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One-dimensionalXXZ model for particles obeying fractional statistics
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We define one-dimensional particles as non-Abelian representations of the symmetric groupSN . The exact
solution of anXXZ type Hamiltonian built up with such particles is achieved using the coordinate Bethe
ansatz. The Bethe equations show that fractional statistics effectively account for coupling an external gauge
field to an integer statistics’ system.@S0163-1829~98!52028-0#
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The physical behavior of quantum systems is deeply
fected by the statistics of the constituting effective degree
freedom. Quasiparticles and quasiholes in condensed-m
physics may obey statistics interpolating between fermio
and bosonic behavior. Examples are the excitations of t
dimensional electron systems exhibiting the fractional qu
tum Hall effect.1 These excitations are calledanyons. They
have been a subject of intense study also in connection
superconductivity2 and superfluidity.3 Fractional statistics of
such particles arise from the trajectory dependence of
particle exchange procedure in two-dimensional configu
tion space. This feature makes the concept of anyons pu
two dimensional. The Fock space formulation of anyon o
erator algebras takes into account these characteristics.
creation and annihilation operators@introduced as Jordan
Wigner transforms of the usual fermions on a tw
dimensional lattice4 or as unitary representations of the d
feomorphism group of R2 ~Ref. 5!# obey deformed
commutation relations if the exchange involves anyons
different spatial positions~see the Appendix!. N-anyon states
are Abelian representations of the braid groupBN ~Ref. 6!
~whereas bosons and fermions furnish, respectively, the id
tical and alternating Abelian representations of the symm
ric groupSN!. These features make anyons different fromq
oscillators, the latter providing a realization of the Gel’fan
Fairlie quantum group, which is alocal deformation of the
Weyl-Heisenberg~bosons! or Clifford algebra~fermions!.7

The path dependence implies that the one-particle sta
inextricably related to the complete state of the many-bo
configuration. This intrinsic nonlocality makes anyon phy
ics very difficult. Even statistical properties of a free any
gas are only partially established using the virial expansio8

Haldane9 formulated the notion of fractional statistic
without any reference to the spatial dimensionD. The gen-
eralized Pauli principle is expressed in terms of the reduc
of the single-particle Hilbert space when particles are ad
to a many-body system keeping boundary conditions fix
Another way to introduce dimensionality-independent fra
tional statistics has been formulated in Ref. 10, wherequons
have been introduced. Quons’ fractional statistics result fr
the ‘‘superposition’’ of statistical properties of bosons a
fermions.11 In D.2, this is consistent with spin-statistic
PRB 580163-1829/98/58~4!/1703~4!/$15.00
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theorem. In 2D, Haldane particles and quons capture t
essential features of anyons.9,5

Recently, a growing interest has been devoted to gene
ized statistics in one dimension. A specific way to introdu
D51 fractional statistics has been proposed in connectio
the quantization of the solutions of the Calogero mode12

There, the potential 1/x2 is interpreted as ‘‘statistics interac
tion.’’ The same notion of fractional statistics applies also
anyons in a strong magnetic field that restricts the allow
energies to the lowest Landau level. The anyon gas, the
described by an effective-field theory on a ring where
dynamics of particles is one dimensional.13 It is worthwhile
noting that such one-dimensional particles obey fractio
statistics, but they are not ‘‘true anyons’’ since inDÞ2 tra-
jectories in the particle configuration space have no me
ingful braiding property. Instead, nonlocal ‘‘deformations
of the commutation relations furnishnon-Abelianrepresen-
tations of the symmetric groupSN .

In this paper, we deal with particles inD51 that preserve
the intrinsic nonlocality of two-dimensional anyons, b
which are still representations ofSN . This representation is
no longer Abelian. The second quantized formalism and
Fock-space representation is developed. TheXXZ model for
such particles is formulated and solved exactly using coo
nate Bethe ansatz14 ~BA! in D51.

For D51 we define a set of creation/annihilation oper
tors $ f i

† , f i% for a spinless particle at sitei . They obey the
deformed relations

f j
†f k1qj ,kf kf j

†5d j ,k , ~1!

f j f k1qj ,k
21f kf j50, ~2!

whereqj ,k
218(qj ,k)

21. Since the operators are path indepe
dent inDÞ2 ~compare with the Appendix!, Eqs.~1! and~2!
have to constitute a representation ofSN , and not ofBN .
This is ensured by the ‘‘consistency relations’’

qj ,k5qk, j
215qk, j

† , ~3!

@ f j f k
† ,qj ,k#50. ~4!
R1703 © 1998 The American Physical Society
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Such a representation is non-Abelian.6 For j 5k, Eq. ~3!
gives qj , j56l. Hence Eqs.~1! and ~2! are an extension o
anyon commutation relations4,5 to DÞ2. In contrast to the
true anyonic case~see Appendix!, qj ,k has no relation with
the configuration space geometry, but is a free ‘‘extern
parameter.

Relations~1! and~2! are formally analog to quon commu
tation rules.11 Note that the deformation parameter here d
pends on two indices (j ,k), whereas it does not in quo
commutation rules. Without this index dependence, rela
~3! directly implies q25l. As a consequence, quons ob
integer statistics in 1D if q is a C number11 ~as an operator
it has eigenvalues61!. If qj ,k56l ;( j ,k), then Eqs.~1!
and ~2! describe spinless fermions or bosons, respectiv
However, for application we chooseqj ,k being C numbers
and qj , j51, see Eq.~9!, which implies the Pauli exclusion
principle, as for spinless electrons or hard-core bosons.

Relations~3! and ~4! hold if qj ,k is an operator commut
ing or anticommuting with bothf j and f k

† . For this reason
we add this as a postulate16

@ f k
† ,qj ,k#5@ f j ,qj ,k#50. ~5!

The introduction of two indices for the deformation para
eter allows the construction of consistent commutation re
tions even forqj ,k being C numbers. We make use of th
possibility in Eq.~9!.

To develop a Fock representation of the algebra~1! and
~2!, we taken j8 f j

†f j as number operators. Relations~3!–~5!
yield commutators ofn j and f j

† , f j being unaffected by the
deformation parameterqj ,k :

@n j ,nk#50, @n j , f k
†#5d j ,kf k

† , @n j , f k#52d j ,kf k . ~6!

Moreover, the propertyqj , j5l implies that number operator
are idempotent: (n j )

25n j . Because of Eq.~6! the one-
particle Fock representation of the algebra~1! and~2! is un-
affected by qj ,k . Instead, the action off l , f l

† ,n l on the
N-particle stateun1 , . . . ,nN& is deformed according to

f l un1 , . . . ,nN&5~2 ! l 21dnl ,1F )k51

l 21

ql ,kG
3un1 , . . . ,nl21, . . . ,nN&,

f l
†un1 , ...,nN&5~2 ! l 21dnl ,0F )k51

l 21

qk,l G
3un1 , . . . ,nl11, . . . ,nN&,

n l un1 , ,nN&5nl un1 , . . . ,nN&, ~7!

wherenlP$0,1%. Equations~7! generalize the correspondin
relations fulfilled by integer statistics particles17 character-
ized by Pk51

l 21 ql ,k5(6) l 21 ~for fermions/bosons!. An ex-
plicit realization of the operatorsf j in terms of spinless fer-
mionic operatorsaj is f j8ajexp(2i(lFlnl), where F l are
Hermitian operators commuting with fermionic degrees
freedom. By direct calculation, relations~1! and ~2! are ob-
tained by settingqjk8exp@i(Fk2Fj)#. This realization has
been suggested in Ref. 15 whereFk[pk , pk being momenta
of a phononic bath coupled to fermionic degrees of freedo
’’

-

n

y.

-
-

f

.

In the following we consider the 1D anisotropic Heisen-
berg model (XXZ model! of spinless fermions

HXXZ52t(
i

~ f i
†f i 111 f i 11

† f i !1U(
i

n in i 11 . ~8!

The operatorsf obey relations~1! and ~2! with qj ,k defined
in close analogy with anyonic relations~see the Appendix!

qj ,k5H q, j .k,

1, j 5k,

q21, j ,k.

qPC ~9!

We point out that postulate~5! is fulfilled sinceqj ,k is a C
number for arbitrary, fixed (j ,k). Relations~3! and~9! imply
thatq is on the unit circle, i.e.,uqu51. Additionally, periodic
boundary conditions~PBC! f i 1L[ f i are chosen, whereL
denotes the period. The parameterst andU are the hopping
amplitude and the Coulomb interaction strength, resp
tively.

It is worthwhile mentioning that Eq.~9! implies fixing an
order on the infinite periodic chain. This order can only
defined locally on the manifoldS1, which needs two charts
for its description. We choose two ‘‘charts’’C18$ j 1 ,...,j N%
andC28$ j N2 l ,...,j N , j 1 ,...,j N2 l 21% on the ring thought as
a discrete subset ofS1. On each chart, the given order is we
defined by interpreting them as ordered sets. The inter
tions between C1 and C2 are $ j N2 l ,. . . ,j N% and
$ j 1 , . . . ,j N2 l 21%. In such sets, the orders defined onC1 ,C2
are identical. Now, inD51, only nearest neighbor~n.n.!
exchanges can take place. Thusqj k , j l

is connected to the n.n

exchangej k↔ j l . On the chartC1 , where j 1, j N , the ex-
change j N↔ j 1 is not a n.n. exchange. To allow for n.n
hopping j N↔ j 1 , we must useC2 on which j N, j 1 . This
implies qj N , j 1

5q21. The picture depicted above is equiv

lent to fixing a periodP08$ j 1 , . . . ,j 11L% on the infinite
periodic chain. Consistency of the PBC with this induc
order is given if the results are independent ofP0 . In the
following, it will be seen that this condition is fulfilled.

The correspondence between Eq.~8! and the deformed
anisotropic Heisenberg model can be established
Sj

(1)8 f j
† , Sj

(2)8 f j , andSj
(z)81/22n j . On site, the opera-

tors Sj
(z) ,Sj

(6) generate the fundamental representation~spin
s51/2! of su(2), but for j Þk

@Sj
~1 ! ,Sk

~2 !#5~11qj ,k!Sk
~1 !Sj

~2 !2d j ,k ,

@Sj
~2 ! ,Sk

~2 !#5~11qj ,k!Sk
~2 !Sj

~2 !2d j ,k ,

@Sj
~z! ,Sk

~6 !#50. ~10!

We now show that theXXZ model~8! is exactly solvable by
means of the coordinate BA. The generalN-particle state on
a chain withL sites can be written as

uC&8 (
1< j 1,•••, j N<L

c~ j 1 , j 2 , . . . ,j N! f j 1

† , f j 2

† ,. . . ,f j N

† u0&.

~11!

The action ofHXXZ on uC&, i.e., the eigenvalue equation
then reads
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U (
l 51

N21

d j l11,j l 11
c~ j 1 , . . . ,j N!

2t(
l 51

N

Ql
~1 !c~ j 1 ,...,j l21, . . . ,j N!

1Ql
~2 !c~ j 1 ,...,j l11, . . . ,j N!

5Ec~ j 1 , . . . ,j N!, ~12!

whereQl
(6)8Ps51

l 21qj l , j s
qj s , j l71 . Using Eq.~9! as the defi-

nition for qj ,k , it follows that

Ql
~2 !5Ql

~1 !51. ~13!

Hence, exactly the same eigenvalue equation as in the o
naryXXZ model is obtained. Consequently, inserting the B

c~ j 1 , . . . ,j N!5 (
pPSN

A~p!expS i (
m51

N

j mkp~m!D , ~14!

the energy E and the two–body scattering matr
S(k,k8)82exp@2iu(k,k8)# for the ‘‘deformed’’ model are
identical with the known terms occurring in the usualXXZ
model.18 Imposing PBC, however, yields

c~ j 2 , . . . ,j N , j 1!5F)
l 52

N

~2qj 1 , j l
!Gc~ j 1 , j 2 , . . . ,j N!

5~2q!N21c~ j 1 , j 2 , . . . ,j N!. ~15!

Equation~15! shows that the fractional statistics produce
twist in the PBC that modifies the periodicity of the Bet
wave function.

Since the twisting factorqN21 does not depend onj 1 , the
starting point of the chosen periodP0 , the boundary condi-
tion is consistent with our choice ofqj ,k . The twist qN21

does not depend on the particles’ configuration, but on
number of particles only. This is crucial because configu
tion dependence of the twisting factor would destroy
solvability of the model, since it modifies the structure of t
exponential functions in imposing PBC on the BA wa
function @making it impossible to extract from Eq.~15! a
relation for the amplitudesA(p)#. So, the coordinate BA
solvability of the model~with PBC! demands a carefu
choice of the functional form of qj ,k . The choice
qj ,k8exp@id(j2k)# for theXXZ model, for instance, leads t
the same structure of theS matrix, but produces incompat
ible boundary conditions.

Since uqu51, q5exp@i arg(q)#. So a phase shift by mul
tiples of arg(q) occurs in the BA wave function on the righ
hand side of Eq.~15!. The Bethe equations~BE! are obtained
as

kjL5arg~@2q#N21!12pI j2 (
m51

N

u~kj ,km!, ~16!

where I jPZ. In the fermionic case, one obtainskjL
52p@ I j1 (N21)/2#2(m51

N u(kj ,km), whereas the hard
core bosonic case yieldskjL52pI j2(m51

N u(kj ,km). In all
cases,I jPZ. Equation~16! differs from the BE for the ordi-
nary XXZ model in the additive term arg(@2q#N21). This
di-

a

e
-

e

term has its origin in the fractional statistics of the particle
and vanishes for integer statistics. Equation~16! was ob-
tained for the 1D XXZ model on a ring threaded by a
external magnetic flux.19,20 We recover the BE of Ref. 20
identifying F[a8arg(@2q#N21), F being the magnetic flux
in units of \c/e.

The limit kN→p2m, where cos(m)8U/2t for uUu<2utu,
in the Nth equation of Eq.~16! relates the statistics with th
ratio U/2t for the ground state,

a5p~L2N22I N11!2m~L22N12!. ~17!

At half filling @N/L51/2, I N5(N21)/2# the energy and the
total momentumP8( l 51

N kl /L of the ground state are af
fected by the statistics’ factora ~Refs. 20 and 18! as follows:

E0~a!2E0~0!5
p sin~m!

4m~p2m!L
a2,

P5
1

2
a, ~18!

whereE0(0) denotes the ground-state energy of the un
formed XXZ model. The same structure of BE has be
obtained in Refs. 21 and 22. In Ref. 22, the two sp
cies of particles, up-spin (s51) and down-spin (s52),
have dynamics governed by two distinctXXZ(s)

Hamiltonians coupled only via a local gauge field, includ
in XXZ(s) by a Peierls-like substitutiont→tWm

(s) , where
Wm

(s)8exp@is(l51
L am2lnl,2s# ~determined by the position o

all particles of opposite species!; a lPR, am1L[am . A
comparison of the BE in Ref. 22 with Eq.~16! shows that
our deformation parameterq can be interpreted as the ‘‘glo
bal’’ coupling constant of the gauge potential by settinga
;(m51

L am2 l . Vice versa, such an interaction produces s
tistics transmutation. In this sense, our deformedXXZ model
belongs to the same class of integrable models introduce
Ref. 22.

In conclusion, we have given a formulation of fraction
statistics in one dimension realized by an anyonic-type
formation of the second quantized commutation rules. Co
dinate BA solvability of the deformedXXZ model demands
a proper choice of the functional form ofqj ,k . The statistics
we have chosen in the present paper preserves the Y
Baxter equation as well as the BA solvability of the und
formed model. The resulting BE are, however, modifie
They show that fractional statistics plays the same role a
gauge field coupled to the undeformed model. System
investigations of fractional statistics seem interesting for
least two reasons. First, fractional statistics may be an a
native approach to handle complicated interactions betw
particles obeying integer statistics. Such interactions co
be modeled deforming the particles’ statistics. Second,
study of ‘‘compatible statistics’’ could be relevant in order
find integrable Hamiltonians characterized bybraided
Yang–Baxter equations~YBE!.23 Such a feature of the YBE
could be closely related to actual braiding of particles in t
dimensions.

A further development of the present approach is to ta
spin into account. A preliminary analysis of the ‘‘deformed
Hubbard model15 shows that fractional statistics modify th
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S matrix; theR matrix obeys a braided YBE. We will repor
on this subject in a forthcoming paper.
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APPENDIX

Here we summarize the commutation properties of tw
dimensional anyons.4,5 The creation/annihilation operator
obey
ty

te

ys
.
.

h
.

hi
t

-

-

b†~xC!b~yC!1q~xC ,yC!b~yC!b†~xC!5dxC ,yC
,

b~xC!b~yC!1q21~xC ,yC!b~yC!b~xC!50. ~A1!

The operatorsb†(xC) @b(xC)# create~annihilate! an anyon at
sitexC8(x1 ,x2). C denotes the path running from1` to xC

keepingx2 constant. The relations above hold ifxC.yC ; in
the casexC,yC , they are satisfied substitutingq↔q21.
Note that xC.yC⇔$x2.y2∨x1.y1 (if x25y2)%. The
functionq(xC ,yC)5q(uxC2yCu) can be simplified~see, e.g.,
Ref. 4! to q5eipn (nPR), wheren denotes thestatistics. If
two anyons are at the same positionxC5yC , then q51.
Otherwise, the standard bosonic or fermionic algebras
deformed by the parameterq.
-
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