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ABSTRACT. We prove an extension of de Rham’s decomposition theorem to
the non-simply connected case.

1. INTRODUCTION

A connected Riemannian manifold may allow more than one decomposition into
a product of indecomposable factors: Euclidean space of dimension > 2 splits
orthogonally into a product of one-dimensional subspaces in many different ways.
But by the classical theorem of de Rham ([dR], cf. also [KN], [M], [P]), this is
essentially the only simply connected example with that property. The purpose of
our note is to generalize this result to the non-simply connected case as well.

Theorem. Any complete connected Riemannian manifold M decomposes into a
Riemannian product

(1) M = My x My x ... x M,

where My is a mazimal factor isometric to euclidean space and each M;, i > 0, is
indecomposable. This decomposition is unique up to the order of M, ..., M,.

We call a Riemannian manifold indecomposable if it is not isometric to a Rie-
mannian product of lower dimensional manifolds. Any (holonomy) irreducible man-
ifold is indecomposable and by de Rham’s theorem also the converse is true for sim-
ply connected manifolds. But in general the two notions differ: A non-rectangular
flat 2-torus is indecomposable but not irreducible. By decomposing a manifold
further and further it is clear that any Riemannian manifold admits a decomposi-
tion into a product of indecomposable ones. Therefore, the only question is about
uniqueness. We say that a product decomposition is unique if the corresponding
foliations are uniquely determined.

If M is compact, there is no euclidean factor. Hence we get the following

Corollary 1. Let M be a compact Riemannian manifold. Then M decomposes
uniquely into a Riemannian product of indecomposable factors. Any isometry of
M must preserve or interchange these factors. In particular, for any Riemannian
product decomposition M = M; x My, the identity component of the isometry group
splits as Io(M) = Io(My) x Io(Ms).
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Another immediate consequence is a theorem due to Uesu [U] generalizing a
previous result of Takagi [T]:

Corallary 2. Let M, N and B be complete connected Riemannian manifolds. If
M x B is isometric to N x B then M 1is isometric to N.

The main idea of the proof of our Theorem is to use a special (so-called “short”)
set of generators of the fundamental group which is compatible to any Riemannian
decomposition of M. The same generating set had been used by Gromov in order
to estimate the number of generators of the fundamental group (cf. [G]).

2. PROOF OF THE THEOREM

By the remark above, we only have to show uniqueness. This will follow from
a series of lemmas. We always denote by M the universal cover of M and by I
its group of deck transformations. A decompositon of M into a product M =
X1 X ... x Xj, determines k foliations on M whose leaves through a point p € M will
be denoted by X;(p). We say that an isometry ¢ of M acts only on X; (or trivially
on all X;, j=1) if
A(T1y ey Tiy ooy X)) = (X1 eey PiTiy oeey T

for some isometry ¢; of X;. In the language of foliations this means that each leaf
Xi(p) is ¢-invariant, i.e. ¢(p) € X;(p) for all p € M.

Lemma 1. The maximal euclidean factor My of M is uniquely determined.

Proof. By de Rham’s theorem M splits uniquely into £ x N where F is euclidean
and N has no euclidean factor. Furthermore I' preserves this splitting, i.e. each vy €
T is of the form (yg,yn) where g and yx are isometries of E and N, respectively.
Now any euclidean factor of M corresponds to a factor F; of E on Which I acts
tr1V1ally If E = E; x E3 as a Riemannian manifold, then F;(z) = E; + x where
E, & E, is an orthogonal splitting of the euclidean vector space E acting simply
transitively on the affine space E by translations. By the remark before Lemma 1,
~v € I acts trivially on Ej if

ve(x) € Ea(z) = Ey+x
for all x € F which in turn is equivalent to (ygx — ) L E,. Thus E, is maximal if
Ey={ygzx—ux; v € E, yeT'}* C E;
but this is uniquely determined. |

Lemma 2. Let M = Ml X ... X Mp = M1 . X 1\7[’ be two decompositions ofM
Then there exists a decomposztzon M= H Mu X F of M where F is a euclidean
factor and M;;(p) = M;(p )ﬂMj'( ).

Proof. M;(p) and M 1(p) are totally convex in the sense that any minimal geodesic
of M joining two points in M;(p) or Mj’(p) lies completely in M;(p) or MJ’ (p),
respectively. Therefore, Mij (p) is a totally geodesic connected submanifold of M.
The tangent spaces D;; (p) = Tp,(Mi;(p)) = Tpp(M;)NT, (M ;) form a distribution D;;
which is invariant under parallel translations. Therefore we get from de Rham’s
theorem M = H M;; x F where F' is some complementary factor. Since each
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irreducible de Rham factor is contained in some M; and in some M j'-, it is also
contained in some Mu Thus the complementary factor F' must be euclidean. [

Recall that a splitting M = Ml X .o X Mp of the universal cover is induced by a
splitting M = M; X ... x M, of the manifold M itself if and only if the group I' of
deck transormations splits accordingly. This means that I" has a set of generators
each of which acts only on one of the factors Mi. ‘We now show that there is even
a set of generators which has this property for all splittings of M at the same time:

Lemma 3. There exists a generating set ¥ of I' such that for any decomposition
M = My x ... x My, of M, each o € ¥ acts only on one factor of the corresponding
decompositon M = My x ... x M,.

Proof. Choose o € M and let || := dist(o0,~vo0) for each v € T. Let & = {01, 09, ...}
be a short generating set in the sense of Gromov [G], i.e. o7 is chosen with |oy| =
min{|y]; v € '\ {1}} and o}, inductively with |ox| = min{|y|; v € I'\T'k—1} where
I'x—1 denotes the subgroup generated by o1, ...,04_1. Each o, € ¥ (in fact each
o €I') can be written as oy = y172...7p wWhere ; acts only on M;. Hence

p
okl =D 1il® > 1l
=1

for all j. In case of a strict inequality we have v; € I',_; by the choice of o. But
this cannot happen for all j since oy ¢ I'y—1. Thus there exists i € {1,...,p} with
lok| = |7:| and |v;| = 0 for all j = i which means o), = ;. |

Proof of the Theorem. By Lemma 1 we may assume that M contains no euclidean
factor. Let M = M; x ... x M, = Mj x ... x M, be two decompositions of M

into indecomposable factors. According to Lemma 2 we get a decomposition M =
Hi,j Mij x F. Now, if ¢ is any element of the special generating set of Lemma 3,
there exist i € {1,...,p} and j € {1, ..., ¢} such that the leaves M;(p) and Mj'(p) and
hence Mij (p) are o-invariant for all p € M. In particular, o and hence I' act trivially
on F. Since M has no euclidean factor, F must be trivial, i.e. M = Hi,j ]\7[ij.
Furthermore, I' is generated by elements ¢ which act only on one of the factors
Mij. Thus, by the remark before Lemma 3 we get a corresponding decomposition
M =1TI; ; Mi; of M with M;;(m) = M;(m) N Mj(m) for all m € M. Since the M;
and M J’ are indecomposable, the theorem follows. O
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