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Mixture models based on homogeneous polynomials
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Abstract

Models for mixtures of ingredients are typically fitted by Scheffé’s canonical model forms. An alter-
native representation is discussed which offers attractive symmetries, compact notation and homogeneous

model functions. It is based on the Kronecker algebra of vectors and matrices, used successfully in previous

response surface work. These alternative polynomials are contrasted with those of Scheffé, and ideas of
synergism and model reduction are connected together in both algebras. Scheffé’s “special cubic” is shown

to be sensible in both algebras.
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1. Introduction

Many practical problems are associated with the investigation of mixture ingredients

x1, x2, . . . , xq of q factors, with xi ≥ 0 and further restricted by

∑
xi = 1 (1.1)

or by some linear restriction which reduces to (1.1).

The definitive text Cornell (1990) lists numerous examples and provides a thorough

discussion of both theory and practice. Early seminal work was done by Scheffé (1958,
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1963) in which he suggested (1958, p. 347) and analyzed the following canonical model

forms of orders (degrees) one, two and three for the expected response η:

η =
∑

1≤i≤q

βixi, (1.2)

η =
∑

1≤i≤q

βixi +
∑

1≤i<j≤q

βijxixj , (1.3)

η =
∑

1≤i≤q

βixi +
∑

1≤i<j≤q

βijxixj +
∑

1≤i<j≤q

γijxixj(xi − xj) +
∑

1≤i<j<k≤q

βijkxixjxk. (1.4)

As stated by Cornell (1990, p. 26) there is “an infinite number of regression functions”

derivable by resubstituting (1.1) in various ways. Scheffé (1958, p. 346) remarks that

equations (1.2–1.4) constitute “an appropriate form of polynomial regression.” We shall

refer to (1.1–1.4) as the S-models, or S-polynomials.

In the present paper, we propose an alternative representation of mixture models which

appears to have certain advantages to be described. It offers attractive symmetries and

an economical, compact notation. Our versions, to appear in (2.3–2.5), are based on the

Kronecker algebra of vectors and matrices, and give rise to homogeneous model functions.

We shall refer to the corresponding expressions as the K-models, or K-polynomials.

A similar approach to non-mixture response surface models was used successfully

in Draper, Gaffke and Pukelsheim (1991), Draper and Pukelsheim (1994), and Draper,

Heiligers and Pukelsheim (1996); see also Chapter 15 in Pukelsheim (1993).

An outline of the present paper is as follows. In Section 2 we introduce the K-mo-

dels; their expected response η is homogeneous in the ingredients xi. By way of example,

Section 3 illustrates the inhomogeneity of the S-models. Section 4 initiates the discussion of

reducing the order of K-models through testable hypotheses, which is then carried through

for reducing second order to first (Section 5), and third order to second (Section 6). In

Section 7 we compare the second order coefficients in a K-model with those in a S-model

and in Section 8 we do the same for third order.

The transition from S-models to K-models has consequences for the design choice for

mixture experiments, and for the analysis of data. These aspects will be addressed in

subsequent work.
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2. K-Polynomials for mixtures models

The mixture ingredients, xi, can conveniently be written as a q × 1 vector x =

(x1, x2, . . . , xq)
′. The Kronecker square x ⊗ x consists of a q2 × 1 vector of the q2 cross

products xixj , in lexicographic order with subscripts 11, 12, . . . , 1q; 21, 22, . . . , 2q; . . . ;

q1, q2, . . . , qq,

x⊗ x = (x2
1, x1x2, . . . , x1xq; x2x1, x

2
2, . . . , x2xq; . . . ; xqx1, xqx2, . . . , x

2
q)

′. (2.1)

In (2.1) individual mixed second order terms appear twice, for example we have x1x2 and

x2x1. Although this may at first appear disadvantageous, the symmetry attained more

than compensates for the duplications, as will become apparent. The very same point

is familiar from treating dispersion matrices as matrices, and not as arrays of a minimal

number of functionally independent terms.

Similarly, the Kronecker cube x⊗x⊗x is a q3×1 vector of all terms of the form xixjxk

in lexicographic order, and repeats third order terms either six or three times depending

on the number of different subscripts, ijk or iij. It has the form

x⊗ x⊗ x = (x1x1x1, x1x1x2, x1x1x3, . . . , x1x1xq; x1x2x1, x1x2x2, x1x2x3, . . . , x1x2xq; . . .

. . . ; xqxqx1, xqxqx2, xqxqx3, . . . , xqxqxq)
′, (2.2)

for q ≥ 3 factors. For q = 2, no products with three distinct subscripts occur, of course.

The K-models that we propose to replace (1.2–1.4) are the following:

η = x′θ =
∑

1≤i≤q

θixi, (2.3)

η = (x⊗ x)′θ =
∑

1≤i,j≤q

θijxixj , (2.4)

η = (x⊗ x⊗ x)′θ =
∑

1≤i,j,k≤q

θijkxixjxk. (2.5)

Since the regressors xixj and xjxi are identical, we assume θij = θji. For the same reason,

θijk is assumed to be the same for all permutations of the subscripts i, j, k.

The first order K-model (2.3) and the first order S-model (1.2) are of the same homo-

geneous form in the xi’s, of course. The second order K-model from (2.4) is

η =
∑

1≤i≤q

θiix
2
i + 2

∑
1≤i<j≤q

θijxixj , (2.6)
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and is fully homogeneous in second order terms; the xi terms of the S-model (1.3) are

replaced by x2
i terms and, assuming that θij = θji, the multiplicity of mixed terms xixj

for i ̸= j has been doubled. The third order K-model is homogeneous of order three, and

will be discussed in Section 6. Extension to higher order models is evident.

The homogeneous representation of K-models should not be mistaken to mean that

we “lose” linear terms in (2.4), nor linear and quadratic terms in (2.5). The second order

S-model (1.3) and K-model (2.4) both feature
(
q+1
2

)
parameters for the response function;

for third order, (1.4) and (2.5) both involve
(
q+2
3

)
parameters. We may sketch the essential

argument by rewriting (1.1) in succinct notation as 1′qx = 1, where 1q = (1, 1, . . . , 1)′ is the

unity vector in RI q. Then the first order part of the response surface (1.3) can be blended

into the second order part to produce a homogeneous second order function of form (2.4)

by noting that

x′β · 1 = x′β · x′1q = (x′β)⊗ (x′1q) = (x⊗ x)′(β ⊗ 1q), (2.7)

where the last equation uses a key property of Kronecker products, see equation (5.4) in

Draper, Gaffke and Pukelsheim (1991, p. 140) or equation (1) in Pukelsheim (1993, p. 392).

In similar fashion, (1.4) can be converted into the homogeneous third order form (2.5) by

blending both the first and second order parts of (1.4) into the third order part. Sections 7

and 8 elaborate the equivalences of the K-models with the corresponding S-models.

An immediate advantage of model homogeneity is apparent. In problems where the

component sum in (1.1) is A ̸= 1, the homogeneity of the K-models ensures that all model

terms are affected by the same multiple Ad where d is the degree or order of the model.

This is not true of the S-models. The possible effects of model dependence on the total

amount A is illustrated by the following example, after which we continue our discussion

of the K-models.

3. An example of inhomogeneity for the S-models

We consider the simplest case of two components, x1 + x2 = A, where A is the

total amount. Suppose we consider the three point design (A, 0), ( 12A,
1
2A), (0, A), with

respective weightings α/2, 1− α, α/2, with α ∈ [0, 1].

The second order S-model involves the terms x1, x2, x1x2, and gives rise to the moment

matrix

M =
1− α

16

 4A2 1+α
1−α 4A2 2A3

4A2 4A2 1+α
1−α 2A3

2A3 2A3 A4

 . (3.1)
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The trace of the inverse is found to be

traceM−1 =
4

A2α

(
1 +

4

A2(1− α)

)
. (3.2)

If we optimize the design weights with respect to the average-variance criterion which

requires maximization of (2.8), the solution for α depends on the amount A,

α(A) = 1 +
4

A2
− 2

A

√
1 +

4

A2
. (3.3)

Including the limiting values 0 and ∞ for A, the weight α ranges from 1/2 to 1:

A 0 1/8 1/4 1/2 1 2 4 8 ∞
α(A) 0.5 0.5005 0.502 0.508 0.528 0.586 0.691 0.805 1

For A = 0, the distribution of the weights is 1/4, 1/2, 1/4. For A = 1 we reproduce the

entry in line 11 of Table 2 of Galil and Kiefer (1977, p. 451). For A = ∞ the inhomogeneity

in the S-model has the effect that the linear portion dominates, and the central weight is

zero.

4. Conditions for reducing the order of K-models

A standard procedure of polynomial model building is not only to check whether the

current model is suitable for representing the data, but also to determine whether a more

parsimonious lower order model might be adequate.

A great advantage of the S-model hierarchy is that higher order models visibly include

the terms of lower order models. Thus reduction of the order of an S-model is attained

simply by setting certain coefficients to zero, and so appropriate hypotheses are easy to

formulate.

This is not so obvious for K-models. Thus we now investigate what conditions are

necessary for reduction of a K-model to one of a lower order. The resulting hypotheses

will be seen to permit a pleasing interpretation.
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5. Reduction of second order to first order

We will work with the excess function Exc21(x) obtained by subtracting the first order

model function (2.3) from the second order model function (2.4). We multiply (2.3) by

x1+x2+ · · ·+xq, which is equal to one by (1.1), to achieve second order terms throughout.

Exc21(x) =
∑

1≤i,j≤q

θijxixj −
∑

1≤i≤q

θixi

 ∑
1≤j≤q

xj


=

∑
1≤i,j≤q

(θij − θi)xixj

=
∑

1≤i≤q

(θii − θi)x
2
i +

∑
1≤i<j≤q

(2θij − θi − θj)xixj ,

(5.1)

using the fact that θij = θji. It follows that the excess will vanish identically on the region

(1.1) if and only if

θij =
1
2 (θi + θj) ∀ i, j. (5.2)

Hence the appropriate hypothesis that a second order K-model reduces to a first order

K-model is

θij =
1
2 (θii + θjj) ∀ i ̸= j. (5.3)

If the hypothesis (5.3) is true, then the first order parameters are obtained from the second

order parameters via θi = θii.

In the spirit of Scheffé’s (1958, pp. 347–348) synergism discussion, we call 2θij−θi−θj

the coefficient of binary synergism of xi, xj for the second order K-model relative to the

first order K-model. With this terminology we see that the fulfillment of (5.3) is equivalent

to the vanishing of all coefficients of binary synergism.
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6. Reduction of third order to second order

In similar fashion, the excess of a third order K-model over a second order K-model is

Exc32(x) =
∑

1≤i,j,k≤q

θijkxixjxk −
∑

1≤i,j≤q

θijxixj

 ∑
1≤k≤q

xk


=

∑
1≤i,j,k≤q

(θijk − θij)xixjxk

=
∑

1≤i≤q

(θiii − θii)x
3
i +

∑
1≤i ̸=j≤q

(3θiij − 2θij − θii)x
2
ixj

+
∑

1≤i<j<k≤q

{
6θijk − 2(θij + θik + θjk)

}
xixjxk,

(6.1)

using the fact that θiij = θiji = θjii, and that θijk = θikj = θjik = θjki = θkij = θkji. It

follows that the excess will vanish identically on the region (1.1) if and only if

θijk = 1
3 (θij + θik + θjk) ∀ i, j, k. (6.2)

This condition specializes to θiii = θii when i = j = k, and so to

2θij = 3θiij − θiii (6.3)

when i = k ̸= j. By solving (6.3) for θij and substituting into (6.2), we obtain the

appropriate hypothesis that a third order K-model reduces to a second order K-model as

θijk = 1
12

{
(3θiij − θiii) + (3θijj − θjjj)

+ (3θjjk − θjjj) + (3θjkk − θkkk)

+ (3θikk − θkkk) + (3θiik − θiii)
}

∀ i, j, k.

(6.4)

When all three subscripts are equal, (6.4) is an identity. There are
(
q
2

)
conditions when

two subscripts are equal, in which case (6.4) simplifies to

3θiij − θiii = 3θijj − θjjj ∀ i ̸= j. (6.5)

There are
(
q
3

)
conditions in (6.4) with three distinct subscripts. When (6.5) holds they

simplify to

θijk = 1
6

{
(3θiij − θiii) + (3θjjk − θjjj) + (3θikk − θkkk)

}
∀ i ̸= j ̸= k ̸= i. (6.6)
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If the hypothesis (6.4) is true, then the second order parameters are obtained from the

third order parameters via (6.3) and (6.5) as

θij =
1
2 (3θiij − θiii) =

1
2 (3θijj − θjjj) = θji. (6.7)

Again in the spirit of Scheffé’s (1958, pp. 347–348) synergism discussion, we call

θijk − 1
3 (θij + θik + θjk) the coefficient of ternary synergism of xi, xj , xk for the third order

K-model relative to the second order K-model. With this terminology we see that the

fulfillment of (6.2) is equivalent to the vanishing of all coefficients of ternary synergism.

7. Connections between second order coefficients in S-models and K-models

In order to determine the relationships between the coefficients of the second order

models (1.3) and (2.4), we must convert the first term in (1.3) to be homogeneous of second

order, by multiplying by x1 + x2 + · · ·+ xq:

∑
1≤i≤q

βixi =
∑

1≤i≤q

βix
2
i +

∑
1≤i<j≤q

(βi + βj)xixj . (7.1)

Thus the difference between (2.4) and (1.3) is seen to be

∑
1≤i,j≤q

θijxixj −
∑

1≤i≤q

βixi −
∑

1≤i<j≤q

βijxixj

(7.2)

=
∑

1≤i≤q

(θii − βi)x
2
i +

∑
1≤i<j≤q

(2θij − βi − βj − βij)xixj .

This difference vanishes for all x from (1.1) if and only if

βi = θii and βij = 2θij − θii − θjj . (7.3)

This connects to (5.3), in that a reduction to a first order model takes place if and only if

all the βij vanish.
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8. Connections between third order coefficients in S-models and K-models

In order to determine the relationships between the coefficients of the third order

models (1.4) and (2.5), we first convert the first two terms in (1.4) to be homogeneous of

third order, by multiplying by x1 + x2 + · · ·+ xq as needed to raise to third order:∑
1≤i≤q

βixi =
∑

1≤i≤q

βix
3
i +

∑
1≤i<j≤q

(2βi + βj)x
2
ixj +

∑
1≤i<j≤q

(βi + 2βj)xix
2
j

+
∑

1≤i<j<k≤q

2(βi + βj + βk)xixjxk, (8.1)

∑
1≤i<j≤q

βijxixj =
∑

1≤i<j≤q

βijx
2
ixj +

∑
1≤i<j≤q

βijxix
2
j +

∑
1≤i<j<k≤q

(βij + βik + βjk)xixjxk.

Thus the difference between (2.5) and (1.4) is seen to be∑
1≤i,j,k≤q

θijkxixjxk

−
∑

1≤i≤q

βixi −
∑

1≤i<j≤q

βijxixj −
∑

1≤i<j≤q

γijxixj(xi − xj)−
∑

1≤i<j<k≤q

βijkxixjxk

=
∑

1≤i≤q

(θiii − βi)x
3
i (8.2)

+
∑

1≤i<j≤q

(3θiij − 2βi − βj − βij − γij)x
2
ixj

+
∑

1≤i<j≤q

(3θijj − βi − 2βj − βij + γij)xix
2
j

+
∑

1≤i<j<k≤q

(6θijk − 2βi − 2βj − 2βk − βij − βik − βjk − βijk)xixjxk.

This difference vanishes for all x if and only if

βi = θiii,

βij =
3
2 (θiij − θiii + θijj − θjjj),

γij =
1
2

(
(3θiij − θiii)− (3θijj − θjjj)

)
,

βijk = 6θijk + 3
2 (θiij + θijj + θiik + θikk + θjkk + θjkk)− (θiii + θjjj + θkkk).

(8.3)
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Scheffé (1958, p. 352) refers to the reduced model when all γij are zero as the special

cubic model. In the K-model this requires (6.5) to be true. We see that the cubic is

“special” in the sense that it satisfies not all the conditions (6.4) but a particular subset

of them, namely (6.5). When (6.5) is satisfied we can reduce the last equation of (8.3) to

βijk = 6θijk + (3θiij − θiii) + (3θjjk − θjjj) + (3θikk − θkkk). (8.4)

Note that (6.3) implies (6.5) and hence that all γij in (8.3) are zero; the reverse implication

is not true, however.
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