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The dipolar glass system D-BPMBPI~ was investigated using broadband dielectric
spectroscopy over 12 decades in frequency and temperatures between 4 K < T <  300 K.
The complex dielectric constant reveals increasing polydispersivity with decreasing
temperatures. However, no criticality can be detected in the linear components of the
susceptibility: the distribution of relaxation times, as well as the mean relaxation time
become infinite at T =  0 only. The nonlinear susceptibility was followed over 4 decades
of frequency. Again the mean relaxation times follow a pure Arrhenius-type behavior.
However, from the extrapolation of the quasistatic nonlinear susceptibility a glass tran-
sition temperature of 30K can be deduced in reasonable agreement with the Almeida-
Thouless line determined from measurements of the FC/ ZFC-susceptibilities. The
frequency dependence of the real and imaginary parts of the third-order susceptibility
cannot be described using simple extensions from Cole-Cole or Havriliak-Negami
functions.

                                                                               
            

1 INTRODUCTION

Dipolar glasses (DG) (Hochli, 987) are model systems to study I ie
relaxation dynamics at the glass transition, which has remained one of
the central problems in the physics of disordered systems. Supercooled
liquids are disordered with respect to the center of mass lattice. Dipolar
glasses reveal long-range translational order, but the electrical dipole
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moments, which randomly occupy the regular lattice sites, can freeze
into a glassy state of random configurations below some freezing
temperature Tf.  Dipolar glasses can be regarded as the electrical ana-
logue of magnetic spin-glasses (SG) and are a subspecies of orienta-
tional glasses (OG). OG are characterized by the freezing of multipolar
moments, e.g. of quadrupolar or octupolar nature (Loidl and Bohmer,
1994). Dipolar glasses usually are realized in the form of mixed molec-
ular crystals. Either a ferroelectric (FE) or antiferroelectric (AFE)
campound is diluted by a material without dipolar moments, or one
considers a mixed crystal of ferroelectric and antiferroelectric com-
pounds. The latter possibility occurs in the system, which is pre-
sented in this work: a mixture of ferroelectric deuterated betaine
phosphite (D-BPI) and antiferroelectric deuterated betaine phosphate
(D-BP). The structural isomorphism of the pure betaine systems
enables the growth of mixed crystals. These systems are addition com-
pounds of the partially deuterated organic a-amino acid betaine and
anorganic phosphorus groups phosphate (CH3)3NCD2C00-D3P04
or phosphite (CH3)3NCH2COO-D3P03 (Albers er al., 1982; Albers,
1988; Fehst et al., 1993). There exists a large family of betaine crys-
tals with different adducts such as betaine calcium chloride dihydro-
genphosphate (BCCD) or betaine arsenate (BA) showing different
interesting order phenomena (Schaack, 1990). In D-BP : BPI the PO3
and the PO4 groups, respectively, are connected via hydrogen bonds
and form quasi-one-dimensional zig-zag chains along the [010]-direc-
tion. The dipolar degrees of freedom are connected with the reori-
entational motion of the deuterons in the double-well potential of the
hydrogen bonds. Actually there exist two inequivalent hydrogen
bridges along and perpendicular to the [010]-direction. Because of this
chain-like structure D-BP : BPI is a quite anisotropic (almost linear)
dipole system, in contrast to the three-dimensional network of hydro-
gen bonds in the proton or deuteron glasses of the thoroughly studied
KDP-type family, as e.g. rubidium ammonium dihydrogen phosphate
(RADP) (Courtens, 1987).

The (x, T)-phase diagram of the D-BP: BPI system is shown in
Fig. 1. In the case of low doping, long-range ordered structures are
stabilized at both ends of the phase diagram, while higher defect con-
centrations lead to a glassy phase, where the dipoles are cooperatively
frozen-in without long-range orientational order. The dipolar freezing
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FIGURE 1 Phase diagram of deuterated betaine phosphate/betaine phosphite mixed
crystals. The pure compounds reveal AFE and FE order, respectively. The shaded area
corresponds to a regime with FE polarization characteristics. At intermediate concen-
trations an orientational glass state appears at low temperatures.

process is dominated by the interaction between the dipoles, “random
bonds” (RB), and by spatially fluctuating static local fields of the
environment, the so-called “random fields” (RF). Random fields often
play an important role in dipolar glasses, which is a significant differ-
ence to magnetic spin glasses. The site disorder leads to the frustration
of these interactions. Thus both, random fields and random bonds,
have the tendency to suppress long-range orientational order. The
relevant parameters to determine the properties of order behavior in
such systems are the strength of the average dipolar interaction Jo and
the distribution width of the random bonds J as well as the random
fields A. With growing influence of J and A the quenched system
will tend to remain disordered in a glassy state. A central question
concerning this freezing transition has to be answered: is it a static
phenomenon or rather a kinetic effect which depends on the experi-
mental time scale. To answer this problem, it is necessary to define
an order parameter, which reflects the onset and the growth of glassy
behavior. It is an advantage of dipolar model glasses, that in contrast
to supercooled liquids such an order parameter can be defined via
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the Edwards-Anderson order parameter q = qEA = (pi) (Binder
and Young, 1986), were (. . .) denotes the time average for t + 00 and
[. . .] the spatial average. Even if the macroscopic polarizationp = [(fli)]
is equal to zero, q will be finite if local dipolar degrees of freedom are
frozen-in. For systems with symmetry breaking random fields the
order parameter will be finite for all temperatures. A static glass transi-
tion will produce an additional contribution due to the cooperative
freezing of the dipoles.

Unfortunately the order parameter cannot be determined directly
in the experiment. Measurements of the linear dielectric response are
a common method to investigate the dynamics of the freezing transi-
tion. The evaluation of the effective relaxation time T often does not
give any indication for a static freezing and reveals no critical behavior
as it will be demonstrated for the D-BP : BPI system under considera-
tion. But from this fact one cannot exclude the existence of a static
transition, because the divergence T would correspond to a freezing of
the majority of the dipolar degrees of freedom. This condition does
not have to be fulfilled necessarily. Glass transitions could be indicated
by the fact that only the slow edge of the distribution of relaxation
times diverges or the glass transition has to be described as a dynamic
phase transition. Kutnjak et al. (1993) recently proposed an alternative
way of analyzing the data from linear spectroscopy, yielding especially
information about the behavior of the relaxation time-distribution at
long times. In this work we deal especially with the behavior of the
nonlinear susceptibility xnl, which is supposed to indicate an anomaly
of the order parameter at the glass transition (Binder and Young,
1986) and reveals insight into the character of the dipolar glass tran-
sition. In what follows, we will describe in detail the temperature and
frequency dependences of the nonlinear susceptibility.

[ 'I

2 THEORY AND MODEL CALCULATIONS

The field-dependent susceptibility can be defined as

X ( E ) = J ' P ( E ) / E ~ E = X ~  + x 2 * E + x 3 . E 2 + . . * .  (1)
The power expansion of x ( E )  determines the nonlinear suscepti-

bilities X N .  In systems with inversion symmetry the even orders are
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expected to vanish. For a harmonic input signal and for the case that
the different susceptibility orders are separated with respect to the
magnitude, one finds the real part X X  and the imaginary part x $  to
be proportional to the corresponding Fourier components of the
polarization signal. This offers a convenient way to evaluate the
complex higher-order susceptibilities from the measured data. Since
the imaginary parts of the nonlinear orders do not have the meaning
of dissipative components, as is the case for the “loss” of the linear
order, it may be a more vivid representation to show the data as
magnitude lxNl and phase angle 6.

A different way to determine the nonlinear orders of the suscepti-
bility is the use of a static bias field E B ~ ~ ~  modulated by a small ac
field. Then the susceptibility at E B ~ ~ ~  is the local derivative of the
polarization:

Measuring X E ~ ~  for N different values of E B ~ ~ ,  one can evaluate
the first susceptibility orders xN.  Both methods are only equivalent in
the absence of hysteresis effects. Dispersion depends on the utilized
method as well (Pirc et al., 1994). Using the “bias”-method has the
advantage that the contribution of the nonlinear susceptibility orders
to X E ~  at a static field E B ~ ~ ~  is higher than the contribution to x(E)
using a harmonic stimulation with the field amplitude Eo= E B ~ ~ .On
the other hand we found that the sensitivity of the measurement with
respect to the phase angles SN is higher, if large ac fields are utilized.

The significance of the nonlinear susceptibility in characterizing
orientational glasses becomes clearer from a comparison with the linear
susceptibility in ferroelectrics. In long-range ordered systems the FE
transition is characterized by the critical temperature dependence of
xI(T).  The linear susceptibility is the derivative of the order param-
eter describing the ferroelectric transition, which is the polarization P.
It measures the fluctuations of this order parameter. Within a mean-
field (MF) or Landau-type approach it shows Curie-Weiss behavior:
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In this case the corresponding third-order susceptibility scales with
the 4th power of the linear, which again can be derived by a Landau
expansion of the free energy of the system. So xnr reveals more pro-
nounced anomalies at temperatures near the critical point than xi as
illustrated in Fig. 2.

For a spin- or orientational-glass transition the Edwards-Anderson
order parameter qEA replaces the spontaneous polarization, which
stays zero for all temperatures. The characteristic quantity in these
systems is the spin-glass susceptibility (Chalupa, 1977):

This is a derivative of the Edwards-Anderson order parameter and
again measures the fluctuation order parameter. The experimental
approach to this quantity is the nonlinear susceptibility. For the

0.5 1 .o 1.5

FIGURE 2
order ferroelectric transition according to the Landau theory.

Linear (solid line) and nonlinear (dashed line) susceptibilities at a second-
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average interaction strength JO = 0 it can be shown that (Binder and
Young, 1986)

Xnl .(A T (XSG -;).
The possible critical behavior of the spin-glass susceptibility should
be directly reflected by the nonlinear susceptibility. For Jo # 0, one
can postulate the following temperature dependence within a pheno-
menological approach (Suzuki, 1977):

xnl measures not only the long-range correlations but in addition the
critical behavior of the OG order parameter. This result is explicitly
confirmed for random bond random field systems by the quasistatic
limit of a dynamic MF-approach (Pirc et aE., 1994). These results are
shown in Fig. 3. The freezing temperature Tf corresponds to the
Almeida-Thouless line of stability, which separates the ergodic from
the nonergodic regime, and determines a quasistatic freezing transition
(de Almeida and Thouless, 1978). This temperature also can be deter-
mined by measurements of the “field cooled” (FC) and “zero-field
cooled” (ZFC) susceptibility (Levstik et al., 1991).

To estimate the frequency dependence of the nonlinear orders, one
Fan use a phenomenological ansatz, which is an expansion of the linear
response behavior of a Debye relaxator (Nakada, 1960). For a distri-
bution of relaxation times this leads to the generalized Havriliak-
Negami expression

for the Nth order susceptibility (Orihara et al., 1993). The results of
this expression are illustrated in Fig. 4 in a Cole-Cole representation.
The upper frame shows the behavior of a nonlinear Debye-relaxator
for the first three orders. The well known half-circle for N =  1 spreads
to the next quadrant for the orders N > 1 developing a spiral-like
form. This is connected with a nonmonotonic shape of the real and
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9T / T
FIGURE 3 Real part of the nonlinear susceptibility according to a dynamic MF-
Ansatz (Pirc er al., 1994). Divergent behavior at the static freezing temperature is found
for w = 0. The parameter y is a generalized one-particle damping coefficient.

imaginary higher-order spectra and with the formation of additional
extrema and roots. The positions of these significant points are listed
in Table I.

It is important to note that the condition wr = 1 does not necessar-
ily meet an extremum in the imaginary part of the higher orders, e.g.
the condition xi = 0. The behavior of the third order of susceptibility
is shown in the lower frame of Fig. 4 if polydispersivity is introduced.
It can be seen that for broad and asymmetric distributions the exten-
sion of the Cole-Cole plots into the next quadrants is reduced.

The predictions of phenomenological response theory shown above
are qualitatively similar to results from microscopic or thermodynamic
models for liquid crystals and supercooled liquids (Alexiewicz, 1989;
Dejardin et al., 1993).
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FIGURE 4 Cole-Cole representation of the normalized first, second and third
susceptibilities of a Debye-relaxator according to relation 7 (upper frame). The lower
frame shows the third order behavior for several values of the width parameter a and
the asymmetry parameter 8.
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TABLE I
order susceptibilities

Roots and extrema of the real and imaginary part of the linear and higher-

Order Real par! Imaginary part

Roots
1
2
3
N

Extrema
1
2
3
N

w r  = 1

w r  = tan[(2xk + x)j(2N)]
withk=0.1.2,  . . .
and (2nk + n)/(2N) < 4 2

W T  = l / J 5

d T  = 0
w r = O . &
w r  = 0 , l
W T  = tan[ka/(N+ I ) ]

with k = 0 , l .  2 , .  . .
and kx/(N + 1 )  < 7rj2

wr=O
wr=O

w r = tan(kx/N)
w r = O , J 5

with k =0, 1,2 , .  . .
and krjN < 1r/2

W T =  1
W T  = I / &
W T  = a- La+1
W T  = tan[(2nk + 7r)/(2N + 2)]

with k =  0, I ,  2 , .  . .
and (2xk + n)/(2N + 2) < n/2

3 EXPERIMENTAL RESULTS

3.1

The single crystals were grown from an aqueous solution of betaine and
H3P03  and H3P04, respectively, in a molar ratio of 1 : 1 by controlled
evaporation at a constant temperature near 300 K. Deuteration was
acheved by a three-cycle process of dilution with heavy water and
subsequent distillation. The protons of all polar bonds (those of the
phosphite complex and the carboxyl group of the betaine complex)
can be substituted by deuterons. Thus the relevant protons of the
crystal, that participate in the dipolar order-disorder phenomena,
can be regarded as highly deuterated and a further deuteration of the
organic complex should not affect the polar order behavior of the
system (Briickner et al., 1988). The crystals are colorless and trans-
parent of optical quality and grow as (100)-plates with typical dimen-
sions of about 5 x 10 x 20mm3. The samples were prepared as thin
plates of a typical thickness 0.5 mm 5 d 5  1 mm and a geometrical
capacitance of C,,, sz 0.2 pF. The measurements presented in this
work have been performed with an electric field E parallel to the
[0 lo] direction. The sample electrodes were prepared with silver paint
on opposite sides of the samples.

Crystal Growth and Sample Preparation
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3.2 Experimental Details

In the following we give some experimental details concerning the
experimental setups used for the dielectric measurements presented in
this work.

Most of the measurements were performed using a modified
Sawyer-Tower circuit (Sawyer and Tower, 1929), in which the sample
was connected in series with a reference capacitor whose capacitance
C, was at least by a factor of 1000 larger than that of the sample C,
(Hemberger, 1997). Across this circuit the driving signal is applied.
Voltages from 1 V for linear measurements up to more than 1 kV for
field-dependent measurements could be employed, depending on the
geometry and quality of the sample. The voltage across the reference
capacitor is a measure of the polarization P in the sample, while the
voltage across the sample determines the macroscopic field E. An
electrometer amplifier, with an input impedance 2 200 TR, was used
as impedance transformer enabling the detection of P ( E )  cycles in
the mHz regime. In the case of a harmonic driving signal, the P ( E )
data were recorded using a digital lock-in technique. A 14-bit multi-
channel AD-device allowed the phase sensitive determination of the
driving field E and the polarization response P of the sample at fre-
quencies in the mHz and Hz regime. The data were analyzed with
standard Fourier-analysis algorithms (Dixon and Wu, 1989).

In the course of this work this kind of Sawyer-Tower circuit was
used for three different experimental procedures:

(i) A symmetric, harmonically alternating electric field with a large
amplitude Eo was used for either detecting P ( E )  hysteresis loops
or evaluating this data in terms of linear and nonlinear har-
monic components of the complex field-dependent dielectric
susceptibility.

(ii) A small ac component superimposed on a dc bias field was uti-
lized to determine E(T, EBias) via the analysis of the local deriva-
tive of P(EBi,,).

(iii) In order to detect effects of thermo-remanent polarization cycles
of zero-field cooling (ZFC), field heating (FH), field cooling (FC)
and zero-field heating (ZFH) were applied. During each step the
external field was held constant and the polarization was mea-
sured while ramping the sample temperature at a constant rate.
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Rates of 1 and 2K/min were used but no discernible differences
could be detected.

Additional measurements of the complex linear dielectric constant
E* were performed using the autobalance bridge HP4284A for fre-
quencies 20 Hz < v <  1 MHz and the impedance analyzer HP4191A,
which uses a coaxial line reflection technique for frequencies 1 MHz <
v < 1 GHz. Typical fields in these measurements were about 1 V/mm
for v < 1 MHz and 0.05 V/mm for v > 1 MHz.

3.3 The Pure Deuterated Compounds: D-BP and D-BPI

Protonated betaine phosphate becomes antiferroelectric (AFE) below
T,, = 87 K and reveals. a further structural phase transition of
unknown origin at Tc3 = 83 K (Albers et al., 1982). The second phase
transition produces a tiny anomaly in the linear dielectric susceptibility
but can well be detected in heat capacity experiments (Fehst et al.,
1993). It has been speculated that at 83K possibly the unit cell is
doubled along the a-axis (Maeda et al., 1989). Protonated betaine
phosphite reveals a transition into a ferroelectric (FE) low-temperature
phase at Tcz = 200 K. The phase-transition temperature strongly
depends on sample quality and differs by as much as 30 K. No further
phase transition could be detected in the FE compound down to the
lowest temperatures. Here we report on field-dependent measurements
of the dipolar susceptibility especially focusing on the higher-order
susceptibilities.

The polarization has been measured as a function of electric field
for the deuterated betaine phosphate. The polarization loops were
determined at a frequency of 18 Hz and fields of 666 V/mm. Repre-
sentative results for three different temperature regions are shown in
Fig. 5 .  Although D-BP orders antiferroelectrically a clear FE sig-
nature can be detected in the polarization at low temperatures. This
FE component could be due to ordering processes of the second
hydrogen bridge or due to the development of strong anisotropies in
the dielectric properties. The resulting susceptibilities that have been
deduced from these hysteresis loops are documented in Fig. 6 which
shows the absolute value and the phase angle of the linear and third-
order susceptibility of deuterated betaine phosphate. At high tem-
peratures the linear susceptibility follows roughly a Curie- Weiss law
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FIGURE 5 Polarization vs field in D-BP at three different temperature regimes.

with a characteristic Weiss temperature of 120K. On cooling the
paraelectric regime is followed by a cusp-shaped maximum close to
140K and a strong decrease. The loss angle S1 is close to zero above
50K and reveals an increase and a dispersion characteristic for
relaxational or tunneling processes at low temperatures. These
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FIGURE 6 First and third-order of the susceptibility in D-BP. The measurements
were performed using frequencies 1 1  3 mHz < v < I34 Hz and a field amplitude Eo =
666 V/mm.

dispersion phenomena are unexpected in an antiferroelectrically
ordered state. Tbey may be due to the ordering of the second hydro-
gen bond that is perpendicular to the polar axis or due to defect states.
The temperature dependences of the third-order susceptibility and
phase angle reveal much more anomalies indicating a richer phase
diagram than indicated in the linear susceptibility. The AFE phase
transition at 145K is indicated by sharp increase as well in the
susceptibility as in the phase angle. A minimum in x3 and a sharp
decrease in h3 signal a further phase transition. This phase transition
seems to correspond to Tc3 in the protonated compounds and again
is of unknown origin. At low temperatures dispersion effects domi-
nate also the third-order susceptibility.

To get further insight into effects connected with the stability of the
ordered state in D-BPI, susceptibility measurements were performed
using harmonic stimulation up to 167 V/mm, which is about the mini-
mum value of E ,  in the temperature range below 250K. Results of
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these measurements are reported in Fig. 7. The upper three pairs of
frames show the linear order component of the dielectric susceptibility,
xl ,  and the corresponding loss-angle, S1, for various field strengths
and frequencies. A variety of features shows up in these data.

The peak related to the ferroelectric transition reveals a slight
anomaly which increases with increasing field. Even a double peak
structure develops for the loss angle at 56V/mm at a probing
frequency of 90Hz and for x1 at high fields. The double peak
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0

(v 200w
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0.2
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0.0
0.2 ~

100 200 300 100 200 300
temperature (K)
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0.0
0.5

0.0
-0.5 mm
-1 .o

FIGURE 7 Three upper pairs of frames: Magnitude and loss angle of the first-order
harmonic susceptibility of D-BPI for field amplitudes of 56 Vjmm < E o  < 167 V/mm
and frequencies u = 0.77 Hz (. . .), v =  8.1 Hz (- - -), u= 90 Hz (-). The lower pair shows
a typical dataset of the corresponding third order terms.
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structure probably signals the subsequent phase transitions at
Tc2 = 272 K and Tc3 = 266 K. Just below the ferroelectric phase tran-
sition dispersion effects develop which increase with frequency. This
effect indicates domain-wall relaxation processes at these relatively
high fields.

The sequence of phase transitions, Tc2 and Tc3, near 270K is well
documented in the magnitude of the third-order susceptibility x3
(lower pair of frames) where a peak doublet shows up. Also the related
peak in the corresponding phase angle S3 at 272 K seems to be accom-
panied by a satellite peak at 266 K.

The second feature of the data presented in Fig. 7 is the existence
of an additional low-temperature dispersion in xl (100 K < T <  250 K),
which is accompanied by a peak in b l .  The position of this peak
appears to be frequency and field-dependent. It is reasonable, that
for higher fields the relaxing entities stay mobile down to lower tem-
peratures as is indeed observed in Fig. 7. The evaluation of the peaks
in b1 leads to a field-dependent thermally activated process. The cor-
responding effective energy barrier EB decreases from about 5300 K
for low field-amplitudes to about 2300 K with an attempt frequency
v0=2 x 10" Hz for Eo= 167V/mm.

An additional characteristic feature in Fig. 7 is a sharp jump in the
third-order loss angle S3 from a value near --x (which indicates a ferro-
electric curvature of the P(E)-curves with increasing field) to values
near zero (which signals the growing steepness of the P(E)-curves
with increasing field-magnitude in an antiferroelectric fashion) at
T M 250 K. The observed behavior highly suggests the existence of a
further phase transition at TC4 = 250 K. In addition there is a number
of further features, which can be seen in Fig. 7: (i) lxll shows a distinct
maximum near 2 10 K, which is accompanied by a marked peak in
( x 3 ( E 2 .  (ii) There is a multiple peak structure in the magnitude of the
third-order susceptibility x3 and of the corresponding phase angle 63
below Tc4, which we found to be field-dependent. Up to now we have
no explanation for these additional features but they may well reflect
the complexity of the related domain dynamics or a complicated
sequence of polar phase transitions.

Figures 6 and 7 provide clear experimental evidence that the higher-
order susceptibilities give a precise signature of phase transitions which
are hidden in first order.
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3.4 The Dipole Glass D-BP4BPIa

As can be seen from the x, T-phase diagram (Fig. I), at intermediate
concentrations, the mixed compounds reveal no long-range polar
order at low temperatures. In this concentration regime the dipoles
freeze into random configurations. Here we present dielectric results
for the deuterated compound D-BP40 : BP60 focusing especially on the
nonlinear dispersion. As background information the real and imagi-
nary parts of the dielectric constant are shown in Fig. 8 (Loidl et al.,
1996) where the dielectric constant and the dielectric loss are plotted
as functions of frequency for different temperatures between 13 and
83 K. Figure 8 reveals the characteristic signature of the slowing down
of a dipolar system. The dispersion steps and the loss peaks are almost
symmetric but broaden considerably as the temperature is lowered. To
gain a qualitative analysis the dispersion steps and the loss peaks were
fitted simultaneously using the phenomenological Havriliak-Negami
function which allows for a symmetric broadening (width parameter
a) and for an asymmetry (asymmetry parameter p). The temperature
dependencies of both parameters are shown in Fig. 9. The symmetry
parameter extrapolates to zero at OK indicating an infinite width of
the distribution of relaxation rates at zero temperature. The asym-
metry parameter is almost temperature independent and close to unity
indicative of a rather symmetrically broadened Cole-Cole type of
relaxation. The linear increase of the width parameter can perfectly
well be described assuming a temperature independent distribution of
energy barriers, due to local random fields. Cooperativity or hier-
archical relaxation may be hidden in the asymmetry parameter. It is
interesting to note that the mean relaxation rate follows an Arrhenius
type of behavior (see inset of Fig. 8). The Arrhenius law is character-
ized by an attempt frequency of VO= 3.14THz and by an energy bar-
rier EB/kB=822K. Thus, at first sight no criticality at all can be
detected in the linear susceptibility. Phenomenologically finite freezing
temperatures are often claimed if Vogel-Fulcher behavior is observed
in the temperature dependence of the mean relaxation rate or if the
width of the distribution of relaxation times diverges at finite tem-
peratures. We have shown earlier (Hemberger et al., 1996) that using
a representation of Kutnjak et al. (1993) a finite glass transition tem-
perature of 30K follows from the data of the linear susceptibility.
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FIGURE 8 Frequency dependence of the real part (upper frame) and the imaginary
part (lower frame) of the complex dielectric constant in D-BPMBPI~ measured for
frequencies 5 mHz < u < 200 Hz and for temperatures T =  18,23,28,38,53 and 83 K.
The lines are fits using the Havriliak-Negami distribution of relaxation times. The
inset shows an Arrhenius representation of the loss-maxima. The effective activation-
barrier is E B  = 822 K/k and the corresponding attempt frequency v o  = 3.14 THz.

In this communication we will focus on the temperature and frequency
dependencies of the components of the nonlinear susceptibilities.

Before doing so we would like to determine the Almeida-Thouless
(AT) line for this dipolar glass. In finite external fields the AT line
separates the ergodic high-temperature phase from the nonergodic
glassy phase at low temperatures. Generally the AT line can be
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FIGURE 9 Temperature dependence of the width parameter (r and the asymmetry
parameter p of the Havriliak-Negami distribution.

determined through measurements of the field cooled and zero-field
cooled susceptibilities under quasistatic conditions. The two quan-
tities are expected to split at the AT line. A representative FC and
ZFC cycle is shown in the inset of Fig. 10. The two lines split
approximately at 30K and are a further estimate of the quasistatic
glass-transition temperature. These experiments have been conducted
in different fields and the resulting E, T phase diagram is shown in
Fig. 10. All data points up to fields of 1 kV/mm are close to 30 K and
show no significant field dependence. In zero random fields the AT
line should depend with the power of 1.5 on the external field
(dashed line). The exponent was predicted to decrease below unity
(Blinc et al., 1989) with increasing random fields (solid line in Fig. 10).
While this scenario is not unrealistic we have to state clearly that
from the present experiments no analysis concerning the strength of
the random field can be made as we have one free parameter which
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FIGURE 10 Almeida-Thouless line of stability determined by evaluating the split-
ting of the field cooled and zero-field cooled polarization. A typical measurement is
shown in the inset for a field of 100V/mm and a temperature ramping of 1 K/min. The
solid lines are calculations due to a MF-model (Blinc e/ al., 1989) with (RFfO) and
without ( R F  = 0) random fields.

can only be determined from the saturation of the AT line towards
low temperatures. Hence, the experiments have to be performed at
considerably larger external fields which is almost impossible using
standard preparation techniques. In the most favorable cases we were
able to achieve external electric fields of 1.5 kV/mm.

As we have pointed out earlier the linear susceptibility is not the
best suited quantity to study the freezing transition in orientational
glasses. One should rather investigate the spin-glass (dipole-glass)
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susceptibility (Eq. (4)) which plays the same role in spin-glasses
(dipolar glasses) as the uniform susceptibility in ferromagnetic (FE)
materials. For small external fields the spin-glass susceptibility is
related to the nonlinear susceptibility which exhibits a critical singu-
larity at the glass-transition temperature (Eq. (6)). In D-BP40BP160
we tried to determine the nonlinear susceptibility using two different
experimental routes. We measured P ( E )  hysteresis loops and ana-
lyzed the data in terms of an expansion of the polarization in powers
of the external field (Eq. (1)). A representative result of these experi-
ments is documented in Fig. 11. Here the real and the imaginary part
of the first, second and third-order susceptibilities are shown as a
function of temperature. These experiments were performed at a fre-
quency of 33Hz and a peak to peak voltage of approximately 2kV/
mm. The linear susceptibility reveals a broad smeared out cusp at the
freezing temperature. The freezing is also signaled via a significant
loss peak. In third order the typical shapes of the real and imaginary
part of the susceptibility are observed. Astonishingly we also detected
significant contributions in the second-order susceptibility. On the
basis of naive field-reversal arguments and in the absence of sym-
metry breaking local fields no second-order contributions should be
detected. However, it has been shown by Vollmayr et al. (1994) that
in a three-state Potts-glass x2 does not vanish. From Fig. 11 it becomes
clear that also the higher-order susceptibilities are dominated by dis-
persion effects. Hence, to use a concept of a diverging third order
susceptibility, only this fraction of high-temperature data can be used
which is free of dispersion effects. To do so, we determined in a sec-
ond experiment the third-order susceptibility using an ac technique at
a measuring frequency of 90Hz in a bias field of 1 kV/mm. The
result of these measurements is shown in Fig. 12. For comparison we
also plotted the real and imaginary part of the linear susceptibility. It
is important to note that the third-order susceptibility strongly
increases where the linear susceptibility is almost temperature
independent. Loss phenomena become visible below 50K and this
data have been excluded in the analysis of the higher-order suscept-
ibility. We analyzed the temperature dependence of xnl using the
scaling ansatz xnl = x f / ( T -  Tf). The solid line in Fig. 12 represent
the result of the best fit yielding a value of the glass-transition
temperature Tf = 28 K.
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FIGURE 1 1  Real and imaginary parts of the first three orders of susceptibility vs
temperature in D-BPmBPlm. The data were evaluated via Fourier-analysis of the polar-
ization signal, driven by a harmonic alternating field with amplitude &,= 1 lOOV/mm
and frequency u = 1 I3 mHz.

It also seems important to determine the frequency dependence of
the mean relaxation times from the nonlinear susceptibility. One
could speculate that the higher-order susceptibility follows a power
or Vogel-Fulcher law and hence, reveals a stronger temperature
dependence than the linear component. We were able to follow the
third-order susceptibility in a frequency range from 10 mHz to 100 Hz.
A representative result is shown in Fig. 13. Here the real and the
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FIGURE 12 Temperature dependence of the nonlinear (third-order) susceptibility in
D-BPmBPIm presented as x.l/Axf. The data were measured using a bias field of
Esias= lOOOV/mm and a small alternating field. The solid line is calculated as
x,l/Axf m ( T -  T,-)-' with y =  1 and Tf=28K. The dashed lines show real and
imaginary parts of the orientational component of the linear susceptibility Ax;.

imaginary part of the third-order susceptibility are plotted versus the
measuring frequency for different temperatures between 25 and 42 K.
The data indicate an increasing width with decreasing temperatures.
To determine the slowing down of the dipolar relaxations viewed via
the third-order susceptibilities the characteristic temperatures have
been plotted as a function of the inverse temperature. In Fig. 14 the
temperatures of the roots and of the maxima of the real part and the
minima of the imaginary part of the third-order susceptibility are
compared with the peak maxima of the dielectric loss as observed in
the linear measurements. Astonishingly all these quantities follow
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FIGURE 13 Frequency dependence of the complex third-order susceptibility
in D-BPMBPI~ for several temperatures. The amplitude of the driving signal was
1 I 0 0  V/mm.

Arrhenius laws with very similar energy barriers. The minima of xl
and x: coincide as predicted from Table I. Hence no criticality can
be observed in the temperature dependence of the relaxation rates
observed in the higher-order susceptibilities either.

Assuming a constant distribution of activation energies (a linear
temperature dependence of the symmetric width parameter) and a
purely activated behavior of the relaxation rates the data can be
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FIGURE 14 Arrhenius-representation due to the significant points of third-order
susceptibility-spectra: Maxima in x; (0) and xi (A), minima in x’; (*) and roots in
xi (0). The lines are calculations due to thermally activated behavior. The difference
in the resulting effective energy barrier is reflecting the broadening of the spectra as a
consequence of the broad distribution of energy barriers.

scaled to one master curve (Fig. 15). All data collapse to the curve
measured at 31 K which has been chosen arbitrarily as master func-
tion. From the superposition of different temperature scans a much
wider frequency range can be investigated. All data point toward a
rather symmetric distribution of relaxation rates and a rather normal
behavior of the frequency dependence of the nonlinear susceptibility
as would be observed in a noninteracting dipole system with random
fields. That the situation is not so clear is shown in the last figure of
this communication. Figure 16 shows Cole-Cole-like representations
of the linear and of the third-order susceptibility. In both plots dif-
ferent temperatures have been used to gain representative plots. The
linear susceptibilities clearly reveal asymmetric semi-circles character-
istic of Havriliak-Negami distributions of relaxation rates. The
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FIGURE 15 "Master"
the 31 K spectra due to
width of the linear data.

-plot of the data shown in Fig. 14. The curves were scaled on
the discovered reciprocal temperature dependence of the line

third-order susceptibilities extend into the second and third segment,
a clear indication of the third order. However, from a comparison with
the model calculations of Fig. 4 it becomes clear that these data can-
not be fitted assuming a phenomenological Cole-Cole or Havriliak-
Negami distribution of mean relaxation rates and this is again a
rather unexpected result.
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FIGURE 16 Cole-Cole representation of the first and the third susceptibility in
D-BP40BP160. The thin lines connect measurements at the same temperature in the
frequency range 113 mHz < Y < 131 Hz for temperatures between 25 and 42 K. The
stronger line represents the master-curve shown in Fig. 14.

4 CONCLUSIONS

In this communication we reported field-dependent dipolar suscepti-
bilities in the pure compounds and in the solid solutions of deuterated
betaine phosphite and betainephosphate. In the pure compounds we
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demonstrated that the nonlinear susceptibilities are ideally suited to
detect and study polar phase transitions. In the mixed compounds
the relaxation dynamics at the glass transition was studied in detail.
Here again we focused on the analysis of the temperature and fre-
quency dependencies of the higher order susceptibilities. We have
shown that the second-order susceptibility is nonzero which has been
predicted by Vollmayr et al. (1994) for three-state Potts models. The
temperature dependence of the nonlinear glass susceptibility provides
some experimental evidence’ for a static glass transition temperature
close to 30K. A similar temperature has been determined from FC
and ZFC cycles in finite fields and corresponds to the AT line sepa-
rating the ergodic and the glassy regime. No critical behavior was
found in the temperature dependence of the characteristic relaxation
rates as determined from the third-order susceptibility. The mean
relaxation rates follow a similar Arrhenius behavior as determined
from the temperature dependence of the mean relaxation rate from
the linear susceptibility component. The third-order susceptibility can
be scaled to a unique master curve. However, the Cole-Cole
representations of the higher-order susceptibility clearly deviate from
model calculations a fact that is not understood at the moment.
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