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Microscopic conditions favoring itinerant ferromagnetism

J. Wahle,* N. Blümer, J. Schlipf, K. Held, and D. Vollhardt
Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universita¨t Augsburg, D-86135 Augsburg, Germany

~Received 24 November 1997!

A systematic investigation of the microscopic conditions stabilizing itinerant ferromagnetism of correlated
electrons in a single-band model is presented. Quantitative results are obtained by quantum Monte Carlo
simulations for a model with Hubbard interactionU and direct Heisenberg exchange interactionF within the
dynamical mean-field theory. Special emphasis is placed on the investigation of~i! the distribution of spectral
weight in the density of states,~ii ! the importance of genuine correlations, and~iii ! the significance of the direct
exchange, for the stability of itinerant ferromagnetism at finite temperatures. We find that already a moderately
strong peak in the density of states near the band edge suffices to stabilize ferromagnetism at intermediateU
values in a broad range of electron densitiesn. Correlation effects prove to be essential: Slater–Hartree-Fock
results for the transition temperature are both qualitatively and quantitatively incorrect. The nearest-neighbor
Heisenberg exchange does not, in general, play a decisive role. Detailed results for the magnetic phase diagram
as a function ofU, F, n, temperatureT, and the asymmetry of the density of states are presented and discussed.
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I. INTRODUCTION

In contrast to conventional superconductivity and antif
romagnetism, metallic ferromagnetism is in general an in
mediate or strong coupling phenomenon. Since there do
exist systematic investigation schemes to solve such type
problems the stability of metallic ferromagnetism is still n
sufficiently understood. This is true even within the simpl
electronic correlation model, the one-band Hubbard mod1

in spite of significant progress made recently. The Hubb
interaction is very unspecific, i.e., it does not depend on
lattice structure or dimension. Hence the dispersion,
thereby the shape of the density of states~DOS!, is of con-
siderable importance for the stability of ferromagnetis
This was recognized already by Gutzwiller,2 Hubbard,3 and
Kanamori4 in their initial work on the Hubbard model. How
ever, the approximations used in the early days of ma
body theory were usually not reliable enough to provide d
nite conclusions. Exceptions are the exact results
Nagaoka5 on the stability of ferromagnetism atU5` in the
case of one electron above or below half-filling. They sh
an important lattice sensitivity but, unfortunately, are not a
plicable in the thermodynamic limit.

Over the years the stability of metallic ferromagnetis
has turned out to be a particularly difficult many-body pro
lem whose explanation requires subtlenonperturbativetech-
niques. There has been an upsurge of interest in this t
most recently.6–15 These investigations confirm that ferro
magnetism is favored in systems with~i! frustrated lattices
~which suppress antiferromagnetism! and ~ii ! high spectral
weight near the band edge closest to the Fermi ene
~which improves the kinetic energy of the polarized ele
trons!. Taken together, these properties imply a stron
asymmetric DOS of the electrons. Ferromagnetism on bip
tite lattices having a symmetric DOS may still be possib
but seems to require very large values ofU.16 With the ex-
ception of Refs. 13 and 15 all previous calculations refer
the ground state. It is therefore of interest to obtain an ans
PRB 580163-1829/98/58~19!/12749~9!/$15.00
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to the question:How does the distribution of spectral weigh
in the DOS influence the stability regime of ferromagneti
at finite temperatures?

It should be noted that a strongly peaked, asymme
DOS is a considerably more complex condition for ferr
magnetism than the Stoner criterion. The latter merely
serts that, atT50, the critical interaction for the instability is
determined by the inverse of the DOS preciselyat the Fermi
energy EF , Uc51/N(EF), thus neglecting antiferromag
netism and the structure of the DOS away fromEF . Stoner
~i.e., Hartree-Fock17! theory is a purely static mean-fiel
theory that ignores correlation effects, e.g., the correlati
induced redistribution of momentum states and the dyna
renormalizations of the band shape and width. So the qu
tion remains:How essential are genuine correlation effec
for the stability of itinerant ferromagnetism at finite temper
tures?

A third question concerns the suitability of the Hubba
model itself as a model for ferromagnetism. Indeed there
no compelling a priori reason why the Hubbard mode
should be a good model for ferromagnetism at all. Not o
does it neglect band degeneracy, a feature observed in
ferromagnetic transition metals~Fe, Co, Ni!, it also ignores
the ~weak! direct Heisenberg exchange interaction that
equivalent to a ferromagnetic spin-spin interaction and he
favors ferromagnetism in the most obvious way.18–23 The
proposition by Hirsch and co-workers19,20,22that this interac-
tion plays a key role in metallic ferromagnetism was d
puted by Campbellet al.18 So the controversial question is
How important is the direct Heisenberg exchange interact
for the stability of itinerant ferromagnetism in the one-ba
Hubbard model at finite temperatures?

In this paper quantitative answers to the three questi
formulated above are given within the dynamical mean fi
theory~DMFT!. The DMFT, a nonperturbative approach, b
comes exact in the limit of large coordination numbers.24–29

When applied tod53, where the coordination number
O(10), the DMFT has proven to yield accurate and relia
12 749 ©1998 The American Physical Society
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results, especially in the context of long-range magne
order.30,13 It treats local correlations exactly while spati
fluctuations are neglected. In this situation the moment
integral entering in the local propagator will be replaced
an energy integral involving only the DOS of the noninte
acting electrons. The latter may be viewed as an input
rameter. In our investigation the question concerning the
portance of the distribution of spectral weight within th
band for the stability of ferromagnetism will therefore b
studied using a model DOS of the noninteracting electr
whose shape can be changed continuously from symm
to strongly asymmetric by varying an asymmetry parame

The paper is structured as follows: in Sec. II we pres
the model under investigation, the dynamical mean-fi
equations, and the analytical and numerical steps neede
construct magnetic phase diagrams. The model DOS is in
duced in Sec. III. The results of our investigation and qu
titative answers to the questions posed above are present
Sec. IV. A discussion where these results are put into p
spective~Sec. V! closes the presentation.

II. MODEL AND METHODS OF SOLUTION

A. Hubbard model with nearest-neighbor exchange

The minimal model allowing one to treat an asymmet
DOS, electronic on-site correlations, and the near
neighbor Heisenberg exchange interaction is given by

Ĥ5ĤHub22F(
^ i , j &

Ŝi•Ŝj , ~1!

where

ĤHub52 (
i , j ,s

t i j ~ ĉis
† ĉ j s1H.c.!1U(

i
n̂i↓n̂i↑ . ~2!

HereŜi5
1
2 (ss8ĉis

† tss8ĉis8 with the vector of Pauli matrices
t.

We note that there are three other nearest-neighbor
tributions of the Coulomb interaction that might also affe
the stability of the ferromagnetic phase31,32 ~see Appendix!.

B. Dynamical mean-field theory

Within the DMFT the coupling constants in Eqs.~1! and
~2! have to be scaled with the lattice coordination numbeZ
as24,25 t5t* /AZ, F5F* /Z, where we consider neares
neighbor hoppingt only. By analogy to classical spin
models33 the Hartree-Fock approximation yields the exa
result for theF term in high dimensions.

In the following we investigate the influence of the dire
exchange term on the properties of the Hubbard mode
d→`. Since the Hubbard model is SU~2! spin symmetric
we can, without loss of generality, assume a magn
ization parallel to thez axis. The Hartree34 decoupling then
takes the formŜi•Ŝj→^Ŝi

z&Ŝj
z1Ŝi

z^Ŝj
z&2^Ŝi

z&^Ŝj
z&. In terms

of the magnetizationm̂5( i m̂i /N and its expectation value
m5^m̂&, wherem̂i52 Ŝi

z5n̂i↑2n̂i↓ andN is the number of
lattice sites, the Hamiltonian~1! can be written as35
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Ĥ5ĤHub2
NF*

2
m m̂1

NF*

4
m2. ~3!

Apparently the influence of the exchange term in the lim
d→` is that of a~Weiss! magnetic field, which vanishes in
the paramagnetic phase (m50). Therefore, in this phase, a
one-particle properties of the system are those of the p
Hubbard model. However, two-particle functions, especia
the ferromagnetic susceptibility, are modified~see Sec. II C!.

In d5`, the Hubbard model~2! is equivalent to an
Anderson impurity model complemented by a se
consistency condition.36,29Written in terms of Matsubara fre
quenciesvn , self-energySs , the DOS of the noninteracting
electronsN0(«), and thermal averagêcc* &A over Grass-
mann fields the resulting coupled equations for the Gr
function in the homogeneous phase read

Gs~ ivn!5E
2`

`

d«
N0~«!

ivn1m2Ss~ ivn!2«
, ~4!

Gs~ ivn!52^csncsn* &A . ~5!

The solution of thek-integrated Dyson equation~4! is
straightforward and can be performed analytically for t
DOS used in this paper~see Sec. IV!. By contrast the solu-
tion of Eq.~5! is highly nontrivial~for details of the notation
see Ref. 37!. It is achieved using the auxiliary-field quantu
Monte Carlo~QMC! algorithm by Hirsch and Fye,38 where a
discretization of imaginary time,Dt5b/L, is introduced.
Here,L denotes the number of independent Matsubara
quencies. Physical quantities are obtained in theDt→0
limit.

C. Calculation of susceptibilities, extrapolation
and error handling

The second-order phase transition from a paramagnet
a ferromagnetic phase occurs at the zero of the inverse
ceptibility x f

21 , calculated37,39 in the paramagnetic phase.
is sufficient to perform all simulations for the pure Hubba
model since the influence ofF* on the susceptibility is given
by the following random-phase approximation~RPA!-like
expression:

x f ~U,F* , . . . !5
x f ~U,0, . . .!

12~F* /2!x f ~U,0, . . .!
, ~6!

wherex f (U,0, . . . ) is thesusceptibility of the pure Hubbard
model. This type of relation holds for pairs of two-partic
interactions~hereU andF* ) in arbitrary dimensions, when
ever one interaction~here F* ) is treated in Hartree-Fock
approximation and the other one~hereU! exactly.40 In gen-
eral, since the calculation of the susceptibility involves t
derivative of the self-energySU,F* with respect to some field
h,37,39 this follows from the fact that the self-energy of th
full Hamiltonian can be expressed as

SU,F* @GU,F* #5SU,0@GU,F* #1S0,F*
~1!

@GU,F* #. ~7!

HereS@G# refers to the diagrammatic skeleton expansion
S, where all lines are fully dressed propagatorsG. Since the
Hartree-Fock termS0,F*

(1) only contributes in the symmetry
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broken phase, allF* renormalizations ofGU,F* vanish in the
symmetric phase. EvaluatingdSU,F* /dh in the symmetric
phase, the first term in Eq.~7! leads to the same contribution
as withoutF* interaction, while the second term introduc
the RPA-like term proportional toF* . For thet-J model in
DMFT the analog of Eq.~6! was derived by Pruschkeet al.41

SinceF* only enters the calculations via Eq.~7! we are
left with four physical parameters of the pure Hubba
model: Hubbard interactionU, electron densityn, tempera-
ture T, and an asymmetry parametera for the kinetic energy
~see Sec. IV!. For each set of these five parameters Eqs.~4!
and ~5! are iterated with typically 63104 Monte Carlo
sweeps until convergence is reached, i.e., the difference
tween two consecutive values of (Gs)215(Gs)212Ss is
smaller than 531024 @measured by the norm
(2L)21(snu(G sn

new)212(G sn
old)21u; the energy scale is de

fined in Sec. IV#. Subsequently eight measurements of
susceptibility are performed with a reduced number of
3104 Monte Carlo sweeps. Thus the result for each para
eter set consists of an averaged susceptibilityx f(Dt) and its
statistical errorDx f(Dt). We neglect the propagation of th
error in (Gs)21 since it is always an order of magnitud
smaller thanDx f(Dt). The extrapolation toDt50 is per-
formed by a quadratic least-squares fit ofx f(Dt), using at
least six different values ofx f for DtP@0.09,0.5#. Further
details regarding the technical treatment can be found
Refs. 37 and 42.

For mean-field theories like the DMFT a linear behav
of the inverse susceptibility, i.e., a Curie-Weiss law, is e
pected and observed in the vicinity of the transition. Thus
Curie temperatureTC can be obtained as the zero of a line
fit of x f

21(T) drawn from values ofx f for four to six differ-
ent temperatures~see, e.g., Figs. 3 and 5, whereFc* 52x f

21

is plotted!. The error of TC is obtained from the errors
Dx f(Dt) by error propagation and therefore denotes o
statistical, not systematic errors~e.g., due to the extrapola
tion schemes used!. However, we checked the accuracy
our results by varying the procedure, e.g., extrapolat
x f

21(Dt) instead ofx f(Dt).

III. MODEL SPECTRAL FUNCTION

Due to the vanishing of spatial fluctuations within th
DMFT the topology of the underlying lattice enters the se
consistency equation~4! only via the noninteracting DOS, a
least for homogeneous phases. The choice of a partic
model spectral function thus represents a special~not unique!
set of hopping elementst i j in the Hamiltonian~1!, which
characterize the structure of the underlying lattice. Contri
tions to the kinetic energy by, e.g., next-nearest-neigh
hopping can lead to an asymmetrically shaped DOS, wh
is apparently favorable for the stability of ferromagnetis
To investigate this stabilizing effect quantitatively, we pr
pose a model DOS with a shape-controlling parameter. T
parameter allows us to change smoothly from a noninter
ing DOS with ~i! a symmetric shape~mimicking nearest-
neighbor hopping on a bipartite lattice! to ~ii ! an asymmetri-
cally peaked DOS~similar to a cubic lattice with next-
nearest-neighbor hopping! to ~iii ! a DOS with a square-roo
divergence at the band edge~e.g., a fcc lattice with next-
nearest-neighbor hoppingt85t/2). The shape of the mode
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DOS thus qualitatively captures key features of real lattic
The spectral function that we use throughout the pape

given by

N0~«!5c
AD22«2

D1a«
~8!

with c5(11A12a2)/(pD) and bandwidth 2D. The well-
known semielliptic DOS of the Bethe lattice with infinit
number of nearest neighbors is recovered fora50. By in-
creasing the parametera spectral weight is shifted toward
the lower band edge~Fig. 1!. For a51 the DOS diverges a
the lower band edge like an inverse square root. The part
lar choice of the model DOS~8! has the advantage that th
numerical effort of solving the self-consistency equation~4!
is rather small since the Hilbert transform can be calcula
analytically. In the following we set the variance to unit
*d« N0(«) «22@*d« N0(«) «#251, thereby fixing the en-
ergy scale. This leads toD52 for all values ofa. For a
50 it is equivalent to choosingt* 51 on the Bethe lattice.

While for the study of ferromagnetism within the DMF
the lattice structure only enters via the DOS it is possible
construct ~infinitely many! corresponding dispersion rela
tions «(k) or, equivalently, sets of hopping elementst i j . A
realization in d51 that is symmetric,«(k)5«(2k), and
monotonous,d«/dk.0, for «.0 is given by

E
«min

«

d«8N0~«8!5E
0

k dk8

p
5

k~«!

p
, ~9!

where an inversion yields«(k). Generalizations to other di
mensions are possible with, e.g.,«(k)5«(uku) ~Ref. 43! or
«(k)5( i 51

d «(ki).
44

Although in principle one could thus choose a lattice c
responding to the DOS~8!, this will not be done here, sinc
we only study homogeneous phases. Antiferromagnetism
incommensurate phases are not expected to be importan

FIG. 1. Model spectral function~8! shown for different values
of the asymmetry parametera. By increasinga spectral weight is
shifted towards the lower band edge. The energy scale is fixed
setting the variance of the DOS equal to 1.
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12 752 PRB 58WAHLE, BLÜMER, SCHLIPF, HELD, AND VOLLHARDT
away from half filling. Only for the casea50 ~Bethe lattice!
at n51 the stability of an antiferromagnetic phase is inve
tigated.

IV. RESULTS

A. The importance of the direct exchange interaction

On a bipartite lattice with perfect nesting, the ground st
of the pure Hubbard model at half filling is antiferromagne
for all U.0, at least in dimensionsd>3. In this situation a
ferromagnetic state is strongly disfavored also in the gen
model, Eq.~1!. At large U, however, when the model re
duces to an effective Heisenberg model~which, in high di-
mensions, is exactly described by Weiss mean-field theo!,
already a small value of the direct exchange interacti
F* .2(t* )2/U, is sufficient to stabilize a ferromagnet
ground state.45,46,21 Indeed, the Heisenberg model well d
scribes theF* -U ground-state phase diagram at half fillin
down toU'4; this is evident from Fig. 2, where a compa
son with our QMC results is shown for a symmetric DO
@Eq. ~8! with a50#. At small U the phase boundary betwee
a paramagnetic and a ferromagnetic state is correctly re
duced by Hartree-Fock theory~but only for U,1). This is
not surprising since ind5` the F term is treated exactly
within this approximation. Also included in Fig. 2 is the lin
below which a fully saturated ferromagnetic state becom
unstable against single spin flips as first computed
Hirsch47 for cubic lattices. For the Bethe lattice this line
given exactly by the Hartree-Fock resultF* 542U for U
<Uc53 and

F* 2U52
8

~F* 1U !@12A1216/~F* 1U !2#
~10!

for U.3. This can be seen from Eqs.~5! and~7! in Ref. 47
and the known analytic expression for the Hilbert transfo
of the semielliptic DOS. The remarkable agreement betw
the QMC results and this curve forU>3 suggests that~at

FIG. 2. Phase diagram for a symmetric DOS (a50): direct
exchange couplingF* vs Hubbard interactionU at half filling (n
51) extrapolated toT50. Open triangles and filled circles corre
spond to the instability of the paramagnetic phase~P! against the
ferromagnetic~F! and antiferromagnetic~AF! order, respectively.
Solid line: Hartree-Fock theory; dashed line: Weiss mean-fi
theory; dotted line: single spin flip instability for the saturated f
romagnetic state.
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zero temperature! the region of partial polarization is ver
narrow already at intermediate interaction strengthU.

The F* -T phase diagram for a strongly peaked DO
(a50.98) at filling n50.6 is shown in Fig. 3. The QMC
results for the ferromagnetic phase boundary can be extr
lated linearly to zero temperature leading to a ground-s
phase diagram. Clearly the values ofF* necessary to stabi
lize ferromagnetism are significantly reduced in comparis
to the bipartite case. In particular, forU56 andU58 the
extrapolation lines cross the ordinate at positive tempe
tures. Thus, an asymmetric DOSstabilizes ferromagnetism
even in the pure Hubbard model(F* 50) above a critical
interaction strengthUc with 4,Uc,6.

Figures 3 and 4 prove that already a small direct excha
couplingF* can significantly enhance ferromagnetic tende
cies and thus give the final ‘‘kick’’ towards ferromagnetis
for systems that are close to an instability. This influence
stronger at larger densities when the local magnetic mom
are enhanced~Fig. 4!. The lower critical densities are ver
small, but larger than those predicted by Hartree-Fo
theory, since Hartree-Fock always overestimates the siz
the ferromagnetic regime.

d
-

FIG. 3. F* -T phase diagram for different values ofU for a
strongly peaked DOS (a50.98) at a fillingn50.6. The linear ex-
trapolation shows that there exists a criticalUc above which ferro-
magnetism is stable even without the direct exchange coupling

FIG. 4. T-n phase diagram for different values of the dire
exchange couplingF* for a strongly peaked DOS (a50.98) atU
56. A small direct exchange coupling is seen to enlarge the sta
ity regime of the ferromagnet, especially for densities close to h
filling. The lines are a guide to the eye only.
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Quite generally, the value of the exchange interactionF in
metals can be expected to be rather small. Note, howe
that for three-dimensional lattices thescaled quantity F*
5ZF is an order of magnitude larger than the exchange c
pling F itself. Hubbard’s crude estimate3 of F/U'1/400
would therefore imply that, e.g., atU56 a~scaled! exchange
interaction as large asF* 50.15 is not completely unrealis
tic.

B. The importance of the asymmetry of the DOS

The dependence of the phase boundary on the asymm
parametera is systematically studied in Fig. 5 atU54 for a
relatively small electron densityn50.3. For a symmetric or
slightly asymmetric DOS (a50, a50.5) the system only
becomes ferromagnetic forF* .1 even atT50. For a
50.9, when the shape of the DOS is roughly triangular,
critical F* is considerably reduced. But only when a mark
peak develops~i.e., for a.0.95) does the criticalF* drop to
zero; ferromagnetism is then stable even in the pure Hubb
model. From now on we restrict our studies to this ca
(F* 50).

The T versusn phase diagram is shown in Fig. 6 forU
54 and three different shapes of the DOS ranging fr

FIG. 5. F* -T phase diagram for different shapes of the DOS
U54 and n50.3. For values of 0.95,a<1 the ferromagnetic
phase is stable even without the direct exchange coupling. The
show a quadratic least-squares fit inT.

FIG. 6. T-n phase diagram for different shapes of the DOS
U54. By shifting spectral weight towards the lower band edge,
region of stability of the ferromagnetic phase is enlarged. The li
are a guide to the eye only.
er,

u-
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e
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e

strongly asymmetric (a50.97) to divergent at the lowe
band edge (a51). Evidently the ferromagnetic phase
largest ata51. We want to stress however, that the dive
gence doesnot change the physics qualitatively~except at
n!1). A moderately strong peak near the band edge is
that is needed to stabilize ferromagnetism.

For symmetric densities of states atU,12 ~Bethe lattice
and hypercubic lattice! we findsuppressionof the ferromag-
netic ~as well as the antiferromagnetic! susceptibility away
from half filling.48 This does not exclude the possibility fo
ferromagnetism on bipartite lattices at much larger values
U. Indeed, very recently ferromagnetism was found with
the noncrossing approximation for thet-J model on a hyper-
cubic lattice in the limitd→` for U.30 away from half
filling.16 Apparently, at least for moderateU, the bipartite
lattice with only nearest-neighbor hopping is not a natu
‘‘environment’’ for ferromagnetism—the asymmetry of th
noninteracting DOS is crucial.

C. The importance of correlations

In Fig. 7 theT-n phase diagram is shown for differen
values of the on-site interactionU. Evidently the ferromag-
netic phase becomes more favorable for increasingU: both
the maximal Curie temperature and the~upper! critical den-
sity rise. This effect is seen to be qualitatively similar to
increase of the exchange interactionF* or the asymmetry of
the DOSa ~Figs. 4 and 6, respectively!.

Our QMC results are compared with Hartree-Fock the
in Figs. 8–10. We note that, applied to the Hubbard mod
the DMFT includes Hartree-Fock theory as its static lim
and is thus superior in any dimension. Figure 8 shows
vast overestimation of the ferromagnetic phase wit
Hartree-Fock theory. The maximal Curie temperature
tained in this approximation is more than an order of ma
nitude too large. At such high temperatures details of
DOS are averaged out and consequently the density de
dence~e.g., the position of the maximum! is completely ar-
tificial. In Fig. 9 theU versusn ground-state phase diagra
is shown and compared to the Stoner criterion.17 At low n the
Stoner curve clearly approaches the QMC curve. Since
DOS vanishes smoothly at the lower band edge fora,1

t

es

t
e
s

FIG. 7. T-n phase diagram for a strongly peaked DOSa
50.98) for different values ofU. With increasing Hubbard interac
tion the stability regime of the ferromagnetic phase becomes lar
especially at higher densities. The lines are a guide to the eye o
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both curves diverge forn→0. Figure 10 focuses on the lim
of large U. The weak coupling Hartree-Fock theory fai
again: it predicts an unbounded linear increase ofTC with U,
TC;Un(22n)/4, whereas QMC shows thatTC has a finite
limit for U→`. It is expected that such a finite limit exis
for all densities. A saturation is also suggested by the cur
in Fig. 7. It arises from the suppression of double occup
cies by correlations. In contrast to the Hartree-Fock pred
tion the interaction energy goes to zero forU→`, thus only
the bandwidth remains as an energy scale. In the special
a50.98,n50.4 one finds49 TC(U5`)50.0760.02.

One might argue that comparison of the DMFT resu
should not be made with Hartree-Fock itself but w
Hartree-Fock plus quantum corrections, since the latter
known to reduce many of the deficiencies of Hartree-Fo
theory. Such corrections have been discussed by
Dongen50 and Freericks and Jarrell.51 The latter authors
showed how quantum fluctuations modify the Stoner cr
rion by subtracting the particle-particle susceptibility. Eva
ating these corrections in the case of Fig. 10 we find that
ferromagnetic phase is completely suppressed~as previously
observed in Ref. 51 for a symmetric DOS!. At a50.98 this

FIG. 8. T-n phase diagram for a strongly peaked DOSa
50.98) at U54. The comparison between Hartree-Fock theo
~solid line! and DMFT ~QMC, circles! reveals the importance o
correlation effects. The dashed line is a guide to the eye only.

FIG. 9. U-n phase diagram atT50 for a strongly peaked DOS
(a50.98). The DMFT data~QMC, circles! are extrapolated from
finite temperature calculations. The Stoner criterion~solid line! un-
derestimates the criticalUc(n) for ferromagnetism, but become
better at lower densities. The dashed line is a guide to the eye o
es
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-
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holds for all densitiesn*0.3. Thus the ‘‘corrections’’ to
Hartree-Fock theory are seen tounderestimatethe ferromag-
netic region by far.

V. DISCUSSION AND OUTLOOK

After more than three decades of research it has bec
clear at last11–13 that the Hubbard model can describe itine
ant ferromagnetism even on regular lattices and at mode
U values for a wide range of electronic densitiesn. Since
ferromagnetism is an intermediate to strong coupling pr
lem the question concerning its ‘‘mechanism’’ has, in pri
ciple, no straightforward answer. This is in contrast toweak
coupling phenomena, e.g., conventional superconductiv
which can be explained within perturbation theory. Nev
theless a good starting point for an understanding of the
gin of itinerant ferromagnetism can be obtained in the stro
coupling limit. At U5` doubly occupied sites are exclude
and the Hubbard model reduces to a~complicated! kinetic
energy. To avoid doubly occupied sites in a paramagn
phase the DOS is then necessarily strongly renormali
compared with the noninteracting case, whereas for the s
rated ferromagnetic phase the interacting DOS is the sam
the noninteracting one except for a shift between the spin
and -down bands. In this situation details of the structure
the noninteracting DOS become relevant in selecting
state with the lowest energy. This physical picture is, in pr
ciple, similar to that underlying the Nagaoka mechanis
however, the latter only addresses the kinetic energy o
single hole and it was so far not possible to generalize i
thermodynamically relevant densities. Our investigatio
within the DMFT explicitly show that a moderately stron
peak at the band edge closest to the Fermi energy is s
cient to stabilize ferromagnetism. Furthermore a stro
asymmetry of the DOS implies a nonbipartite lattice th
frustrates the competing antiferromagnetism near half filli

The mechanism described above is completely differly.

FIG. 10. T-U phase diagram for a strongly peaked DOSa
50.98) atn50.4. The comparison between Hartree-Fock the
~solid line! and DMFT ~QMC, circles! shows the former can de
scribe the Curie temperatureTC(U) neither quantitatively, nor
qualitatively. The dashed line is a guide to the eye only.
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from the mere band shift of the Hartree-Fock theory. T
weak coupling approach does not take into account the
namical renormalization of the DOS in the paramagne
phase and thus predicts ferromagnetism for any DOS, e
at relatively small values ofU and for high temperatures
The comparison with DMFT clearly shows that Hartree-Fo
theory~i! overestimates transition temperatures by more t
an order of magnitude,~ii ! renders the dependence ofTC on
U qualitatively incorrect, and~iii ! predicts ferromagnetism
for the symmetric DOS, where~at least forU,12) this is
not found. These shortcomings of Hartree-Fock theory
due to the neglect of dynamical fluctuations, which are at
heart of the correlation problem.

The Heisenberg exchange interaction, not considere
the pure Hubbard model, provides another mechanism
may order the fluctuating local moments arising by the s
pression of double occupancies. We found that for a sy
metric DOS rather large values ofF are needed to stabiliz
ferromagnetism. However, for an asymmetric DOS with
peak near the band edge already small values of the
change interaction may provide the final ‘‘kick’’ towards fe
romagnetism. In any case it reduces the critical on-site in
action and increases the critical temperatures of
ferromagnetic phase boundary.

While the DMFT correctly describes the dynamic fluctu
tions of the interacting many-body system, it neglects spa
fluctuations and short-range order. Hence one should sus
that this approach overestimates the transition temperat
TC . Within DMFT Ulmke13 estimatedTC for a three-
dimensional fcc lattice to be of the order of 500 to 800
which is in the range of realistic transition temperatures.
may expect spatial fluctuations to reduce these temperat
On the other hand, band degeneracy, not considered in
model so far, is expected to increaseTC . Indeed, band de
generacy and Hund’s rule couplings, which are clea
present in realistic systems, can be rigorously shown to
prove the stability of ferromagnetism at least for special
rameter values.52,14 The incorporation of band degenerac
for which the DMFT also provides a suitable framework,
the most important feature that has to be included in fut
investigations of the Hubbard model.53 The additional
nearest-neighbor interactions discussed in the Appendix
provide yet another mechanism for ferromagnetism and
be studied in the future.
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APPENDIX: NEAREST-NEIGHBOR INTERACTIONS

In Wannier representation the Coulomb interaction giv
rise to the purely local interactionU as well as to four
nearest-neighbor interactions.18–20,14Besides the Heisenber
exchange interaction these are the density-density inte
tion, the pair-hopping term, and the off-diagon
‘‘bond-charge–site-charge’’18 interaction. The latter effec
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tively describes a density-dependent hopping20 and leads to a
narrowing of the band. Hence this term is expected to sta
lize saturated ferromagnetism. Since the quantum dynam
of this term make a systematic investigation difficult—ev
within the DMFT—its detailed study has to be postponed
the future. The pair-hopping term also weakly enhances
romagnetic tendencies.20,32

Among all nearest-neighbor interactions the dens
density term

ĤNN
V 5V(

^ i , j &
n̂i n̂ j ~A1!

is largest and is thus investigated explicitly in the followin
In the case ofd electrons Hubbard roughly estimated th
term toV52 –3 eV, an order of magnitude smaller than t
Hubbard interactionU.3 However, since there areZ neigh-
bors contributing, the total energy of the nearest-neigh
density-density interactions may in some materials even
pass that of the Hubbard interaction. This raises the ques
of the importance of theV term, in particular its influence on
the ferromagnetic phases investigated in the present pap

It was already pointed out by Mu¨ller-Hartmann25 that in
the limit d→` and with the proper scalingV5V* /Z the
nearest-neighbor density-density interaction reduces to
Hartree contribution, which may then be viewed as a simp
site-dependent shift of the chemical potential. In the abse
of broken translational symmetry the chemical potential m
compensate this shift to keep the electron density fixed. T
there is no effect at all.

On bipartite lattices translational symmetry can be brok
by a charge-density wave~CDW! with different electron
densities onA and B sublattices, i.e., with order paramet
nCDW5(nA2nB)/2. To study this possible ordering we an
lyze the instability towards a CDW in the following.

Similar to the exchange termF the Hartree contribution of
the interactionV leads, even in the presence of other inte
actions, to an RPA-like pole in the CDW susceptibility@cf.
Eq. ~6!#:40

xCDW~U,V* , . . . !5
xCDW~U,0, . . .!

12V* xCDW~U,0, . . .!
.

FIG. 11. V* -U phase diagram for the semielliptic DOS (a
50) at T50.125. ForV* .U a regime with charge-density-wav
order ~CDW! is established. The antiferromagnetic phase vanis
for U.7.760.5 ~not shown!. The dashed line is a guide to the ey
only.
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Thus a second-order phase transition to a CDW occur
Vc* 51/xCDW(U,0, . . . ).

Since next-nearest-neighbor hopping frustrates CDW
der, the maximal instability towards a CDW is expected
the symmetric DOS witha50 in Eq. ~8!. Half filling is
optimal in this case. For these parameters we determined
phase diagram Fig. 11 employing the QMC technique~for
details concerning the calculation of the CDW susceptibi
see Ref. 54!. Within DMFT a CDW ordering occurs for
V* *U ~at not too high temperatures!. Compared to the
Hartree-Fock approximation the CDW phase boundary of
full model is only slightly moved towards larger values
V* . A similar deviation from Hartree-Fock theory was foun
by means of QMC simulations ind51 by Hirsch,55 in d
52 by Zhang and Callaway,56 and within perturbation
theory for both weak and strong coupling~in arbitrary di-
mensions! by van Dongen.50,57
b

n

at

r-
r

he

e

All these studies demonstrate that the CDW is stable
V* 5VZ.U. While this relation may in principle hold for
some transition metals, ferromagnets apparently do not sh
spatial charge ordering. Therefore the adequate correl
electron model for a ferromagnet appears to have parame
in the rangeV* <U. Then the nearest-neighbor densit
density interactionV* has no influence on the phase di
gram, especially on the border of the ferromagnetic phase
least ind5`. Even ind53 the Hartree diagram gives th
main contribution of the interactionV* since spatial fluctua-
tions, leading to genuine correlations, are suppressed asZ.
Moreover ind51 and at half filling the effect ofV* on the
ferromagnetic phase boundary is still small.22 Therefore,
over an extended range of parameters the nearest-neig
term V* has almost no influence and thus its importance
seen to be much smaller than its value suggests.
v.

.

In

-

-

*Present address: Theoretische Physik, Universita¨t Duisburg,
Lotharstr. 1, D-47048 Duisburg, Germany.

1It is known, however, that in the one-dimensional Hubbard mod
with only nearest-neighbor hopping ferromagnetism is unsta
@E. Lieb and D. C. Mattis, Phys. Rev.125, 164 ~1962!#.

2M. C. Gutzwiller, Phys. Rev. Lett.10, 59 ~1963!.
3J. Hubbard, Proc. R. Soc. London, Ser. A276, 238 ~1963!.
4J. Kanamori, Prog. Theor. Phys.30, 275 ~1963!.
5Y. Nagaoka, Phys. Rev.147, 392 ~1966!.
6E. H. Lieb, inThe Hubbard Model: Its Physics and Mathematica

Physics, edited by D. Baeriswylet al. ~Plenum, New York,
1995!, p. 1; P. Fazekas, Philos. Mag. B76, 797 ~1997!.

7A. Mielke, J. Phys. A24, 3311 ~1991!; H. Tasaki, Phys. Rev.
Lett. 69, 1608~1992!.

8K. Penc, H. Shiba, F. Mila, and T. Tsukagoshi, Phys. Rev. B54,
4056 ~1996!.

9E. Müller-Hartmann, inProceedings of the V. Symposium o
Physics of Metals, edited by E. Talik and J. Szade~Symposium
‘‘Physics of Metals,’’ Ustron-Jaszowiec, Poland, 1991!, p. 22;
E. Müller-Hartmann, T. Hanisch, and R. Hirsch, Physica B186-
188, 834 ~1993!; T. Hanisch and E. Mu¨ller-Hartmann, Ann.
Phys.~Leipzig! 2, 381 ~1993!; T. Hanisch, B. Kleine, A. Ritzl,
and E. Müller-Hartmann,ibid. 4, 303 ~1995!; P. Wurth, G. S.
Uhrig, and E. Mu¨ller-Hartmann,ibid. 5, 148~1996!; T. Hanisch,
G. S. Uhrig, and E. Mu¨ller-Hartmann, Phys. Rev. B56, 13 960
~1997!.

10G. S. Uhrig, Phys. Rev. Lett.77, 3629~1996!.
11S. Daul and R. Noack, Z. Phys. B103, 293 ~1997!.
12R. Hlubina, S. Sorella, and F. Guinea, Phys. Rev. Lett.78, 1343

~1997!.
13M. Ulmke, Eur. Phys. J. B1, 301 ~1998!.
14D. Vollhardt, N. Blümer, K. Held, M. Kollar, J. Schlipf, and M.

Ulmke, Z. Phys. B103, 283 ~1997!.
15T. Herrmann and W. Nolting, J. Magn. Magn. Mater.170, 253

~1997!; Solid State Commun.103, 351 ~1997!; A. Vega and W.
Nolting, Phys. Status Solidi B193, 177 ~1996!.

16T. Obermeier, T. Pruschke, and J. Keller, Phys. Rev. B56, R8479
~1997!.

17For ferromagnetism in the Hubbard model, Hartree-Fock theo
is equivalent to Stoner theory.

18D. K. Campbell, J. T. Gammel, and E. Y. Loh, Jr., Phys. Rev.
38, 12 043~1988!.
el
le

l

ry

B

19J. E. Hirsch, Phys. Rev. B40, 2354~1989!.
20J. E. Hirsch, Phys. Rev. B40, 9061 ~1989!; S. Tang and J. E.

Hirsch, ibid. 42, 771 ~1990!.
21R. Strack and D. Vollhardt, J. Low Temp. Phys.99, 385 ~1995!.
22J. C. Amadon and J. E. Hirsch, Phys. Rev. B54, 6364~1996!.
23M. Kollar, R. Strack, and D. Vollhardt, Phys. Rev. B53, 9225

~1996!.
24W. Metzner and D. Vollhardt, Phys. Rev. Lett.62, 324 ~1989!.
25E. Müller-Hartmann, Z. Phys. B74, 507 ~1989!.
26E. Müller-Hartmann, Int. J. Mod. Phys. B3, 2169~1989!.
27V. Janiš, Z. Phys. B83, 227 ~1991!; V. Janišand D. Vollhardt,
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