Transport through cavities with tunnel barriers:
a semiclassical analysis
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Abstract. We study the influence of a tunnel barrier on the quantum transport through a circular cavity.
Our analysis in terms of classical trajectories shows that the semiclassical approaches developed for ballistic
transport can be adapted to deal with the case where tunneling is present. Peaks in the Fourier transform of
the energy-dependent transmission and reflection spectra exhibit a nonmonotonic behaviour as a function
of the barrier height in the quantum mechanical numerical calculations. Semiclassical analysis provides
a simple qualitative explanation of this behaviour, as well as a quantitative agreement with the exact
calculations. The experimental relevance of the classical trajectories in mesoscopic and microwave systems
is discussed.

PACS. 73.23.Ad Ballistic transport — 03.65.Sq Semiclassical theories and applications

1 Introduction

Ballistic transport through quantum billiards has been
extensively studied in recent years due to its relevance
for quantum chaos and the possibility of physical applica-
tions. Realizations of ballistic billiards include structured
two-dimensional electron gases in semiconductor hetero-
structures [1,2] and, exploiting the analogy between quan-
tum and wave mechanics, microwave cavities [3]. Various
experiments have been designed to test theoretical ideas
on conductance fluctuations [4-6], weak localization [7—
10] and the signatures of classical integrability. The main
theoretical tool for making the connection between the
quantum and classical properties is the semiclassical ex-
pansion [11,12]. This intuitive and powerful approach has
been tested numerically for the transport through circu-
lar cavities [13-15]. In particular, the identification of the
most relevant trajectories for transmission and reflection
has been accurately demonstrated (analogously to the re-
lationship between the density of states and periodic or-
bits of closed systems [11]). Moreover, the semiclassical
approach has been extended by the inclusion of diffrac-
tion effects at the entrance and exit of the cavities [15].
In this work we further extend the applicability of
semiclassical methods in open systems to treat the case
where tunneling takes place. The modification of the trace
formula in a closed system by the inclusion of a potential
step has recently been addressed for a circular billiard
[16] in the context of ray splitting. There the possibility
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Fig. 4. The triangular path in the circular tunneling billiard
may follow the dotted triangle or its mirror image shown as
dashed-dotted line. a) Trajectory (solid line) which is trans-
mitted at the barrier and contributes to the reflected trajecto-
ries in the billiard. b) Trajectory (solid line) which is reflected
at the barrier and therefore contributes to the transmission
through the billiard.

In principle, it is not clear that an analysis in terms
of classical paths is applicable for arbitrary barrier height
since tunneling necessarily implies non-classical trajecto-
ries. However, we will show that such an analysis is still
possible and helpful towards the understanding of the
transport problem. For instance, comparison between Fig-
ures 3a and b shows a large suppression of the harmonic
coming from the triangular path, while the five-star path
component is much less affected. Simple arguments given
in the next section explain this difference in behaviour.

3 Paths in the presence of a tunnel barrier

For a semiclassical analysis of the energy-dependent trans-
mission and reflection spectra, we first have to discuss how
the classical paths are modified by the barrier. The cases
where well-defined classical paths exist, are those of the
circular billiard (V4 = 0) and the circular billiard with a
very high barrier (V}, = oo0). While postponing a more de-
tailed analysis to Section 4, we expect that at intermediate
barrier heights, the transmission and reflection amplitudes
for the billiard should be given by both classes of trajecto-
ries properly weighted according to the transmission and
reflection coefficients of the barrier. The length spectrum
of the reflection amplitude, referred to as reflection spec-
trum in the following, of the circular billiard shown in
Figure 3a displays distinct peaks which can be associated
with a triangle, a five-, and a seven-star. In the following
discussion we will focus on these three trajectories.

We start with the triangular path as the simplest case.
In the absence of a barrier, the trajectory just follows the
triangle as shown in Figure 4a. As the barrier height V}
is increased the transmission probability through the bar-
rier decreases and for high barriers the original triangle
is no longer a possible path. Accordingly, the peak in the
reflection spectrum corresponding to the triangle will de-
crease in amplitude with increasing barrier height. For suf-
ficiently large V;, the possibility of reflection at the barrier
has to be taken into account. As a consequence of this re-
flection the path will no longer continue on the original
triangle shown as dotted line in Figure 4 but follow, at
least for sufficiently thin barriers, the dashed-dotted line
obtained as mirror image with respect to a vertical line
through the barrier. It is important that this path has
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Fig. 9. Trajectory corresponding to a half of an eight-star
trajectory. a) The trajectory starting into the lower half of the
billiard contributes to the transmission through the billiard
for arbitrary barrier height. b) The trajectory starting into the
upper half of the billiard contributes to the transmission in the
absence of a barrier (left) and to the reflection for high barrier
(right).

depending on the incident angle of the path there will be
an even or odd number of contacts with the barrier. Ac-
cordingly, the path shown in Figure 9a will behave very
much like the five-star which also encounters the barrier
twice. On the other hand, the path shown in Figure 9b
has just one contact with the barrier and its dependence
on the barrier height resembles that of the triangle. As a
consequence, while both trajectories will contribute to the
transmission for low barriers, only one of them (Fig. 9a)
will do so at high barriers. The other path will turn into
a reflected path (right part of Fig. 9b) instead.

This line of reasoning generally applies to trajectories
which are transmitted in the absence of a barrier. Even
though the analysis now becomes more complicated, these
paths also lead to nonmonotonic reflection and transmis-
sion spectra as a function of barrier height. Again an in-
creasing number of contacts with the barrier will lead to an
increasing number of extrema. An example will be shown
in Section 5 where the spectra of the total transmission
are discussed (Fig. 13).

The previous qualitative discussion allowed us to un-
derstand the effect of a tunnel barrier by simple consider-
ation of classical trajectories. In the next section we will
show that a quantitative agreement with the exact calcu-
lations can be obtained within a semiclassical approach
where the possibility of transmission or reflection at the
barrier is incorporated.

4 Semiclassical description of the circular
tunneling billiard

We now want to include tunneling into the semiclassical
picture while remaining rather close to the expression for
the semiclassical Green function (8) in terms of classical
paths. To this end, we multiply the contribution of the
classical paths by amplitudes a; or a,. accounting for each

transmission or reflection of the classical path at the bar-
rier.

The treatment of a barrier of finite length in the circu-
lar tunneling billiard represents a rather complicated two-
dimensional problem. However, we may approximately de-
scribe the behaviour of an electron at the barrier as a
plane wave encountering a barrier of infinite length. Then
the problem may be separated into the directions perpen-
dicular and parallel to the barrier and the only parameter
describing the scattering geometry is the incident angle ¢.
At this point it is important to note that the sequence
of transmissions and reflections at the barrier matters.
For example the five-star trajectories shown in Figures 6b
and ¢ which, if read from left to right, correspond to TR
and RT, respectively, have different incident angles for the
transmission and reflection events.

For an infinitely long barrier the relevant momentum
component is the one perpendicular to the barrier

k1 = kcos(¢). (10)

We now may use the standard results for one-dimensional
barrier penetration to approximate the transmission and
reflection amplitudes by

QkJ_k/J_ exp(—ikj_b)

a(p) =



be taken over a finite energy interval. Since the barrier
height at which the minimum occurs is energy-dependent,
the minimum of R11 will be smeared out.

For finite barrier width, the phase factors appearing in
the transmission and reflection amplitudes have an addi-
tional effect. The contribution of the barrier region to the
total action of the path will depend on the barrier height
which will result in an effective change of the length of the
trajectory. This becomes more important as the width and
height of the barrier are increased. However, for the pa-
rameters used here, the barrier is thin enough so that the
change in length is below the resolution of the discrete
Fourier transformation. Nevertheless, the peak height is
affected. This may become important for sufficiently high
barriers and cause the decrease in the reflection spectrum
of the five-star (Fig. 7) at large V4. For high barriers of
finite width slight changes in the scattering geometry with
respect to the ideal geometry for a thin barrier may also
affect the peak height.

We now turn to a more detailed discussion of the quan-
tum mechanical results and those obtained from the semi-
classical approach just introduced. The data are compared
in Figure 7 for the five-star trajectory and in Figure 8 for
the seven-star. In both cases the diamonds and triangles
correspond to the quantum mechanical results for R1; and
T11, respectively, while the solid and dotted lines are the
corresponding semiclassical results with the modifications
described above.

The expressions for the reflection and transmission am-
plitudes (11) and (12) depend on the momentum compo-
nent k; perpendicular to the barrier and the height V;
and width b of the barrier. The geometry of the classical
path together with the Fermi energy determines k. In
the quantum calculations the barrier was implemented by
increasing on three lattice points the potential to V;,. For
the curves shown in Figures 7 and 8 we used an effective
barrier width of 3.5 lattice spacings.

From Figures 7 and 8 we find, that at not too high
barriers the agreement between the quantum mechanical
data and the semiclassical theory modified for tunneling is
very good. On the other hand, for high barriers deviations
do occur. This seems to be at odds with the fact that in
the limit of infinite barrier the modified theory becomes
equivalent to the usual semiclassical expansion.

A qualitative deviation appears for rather high barri-
ers in the transmission spectrum of the five-star and the
reflection spectrum of the seven-star where the quantum
mechanical data saturate at a finite value. This has been
checked for barriers as high as 703 Ey. On the other hand,
the semiclassical result decreases to zero since at least one
barrier transmission is needed in order to get a path which
describes transmission through the billiard and has the
length of a five-star. The same holds for paths which de-
scribe reflection at the billiard and have the same length
as a seven-star.

This discrepancy may be explained by paths with
length close to those of the five- or seven-star. As an ex-
ample we consider the five-star for which the reflection
spectrum in the absence of a barrier and the transmission
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roughly exhibit the same structure implies that the same
pairs of paths contribute to various transmission proba-
bilities provided the momentum interval is large enough.
Of course, predicting the peak height dependence as we
did for the scattering amplitudes is more difficult since
the relative weight and the phases of the trajectories of
the contributing pairs become relevant. We therefore do
not attempt to attain the agreement of Section 4.

Instead, we will give a qualitative explanation for the
difference between
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