

(S; ε, find , minkey , maxkey , insert , delete)

for binary search trees. The binary search tree property is guaranteed only for
those trees that are generated from the empty tree ε using the functions insert
and delete . Hence the representation of the search trees has to be encapsulated
and the ternary tree constructor 〈., ., .〉 must not be provided to the user of the
functional module.

The algorithms derived can directly be transcribed into a functional pro-
gramming language. Heading towards an implementation on the von Neumann
machine, in the next step a pointer structure for binary search trees can safely
be introduced using pointer algebra [Mö97].

7 Reusing the Development

In the formal development of the search tree module we have jointly derived
from the specification an efficient algorithmic solution together with an imple-
mentation of the data structure. In this section we show how redesign techniques
are well supported by transformational programming.

There is an increasing demand for reusing software and adapting it to chang-
ing requirements. However, it is difficult to modify existing code to meet a
changing specification. If the design of an algorithm is documented by a pro-
gram derivation, then the development can often be “replayed” starting with a
slightly modified specification. As an example, we “recalculate” the algorithm
for a different basic data type with a similar set of laws.

7.1 Redesign

We consider the related problem of implementing binary search trees with pair-
wise different elements which can be used as keys. Then the search tree represents
a set (and not a multiset) of elements.

For the algebra (S; ∅, {.}, .∪ ., .\., . ∈ .) of finite sets, equations (1)–(8) from
Section 2.1 hold. The set union satisfies the additional law

m ∪m = m, (74)

and equation (9) simplifies to

(m ∪ n)\y = (m\y) ∪ (n\y) . (75)

Moreover, one can show relations analogous to (19)–(30) using the abstraction
function set : T → S defined by

set(ε) = ∅ (76)

set(〈l, x, r〉) = set(l) ∪ {x} ∪ set(r) , (77)

15

compare (33)–(34). The derivation of the search function then leads to repetition-
free search trees R ⊆ T inductively generated by

(i) ε ∈ R (78)

(ii) If l, r ∈ R and x ∈ E with set(l) < x < set(r), then 〈l, x, r〉 ∈ R , (79)

compare (43)–(44). The remaining derivations of the functions find , minkey and
maxkey do not change, since they are only based on the containment and order
relation. The replayed derivation of the function insert yields

insert(ε, y) = 〈ε, y, ε〉 (80)

insert(〈l, x, r〉, y) =

 〈insert(l, y), x, r〉 if y < x
〈l, x, r〉 if y = x
〈l, x, insert(r, y)〉 if y > x ,

(81)

compare (55)–(56). Here the additional case distinction arises from using equa-
tion (74) in the induction step. Similarly, the derivation of the function delete
can be replayed for repetition-free search trees; it leads with slightly different
reasoning to the same result (71)–(73) as for search trees.

In this way the expense of a formal program development pays, since it pro-
vides a wide spectrum of related algorithms as a by-product. This allows replac-
ing the textual modification of existing programs — which is current practice —
by a semantics-based redevelopment.

7.2 Refinement

If a program is derived under weak assumptions, then the development refines
the specification in each step only gradually and no more than necessary. The re-
maining algorithmic freedom can be exploited to impose further implementation
constraints in order to improve efficiency. As an example we revisit the search
function (38)–(39)

search(ε, y) = F

search(〈l, x, r〉, y) =

{
T if y = x
search(l, y) ∨ search(r, y) if y 6= x

from Section 3.1. The simplification of the cascading recursion to a linear re-
cursion gave rise to search trees. A different efficiency improvement consists in
limiting the maximal recursion depth of the search function. However, the re-
cursion depth of the function search (38)–(39) corresponds to the height of the
tree:

height : T → N
height(ε) = 0 (82)

height(〈l, x, r〉) = 1 + max (height(l), height(r)) . (83)

16

The design decision to limit the recursion depth by constraining the data struc-
ture leads to the set H of (height-)balanced trees inductively generated by

(i) ε ∈ H (84)

(ii) If l, r ∈ H and x ∈ E with |height(l)− height(r)| ≤ 1,

then 〈l, x, r〉 ∈ H , (85)

compare [AL62]. On the subset of height-balanced search trees the corresponding
algorithms (see, for example, [AHU83, CLR90, K73, Mh84, S88]) can be derived
in a similar, yet more involved manner as for simple search trees.

8 Conclusion

There is a large conceptual gap between an abstract problem-oriented speci-
fication and a fully detailed, efficiently executable machine-oriented program.
Transformational programming replaces the traditional “programming in one
blow” by a series of small, formally controllable, semantics-preserving steps,
each adding details through design decisions. In this way transformational pro-
gramming guarantees the correctness of the final program with respect to the
initial specification.

The development gives insight into the algorithmic principles underlying a
program: a particular implementation is not understood through its code but by
the design decisions that lead to it. When developing a family tree of different
algorithms from the same specification, the derivation relates the different im-
plementations which cannot be compared at the code level. The transformation
rules as well as the development strategies formalize programming knowledge.
The calculational nature of program manipulation also supports building pro-
gram development systems (for an overview see [F87]).

Functional programming lends itself particularly well to this purpose: its
expressions are manipulated with the same ease as conventional, mathematical
expressions. Moreover, frequently the data and control structures involved obey
a rich set of algebraic laws. This eliminates much of the burden of manipulating
quantifiers explicitly and leads to concise and perspicuous derivations.

So there is hope that in the long run formal program development tech-
niques will play the same rôle for software engineering as mathematics plays in
traditional engineering disciplines.

Acknowledgements We thank F. Nickl and M. Russling for valuable discus-
sions, C. Runciman for a pointer to the literature, and the anonymous referees
for helpful comments.

References

[AL62] G.M. Adelson-Velskii, Y.M. Landis: An Algorithm For the Organisation of In-
formation. Doklady Akademia Nauk SSR 146 , 263–266 (1962). English translation:
Soviet Math. 3 , 1259–1263

17

[AHU83] A.V. Aho, J.E. Hopcroft, J.D. Ullman: Data Structures and Algorithms.
Reading, Mass.: Addison-Wesley 1983

[BMPP89] F.L. Bauer, B. Möller, H. Partsch, P. Pepper: Formal Program Construc-
tion by Transformations — Computer-aided, Intuition-guided Programming. IEEE
Transactions on Software Engineering 15, 165–180 (1989)

[B89] R. Bird: Lectures on Constructive Functional Programming. In: M. Broy (ed.):
Constructive Methods in Computer Science. NATO ASI Series F: Computer and
Systems Sciences 55. Berlin: Springer 1989, 151–216

[CLR90] T.H. Cormen, C.E. Leiserson, R.L. Rivest: Introduction to Algorithms. The
MIT Electrical Engineering and Computer Science Series. Cambridge, Mass.:
M.I.T. Press/New York: McGraw-Hill 1990

[F87] M. Feather: A Survey and Classification of Some Program Transformation Ap-
proaches and Techniques. In: L.G.L.T. Meertens (ed.): Proceeding of the IFIP
TC2/WG2.1 Working Conference on Program Sepcification and Transformation.
Amsterdam: North-Holland 1987, 165–196

[HD83] C.M. Hoffman, M.J. O’Donnell: Programming with Equations. ACM Transac-
tion on Programming Languages and Systems 4 :6, 83–112 (1983)

[H89] P. Hudak: Conception, Evolution, and Application of Functional Programming
Languages. ACM Computing Surveys 21:3, 359–411 (1989)

[K73] D.E. Knuth: The Art of Computer Programming. Vol. 3 : Sorting and Searching.
Reading, Mass.: Addison-Wesley 1973

[Me86] L.G.L.T. Meertens: Algorithmics — Towards Programming as a Mathematical
Activity. Proceedings CWI Symposium on Mathematics and Computer Science.
CWI Monographs Vol. 1. Amsterdam: North–Holland 1986, 289–334

[Mh84] K. Mehlhorn: Data Structures and Algorithms 1: Sorting and Searching.
EATCS Monographs in Theoretical Computer Science. Berlin: Springer 1984

[Mö97] B. Möller: Calculating with pointer structures. In: R. Bird, L. Meertens (eds.):
Algorithmic Languages and Calculi. Proc. IFIP TC2/WG2.1 Working Conference,
Le Bischenberg, Feb. 1997. Chapman&Hall 1997 (to appear)

[P90] H.A. Partsch: Specification and Transformation of Programs — A Formal Ap-
proach To Software Development. Berlin: Springer 1990

[R92] C.M.P. Reade: Balanced Trees with Removals: An Exercise in Rewriting and
Proof. Science of Computer Programming 18 , 181–204 (1992)

[S88] R. Sedgewick: Algorithms. Reading, Mass.: Addison-Wesley 1988

18

