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One-dimensionalXXZ model for particles obeying fractional statistics
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We define one-dimensional particles as non-Abelian representations of the symmetriSgrolipe exact
solution of anXXZ type Hamiltonian built up with such particles is achieved using the coordinate Bethe
ansatz. The Bethe equations show that fractional statistics effectively account for coupling an external gauge
field to an integer statistics’ systef50163-182@08)52028-0

The physical behavior of quantum systems is deeply aftheorem. In », Haldane particles and quons capture the
fected by the statistics of the constituting effective degrees oéssential features of anyons.
freedom. Quasiparticles and quasiholes in condensed-matter Recently, a growing interest has been devoted to general-
physics may obey statistics interpolating between fermionidzed statistics in one dimension. A specific way to introduce
and bosonic behavior. Examples are the excitations of twoP =1 fractional statistics has been proposed in connection to
dimensional electron systems exhibiting the fractional quanthe quantization of the solutions of the Calogero mddel.
tum Hall effect! These excitations are callethyons They ~ There, the potential &7 is interpreted as “statistics interac-
have been a subject of intense study also in connection witiion.” The same notion of fractional statistics applies also to
superconductivity and superfluidity’. Fractional statistics of anyons in a strong magnetic field that restricts the allowed
such particles arise from the trajectory dependence of thenergies to the lowest Landau level. The anyon gas, then, is
particle exchange procedure in two-dimensional configuradescribed by an effective-field theory on a ring where the
tion space. This feature makes the concept of anyons purel§ynamics of particles is one dimensionalt is worthwhile
two dimensional. The Fock space formulation of anyon op-hoting that such one-dimensional particles obey fractional
erator algebras takes into account these characteristics. Thtatistics, but they are not “true anyons” sincelin# 2 tra-
creation and annihilation operatofgitroduced as Jordan- jectories in the particle configuration space have no mean-
Wigner transforms of the usual fermions on a two-ingful braiding property. Instead, nonlocal “deformations”
dimensional lattickor as unitary representations of the dif- of the commutation relations furniston-Abelianrepresen-
feomorphism group of R? (Ref. 5] obey deformed tations of the symmetric grougy .
commutation relations if the exchange involves anyons at In this paper, we deal with particles ih=1 that preserve
different spatial positionésee the AppendixN-anyon states the intrinsic nonlocality of two-dimensional anyons, but
are Abelian representations of the braid grddip (Ref. 6 which are still representations &, . This representation is
(whereas bosons and fermions furnish, respectively, the idemo longer Abelian. The second quantized formalism and the
tical and alternating Abelian representations of the symmetFock-space representation is developed. Xi& model for
ric groupSy). These features make anyons different frqm such particles is formulated and solved exactly using coordi-
oscillators, the latter providing a realization of the Gel'fand-nate Bethe ansatz(BA) in D=1.
Fairlie quantum group, which is lacal deformation of the For D=1 we define a set of creation/annihilation opera-
Weyl-Heisenbergbosons or Clifford algebra(fermions.”  tors {f!,f;} for a spinless particle at siie They obey the
The path dependence implies that the one-particle state eformed relations
inextricably related to the complete state of the many-body
configuration. This intrinsic nonlocality makes anyon phys- fJTfk+ qj',kfkf;r= Sk (D
ics very difficult. Even statistical properties of a free anyon
gas are only partially established using the virial expan&ion.
Haldan@ formulated the notion of fractional statistics
With'out any r_eferer!ce to the spatial _dimensIDn The gen- . Whereqfl(li(qj )L Since the operators are path indepen-
eralized Pauli principle is expressed in terms of the reductionyq i L ;

X | : X nt inD # 2 (compare with the AppendixEgs.(1) and(2)
of the single-particle Hilbert space when particles are addef|,\e to constitute a representation &f, and not ofB,.

to a many-body system kegping t_)oun(_:Iar_y conditions fixedyy;s is ensured by the “consistency relations”
Another way to introduce dimensionality-independent frac-

fiftacfif;=0, 2

tional statistics has been formulated in Ref. 10, wigrens gl at ®)
have been introduced. Quons’ fractional statistics result from 95.k= Ak = G »

the “superposition” of statistical properties of bosons and "

fermions!! In D>2, this is consistent with spin-statistics [fifk.dj]=0. (4)
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Such a representation is non-Abelfafror j=k, Eq. (3) In the following we consider thel anisotropic Heisen-
givesq; ;= =1. Hence Eqgs(1) and(2) are an extension of berg model KXZ mode) of spinless fermions
anyon commutation relatiofis to D#2. In contrast to the

true anyonic casésee Appendix g;  has no relation with __ te o fT fya .
the configuration space geometry, but is a free “external” Hxxz tz (Fifie st fiafi) UZ vivisr: (8
parameter.

Relations(1) and(2) are formally analog to quon commu- 1h€ operatord obey relation1) and(2) with q; , defined
tation rulest! Note that the deformation parameter here dedn close analogy with anyonic relatiortsee the Appendjx

pends on two indicesj(k), whereas it does not in quon

commutation rules. Without this index dependence, relation 9. 1=k
(3) directly impliesg?=1. As a consequence, quons obey =11 i=k geC 9
integer statistics in @ if q is aC numbet! (as an operator, gL j<k

it has eigenvaluest1). If q; ==*1 V(j,k), then Eqgs.(1)

and (2) describe spinless fermions or bosons, respectivelyWe point out that postulaté) is fulfilled sinceq;  is aC

However, for application we choosg , being C numbers  number for arbitrary, fixedj(k). Relations(3) and(9) imply

andq; ;=1, see Eq(9), which implies the Pauli exclusion thatg is on the unit circle, i.elg|=1. Additionally, periodic

principle, as for spinless electrons or hard-core bosons.  boundary condition§PBC) f;, =f; are chosen, wheré
Relations(3) and (4) hold if g; \ is an operator commut- denotes the period. The parameteendU are the hopping

ing or anticommuting with bott; and f}. For this reason amplitude and the Coulomb interaction strength, respec-

we add this as a postuldfe tively.
It is worthwhile mentioning that Eq9) implies fixing an
[fl,qj,k]=[fj +dj k] =0. (5) order on the infinite periodic chain. This order can only be

defined locally on the manifol&®®, which needs two charts
for its description. We choose two “chartsC;={j4,...,in}
andCo={jN_|,--siN+J1+--»iN_1—1} ON the ring thought as
a discrete subset &. On each chart, the given order is well

possibility in Eqg.(9). defined by i ; :
. y interpreting them as ordered sets. The intersec-
To develop a Fock representation of the algeldiaand tions between C, and C, are {jn_i,....jn} and

(g), we takev;=f;f; as numbfr opergtors. Relatiof®—(5) (i1, in_i 1 In such sets, the orders defined @p,C,
yield commutators of, an.dfj , fj being unaffected by the 576 igentical. Now, inD=1, only nearest neighbofn.n)
deformation paramete; exchanges can take place. Thys ; is connected to the n.n.
[v;,m]=0, [y, ,fl]:(sj o [y, fill=— & ufr- (6)  exchangej—j,. On the charC,, wherej;<jy, the ex-

' ’ changejy<j1 is not a n.n. exchange. To allow for n.n.

The introduction of two indices for the deformation param-
eter allows the construction of consistent commutation rela
tions even forg; , being C numbers. We make use of this

Moreover, the property; ;=1 implies that number operators hopping jy«j;, we must useC, on which jy<j;. This
are idempotent: #;)?=v;. Because of Eq(6) the one- implies qjN,jlzqfl. The picture depicted above is equiva-
particle Fock representation of the algebtaand(2) is un-  |qnt 1o fixing a periodPy={j,, . ...,j;+L} on the infinite
affected byg; . Instead, the action of,f{,» on the periodic chain. Consistency of the PBC with this induced
N-particle statgn,, ... ny) is deformed according to order is given if the results are independentRyf. In the

following, it will be seen that this condition is fulfilled.

The correspondence between Ef) and the deformed
anisotropic Heisenberg model can be established by
SiV=fl, s(7)=f;, andS?=1/2-»;. On site, the opera-

-1
H aik
k=1

filng, .. =(=)""8 4

XNy, om=1 ), tors S{”,S{*) generate the fundamental representatigpin
-1 s=1/2) of su(2), but forj#k
fiing, ...ngy=(=)""18, o kll Qk,l} (S S =140, 0SS~ 5,
XNy, ... n+1, ... 0y, [SJH ,$7)]:(1+qj,k)s([)sj(7)_5j,k’
ving, Ny =nng, ... .ny), (7 [S?,s)1=0. (10)

wheren, € {0,1}. Equations7) generalize the corresponding
relations fulfilled by integer statistics particléscharacter-
ized by HL;llq,,kz(i)"l (for fermions/bosons An ex-
plicit realization of the operatorf; in terms of spinless fer-
mionic operatorsa; is f;=a;exp(-iZ;®n), where ®, are o _
Hermitian operators commuting with fermionic degrees of |¥)= > (j1.iz2.. .. AVl f] o).
freedom. By direct calculation, relatioris) and (2) are ob- 1sip=res<inst (11
tained by setting;,=exdi(®—®;)]. This realization has
been suggested in Ref. 15 whabg=p,, p, being momenta The action ofHyy; on [¥), i.e., the eigenvalue equation,
of a phononic bath coupled to fermionic degrees of freedomthen reads

We now show that th&XXZ model(8) is exactly solvable by
means of the coordinate BA. The gendraparticle state on
a chain withL sites can be written as
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N-1 term has its origin in the fractional statistics of the particles,
U E 5j|+1,j|+1¢r(j1, N and vanishes for integer statistics. Equatid®) was ob-
I=1

tained for the D XXZ model on a ring threaded by an
N external magnetic fluX®>?° We recover the BE of Ref. 20
—t> Qg it =10 i) identifying ®= a=arg(—qN 1), ® being the magnetic flux
=1 in units ofc/e.
I R ~ The limit ky— 77—, where cosg)=U/2t for |_U|<2_|t|,
in the Nth equation of Eq(16) relates the statistics with the
=Ed(j1,.. N, (12)  ratio U/2t for the ground state,

WhereQ,(i)tH'S;llqjl,jsqjs,jlil. Using Eq.(9) as the defi- a=m(L=N—=2ly+1)—u(L—2N+2). 17

nition for g, it follows that At half filling [N/L=1/2, 1= (N—1)/2] the energy and the

Q7)=Q\"=1 (13) total momentumP=3 ,k /L of the ground state are af-

b fected by the statistics’ factar (Refs. 20 and 18as follows:
Hence, exactly the same eigenvalue equation as in the ordi-

nary XXZ model is obtained. Consequently, inserting the BA  sin(u)

) Eo(@) ~Eo(0)= z =50 a?,
wul,...,jN):WZS A(w)exp(irgljmkm)), (14) L
o P=>a, (18)

the energy E and the two-body scattering matrix
S(k,k")=—exd —if(kk’)] for the “deformed” model are
identical with the known terms occurring in the usxaXz
model® Imposing PBC, however, yields

where Eq(0) denotes the ground-state energy of the unde-
formed XXZ model. The same structure of BE has been
obtained in Refs. 21 and 22. In Ref. 22, the two spe-
N cies of particles, up-sping(=+) and down-spin §=—),
s in 'jl):{n (—qj, )}lﬂ(jlyjz, v have dynamics governed by two distinckXZ)
i=2 o Hamiltonians coupled only via a local gauge (fi()eld, included
B Nel oo - . in XXZ? by a Peierls-like substitution—tW!”) = where
(@™ Wndz, - dn)- A9 W =exdio3l ey N _,] (determined by the position of
Equation(15) shows that the fractional statistics produces aall particles of opposite speciesa;eR, am: =am. A
twist in the PBC that modifies the periodicity of the Bethe comparison of the BE in Ref. 22 with E¢16) shows that

wave function. o N1 _ our deformation parameter can be interpreted as the “glo-
Since the twisting factog™ " does not depend oi, the  bal” coupling constant of the gauge potential by setting
starting point of the chosen perid?h, the boundary condi- ~sL .« . Vice versa, such an interaction produces sta-

tion is consistent with our choice afj . The twistq"™* tistics transmutation. In this sense, our deformetZ model
does not depend on the particles’ configuration, but on thgelongs to the same class of integrable models introduced in
number of particles only. This is crucial because configuraref. 22.
tion dependence of the twisting factor would destroy the |y conclusion, we have given a formulation of fractional
SOlvab”ity of the mOdel, since it modifies the structure of thestatistics in one dimension realized by an anyonic-type de-
exponential functions in imposing PBC on the BA wave formation of the second quantized commutation rules. Coor-
function [making it impossible to extract from Eq15) a  ginate BA solvability of the deformed XZ model demands
relation for the amplitudes\(w)]. So, the coordinate BA g proper choice of the functional form gf . The statistics
SOlVabiIity of the modeI(W|th PBC) demands a careful we have Chosen in the present paper ’preserves the Yang_
choice of the functional form ofq;,. The choice Baxter equation as well as the BA solvability of the unde-
a; k=exi&j—k)] for the XXZ model, for instance, leads to formed model. The resulting BE are, however, modified.
the same structure of tH& matrix, but produces incompat- They show that fractional statistics plays the same role as a
ible boundary conditions. gauge field coupled to the undeformed model. Systematic
Since|q|=1, g=exfi arg@)]. So a phase shift by mul- investigations of fractional statistics seem interesting for at
tiples of arg()) occurs in the BA wave function on the right- |east two reasons. First, fractional statistics may be an alter-
hand side of Eq(15). The Bethe equatior(8E) are obtained  native approach to handle complicated interactions between
as particles obeying integer statistics. Such interactions could
N be modeled deforming the particles’ statistics. Second, the
_ study of “compatible statistics” could be relevant in order to
kiL=arg[—al" 1)+2”|J_,§1 0(kj k). (18 fing” integrable Hamiltonians characterized Hyraided
Yang—Baxter equation&'BE).?® Such a feature of the YBE
where I;eZ. In the fermionic case, one obtainsL  could be closely related to actual braiding of particles in two
=27[l;+ (N-1)/2]-3N_,6(K; ky), whereas the hard- dimensions.
core bosonic case yield§L=27-rIj—2m:10(kj Km) - In all A further development of the present approach is to take
cases] e Z. Equation(16) differs from the BE for the ordi- spin into account. A preliminary analysis of the “deformed”
nary XXZ model in the additive term afg¢qN"%). This  Hubbard modéP shows that fractional statistics modify the
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S matrix; theR matrix obeys a braided YBE. We will report bT(xc)b(yc) +a(xc,yc)b(ye)bT(xe)= 6, Yo
on this subject in a forthcoming paper. cre
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. i 5 . o Otherwise, the standard bosonic or fermionic algebras are
dimensional anyon%® The creation/annihilation operators
obey deformed by the parameteqr
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