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Microscopic conditions favoring itinerant ferromagnetism
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A systematic investigation of the microscopic conditions stabilizing itinerant ferromagnetism of correlated
electrons in a single-band model is presented. Quantitative results are obtained by quantum Monte Carlo
simulations for a model with Hubbard interactibhand direct Heisenberg exchange interacfowithin the
dynamical mean-field theory. Special emphasis is placed on the investigatigrthaf distribution of spectral
weight in the density of state&j) the importance of genuine correlations, diii the significance of the direct
exchange, for the stability of itinerant ferromagnetism at finite temperatures. We find that already a moderately
strong peak in the density of states near the band edge suffices to stabilize ferromagnetism at intddmediate
values in a broad range of electron densitie€orrelation effects prove to be essential: Slater—Hartree-Fock
results for the transition temperature are both qualitatively and quantitatively incorrect. The nearest-neighbor
Heisenberg exchange does not, in general, play a decisive role. Detailed results for the magnetic phase diagram
as a function ofJ, F, n, temperaturd’, and the asymmetry of the density of states are presented and discussed.
[S0163-182608)08943-7

I. INTRODUCTION to the questionHow does the distribution of spectral weight
in the DOS influence the stability regime of ferromagnetism
In contrast to conventional superconductivity and antifer-at finite temperatures?
romagnetism, metallic ferromagnetism is in general an inter- It should be noted that a strongly peaked, asymmetric
mediate or strong coupling phenomenon. Since there do ndOS is a considerably more complex condition for ferro-
exist systematic investigation schemes to solve such types ofiagnetism than the Stoner criterion. The latter merely as-
problems the stability of metallic ferromagnetism is still not serts that, aT =0, the critical interaction for the instability is
sufficiently understood. This is true even within the simplestdetermined by the inverse of the DOS precisaiyhe Fermi
electronic correlation model, the one-band Hubbard mbdel,energy Er, U.=1/N(Eg), thus neglecting antiferromag-
in spite of significant progress made recently. The Hubbardetism and the structure of the DOS away fr&m. Stoner
interaction is very unspecific, i.e., it does not depend on théi.e., Hartree-FocK) theory is a purely static mean-field
lattice structure or dimension. Hence the dispersion, antheory that ignores correlation effects, e.g., the correlation-
thereby the shape of the density of sta@©9), is of con-  induced redistribution of momentum states and the dynamic
siderable importance for the stability of ferromagnetism.renormalizations of the band shape and width. So the ques-
This was recognized already by GutzwilfeHubbard® and  tion remains:How essential are genuine correlation effects
Kanamorf in their initial work on the Hubbard model. How- for the stability of itinerant ferromagnetism at finite tempera-
ever, the approximations used in the early days of manytures?
body theory were usually not reliable enough to provide defi- A third question concerns the suitability of the Hubbard
nite conclusions. Exceptions are the exact results bynodel itself as a model for ferromagnetism. Indeed there is
Nagaoka on the stability of ferromagnetism &t= in the  no compellinga priori reason why the Hubbard model
case of one electron above or below half-filling. They showshould be a good model for ferromagnetism at all. Not only
an important lattice sensitivity but, unfortunately, are not ap-does it neglect band degeneracy, a feature observed in all
plicable in the thermodynamic limit. ferromagnetic transition metale, Co, N), it also ignores
Over the years the stability of metallic ferromagnetismthe (weak direct Heisenberg exchange interaction that is
has turned out to be a particularly difficult many-body prob-equivalent to a ferromagnetic spin-spin interaction and hence
lem whose explanation requires suhtienperturbativetech- ~ favors ferromagnetism in the most obvious Wiy* The
niques. There has been an upsurge of interest in this topjeroposition by Hirsch and co-workéfe®#that this interac-
most recently~® These investigations confirm that ferro- tion plays a key role in metallic ferromagnetism was dis-
magnetism is favored in systems with frustrated lattices puted by Campbelét al!® So the controversial question is:
(which suppress antiferromagnetismnd (i) high spectral How important is the direct Heisenberg exchange interaction
weight near the band edge closest to the Fermi energfor the stability of itinerant ferromagnetism in the one-band
(which improves the kinetic energy of the polarized elec-Hubbard model at finite temperatures?
trons. Taken together, these properties imply a strongly In this paper quantitative answers to the three questions
asymmetric DOS of the electrons. Ferromagnetism on biparfformulated above are given within the dynamical mean field
tite lattices having a symmetric DOS may still be possible theory(DMFT). The DMFT, a nonperturbative approach, be-
but seems to require very large valuestbt® With the ex-  comes exact in the limit of large coordination numb@rg?
ception of Refs. 13 and 15 all previous calculations refer toVhen applied tod=3, where the coordination number is
the ground state. It is therefore of interest to obtain an answe®(10), the DMFT has proven to yield accurate and reliable
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results, especially in the context of long-range magnetic A NF* . NF*
order®3 |t treats local correlations exactly while spatial H=Huyp— ——mmt+ — m?. 3
fluctuations are neglected. In this situation the momentum
integral entering in the local propagator will be replaced byApparently the influence of the exchange term in the limit
an energy integral involving only the DOS of the noninter-d— is that of a(Weisg magnetic field, which vanishes in
acting electrons. The latter may be viewed as an input pathe paramagnetic phassm&0). Therefore, in this phase, all
rameter. In our investigation the question concerning the imene-particle properties of the system are those of the pure
portance of the distribution of spectral weight within the Hubbard model. However, two-particle functions, especially
band for the stability of ferromagnetism will therefore be the ferromagnetic susceptibility, are modifiesgte Sec. Il €
studied using a model DOS of the noninteracting electrons In d=o, the Hubbard model2) is equivalent to an
whose shape can be changed continuously from symmetridnderson impurity model complemented by a self-
to strongly asymmetric by varying an asymmetry parameterconsistency conditiof®>°Written in terms of Matsubara fre-
The paper is structured as follows: in Sec. Il we presentjuenciesw,,, self-energy ., the DOS of the noninteracting
the model under investigation, the dynamical mean-fielcelectronsN(e), and thermal averag@yy* ) 4 over Grass-
equations, and the analytical and numerical steps needed twann fields the resulting coupled equations for the Green
construct magnetic phase diagrams. The model DOS is intrdunction in the homogeneous phase read
duced in Sec. lll. The results of our investigation and quan-
. - . - 0
titative answers to the questions posed above are presented in G (iw)= J . N"(e) @
Sec. IV. A discussion where these results are put into per- o o doptpu—3 (iw,)—¢’
spective(Sec. V closes the presentation.

Ga(iwn): _<l//0'nlzb:'n>A' (5)
Il. MODEL AND METHODS OF SOLUTION The solution of thek-integrated Dyson equatiof¥) is
A. Hubbard model with nearest-neighbor exchange straightforward and can be performed analytically for the

DOS used in this papdsee Sec. Y. By contrast the solu-
tion of Eq.(5) is highly nontrivial(for details of the notation
see Ref. 3Y It is achieved using the auxiliary-field quantum
Monte Carlo(QMC) algorithm by Hirsch and Fy& where a
discretization of imaginary timeA r=g/A, is introduced.

The minimal model allowing one to treat an asymmetric
DOS, electronic on-site correlations, and the neares
neighbor Heisenberg exchange interaction is given by

N - Here, A denotes the number of independent Matsubara fre-
H=H,—2F -S, 1 ' : I~ ; ;
Hub OE” S @ guencies. Physical quantities are obtained in the—0
limit.

where

C. Calculation of susceptibilities, extrapolation

N o~ A and error handlin

HHub:_,Z tij(CiTa_ng‘FH.C.)'f'Uz nilnm. (2) . g .
ij,o i The second-order phase transition from a paramagnetic to

a ferromagnetic phase occurs at the zero of the inverse sus-

Here§=1%,,.¢l 7,,/Ci, With the vector of Pauli matrices ~ceptibility x; *, calculated”*°in the paramagnetic phase. It

T is sufficient to perform all simulations for the pure Hubbard

We note that there are three other nearest-neighbor comrodel since the influence & on the susceptibility is given
tributions of the Coulomb interaction that might also affectby the following random-phase approximati¢RPA)-like
the stability of the ferromagnetic phd$é? (see Appendix ~ expression:

. . Xt (U ,0, ‘e )
B. Dynamical mean-field theory xi(UF*, .. )=

" ,

Within the DMFT the coupling constants in Eq4) and 1=(F2x: (V.O,..)
(2) have to be scaled with the lattice coordination number wherey; (U,0,...) is thesusceptibility of the pure Hubbard
as*?s t=t*/\/Z, F=F*/Z, where we consider nearest- model. This type of relation holds for pairs of two-particle
neighbor hoppingt only. By analogy to classical spin interactionshereU andF*) in arbitrary dimensions, when-
model$® the Hartree-Fock approximation yields the exactever one interactiorthere F*) is treated in Hartree-Fock
result for theF term in high dimensions. approximation and the other orfieereU) exactly?° In gen-

In the following we investigate the influence of the direct eral, since the calculation of the susceptibility involves the
exchange term on the properties of the Hubbard model iglerivative of the self-energy, g« with respect to some field
d— . Since the Hubbard model is € spin symmetric  h,*"*°this follows from the fact that the self-energy of the
we can, without loss of generality, assume a magnetfull Hamiltonian can be expressed as
ization parallel to thez axis. The Hartre¥ decoupling then D
takes the formS-§—(S)S/+S(S)—(S)(S)). In terms 2uprGu =20 dGuerl+2oplGuesl ()
of the magnetizationn=3;m; /N and its expectation value Here [ G] refers to the diagrammatic skeleton expansion of
m=(m), wherem;=2 S/=n;,;—n;; andN is the number of =, where all lines are fully dressed propagatGtsSince the
lattice sites, the Hamiltoniafl) can be written a8 Hartree-Fock ternﬁgg* only contributes in the symmetry-

(6)



PRB 58 MICROSCOPIC CONDITIONS FAVORING ITINERANT ... 12751

broken phase, af* renormalizations o6, g« vanish in the 1.4 T T T
symmetric phase. Evaluating® g« /dh in the symmetric - a=0 14 o _(') 97
phase, the first term in E¢7) leads to the same contributions 1.2 a=8-g N@) f A\ e 2;0:98 s
as withoutF* interaction, while the second term introduces || 220:98 ---- a=0.99
the RPA-like term proportional t&*. For thet-J model in 1 H— a=1 2 a=1 |

DMFT the analog of Eq(6) was derived by Pruschlet al*
SinceF* only enters the calculations via Ef) we are
left with four physical parameters of the pure Hubbard
model: Hubbard interactiokd, electron densityn, tempera-
ture T, and an asymmetry parametefor the kinetic energy
(see Sec. Y. For each set of these five parameters Ed.
and (5) are iterated with typically &10* Monte Carlo
sweeps until convergence is reached, i.e., the difference be-
tween two consecutive values ogf) 1=(G,) -3, is
smaller than %10 * [measured by the norm
(2A) 712, (G 71— (G99 ~1|: the energy scale is de-
fined in Sec. IM. Subsequently eight measurements of the
susceptibility are performed with a reduced number of 2 _ _
% 10* Monte Carlo sweeps. Thus the result for each param- FIG. 1. Model spectral functlo'l(B) shoyvn for different yalugs
eter set consists of an averaged susceptibilifA ) and its of .the asymmetry parameter By increasinga spectral WE!gh'F is
statistical error y(A 7). We neglect the propagation of the shlﬁed toward; the lower band edge. The energy scale is fixed by
error in (G,) ! since it is always an order of magnitude setting the variance of the DOS equal to 1.

smaller thanA (A 7). The extrapolation taA7=0 is per- . .
formed by a quadratic least-squares fity\g{ A7), using at DOS thus qualitatively captures key features of real lattices.

least six different values of; for Are[0.09,0.9. Further The spectral function that we use throughout the paper is

details regarding the technical treatment can be found i¥'Ven bY
Refs. 37 and 42.

For mean-field theories like the DMFT a linear behavior 0 D?—g?
of the inverse susceptibility, i.e., a Curie-Weiss law, is ex- N (S)ZCD+—38
pected and observed in the vicinity of the transition. Thus the
Curie temperatur&c can be obtained as the zero of a linearith ¢c=(1+1—a?)/(#D) and bandwidth B. The well-
fit of x; (T) drawn from values of; for four to six differ-  known semielliptic DOS of the Bethe lattice with infinite
ent temperaturegsee, e.g., Figs. 3 and 5, whef§ =2x; ' number of nearest neighbors is recovered der0. By in-
is plotted. The error of T¢ is obtained from the errors creasing the parameterspectral weight is shifted towards
Ax¢(A7) by error propagation and therefore denotes onlythe lower band edgéFig. 1). Fora=1 the DOS diverges at
statistical, not systematic errofe.g., due to the extrapola- the lower band edge like an inverse square root. The particu-
tion schemes usg@¢dHowever, we checked the accuracy of lar choice of the model DO®3) has the advantage that the
our results by varying the procedure, e.g., extrapolatinghumerical effort of solving the self-consistency equatign

®

X{l(A 7) instead ofy;(A 7). is rather small since the Hilbert transform can be calculated
analytically. In the following we set the variance to unity,
Ill. MODEL SPECTRAL FUNCTION Jde N%(g) 6*~[fde N%(¢) £]°=1, thereby fixing the en-

ergy scale. This leads tB=2 for all values ofa. For a
Due to the vanishing of spatial fluctuations within the — g it js equivalent to choosint® =1 on the Bethe lattice.
DMFT the topology of the underlying lattice enters the self-  \while for the study of ferromagnetism within the DMFT
consistency equatiof) only via the noninteracting DOS, at the |attice structure only enters via the DOS it is possible to
least for homogeneous phases. The choice of a particulginstruct (infinitely many corresponding dispersion rela-
model spectral function thus represents a spéntiunique  tions £ (k) or, equivalently, sets of hopping elemetfs A

set of hopping elements; in the Hamiltonian(1), which  regjization ind=1 that is symmetrice(k)=e(—k), and
characterize the structure of the underlying lattice. Contribumonotonousde/dk>0, for £>0 is given by

tions to the kinetic energy by, e.g., next-nearest-neighbor

hopping can lead to an asymmetrically shaped DOS, which . cdk' k(e)

is apparently favorable for the stability of ferromagnetism. de'No%(e")=| —= ' (9)

To investigate this stabilizing effect quantitatively, we pro- €min o T g

pose a model DOS with a shape-controlling parameter. This

parameter allows us to change smoothly from a noninteracwhere an inversion yields(k). Generalizations to other di-
ing DOS with (i) a symmetric shapémimicking nearest- mensions are possible with, e.g(k)=¢(|k|) (Ref. 43 or
neighbor hopping on a bipartite lattic® (ii) an asymmetri-  (k)=3% &(k;).*

cally peaked DOS(similar to a cubic lattice with next- Although in principle one could thus choose a lattice cor-
nearest-neighbor hoppingp (iii) a DOS with a square-root responding to the DO$B), this will not be done here, since
divergence at the band edde.g., a fcc lattice with next- we only study homogeneous phases. Antiferromagnetism or
nearest-neighbor hopping=t/2). The shape of the model incommensurate phases are not expected to be important far
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FIG. 2. Phase diagram for a symmetric DO&=0): direct FIG. 3. F*-T phase diagram for different values of for a
exchange coupling* vs Hubbard_mteracnorlu gt half_fllllng (n strongly peaked DOSa=0.98) at a fillingn=0.6. The linear ex-
=1) extrapolated ta' =0. Open triangles and filled circles corre- y504ati0n shows that there exists a critithl above which ferro-

spond to the instability of the paramagnetic phé8pagainst the ), qhetism is stable even without the direct exchange coupling.
ferromagnetic(F) and antiferromagneti€AF) order, respectively.

Solid line: Hartree-Fock theory; dashed line: Weiss mean-field ] ) o )
theory; dotted line: single spin flip instability for the saturated fer- Z€0 temperatujethe region of partial polarization is very
romagnetic state. narrow already at intermediate interaction strength

The F*-T phase diagram for a strongly peaked DOS

away from half filling. Only for the casa=0 (Bethe lattice ~ (@=0.98) at fillingn=0.6 is shown in Fig. 3. The QMC
atn=1 the stability of an antiferromagnetic phase is inves-results for the ferromagnetic phase boundary can be extrapo-
tigated. lated linearly to zero temperature leading to a ground-state
phase diagram. Clearly the valuesFof necessary to stabi-
lize ferromagnetism are significantly reduced in comparison
IV. RESULTS to the bipartite case. In particular, ftb=6 andU=8 the
A. The importance of the direct exchange interaction extrapolation lines cross the ordinate at positive tempera-
. . . . . tures. Thus, an asymmetric DGsBabilizes ferromagnetism
On a bipatrtite lattice with perfect nesting, the ground stateeven in the pure Hubbard modéF* =0) above a critical
of the pure Hubbard model at half filling is antiferromagneticimeraCtion st?en th - with 4<U <6
for all U>0, at least in dimensiond=3. In this situation a gilc C

ferromagnetic state is strongly disfavored also in the gener%l Figures 3 and 4 prove that already a small direct exchange
AN S . g
model, Eq.(1). At large U, however, when the model re- ouplingF* can significantly enhance ferromagnetic tenden

duces to an effective Heisenberg modshich, in high di- cies and thus give the final “kick” towards ferromagnetism

mensions, is exactly described by Weiss mean-field theor for systems that are close to an instability. This influence is
' y Y . e ystronger at larger densities when the local magnetic moments
already a small value of the direct exchange interaction

F*>2(t)Y/U, is sufficient to stabilize a ferromagnetic are enhancedFig. 4). The lower critical densities are very

. small, but larger than those predicted by Hartree-Fock
ground staté®>*®2!|ndeed, the Heisenberg model well de- ) ‘ . .
scribes the=*-U ground-state phase diagram at half filling theory, since Hartree-Fock always overestimates the size of

down toU=4; this is evident from Fig. 2, where a compari- the ferromagnetic regime.
son with our QMC results is shown for a symmetric DOS

[Eq. (8) with a=0]. At smallU the phase boundary between 0.06 T

a paramagnetic and a ferromagnetic state is correctly repro- 0.05 | _‘;f E*:g 05.]
duced by Hartree-Fock theoput only forU<1). This is ' % e F*=0.1
not surprising since ind=o the F term is treated exactly 0.04 L k |

within this approximation. Also included in Fig. 2 is the line
below which a fully saturated ferromagnetic state becomes 1 0.03 |
unstable against single spin flips as first computed by

HirscH'’ for cubic lattices. For the Bethe lattice this line is 0.02 |- P -
given exactly by the Hartree-Fock res@it =4—U for U
<U.=3 and 0.01 -
8
N o 0 02 04 06 08

(F*+U)[1-V1-16(F* +U)?]
FIG. 4. T-n phase diagram for different values of the direct

for U>3. This can be seen from Eq$) and(7) in Ref. 47 exchange couplin* for a strongly peaked DOSaE 0.98) atU

and the known analytic expression for the Hilbert transform=6. A small direct exchange coupling is seen to enlarge the stabil-
of the semielliptic DOS. The remarkable agreement betweeny regime of the ferromagnet, especially for densities close to half
the QMC results and this curve fdf=3 suggests thatat filling. The lines are a guide to the eye only.
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FIG. 5. F*-T phase diagram for different shapes of the DOS at FIG. 7. T-n phase diagram for a strongly peaked DOS (
U=4 andn=0.3. For values of 0.95a<1 the ferromagnetic _q gg) for different values o). With increasing Hubbard interac-
phase is stable even without the direct exchange coupling. The lingg,, the stability regime of the ferromagnetic phase becomes larger,
show a quadratic least-squares fitfin especially at higher densities. The lines are a guide to the eye only.

Quite generally, the value of the exchange interackion o .
metals can be expected to be rather small. Note, howevefl'oNdly asymmetric 4=0.97) to divergent at the lower
that for three-dimensional lattices trealed quantity F* ~ Pand edge ¢=1). Evidently the ferromagnetic phase is

—ZF is an order of magnitude larger than the exchange cou/2rgest ata=1. We want to stress however, that the diver-
pling F itself. Hubbard's crude estimatef F/U~1/400 9ence doeswot change the physics qualitativelgxcept at
would therefore imply that, e.g., Bt=6 a(scaled exchange n<1). A moderately strong peak near the band edge is all

; ; _ ; .« that is needed to stabilize ferromagnetism.
interaction as large aS* =0.15 is not completely unrealis- . " .
tic g P y For symmetric densities of statesldt< 12 (Bethe lattice

and hypercubic lattigewe find suppressiorof the ferromag-
netic (as well as the antiferromagnetisusceptibility away
from half filling.*® This does not exclude the possibility for
The dependence of the phase boundary on the asymmetfgrromagnetism on bipartite lattices at much larger values of
parametea is systematically studied in Fig. 5 &t=4 fora  U. Indeed, very recently ferromagnetism was found within
relatively small electron density=0.3. For a symmetric or the noncrossing approximation for thed model on a hyper-
slightly asymmetric DOS =0, a=0.5) the system only cubic lattice in the limitd—o for U>30 away from half
becomes ferromagnetic fofF*>1 even atT=0. For a filling.*® Apparently, at least for moderatd, the bipartite
=0.9, when the shape of the DOS is roughly triangular, thdattice with only nearest-neighbor hopping is not a natural
critical F* is considerably reduced. But only when a marked‘environment” for ferromagnetism—the asymmetry of the
peak developé$i.e., fora>0.95) does the criticsdf* drop to  noninteracting DOS is crucial.
zero; ferromagnetism is then stable even in the pure Hubbard

model. From now on we restrict our studies to this case . .
(F*=0). C. The importance of correlations

B. The importance of the asymmetry of the DOS

The T versusn phase diagram is shown in Fig. 6 for In Fig. 7 theT-n phase diagram is shown for different
=4 and three different shapes of the DOS ranging fromvalues of the on-site interactidd. Evidently the ferromag-
netic phase becomes more favorable for increatingpoth

0.06 T ' T , the maximal Curie temperature and thgope) critical den-
a=1 —a— sity rise. This effect is seen to be qualitatively similar to an

0.05 - g:ggg _'__f__'g_'__'_: . increase of the exchange interacti®h or the asymmetry of

the DOSa (Figs. 4 and 6, respectively
0.04 |- § Our QMC results are compared with Hartree-Fock theory
T o003k P ] in Figs. 8—10. We note that, applied to the Hubbard model,
: the DMFT includes Hartree-Fock theory as its static limit
0.02 L F-R | and is thus superior in any dimension. Figure 8 shows the
,{._@._. vast overestimation of the ferromagnetic phase within
oot F A % @ 4 Hartree-Fock theory. The maximal Curie temperature ob-
TOF \ tained in this approximation is more than an order of mag-
0 L ol A . nitude too large. At such high temperatures details of the
0 0.2 04 06 08 1 DOS are averaged out and consequently the density depen-

n dence(e.g., the position of the maximynis completely ar-

FIG. 6. T-n phase diagram for different shapes of the DOS attificial. In Fig. 9 theU versusn ground-state phase diagram
U=4. By shifting spectral weight towards the lower band edge, théiS Shown and compared to the Stoner critefibAt low n the
region of stability of the ferromagnetic phase is enlarged. The line$Stoner curve clearly approaches the QMC curve. Since the
are a guide to the eye only. DOS vanishes smoothly at the lower band edge derl
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Hlar’rreel—FockI
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n
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1.4

FIG. 8. T-n phase diagram for a strongly peaked DO& (
=0.98) atU=4. The comparison between Hartree-Fock theory
(solid line) and DMFT (QMC, circleg reveals the importance of
correlation effects. The dashed line is a guide to the eye only.

PRB 58
T T T T
—— Hartree-Fock
---o--- QMC
0.15
o1 r- P
T
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0 1
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FIG. 10. T-U phase diagram for a strongly peaked DC& (

both curves diverge fan— 0. Figure 10 focuses on the limit =0.98) atn=0.4. The comparison between Hartree-Fock theory
of large U. The weak coupling Hartree-Fock theory fails (solid line) and DMFT (QMC, circles shows the former can de-
again: it predicts an unbounded linear increasé ofvith U,
Tc~Un(2—n)/4, whereas QMC shows thdt. has a finite
limit for U—oo. It is expected that such a finite limit exists
for all densities. A saturation is also suggested by the curvelolds for all densitiesn=0.3. Thus the “corrections” to
in Fig. 7. It arises from the suppression of double occupanHartree-Fock theory are seenunderestimatéhe ferromag-
cies by correlations. In contrast to the Hartree-Fock predichetic region by far.

tion the interaction energy goes to zero oo, thus only

the bandwidth remains as an energy scale. In the special case

a=0.98,n=0.4 one find® T(U=0%)=0.07+0.02.
One might argue that comparison of the DMFT results After more than three decades of research it has become
should not be made with Hartree-Fock itself but with clear at lastt~*that the Hubbard model can describe itiner-
Hartree-Fock plus quantum corrections, since the latter arant ferromagnetism even on regular lattices and at moderate
known to reduce many of the deficiencies of Hartree-FockJ values for a wide range of electronic densitiesSince
theory. Such corrections have been discussed by vaferromagnetism is an intermediate to strong coupling prob-
Dongen® and Freericks and Jarréfl. The latter authors
showed how quantum fluctuations modify the Stoner criteciple, no straightforward answer. This is in contrastveak
rion by subtracting the particle-particle susceptibility. Evalu-coupling phenomena, e.g., conventional superconductivity,
ating these corrections in the case of Fig. 10 we find that thavhich can be explained within perturbation theory. Never-
ferromagnetic phase is completely suppressedpreviously
observed in Ref. 51 for a symmetric DD\t a=0.98 this

8
I-I|artree—Foc|:k I §
---e--- QMC Vs
6 B F 4 -1
¥
U 4F} ,/’g .
4
&
2
O 1 1 1
0 0.2 0.4 0.6

0.8

FIG. 9. U-n phase diagram &= 0 for a strongly peaked DOS
(a=0.98). The DMFT datdQMC, circleg are extrapolated from
finite temperature calculations. The Stoner criterisolid line) un-
derestimates the criticdll(n) for ferromagnetism, but becomes frustrates the competing antiferromagnetism near half filling.
better at lower densities. The dashed line is a guide to the eye only. The mechanism described above is completely different

scribe the Curie temperatur€-(U) neither quantitatively, nor
qualitatively. The dashed line is a guide to the eye only.

V. DISCUSSION AND OUTLOOK

lem the question concerning its “mechanism” has, in prin-

theless a good starting point for an understanding of the ori-
gin of itinerant ferromagnetism can be obtained in the strong
coupling limit. At U= doubly occupied sites are excluded
and the Hubbard model reduces tqa@mplicated kinetic
energy. To avoid doubly occupied sites in a paramagnetic
phase the DOS is then necessarily strongly renormalized
compared with the noninteracting case, whereas for the satu-
rated ferromagnetic phase the interacting DOS is the same as
the noninteracting one except for a shift between the spin-up
and -down bands. In this situation details of the structure of
the noninteracting DOS become relevant in selecting the
state with the lowest energy. This physical picture is, in prin-
ciple, similar to that underlying the Nagaoka mechanism;
however, the latter only addresses the kinetic energy of a
single hole and it was so far not possible to generalize it to
thermodynamically relevant densities. Our investigations
within the DMFT explicitly show that a moderately strong
peak at the band edge closest to the Fermi energy is suffi-
cient to stabilize ferromagnetism. Furthermore a strong
asymmetry of the DOS implies a nonbipartite lattice that
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from the mere band shift of the Hartree-Fock theory. This 4 T T
weak coupling approach does not take into account the dy- o gﬁtcree—Fock
namical renormalization of the DOS in the paramagnetic s
phase and thus predicts ferromagnetism for any DOS, even
at relatively small values ol and for high temperatures. @
The comparison with DMFT clearly shows that Hartree-Fock o CDW
theory(i) overestimates transition temperatures by more than .
an order of magnituddji) renders the dependenceTf on -
U qualitatively incorrect, andiii) predicts ferromagnetism 1 g
for the symmetric DOS, wher@at least forU<12) this is ¢
not found. These shortcomings of Hartree-Fock theory are . |
due to the neglect of dynamical fluctuations, which are at the 0
heart of the correlation problem. U
The Heisenberg exchange interaction, not considered in
the pure Hubbard model, provides another mechanism that FIG. 11. V*-U phase diagram for the semielliptic DO (
may order the fluctuating local moments arising by the sup=0) atT=0.125. Forv*>U a regime with charge-density-wave
pression of double occupancies. We found that for a Syrn(_)rder(CD\/\/) is established. The antlferrqmagnetlc phase vanishes
metric DOS rather large values Bfare needed to stabilize for U>7.7+0.5(not shown. The dashed line is a guide to the eye
ferromagnetism. However, for an asymmetric DOS with a°onhy-

peak near the band edge already small values of the ex- , ) g
change interaction may provide the final “kick” towards fer- tUVely describes a density-dependent hopfirend leads to a

romagnetism. In any case it reduces the critical on-site interd/ToWing of the band. Hence this term is expected to stabi-
action and increases the critical temperatures of thdZ€ saturated ferromagnetism. Since the quantum dynamics
ferromagnetic phase boundary. of_ thls term make a systematic investigation difficult—even
While the DMFT correctly describes the dynamic fluctua-Within the DMFT—its detailed study has to be postponed to
tions of the interacting many-body system, it neglects spatiai€ future. The pair-hopping term also weakly enhances fer-
fluctuations and short-range order. Hence one should suspe@magnetic tendencié§:*
that this approach overestimates the transition temperatures Among all nearest-neighbor interactions the density-
Tc. Within DMFT Ulmke'® estimated T¢ for a three- density term
dimensional fcc lattice to be of the order of 500 to 800 K, . L
which is in the range of realistic transition temperatures. We H\N’NIVE nin; (A1)
may expect spatial fluctuations to reduce these temperatures. (i.J)
On the other hand, band degeneracy, not considered in 0 |argest and is thus investigated explicitly in the following.
model so far, is expected to increabg. Indeed, band de- |n the case ofd electrons Hubbard roughly estimated this
generacy and Hund's rule couplings, which are clearlyterm tov=2-3 eV, an order of magnitude smaller than the
present in realistic systems, can be rigorously shown to imgybbard interactior).®> However, since there ar2 neigh-
prove the stability of ferromagnetism at least for special pahors contributing, the total energy of the nearest-neighbor
rameter value$>'* The incorporation of band degeneracy, density-density interactions may in some materials even sur-
for which the DMFT also provides a suitable framework, is pass that of the Hubbard interaction. This raises the question
the most important feature that has to be included in futuref the importance of th¥ term, in particular its influence on
investigations of the Hubbard mod&l. The additional the ferromagnetic phases investigated in the present paper.
nearest-neighbor interactions discussed in the Appendix may |t was already pointed out by Mer-Hartmani® that in
provide yet another mechanism for ferromagnetism and wilthe limit d— and with the proper scaliny=V*/Z the

N

\
Q
S ittt Skt

AF -

be studied in the future. nearest-neighbor density-density interaction reduces to its
Hartree contribution, which may then be viewed as a simple,
ACKNOWLEDGMENTS site-dependent shift of the chemical potential. In the absence

of broken translational symmetry the chemical potential must
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Fulbright Commission for support and the Department of On bipartite lattices translational symmetry can be broken
Physics at the University of lllinois for hospitality. Compu- by a charge-density waveCDW) with different electron
tations were performed on the Cray T90 of the HLRZchu  densities onA and B sublattices, i.e., with order parameter
Nepw= (Na—Ng)/2. To study this possible ordering we ana-
lyze the instability towards a CDW in the following.

Similar to the exchange terfthe Hartree contribution of

In Wannier representation the Coulomb interaction giveghe interactionV leads, even in the presence of other inter-
rise to the purely local interactioh) as well as to four actions, to an RPA-like pole in the CDW susceptibilitf.
nearest-neighbor interactiors2>1*Besides the Heisenberg Eq. (6)]:*°
exchange interaction these are the density-density interac- (U0 )
tion, the pair-hopping term, and the off-diagonal Yeow(U,V*, .. )= XCOW ZoY - - - _
“bond-charge—site-chargé® interaction. The latter effec- 1-V* xeow(U,0, .. )

APPENDIX: NEAREST-NEIGHBOR INTERACTIONS
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Thus a second-order phase transition to a CDW occurs at All these studies demonstrate that the CDW is stable for
Vi =1xcow(U,0, .. .). V*=VZ>U. While this relation may in principle hold for
Since next-nearest-neighbor hopping frustrates CDW orsome transition metals, ferromagnets apparently do not show
der, the maximal instability towards a CDW is expected forspatial charge ordering. Therefore the adequate correlated
the symmetric DOS witha=0 in Eq. (8). Half filling is  electron model for a ferromagnet appears to have parameters
optimal in this case. For these parameters we determmed the the rangeV*<U. Then the nearest-neighbor density-
phase diagram Fig. 11 employing the QMC technidfoe
details concerning the calculation of the CDW susceptibility ram. especially on the border of the ferromaanetic phase. at
see Ref. 54 Within DMFT a CDW ordering occurs for gram, E yonz N magnetic p '
V*=U (at not too high temperaturesCompared to the Iea_st md—_oo. Even |ndf3 the .Hartre_e dlagram gives the
Hartree-Fock approximation the CDW phase boundary of thénain COhtI’.IbUtIOI"I of the mteractp\ﬂ* since spatial fluctua-
full model is only slightly moved towards larger values of tions, leading to genuine correlations, are suppressedzas 1/
V*. A similar deviation from Hartree-Fock theory was found Moreover ind=1 and at half filling the effect o¥/* on the

density interactionv* has no influence on the phase dia-

by means of QMC simulations id=1 by Hirsch® in d

=2 by zZhang and Callaway, and within perturbation
theory for both weak and strong coupliiop arbitrary di-
mension$ by van Dongert®®’

ferromagnetic phase boundary is still snfdllTherefore,
over an extended range of parameters the nearest-neighbor
term V* has almost no influence and thus its importance is
seen to be much smaller than its value suggests.

*Present address: Theoretische Physik, Univérsidaisburg,
Lotharstr. 1, D-47048 Duisburg, Germany.
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