
                        

                     

Parallelity and extrinsic homogeneity
J.-H. Eschenburg
Institut für Mathematik, Universität Augsburg, D-86135 Augsburg, Germany
(e-mail: eschenburg@math.uni-augsburg.de)

                      

0. Introduction

It is a well known phenomenon in geometry that parallelity of certain struc-
tures implies homogeneity, at least locally: Sufficiently many parallel vec-
tor fields characterize homogeneous euclidean space forms. A Riemannian
manifold with parallel curvature tensor is locally symmetric, and more gen-
erally, a smooth manifold equipped with a connection having parallel curva-
ture and torsion tensors is locally homogeneous (cf. [K]). For submanifolds,
parallelity often implies even global extrinsic homogeneity. E.g., a planar
curve with constant curvature is a circle or a line, and a spatial curve with
constant curvature and torsion is a helix. For submanifolds of higher dimen-
sion and codimension, a similar phenomenon was observed by Ferus [F1]:
A closed submanifold of euclidean space with parallel second fundamental
form is an extrinsic symmetric space, i.e. the reflections at all normal spaces
leave the submanifold invariant. A simpler proof of this fact was given later
by Strübing [S]. His idea was to show that on such a submanifold parallel
frames along geodesics satisfy a linear differential equation with constant
coefficients which is preserved by isometries of the ambient space. Olmos
and Sanchez [OS] extended this idea to submanifolds which have parallel
second fundamental form with respect to another connection D differing
from the Levi-Civita connection by a D-parallel tensor, which resulted in
a local characterization of the orbits of certain representations (so called
s-representations). In the present paper we wish to derive the most gen-
eral extension of Strübing's argument where the ambient space is no longer
euclidean but a reductive homogeneous space (Ch. 2). The main difficulty
arising in such an extension is that the group G acting transitively on the



340                

homogeneous space might be too small to contain the parallel displacements
of D. Thus we need an extra condition (“G-connection”) which is discussed
in detail in Ch. 3. We want to point out that the arguments are in fact of
purely affine character: Only connections are used, no metrics. A simple
application is given in Ch. 4: a local characterization of extrinsic symmet-
ric subspaces of Riemannian symmetric spaces. We hope that our results
can be used to characterize isoparametric and equifocal submanifolds of
Riemannian symmetric spaces.

1. Canonical connections

Let G be a Lie group and g its Lie algebra. G acts on itself by left and
right translations Lg and Rg; to save symbols we will use the notation of a
matrix group and write gX and Xg for dLgX and dRgX where X ∈ g. In
particular, Ad(g)X = gXg−1.

Let H ⊂ G be a closed subgroup. We consider the homogeneous space
P = G/H with its base point p0 = eH . The left translations Lg induce an
action of G on P ; we will denote this actions and its differential simply by
g.p and X.p (for g ∈ G, X ∈ g and p ∈ P ). Further we will assume that P
is reductive, i.e. g allows an Ad(H)-invariant vector space decomposition

g = h ⊕ p.

where h denotes the Lie algebra of H . We may assume that G acts effectively
and that Ad(H)|p is a closed subgroup of Gl(p) (otherwise, we can enlarge
G). The complement p defines a left invariant distribution on G which is right
invariant under H and which defines a connection (the so called canonical
connection) on the H-principal bundle G over G/H = P .

Now let E be a homogeneous vector bundle over P , i.e. the action of G
on P is covered by an action on E via bundle isomorphisms. This action
and its differential will be denoted also by g.v and X.v for g ∈ G, X ∈ g
and v ∈ E. Our standard example will be the tangent bundle E = TP . Any
such vector bundle is associated to the H-principal bundle G → P . Hence
the canonical connection on G defined by p induces a covariant derivative ∇
on E which can be computed as follows: Consider a section W (t) = g(t).w
along the curve p(t) = g(t)p0 for some smooth curve g(t) in G and some
w ∈ p = Tp0P . (Sections of this type form a basis for all sections along the
curve p(t).) Now the covariant derivative of W along this curve is

∇tW = (g′)gh.w

where (g′)gh denotes the projection of g′ ∈ TgG = gh⊕gp onto the vertical
subspace gh. This covariant derivative is G-invariant, i.e. each g ∈ G com-
mutes with ∇. The ∇-geodesics through p = g.p0 are γ(t) = exp(tX).p
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for X ∈ Ad(g)p while the parallel sections along γ are v(t) = exp(tX).v
for arbitrary v ∈ Ep. Consequently, the holonomy group at p0 is contained
in H (considered as a subgroup of Gl(p)). For E = TP this connection is
in general not torsion free; in fact, its torsion tensor at p0 is given by [p, p]p,
so it vanishes iff P is an affine symmetric space. However, the curvature
and torsion tensors are ∇-parallel (cf. [K] for details in this section).

2. Homogeneity in terms of connections

Theorem 1. LetP = G/H be a reductive homogeneous space with canon-
ical connection ∇ on TP and let M ⊂ P a closed submanifold. Suppose
that there is a covariant derivative D on the vector bundle E := TP |M
with the following two properties:
(a) TM ⊂ E is a D-parallel subbundle,
(b) Γ := ∇ − D : TM → End(E) is D-parallel.
Suppose that g ∈ G preserves Γ at some point p ∈ M , more precisely,
g.p ∈ M and g.TpM = Tg.pM for some p ∈ M , and g.Γxv = Γg.xg.v for
all x ∈ TpM and v ∈ TpP . Then g leaves M invariant and preserves D.

Proof. Let γ be a D-geodesic in M with γ(0) = p and B(t) = (B1(t), ...,
Bn(t)) a D-parallel basis along γ with B1(t) = γ′(t). We will show that
g.γ is again a D-geodesic in M and g.B(t) a D-parallel basis along g.γ. In
fact, from DtBj = 0 we get

∇tBj(t) = Γγ′(t)Bj(t).

Since Γ as well as Bj and γ′ are parallel, we have

Γγ′Bj =
∑

i

cijBi

for some constant matrix C = (cij). Hence for B = (B1, ..., Bn) we get
(in matrix notation):

∇tB = B · C. (∗)

Now let γ̃ be the D-geodesic starting at γ̃(0) = g.p with initial vector
γ̃′(0) = g.γ′(0). Let B̃(t) be the D-parallel frame along γ̃ with B̃(0) =
g.B(0). Since g preserves Γ at p, the matrix of the linear map Γγ̃′(0) with re-
spect to the basis B̃(0) is the same matrix C = (cij). So B̃ satisfies the same
covariant differential equation (∗). But alsog.B(t) = (g.B1(t), ..., g.Bn(t))
satisfies (∗) since g commutes with ∇t. Since the initial conditions for B̃
and g.B agree, we obtain B̃ = g.B. In particular we have γ̃′ = g.γ′ since
γ′ = B1 and γ̃′ = B̃1. Thus γ̃ = g.γ.
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Let M1 be the open subset of all points q ∈ M which can be connected
to p by a D-geodesic. We have shown that g maps M1 into M and preserves
D. Repeating this argument for any p1 ∈ M1 in place of p, we get the same
statement for the set M2 containing the points which can be connected to M1
by aD-geodesic, and by induction it holds forMk (containing the points with
a D-geodesic connection to Mk−1). Since M is connected and any curve
can be approximated by a D-geodesic polygon, we have M =

⋃
k Mk and

we are done. ut

Now we can characterize extrinsic homogeneous submanifolds of P in
terms of connections. A closed submanifold M ⊂ P will be called extrinsic
homogeneous if it is a reductive orbit of a closed subgroup ofG. A connection
D on E = TP |M is called a G-connection if for any piecewise smooth curve
c : [a, b] → M the D-parallel transport τc : Tc(a)P → Tc(b)P is given by
some group element, i.e. there exists some g ∈ G such that for all v ∈ Tc(a)P
we have

τc(v) = g.v .

If P = R
n and G is the full affine group (resp. the full isometry group of R

n),
then any connection (resp. any metric connection) is a G-connection. If P is
an affine symmetric space and G the full group of affine diffeomorphisms,
then a connection D on TP |M is a G-connection if and only if the parallel
transports τc preserve the curvature tensor of P .

Theorem 2. A closed submanifold M ⊂ P is extrinsic homogeneous if and
only if there exists a G-connection D on E := TP |M such that TM ⊂ E
is a parallel subbundle and the tensor Γ = ∇ − D : TM → End(E) is
parallel with respect toD. This connection is a canonical connection onM .

Proof. Suppose first that M ⊂ P is a reductive orbit, i.e. M = A.p for
some p ∈ P and a closed subgroup A ⊂ G such that M is a reductive
homogeneous space: If B = Ap denotes the isotropy group of p under the
action of A and b its Lie algebra, we have an Ad(B)-invariant decomposition
of the Lie algebra a of A:

a = b ⊕ m.

Since E = TP |M is a homogeneous vector bundle over M = A/B and
TM ⊂ E an A-invariant subbundle, the canonical connection on the prin-
cipal bundle A → M defined by m induces a covariant derivative D on E
which leaves TM invariant. In particular, D is a G-connection since A ⊂ G.

Let Γ := ∇ − D where ∇ is the canonical connection of TP . We put
p = g.p0 and v = g.w for some w ∈ Tp0P , and we let g(t) = exp(tX)g.
Then v(t) = exp(tX)v = g(t)w is D-parallel, Dtv(t) = 0, and we have
for x = X.p

Γxv = ∇tv(t)|t=0 = g′(0)gh.w = (Xg)gh.w = XAd(g)h.v .
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We have to show that Γ is D-parallel. Thus let x(t) and v(t) be parallel
along a D-geodesic p(t) = at.p0 with at = exp(tY )p for some Y ∈ m.
Then we have v(t) = at.v and x(t) = at.x = at.X.p = (Ad(at)X).p(t).
Thus

Γx(t)v(t) = (Ad(at)X)Ad(at)hat.v = at.Xh.v

which is a D-parallel section of E along p(t). This shows that Γ is D-
parallel.

Vice versa, assume that we have a connected submanifold M ⊂ P =
G/H having such a connection D on E = TP |M . Let c : [a, b] → M be
any piecewise smooth curve. Then there exists some (unique) gc ∈ G with
gc(c(a)) = c(b) and gc.v = τcv for all v ∈ TpP . Since Γ is D-parallel,
Γ |p is preserved under the parallel transport τc and hence under gc. Thus
gc leaves M invariant and preserves D (cf. Theorem 1). It follows that the
closed subgroup A ⊂ G generated by all gc acts transitively on M as a
group of affine transformation with respect to D. We have to show only that
M is reductive. Let T be the torsion tensor of D. Fix some p ∈ M . Let

m = {X ∈ a; DyX = T (y, X.p) ∀y ∈ TpM}

where X ∈ a is considered as the tangent vector field q 7→ X.q on M (affine
Killing field). Let B = Ap be the isotropy group at p and b its Lie algebra;
we have

b = {X ∈ a; X.p = 0}.

Since B ⊂ A preserves D and hence T (cf. Theorem 1), m is an Ad(B)-
invariant subspace. Further we have m ∩ b = 0 since an affine Killing field
is determined by its value and derivative at one point, and for X ∈ m ∩ b
we have X.p = 0 and DX|p = 0, hence X = 0. It remains to show that for
any x ∈ TpM there exists X ∈ m with X.p = x; then m is a complement
of b by reasons of dimension.

In fact, let γ be the D-geodesic starting from γ(0) = p with γ′(0) = x.
For any t, u ∈ R sufficiently close to 0 let τt,u : Tγ(u)M → Tγ(t+u)M be the
parallel displacement along γ. There exists gt ∈ A with gt(γ(0)) = γ(t)
and gt.y = τt,0y for all y ∈ TpM . Since gt is affine, it is a transvection
along γ, i.e. it translates γ and the parallel vector fields along γ. From
τs,t◦τt,0 = τs+t,0 we obtain gsgt = gs+t, hence the family (gt) forms a one-
parameter subgroup: gt = exp(tX) for some X ∈ a with X.p = γ′(0) = x.
If we extend any y ∈ TpM to the parallel vector field Y (t) = gt.y along γ,
we have DyX = DxY + T (y, x) (no Lie bracket term since Y is invariant
under the flow of X), but DxY = DtY (t)|t=0 = 0. Thus we have X ∈ m
which finishes the proof that M is reductive. ut
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3. G-connections

The flaw of our last theorem is that it might be hard to decide whether
a connection is a G-connection. The next theorem gives a more simple
characterization.

Theorem 3. Let M ⊂ P = G/H be a closed submanifold. A connection
D on E = TP |M preserving TM ⊂ E is a G-connection if and only if at
any point p = g.p0 ∈ M , the tensor Γ = ∇ − D : TM → End(E) takes
values in Ad(g)h ⊂ End(TpP ). If Γ is D-parallel, this property need to
be satisfied only at some p ∈ M .

Proof. Suppose thatD is aG-connection onTP |M . LetB(t)be aD-parallel
frame along some curve p(t). Then B(t) = g(t).b and p(t) = g(t).p0 for
some smooth curve g(t) in G and some basis b of Tp0P . Since B is D-
parallel, we have ∇tB = Γp′B, and on the other hand, ∇tB = (g′)gh.b,
thus

Γp′B = (g′)gh.g
−1.B = (g′g−1)Ad(g)h.B

which shows that Γp′ ∈ Ad(g)h.
Vice versa, suppose that Γ |g.p0 takes values in Ad(g)h. Let B(t) be a

D-parallel basis along some curve p(t) in M , i.e. we have

∇tB = Γp′B. (∗)

We claim that this equation can be solved by the ansatz B(t) = g(t).b
for some fixed basis b of Tp0P and some smooth curve g(t) in G with
p(t) = g(t).p0. In fact, then ∇tB = (g′)ghb = (g′)ghg

−1B, thus by (∗), we
get for the vertical component of g′:

(g′)gh = Γp′g

(note thatΓp′g lies in fact in gh). On the other hand, the horizontal component
of g′ is determined by p′:

(g′)gp = p̂′

where v̂ ∈ TgG denotes the horizontal lift of v ∈ Tg.p0P . Thus we obtain
an ODE for the curve g(t) in G, and B(t) := g(t).b solves (∗). This shows
that D is a G-connection.

Now suppose that Γ is D-parallel and that Γ |p0 takes values in h ⊂
End(Tp0P ) (we may assume p = p0). We claim that D is a G-connection.
In fact, let B(t) be a D-parallel basis along a D-geodesic γ in M starting
at γ(0) = p0, and let B(0) = b. By parallelity we have Γγ′B = B · C
for some constant matrix C = (cij), and since Γ |p0 takes values in h, there
exists X ∈ h such that

b · C = Γγ′(0)b = X.b .
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Now the parallelity of B(t) is equivalent to

∇tB = B · C (∗∗)

which will again be solved by the ansatz B(t) = g(t)b for some curve g(t)
in G with g(t).p0 = γ(t). In fact, then we have ∇tB = (g′)ghb, thus (∗∗) is
equivalent to (g′)ghb = g.b · C = g.X.b. Hence B(t) = g(t)b solves (∗∗)
if g(t) solves the ODE

(g′)gh = gX, (g′)gp = γ̂′.

This shows that the parallel transport alongD-geodesics is given by elements
of G. Since any curve can be approximated by geodesic polygons, D is a
G-connection. ut

4. Extrinsic symmetric subspaces

As an application, we now consider a Riemannian symmetric space P =
G/H where G is the isometry group of P . A submanifold M ⊂ P is
called extrinsic symmetric if for any p ∈ M there exists an isometry ρ ∈ G
fixing p and leaving M invariant and acting as id on the normal space
NpM and as −id on the tangent space TpM . Extrinsic symmetric spaces
in euclidean space P = R

n are classified (cf. [KN], [F2], [EH]), and they
are characterized by the property that the second fundamental form α :
TM ⊗ TM → NM is parallel with respect to the natural connections on
TM and NM . It is easy to see that also for an arbitrary ambient space P this
property is necessary: Dα : TM ⊗TM ⊗TM → NM is invariant under ρ,
but while the three arguments in TpM change sign under ρ, the value under
Dα in NpM stays the same which shows Dα = 0. However, this property is
no longer sufficient: If M ⊂ P is extrinsic symmetric, then NpM and TpM
must be totally geodesic, i.e. invariant under the curvature tensorRofP since
they are the fixed spaces of the isometries ρ and ρ ◦ σ where σ denotes the
symmetry ofP at p. But there are totally geodesic submanifolds (α = 0), e.g.
geodesics, whose normal spaces are not totally geodesic. Instead, we have the
following characterization of extrinsic symmetric spaces (the equivalence
of the first two statements has been proved already in [NT]):

Theorem 4. Let P be a Riemannian symmetric space and M ⊂ P a closed
submanifold. Then the following statements are equivalent:
(1) M is extrinsic symmetric,
(2) Dα = 0 and TpM and NpM are totally geodesic for all p ∈ M ,
(3) Dα = 0 and for some p0 ∈ M there is a linear map X : Tp0M → h
with α(v, w) = X(v).w for all v, w ∈ Tp0M .
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Proof. For a Riemannian symmetric space P , the canonical connection ∇ is
the Levi-Civita connection. LetD be the Levi-Civita connection onTP |M =
TM ⊕ NM , i.e.

DV W = (∇V W )TM , DV ξ = (∇V ξ)NM

for all tangent fields V, W and normal fields ξ on M . Then Γ = ∇ − D
maps TM into NM and vice versa, and

ΓV W = α(V, W ), 〈ΓV ξ, W 〉 = −〈ξ, α(V, W )〉.
Consequently, Γ is D-parallel iff so is α.

We have already seen that (1) implies (2). To show the converse we recall
that any linear isometry ofTpP preserving the curvature tensorR atp extends
to an isometry of P fixing p. If TpP splits orthogonally into totally geodesic
subspaces TpP = TpM ⊕ NpM , then ρ := −idTpM ⊕ idNpM leaves
R invariant: We only have to consider expressions Rabcd with a, b, c, d ∈
TpM ∪ NpM . But if precisely one of the four arguments lies in TpM or in
NpM , the expression is zero since these subspaces are totally geodesic. In
all remaining cases, the number of arguments of each type is even and so
the expression is invariant under ρ. Clearly ρ commutes with α and hence
with Γ . Thus we see from Theorem 1 that ρ ∈ G preserves M and thus M
is extrinsic symmetric.

The equivalence of (1) and (3) is a consequence of the Theorems 2 and
3: The asumption in (3) says precisely that Γ |p0 takes values in h, thus
(3) ⇒ (1) follows. For the converse statement note that for an extrinsic
symmetric space M ⊂ P , the group generated by all the reflections ρ
contains the transvections, hence the canonical connection on TP |M must
be the Levi-Civita connection D and the additional property in (3) follows
from Theorem 3. ut
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