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Phase diffusion and charging effects in Josephson junctions
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Abstract. — The supercurrent of a Josephson junction is reduced by phase diffusion. For
ultrasmall capacitance junctions the current may be further decreased by Coulomb blockade
effects. We calculate the Cooper pair current by means of time-dependent perturbation theory
to all orders in the Josephson coupling energy and obtain the current-voltage characteristic in
closed form in a range of parameters of experimental interest. The results comprehend phase
diffusion of the coherent Josephson current in the classical regime as well as the supercurrent
peak due to incoherent Cooper pair tunneling in the Coulomb blockade regime.

New lithography and low-temperature techniques have allowed the fabrication and mea-
surement of small Josephson junctions affected by the capacitive charging energy of single
Cooper pairs [1-3]. Much of the work so far has concentrated on the region of the Coulomb
blockade where the tunneling of Cooper pairs described by the Josephson energy can be
treated perturbatively [4]. While the Coulomb blockade of Cooper pair tunneling is fairly well
understood, the relation between the effects observed at low temperatures and the familiar
“classical” dynamics of Josephson junctions [5] remains to be exemplified. In this article we
demonstrate that the current peak caused by incoherent Cooper pair tunneling in the regime
of Coulomb blockade gradually evolves into the classical supercurrent when parameters are
changed accordingly.

We consider a Josephson junction with capacitance C' and critical current I, = (2e/h)Ej,
where Ej is the Josephson energy. The capacitance gives rise to a charging energy E. = 2¢2/C
for Cooper pairs. The junction is coupled to an ideal voltage source through a resistor of
resistance R as shown in fig. 1. This system can be modeled by the Hamiltonian

H = HJ + Henv; (1)
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with the time ordering operator 7 is the time evolution operator in the interaction represen-
tation. Taking the limit ¢ — oo, the precise value of the initial time ¢ty becomes irrelevant
and will be set to zero in the following. Expanding the current (6) in powers of the Josephson
energy Ej, one obtains

Is =i
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Hence, we may disregard terms proportional to exp[—wrt], and eq. (11) reduces to

s

J(t)=—2p|—
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In summary, we have derived a formally exact expansion of the current-voltage characteristic
of a voltage-biased Josephson junction as a power series in the Josephson coupling energy Ej.
Noting that ultrasmall junctions in a standard electromagnetic environment are overdamped,
i.e. wy/wr = (2¢/R)R*I.C < 1, and with the assumption p8E; = (eRI./mkgT) < 1, the
general result was written as continued fraction, which for p < 1 could be summed in closed
form. The inferred main result (22) was shown to describe the changeover from the classical
Josephson effect in the presence of phase diffusion to the quantum regime of the Coulomb
blockade where Cooper pairs tunnel incoherently. The theory covers the experimentally
relevant range for small capacitance Josephson junctions. Although detailed experimental
studies of the region between the above-mentioned limits are absent, recent work [17] indicates
quantum effects in qualitative accord with the predictions made.
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