
                
                           
                                             
                     

UNIQUE DECOMPOSITION OF RIEMANNIAN MANIFOLDS

J.-H. ESCHENBURG AND E. HEINTZE

(Communicated by Christopher Croke)

Abstract. We prove an extension of de Rham’s decomposition theorem to
the non-simply connected case.

1. Introduction

A connected Riemannian manifold may allow more than one decomposition into
a product of indecomposable factors: Euclidean space of dimension ≥ 2 splits
orthogonally into a product of one-dimensional subspaces in many different ways.
But by the classical theorem of de Rham ([dR], cf. also [KN], [M], [P]), this is
essentially the only simply connected example with that property. The purpose of
our note is to generalize this result to the non-simply connected case as well.

Theorem. Any complete connected Riemannian manifold M decomposes into a
Riemannian product

M = M0 ×M1 × ...×Mp(1)

where M0 is a maximal factor isometric to euclidean space and each Mi, i > 0, is
indecomposable. This decomposition is unique up to the order of M1, ..., Mp.

We call a Riemannian manifold indecomposable if it is not isometric to a Rie-
mannian product of lower dimensional manifolds. Any (holonomy) irreducible man-
ifold is indecomposable and by de Rham’s theorem also the converse is true for sim-
ply connected manifolds. But in general the two notions differ: A non-rectangular
flat 2-torus is indecomposable but not irreducible. By decomposing a manifold
further and further it is clear that any Riemannian manifold admits a decomposi-
tion into a product of indecomposable ones. Therefore, the only question is about
uniqueness. We say that a product decomposition is unique if the corresponding
foliations are uniquely determined.

If M is compact, there is no euclidean factor. Hence we get the following

Corollary 1. Let M be a compact Riemannian manifold. Then M decomposes
uniquely into a Riemannian product of indecomposable factors. Any isometry of
M must preserve or interchange these factors. In particular, for any Riemannian
product decomposition M = M1×M2, the identity component of the isometry group
splits as I0(M) = I0(M1)× I0(M2).
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Another immediate consequence is a theorem due to Uesu [U] generalizing a
previous result of Takagi [T]:

Corallary 2. Let M , N and B be complete connected Riemannian manifolds. If
M ×B is isometric to N ×B then M is isometric to N .

The main idea of the proof of our Theorem is to use a special (so-called “short”)
set of generators of the fundamental group which is compatible to any Riemannian
decomposition of M . The same generating set had been used by Gromov in order
to estimate the number of generators of the fundamental group (cf. [G]).

2. Proof of the Theorem

By the remark above, we only have to show uniqueness. This will follow from
a series of lemmas. We always denote by M̃ the universal cover of M and by Γ
its group of deck transformations. A decompositon of M̃ into a product M̃ =
X1× ...×Xk determines k foliations on M̃ whose leaves through a point p ∈ M̃ will
be denoted by Xi(p). We say that an isometry φ of M̃ acts only on Xi (or trivially
on all Xj , j = i) if

φ(x1, ..., xi, ..., xk) = (x1, ..., φixi, ..., xk)

for some isometry φi of Xi. In the language of foliations this means that each leaf
Xi(p) is φ-invariant, i.e. φ(p) ∈ Xi(p) for all p ∈ M̃ .

Lemma 1. The maximal euclidean factor M0 of M is uniquely determined.

Proof. By de Rham’s theorem M̃ splits uniquely into E ×N where E is euclidean
and N has no euclidean factor. Furthermore Γ preserves this splitting, i.e. each γ ∈
Γ is of the form (γE , γN ) where γE and γN are isometries of E and N , respectively.
Now any euclidean factor of M corresponds to a factor E1 of E on which Γ acts
trivially. If E = E1 × E2 as a Riemannian manifold, then Ei(x) = ~Ei + x where
~E1 ⊕ ~E2 is an orthogonal splitting of the euclidean vector space ~E acting simply
transitively on the affine space E by translations. By the remark before Lemma 1,
γ ∈ Γ acts trivially on E1 if

γE(x) ∈ E2(x) = ~E2 + x

for all x ∈ E which in turn is equivalent to (γEx− x) ⊥ ~E1. Thus E1 is maximal if

~E1 = {γEx− x; x ∈ E, γ ∈ Γ}⊥ ⊂ ~E1

but this is uniquely determined.

Lemma 2. Let M̃ = M̃1 × ...× M̃p = M̃ ′
1 × ...× M̃ ′

q be two decompositions of M̃ .
Then there exists a decomposition M̃ =

∏
i,j M̃ij × F of M̃ where F is a euclidean

factor and M̃ij(p) = M̃i(p) ∩ M̃ ′
j(p).

Proof. M̃i(p) and M̃ ′
j(p) are totally convex in the sense that any minimal geodesic

of M̃ joining two points in M̃i(p) or M̃ ′
j(p) lies completely in M̃i(p) or M̃ ′

j(p),
respectively. Therefore, M̃ij(p) is a totally geodesic connected submanifold of M̃ .
The tangent spaces Dij(p) = Tp(M̃ij(p)) = Tp(M̃i)∩ Tp(M̃ ′

j) form a distribution Dij

which is invariant under parallel translations. Therefore we get from de Rham’s
theorem M̃ =

∏
i,j M̃ij × F where F is some complementary factor. Since each
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irreducible de Rham factor is contained in some M̃i and in some M̃ ′
j, it is also

contained in some M̃ij . Thus the complementary factor F must be euclidean.

Recall that a splitting M̃ = M̃1 × ...× M̃p of the universal cover is induced by a
splitting M = M1 × ...×Mp of the manifold M itself if and only if the group Γ of
deck transormations splits accordingly. This means that Γ has a set of generators
each of which acts only on one of the factors M̃i. We now show that there is even
a set of generators which has this property for all splittings of M at the same time:

Lemma 3. There exists a generating set Σ of Γ such that for any decomposition
M = M1 × ...×Mp of M , each σ ∈ Σ acts only on one factor of the corresponding
decompositon M̃ = M̃1 × ...× M̃p.

Proof. Choose o ∈ M̃ and let |γ| := dist(o, γo) for each γ ∈ Γ. Let Σ = {σ1, σ2, ...}
be a short generating set in the sense of Gromov [G], i.e. σ1 is chosen with |σ1| =
min{|γ|; γ ∈ Γ \ {1}} and σk inductively with |σk| = min{|γ|; γ ∈ Γ \Γk−1} where
Γk−1 denotes the subgroup generated by σ1, ..., σk−1. Each σk ∈ Σ (in fact each
σ ∈ Γ) can be written as σk = γ1γ2...γp where γi acts only on M̃i. Hence

|σk|2 =
p∑

i=1

|γi|2 ≥ |γj |2

for all j. In case of a strict inequality we have γj ∈ Γk−1 by the choice of σk. But
this cannot happen for all j since σk /∈ Γk−1. Thus there exists i ∈ {1, ..., p} with
|σk| = |γi| and |γj | = 0 for all j = i which means σk = γi.

Proof of the Theorem. By Lemma 1 we may assume that M contains no euclidean
factor. Let M = M1 × ... × Mp = M ′

1 × ... × M ′
q be two decompositions of M

into indecomposable factors. According to Lemma 2 we get a decomposition M̃ =∏
i,j M̃ij × F . Now, if σ is any element of the special generating set of Lemma 3,

there exist i ∈ {1, ..., p} and j ∈ {1, ..., q} such that the leaves M̃i(p) and M̃ ′
j(p) and

hence M̃ij(p) are σ-invariant for all p ∈ M̃ . In particular, σ and hence Γ act trivially
on F . Since M has no euclidean factor, F must be trivial, i.e. M̃ =

∏
i,j M̃ij .

Furthermore, Γ is generated by elements σ which act only on one of the factors
M̃ij . Thus, by the remark before Lemma 3 we get a corresponding decomposition
M =

∏
i,j Mij of M with Mij(m) = Mi(m) ∩ M ′

j(m) for all m ∈ M . Since the Mi

and M ′
j are indecomposable, the theorem follows.
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