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Anderson Localization versus Delocalization of Interacting Fermions in One Dimension
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Using the density matrix renormalization group algorithm, we investigate the lattice model for spin-
less fermions in one dimension in the presence of a strong interaction and disorder. The phase sensi-
tivity of the ground state energy is determined with high accuracy for systems up to a size of 60 lattice
constants. This quantity is found to be log normally distributed. The fluctuations grow algebraically
with system size with a universal exponent=e2/3 in the localized region of the phase diagram. Sur-
prisingly we find, for an attractive interaction, a delocalized phase of finite extension. The boundary
of this delocalized phase is determined. [S0031-9007(97)05095-3]

PACS numbers: 71.30.+h, 72.15.Rn

The influence of electron-electron interaction on Ander- H=—t Z(cfcm + ¢ + Z €;c; c;
son localization has attracted a lot of interest for several i i
years. Many recent theoretical studies [1-5] were moti- + v Z Rittis1 1)
1244 ]
i

vated by the experimental observation [6] of persistent
currents in mesoscopic rings. So far, however, theor
has not been successful in explaining the magnitude q
the effect, even though both interaction and disorder havg, ber isN. For simplicity, we will setr = 1 in some
been considered for the experimental situation of a 1ar98+ ihe formulas below. '

number of transverse channels. For this case, the accu-The ground state energy(¢) depends on the phage
racy of theoretical approaches is rather limited. But every,o energy difference between periodic and antiperiodic

in the case of one dimension, certainly not appmpriat%oundary conditions, AE = (—)N[E(0) — E(w)], the
for the experiment, detailed results are available only foEersistent current I(;;')) ~ —E'(¢), and the ’charge

nd twisted boundary conditionsgy = ¢®cy. The
ngth of the chain is denoted by, and the particle

interacting systems in the absence of disorder [7—-9], OLiitthess D ~ E"(¢ = 0), are a measure of the phase
for disordered systems in the absence of interactions [10 ensitivify of the system ' In the clean limit. .. = 0
: , L&,

However, a clear understanding of the interplay betweer . ., n, the ground state energy can be determined

interaction and disorder has not yet been obtained. from the Bethe ansatz [7,14]. At half-filling, the phase

In this Letter, we present novel results of a deta”ed’sensitivity in the limit of large systema/ — ) is given
guantitative study of a simple interacting-fermion modelby [15]
with disorder. We determine the phase sensitivity of the v ?
ground state energy, i.e., its dependence on boundary En(¢) — Mex = _6—M<1 - 3K p) ()
conditions, with high accuracy for a wide range of \ynere Ey is the ground state energy of thé-site
parameters and system sizes up to 60 lattice constant§ysiem, €., is the energy density in the thermo-

Our main results are (i) a universal behavior of the MSjynamic limit, and v is the Fermi velocity,
value of the logarithmic phase sensitivity, which grows,” — mesin2n)/(m — 2m). The interaction parame-
with system sizeM proportional toM?/3 in the localized gy is K — /47, wheren parametrizes the interaction
region; and (ii) the zero-temperature phase diagramaccording toV = —2rcod2n). ThusMAE = wvK/2.
which shoyv_s, for an .attractive interaction, a delocalized Eqr the noninteracting system, the phase sensitivity in
phase of finite extension. _ _ _ the presence of a single deféet # 0) can be determined
The numerical results are obtained with the densityasjly [16]. In the presence of both electron-electron
matrix renormalization group algorithm (DMRG) [11], interaction and defect, it is more difficult to calculate
which allows the calculation of ground state properties ofA g However, it is known that the ground state and
disordered, interacting-fermion systems with an accuracyhe |ow-lying excitations can be described within the
which is comparable to exact diagonalization, but forfamework of a Luttinger liquid [9,17]. Combining a first-
much larger systems [12,13]. In our implementation ofyrder perturbative calculation with the scaling equations
the DMRG we perform five finite lattice sweeps, keepinggf kKane and Fisher [18], we find in the case of a weak

up to 750 states per block. impurity
We consider a chain of spinless fermions with nearest- MAE — TvK leol M\ 3
neighbor interaction and disorder, - €0 M, ’ (3)
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where M, is a short distance cutoff which is—for the sensitivity and the fluctuations

half-filled band—of the order of the lattice spacing. WM
Using a duality relation between a weak impurity and a (MAE) = 7t — N (6)
weak link [18], we obtain for a strong impurity .
2 1-1/K w? 2
war = 2 (M) " ohar =M (1= 2), ™
leol \ My ’ 4

since the transmission through a strong defect is proThe brackets() denote the impurity average. It is

portional to#?/ey. Figure 1 showsVAE as a function apparent in _Eq._(6) that the pertu_rbation theory breaks
of interaction for' system size#l — 60 and several de- down for arbitrarily weak disorder, if the system is large

fect strengths. The points are numerical results from th er;(zjusgt{](:) Iﬁiallisz;:i((e)IL kr\:\?itwhna”roizize;t?onn V\Ilgr?kﬂ??/\(/)r:;iir
DMRG, the full lines are analytical results from the equa-. : 2 [ 9 .

fons above Tne ol parametr, vas fted n o = PIOPOHOTS 10 L ge Sienelise B
der to obtain agreement between numerical and analyticg yr . o ’ .
results, givingM, = 2. An attractive interaction makes results (using exact diagonalization methods, which

the barrier more transparent, while a repulsive interactioff © straightforward as long & = 0) indicate that it

increases the defect strength. Deviations from the ane{gmains positive for all realizations of the disorder [13],

lytical results are found when the “strong” impurity be- In agreement with a theorem by Leggett [19]. For large

comes so weak that a first-order expansion is no Ionge?yStemS we find an exponential decay of the average

appropriate. In addition, we find further deviations nearphh"’lsle Seﬂﬁ't'v'ty% Ir&thehlocallzed r<_9g|me|, LB, > &, |
V = =2, where the Luttinger liquid becomes unStable'Ijistrik())L?t?(;lr: [23]0 Al/:[roﬁw Oﬁf ni%’;?ﬂgaézé a\l/vﬁgrrem\?ve
AtV = —2, there s an instability with respect to phaseavera ed overl(.)4 realizations of the disordér otential
separationv — 0,K — »). AtV = +2, there is an in- q 9 idered svst f DD’ sit p d% th
stability to formation of a charge-density wave, since at:\r/]ergogsllo e;?ith?%/ii er;:;;; ;Iepnsiti\?iltesair:/(\;eitsmvar(i)f;nés
this point4kr-backscattering processes become relevant.. ge log P Y S

In the presence of a weak random potential, But 0, in the limit of large systemg — e} the following:

we find, generalizing the single impurity result,
&

M )
E EneZkan (5)
0.52M

— 2/3
_ _ et , TIn(MAE) = <—> . 9)
where we introduce disorder by taking the } uniformly &

random distributed over the intervet-W/2, W/2]. At with & = 114/2/W2. In order to check the universality
half-filing, kr = 7/2, the sum>*»_, €,(—1)" can be of the exponent, we calculated the phase sensitivity for
considered as a one-dimensional random walk with  strong disorder up t&v = 15¢, and for different fillings.
steps. Recalling that a random walk leads to a Gaussiayve always found the exponerit/3 in the localized
distribution of distances, we obtain for the average phasgegion.

The interaction changes drastically some of the results
described above. Applying the Kane-Fisher scaling to
Eq. (5), we obtain

anmae) ~ -2 4 076, ®)
MAE = mt—

S
g K | < : MK
= MAE = T2 €, eken <—> (10)
o 2 = My
= since the strength of each defect is renormalized. The
-‘é average phase sensitivity is then given by
@ K WM, (M \G 2572
2 wagy — 7K WM, <—> . (11)
= 2 vomr \ My
~ and the fluctuations are
92 - -1 - . . WZM 2 M 3-2K
2 -15-1-050 05 1 15 2 olny = 0<1__><_> L2
12 v M()

interaction, V' . L .
Again, a repulsive interaction tends to enhance the ef-

FIG. 1. Phase sensitivity of the ground state energy in theective strength of the defects, and an attractive interac-

presence of a single defect as a function of interaction; i i i _
for several defect strengthgy. The ¢ and + points are "tion reduces it Especially, fak' > 3/2, i.e., V < -1,

numerical results (system size = 60). The solid, dashed, the strength qf each defect vanighes o] fa§t that diso_rder
and dash-dotted lines are obtained from Egs. (2), (3), and (4pecomes an irrelevant perturbation; there is no localiza-

respectively. tion [20,21]. We discuss the localized phase> —1,
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FIG. 2. Average logarithmic phase sensitivity as a function ofFIG. 4. Average logarithmic phase sensitivity, as a function
the scaled system size, for = 1.2 and disordeW = 1,2,3. of interaction. for system sizes ranging from 10 to #0;= 1.

For comparison, we _included the result in the clean limit
first. Assuming that only one relevant length scale exists{ = 0. dash-dotted line).

i.e., the localization lengtl¥, one concludes from (11) ) )
that ¢ « W2/K-3) for weak disorder. This is verified in Provided oyap < (MAE).) A crossover is apparent

Fig. 2, where we plot the logarithmic phase sensitivity ador M = £, i.e., when the fluctuations oMAE are
a function of the scaled system size. In the case of the0mparable to its average. For large systems we again
largest systems consideredt (= 60), we averaged over find the fluctuations to be proportional >3, as in
several hundred realizations, whereas for short systen{§€ noninteracting limit. Explicitly, we found from our
(M < 20) we used ensembles of more th&d® realiza- numerical data{ = 1.2, i.e., K =~ 0.71)

tions. With good accuracy, points corresponding to dif- TIn(MAE) = 0.027(MW? G=2K0y2/3, (14)
ferent strengths of disorder lie on the same curve, i.e., the In Fig. 4 we plot(In(MAE)) as a function of interac-

localization length is indeed the only relevant scale, even. : — )
for M > ¢, where the perturbation theory breaks down.rl]Ion and for several system sizes (hée= 1). For com

oL oo . arison, we included the phase sensitivity in the absence

The average phase sensitivity, shown in Fig. 2, is for Iarg(g]c disorder. Betweew ~ —1.6 and~ —1.1, the phase
systems given approximately by (= 1.2), sensitivity remains almost unreduced, even for large sys-
(IN(MAE)) = —M /¢ + 1, (13) tems. We believe that this region corresponds to the de-

localized phase predicted earlier [20,21]. This assertion
is confirmed by an apparent divergence of the localiza-
tion length when approaching the phase boundary from
the localized side [22]. Nevertheless, the phase sensitiv-
ity remains smaller than in the clean system since the pa-
rametersv and K scale downwards due to the random

with the localization lengtly ~ 28W ~%/G=2K),

The rms valueginaag), shown in Fig. 3, is for small
systems proportional ta/G~2K)/2 [see Eq. (12)]. (Note
that oinvar) andoyag are directly related to each other,

i L] LI lllll L) LI B | IIIII A;/r- potential [21].
) - - .
4
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FIG. 3. Rms value of M AE) as a function of scaled system 18 14 1 0.6 0.2

size (again,V = 1.2). The full line is the analytic result interaction. V

according to Eq. (12), which explains the la-behavior. For ’

large systemsM > £, oinwar) iS proportional ta?? (dashed  FIG. 5. Rms value of the logarithmic phase sensitivity versus
line) as in the noninteracting case. interaction, forM = 10 and 30;W = 1.
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