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Abstract. On the basis of a macroscopic ground state population it was argued recently that Bose-Einstein
condensation should occur in a one-dimensional harmonic potential. We examine this situation by drawing
analogies to bosons in a two-dimensional box, where the thermodynamic limit is well-defined. We show that
in both systems although the ground state populations show sharp onsets at the critical temperature, the
behaviour of the specific heat is analytic, which proves the absence of a phase transition in these systems.

PACS. 03.75.Fi Phase coherent atomic ensemble (Bose condensation) – 05.30.Jp Boson systems
– 64.60.-i General studies of phase transitions

The experimental study of ultracold trapped Bose
gases [1–3] has revived the interest in Bose-Einstein con-
densation in the regime of weak or even vanishing in-
teraction. In these experiments the atoms are confined
by external forces, which might be modelled by a three-
dimensional harmonic potential. Recently it was suggested
on the basis of results for the ground state population that
in an effectively one-dimensional potential Bose-Einstein
condensation should occur [4]. In the present paper we
place the discussion of non-interacting bosons in a one-
dimensional harmonic potential into a larger framework
by drawing analogies to particles in a two-dimensional
box with infinite walls, a system which has, in contrast to
the former one, the advantage that a well-defined thermo-
dynamic limit exists. Within this framework we address
the conceptual problem whether a macroscopic ground
state population is a sufficient indicator for Bose-Einstein
condensation to appear or if in contrast, thermodynamic
quantities have to be considered. In addition to the ground
state population we study in particular the specific heat,
calculated with a continuous density of states, which is
permissible for large particle numbers. The result is con-
firmed by an analysis based on the discrete level structure.

Bose-Einstein condensation [5] is usually described
within the grandcanonical ensemble where the average
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The argument given by Ketterle and van Druten is
as follows. The relative ground state occupation N0/N is
calculated by taking into account the discreteness of the
energy levels. As an example, we show in Figure 1a re-
sults for particle numbers varying between N = 102 and
N = 107 particles. The temperature is scaled with a crit-
ical temperature determined by [4]

N =
kBTc
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and for the fugacity we obtain from (1)

z = 1− exp(−βh̄ωN). (7)

This expression is correct for high temperatures but breaks
down when z becomes of the order of its zero temperature
value N/(N +1), which is the case at temperatures of the
order of the critical temperature defined by equation (3).
At these temperatures z almost takes the value of one and
the difference to the approximation (7) is at most of order
1/N . Although equation (7) could not be used to deter-
mine the ground state population at low temperatures, it
allows us to obtain the correct result for the specific heat.
Corrections of order 1/N to the fugacity are negligible
in the first term on the right hand side of equation (6)
whereas they are potentially dangerous in the logarith-
mic term. However in the temperature range of interest
this term is strongly suppressed because dz/dβ becomes
exponentially small.
With equation (7) the specific heat takes the form

C
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right-hand-side of equation (11) represents the population
of the ground state.
One derives an upper bound of the chemical poten-

tial at arbitrary temperatures by considering a situation
where the excited states do not contribute to the number
of particles

µ


