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Disorder-enhanced delocalization and local-moment quenching in a disordered antiferromagnet

Avinash Singh,* Martin Ulmke, and Dieter Vollhardt
Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Universita¨t Augsburg, D-86135 Augsburg, Germany
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The interplay of disorder and spin-fluctuation effects in a disordered antiferromagnet is studied. In the
weak-disorder regime (W<U), while the energy gap decreases rapidly with disorder, the sublattice magneti-
zation, including quantum corrections, is found to remain essentially unchanged in the strong correlation limit.
Magnon energies and Ne´el temperature areenhancedby disorder in this limit. A single paradigm of disorder-
enhanced delocalization qualitatively accounts for all these weak disorder effects. Vertex corrections and
magnon damping, which appear only at order (W/U)4, are also studied. With increasing disorder a crossover
is found atW;U, characterized by a rapid decrease in sublattice magnetization due to quenching of local
moments, and formation of spin vacancies. The latter suggests a spin-dilution behavior that is indeed observed
in softened magnon modes, lowering of Ne´el temperature, and enhanced transverse spin fluctuations.
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I. INTRODUCTION

The manifestation of quantum antiferromagnetism in p
ent cuprates,1 discovered soon after the birth of high-Tc su-
perconductivity in the doped materials,2 has led to intensive
efforts to understand the nature of this phase both within
Hubbard model, as well as its strong-coupling counterp
the quantum Heisenberg model.3 Features such as the su
stantially reduced sublattice magnetization~relative to the
classical value! as deduced from neutron-scatterin
experiments,1 the substantially enhanced linewidth observ
in the two-magnon Raman scattering experiments,4,5 as well
as a detailed fitting of the temperature dependence of
spin-correlation length6,7 have confirmed the importance o
quantum spin fluctuations in these low-dimensional, lo
spin systems. Antiferromagnetic~AF! spin correlations are
also present in other strongly correlated systems, notably
transition-metal oxides such as NiO, V2 O3, LaVO3,
NiS22xSex, and heavy-fermion compounds such as Yb
U2 Zn17, UCd11, UCu5 that exhibit AF ordering ofd and f
electrons, respectively, in their ground states.8–11

Many of the correlated electron systems are intrinsica
disordered, and the metal-insulator transition observed
several amorphous materials, such as doped semicondu
amorphous Ge12xAux and B12xCux alloys, and granular alu
mina, have the character of both the Mott transition and
Anderson localization transition.12 The role of strong disor-
der effects has also been emphasized in the recently stu
transition-metal oxides such as LaNi12xCoxO3 and
NaxWO3.13 The square-root dip in the electronic density
states near the Fermi energy, characteristic of disor
induced enhancement of interaction effects,12 has been found
to change to a linear form and then to a soft quadratic gap
the insulating side.14,13 In some cases, such as
La12xSrxVO3, V2O3, the insulator-metal transition is accom
panied with loss of AF order,13,10 whereas NiS22xSex exhib-
its an AF metallic phase.10

It is therefore of interest to study the interplay of quantu
spin fluctuation and disorder effects. Of particular inter
are questions such as the following:~i! Are transverse spin
PRB 580163-1829/98/58~13!/8683~11!/$15.00
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fluctuations and quantum corrections to the sublattice m
netization enhanced by disorder?~ii ! Does a gapless AF stat
exist, and, if so, at what critical disorder strength is AF lon
range order~AFLRO! destroyed?~iii ! Is the AF state desta
bilized by disorder at finite temperature such that the N´el
temperature~for dimensionsd.2) is lowered? To answe
these questions we will examine the influence of diago
disorder on various properties of the Hubbard antiferrom
net, such as sublattice magnetization, quantum spin fluc
tions, magnon energy and damping, Ne´el temperature, Hub-
bard energy gap, and electronic density of states.

Recently spin-fluctuation effects were examined
impurity-doped antiferromagnets, both within the Heise
berg model,15–19as well as the Hubbard model,20–22 in order
to study magnetic dynamics in cuprate antiferromagn
doped with nonmagnetic and magnetic impurities such as
Al, Ga, and Fe, Ni, Co, respectively. It was found that
static vacancy, created by the replacement of a fermion w
a nonmagnetic impurity, for instance, leads to strong mag
scattering. It is therefore also of interest to contrast scatte
of magnons caused by disorder with that caused by st
vacancies. The third, related, case is that of magnon sca
ing off mobile vacancies, as in hole-doped cuprates, whic
of course much more efficient at destroying AFLRO; sp
correlation lengths of order of 1/Ax for hole concentrationx
have been reported from neutron-scattering studies.23

This study therefore complements earlier works on
disordered Hubbard model where other aspects have b
studied, such as the metal-insulator transition,24,25 local-
moment formation,26–28 phase diagram, etc. A variety o
methods have been used earlier, including the sca
theory,29 field-theoretic approaches,30–32 renormalization
group ~RG!,33,34 real-space RG,35,36 slave-boson
formulation,37 dynamical mean-field theory,38–40 quantum
Monte Carlo studies,41 and unrestricted Hartree-Fock theo
together with random-phase approximation, and Onsa
reaction-field correction to mean-field theory of equivale
spin models.42–44 The disordered Hubbard model exhibi
extremely rich physics and contains the noninteract
Anderson localization transition, the purely interacting ma
8683 © 1998 The American Physical Society
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netic transition, and of course the nontrivial fixed point d
scribing the metal-insulator transition in the disordered,
teracting theory. In addition, various ingredients such as
phenomena of weak localization, disorder-induced enhan
ment of interaction effects leading to singularities at t
Fermi energy, local-moment behavior, etc., are a
contained.25 Generally, the simultaneous presence of inter
tion and disorder leads to a new coupling of the quant
degrees of freedom in two-particle quantities that has
counterpart in noninteracting, disordered, or interacting, p
systems.

We consider the following Hubbard Hamiltonian wit
random on-site energies, and with a filling of one fermi
per site, so that an AF ground state is obtained:

H5(
is

e i n̂is2t (
^ i j &s

~ âis
† â j s1H.c.!1U(

i
n̂i↑n̂i↓ . ~1!

The random on-site energiese i are chosen from a uniform
distribution with2W/2,e i,W/2, the distribution widthW
parametrizing the disorder strength. We consider both
strong correlation limit, with the correlation termU much
larger than the free-particle bandwidthB52Zt, where Z
52d is the coordination number, as well as the intermedi
correlation regime, withU;B. For concreteness, we con
sider the square lattice, generalization to three dimens
and to other bipartite lattices being straightforward.

We will use several methods/approximations in this p
per. The broken-symmetry state is obtained in the un
stricted Hartree-Fock~UHF! approximation, and transvers
spin fluctuations about this state are studied in the rand
phase approximation~RPA!. Disorder is treated both pertur
batively as well as within a numerical diagonalization a
proach on finite lattices. In the latter approach t
eigenfunctions and eigenvalues of the HF Hamiltonian in
fully self-consistent state are used to obtain sublattice m
netization, energy gap, and the magnon spectrum.
T-matrix approach, used earlier for impurities,20 is also em-
ployed for comparison. Quantum spin-fluctuation correctio
are obtained at the one-loop level.45 The Néel temperature,
energy gap, and electronic spectrum are also studied w
the dynamical mean field theory~DMFT!.40

The outline of the paper is as follows. Section II dea
with the reduction of the Hubbard gap due to formation
disorder-induced states. Disorder renormalizations of
magnon energy, damping, and sublattice magnetization
described in Secs. III and IV, based on results of a pertu
tive analysis in powers ofW/U, discussed in the Appendix
A qualitative explanation of the disorder effects is given
Sec. V in terms of the notion of disorder-enhanced deloc
ization. Section VI describes the crossover to the strong
order regime (W.U), where the electronic spectrum is ga
less, and spin vacancies are formed due to quenching of l
moments. Magnon softening, enhancement in transverse
fluctuation due to spin vacancies, and robustness of the
less AF state are discussed. Conclusions are given in
VII.

II. DISORDER-INDUCED STATES IN THE GAP

In this section we examine the formation of disorde
induced states within the Hubbard gap that reduce the ch
-
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gap and determine the critical disorder strength at which
gap vanishes. We use theT-matrix approach and a numerica
UHF approach, described in Secs. II A and II B, respective
TheT-matrix approach is exact for a single impurity, and h
been used earlier to study the formation of defect sta
within the gap due to a single nonmagnetic impurity in t
Hubbard AF.20 In order to use this approach for the diso
dered AF, with random potentials onevery site, we make a
local approximationin which we consider a single site, an
treat the random potentiale i on this site as an impurity po
tential. Comparison with results of the numerical UHF ana
sis, in which disorder is treated exactly, indicates that t
approximation actually works quite well, particularly in th
strong correlation limit, where states are strongly localiz
Spin-fluctuation processes will lead to small changes in
energy gap of orderJ in the strong-correlation limit.

A. T-matrix approach

Within this approach the location of impurity-induce
states is obtained from the pole in theT matrix, Ts(v)
5e i /(12e i@gs

0(v)# i i ), where @gs
0 # i i is the local-host

Green’s function. For the pure AF it is given~in the Hartree-
Fock approximation! by @gs

0(v)# i i 5(1/N)(k(v7sD)/(v2

2Ek
2), for site i in theA or B sublattice.20 Here 2D5mU is

the Hubbard energy gap in the pure AF,Ek5AD21ek
2 is the

AF band energy, andD is obtained from the self-consistenc
condition (1/N)(k(2Ek)

215U21.
Now, for a given disorder strengthW, the inverse poten-

tial ~absolute value! has a lower bound 1/ue i u.2/W. There-
fore poles in theT matrix are present foru@gs

0 # i i u.2/W, so
that disorder-induced states are formed within the gap
shown by hatched regions in Fig. 1. If2D̃ and D̃ mark the
energies~shown by arrows! up to which states are formed
then D̃ is obtained from@gs

0(2D̃)# i i 52/W. The remaining

Hubbard gap 2D̃ is thus obtained from the solution of

1

N(
k

D1D̃

Ek
22D̃2

5
2

W
. ~2!

A plot of the normalized energy gap 2D̃/2D is shown in Fig.
2 as a function of the relative disorder strengthW/U for
U/t510, indicating an almost linear reduction with disord
strength.

FIG. 1. Local-host Green’s function@gs
0(v)# i i vs v in the pure

AF state. Intersections with lines 2/W and22/W show the extent to
which disorder-induced states are formed within the Hubbard g
In all figures energies are in units of the hopping parametert.



ep
fro
ga

l

s

.

e-
on
d

th
ri
i

er
rd
e
u
w
ve
o
e
nu
nc
e

tio
T

ls
ic
er

ith
e of
try.
pic

order
re

der-
rse

ec-
tor

red

ms

elf-
r-

der

he

0
t

PRB 58 8685DISORDER-ENHANCED DELOCALIZATION AND LOCAL- . . .
With increasing disorder strength states are formed de
in the Hubbard gap, and when states have approached
both sides in the middle of the Hubbard gap, the energy
vanishes. The critical disorder strengthWc at which the en-
ergy gap 2D̃ vanishes is therefore given by@gs

0(0)# i i

52/Wc , which yields the following equation for the critica
disorder strength:

1

N(
k

D

D21ek
2

5
2

Wc
. ~3!

Considering the strong-correlation limit as a special ca
and keeping terms up to ordert2/U2, the critical disorder
strength is then given byWc /U5118t2/U2, where we used
m5128t2/U2 and (1/N)(kek

254t2 for the square lattice
Thus, with decreasing interaction strength, the ratioWc /U
actually increases. This is because the kinetic energy b
comes relatively important with decreasing interacti
strength, and the bandwidth starts competing with disor
strength.

B. Numerical UHF analysis

In order to check the validity of theT-matrix approxima-
tion, we have also used a numerical UHF analysis. In
approach, the HF Hamiltonian on a finite lattice is nume
cally diagonalized self-consistently, so that disorder
treated exactly. This approach has been described earli
the context of hole/impurity doping in the Hubba
antiferromagnet.46,47 The energy gap is obtained from th
energy difference between the lowest-energy state of the
per Hubbard band and the highest-energy state of the lo
Hubbard band. Configuration averaging is performed o
100 different realizations of the random on-site potentials
a 10310 lattice. The reduction in energy gap with disord
strength using this method is also shown in Fig. 2. The
merical analysis shows a saturation of the energy differe
at W/U;1 due to finite system size. Deviations from th
T-matrix approach are more pronounced at lower interac
strengths where the fermion states are more extended.
almost linear reduction of energy gap with disorder is a
seen at finite temperatures, as shown in Fig. 3. The crit
disorder strength decreases rapidly with increasing temp
ture.

FIG. 2. Normalized energy gap vsW/U at T50, from the
T-matrix analysis~line!, and the numerical UHF analysis for a 1
310 lattice~squares!.
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III. MAGNON RENORMALIZATION

Magnons are the low-energy excitations associated w
transverse spin fluctuations in the broken-symmetry stat
systems possessing continuous spin-rotational symme
Therefore they play an important role in several macrosco
properties such as the temperature dependence of the
parameter, Ne´el temperature, specific heat, etc. We therefo
consider the magnon propagator and obtain the disor
induced renormalizations in magnon energies, transve
spin correlations, and the quantum spin-fluctuation corr
tion to sublattice magnetization. The magnon propaga
with site indices i , j is defined in terms of
spin-lowering and spin-raising operators byGi j

21

5^CGuT@Si
2(t)Sj

1(t8)#uCG&. We take the Green’s-function
approach and write the RPA result inv space as

G215
xdis

0

12Uxdis
0

5
G0

12SG0
. ~4!

Here the matrix~in site indices! xdis
0 is the zeroth-order

antiparallel-spin particle-hole propagator for the disorde
AF, with matrix elements given by @xdis

0 (v)# i j

5 i *(dv8/2p)@g↑(v8)# i j @g↓(v82v)# j i , written in terms of
the one-particle Green’s function@gs(v)# i j , and evaluated
in the self-consistent, broken-symmetry state. Byxpure

0 we
define the corresponding quantity for the pure AF, in ter
of which the matrixG05xpure

0 /(12Uxpure
0 ) is the magnon

propagator for the pure AF. Furthermore, the disorder s
energy S5U2dx0 is expressed in terms of the disorde
induced perturbationdx0[xdis

0 2xpure
0 . Details of the pertur-

bative analysis fordx0 in the strong-coupling limit are given
in the Appendix, and we use the result here for the disor
self-energyS that has diagonal and nearest-neighbor~NN!
terms. For the pure AF in the strong-coupling limit and in t
two-sublattice basis~indicesA,B), the propagator ink space
takes the form46

@G0#21~k,v!5F11v gk

gk 12v
G , ~5!

in energy units where 2J58t2/U51. Here gk[(coskx
1cosky)/2, so that in real space@G0#21 has only diagonal
elements,@G0# i i

21516v for site i in A and B sublattices,
and NN matrix elements@G0# i ,i 1d

21 51/Z, wherei 1d refers
to NN of i .

FIG. 3. Energy gap vsW from the numerical UHF analysis a
different temperatures~shown against plotting symbols!.
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8686 PRB 58AVINASH SINGH, MARTIN ULMKE, AND DIETER VOLLHARDT
We first consider the configuration-averaged self-ene
^S&5U2^dx0&. This approximation neglects vertex corre
tions that, however, appear only at order (W/U)4, and are
discussed separately in the next section. From the res
given in the Appendix for the matrix elements ofdx0 up to
order (W/U)2, we obtain ^S i i &52s and ^S i ,i 1d&
52s/Z, in units ofU2t2/D3, wheres[(1/6)W2/U2. Sub-
stituting the translationally symmetric^S& in Eq. ~4!, Fourier
transforming@G0#212^S&, and finally inverting, we obtain
the following expression for the renormalized magn
propagator ink space and the two-sublattice basis:

G21~k,v!52
1

2

1

A12gk
2 F 12

v

2J̃
2gk

2gk 11
v

2J̃

G
3S 1

v2ṽk1 ih
2

1

v1ṽk2 ih
D , ~6!

containing both the retarded and advanced parts having p
below and above the real-v axis, respectively. HereJ̃[J(1
1s), andṽk52J̃A12gk

2 is the disorder-renormalized mag
non energy. Thus atO(W/U)2 the form of the magnon
propagator remains unchanged, and there is only
momentum-independent multiplicative renormalization
magnon energies, leading to an effective stiffening of
magnon modes by disorder. An upward shift of the magn
band in the strong-correlation and weak-disorder limit h
also been observed in a numerical RPA study in th
dimensions.43

This effective enhancement of the magnon energy s
can also be viewed as resulting from the enhancement in
configuration-averaged NN exchange energy^t2/(U1e i
2e j )& which, to second order inW/U, is (11s)t2/U. To
the extent that the finite-temperature reduction in sublat
magnetization due to thermal excitation of magnons is s
pressed by this enhancement, the disordered AF exhib
slower m(T) vs T falloff, and therefore ahigher Néel tem-
perature~for D.2). For strong coupling, the Ne´el state is
thereforestabilizedby weak disorder, as also reported in t
DMFT ~Ref. 40! and the Onsager-reaction-field44 studies.

Quantum correction to sublattice magnetization. As only
the effective exchange energy scale gets modified in Eq.~6!,
while the form is not changed by disorder,46 the magnitude
of equal-time, same-site transverse spin correlations^Si

2Si
1&

and^Si
1Si

2& remain unchanged. These transverse spin co
lations are obtained by frequency integration of the diago
elements of transverse spin propagators,^Si

2(t)Si
1(t8)&

52 i *(dv/2p)@G21(v)# i i exp$2iw(t2t8)%, where the ap-
propriate part~retarded or advanced! of G21 is taken de-
pending on whethert8,t or t8.t. Takingt8→t2, and using
the retarded part ofG21 from Eq. ~6!, we obtain

^Si
2Si

1&5
1

2

1

N(
k

F 1

A12gk
2

21G , ~7!
y

lts

les

a
f
e
n
s
e

le
he

e
-
a

e-
al

^Si
1Si

2&5
1

2

1

N(
k

F 1

A12gk
2

11G .

Here the second result is obtained using the relations
GAA

12(v)5GBB
21(v) that follows from spin-sublattice sym

metry. The result for total transverse spin fluctuati
^Si

2Si
11Si

1Si
2&, is thus identical to the RPA result for th

pure Hubbard AF,45 as well as the spin-wave-theory~SWT!
result for the quantum Heisenberg antiferromag
~QHAF!.48,49 Therefore up to order (W/U)2 the quantum
spin-fluctuation correction to sublattice magnetization in
strong-coupling limit remains unchanged from the sp
wave-theory resultdmSF5(1/N)(k@(12gk

2)21/221#'0.39
in two dimensions.48,49

IV. VERTEX CORRECTIONS AND MAGNON DAMPING

In this section we consider vertex corrections that w
neglected in the previous section due to use of
configuration-averaged self-energy^S& in Eq. ~4!. As at
higher orders this approximation produces terms l
G0^S&G0^S&G0 in Eq. ~4!; we therefore subtract out thi
term and focus here on the configuration-averaged pro
self-energy at second order,

G5^SG0S&2^S&G0^S&, ~8!

which precisely incorporates the vertex corrections.
shown later in this section, this second-order scattering p
cess results in magnon damping, which therefore only
pears at order (W/U)4. We note here that the term ‘‘magno
damping’’ in this section refers to the decay of a moment
mode, and not to the decay into particle-hole excitatio
which is energetically ruled out in the strong-correlati
limit where J!U.

Considering the matrix elementG i j , we note that sinceS
is only limited to diagonal and NN matrix elements, if sitesi
and j are far apart, then there are no correlations between
two S terms, and the difference vanishes. Therefore
proper self-energyG arises only from local correlations in
the disorder self-energy terms, and has diagonal, NN,
next-nearest-neighbor~NNN! matrix elements. The vertex
corrections therefore result in new NNN spin couplings
the magnon propagator, besides renormalizing the NN c
plings. Such longer-range spin couplings also arise in
Hubbard AF at intermediate and weak couplings.

For the square lattice (Z54), we give below the results
for matrix elements ofG for the casei in A sublattice (i
PA), results for the other case following from symmetr
Also given are the results after substitution of the mat
elements ofG0(k,v), obtained from Eq.~5!. We now illus-
trate the evaluation ofG for the diagonal-matrix element
Expanding the matrix product, and using the property
the disorder self-energy that the diagonal elementS i i equals
the sum of the NN elementsS i ,i 1d , this can be written
as G i i 5@(^S i ,i 1dS i 1d8,i&2^S i ,i 1d&^S i 1d8,i&)(Gii

0 1Gi 1d,i
0

1Gi ,i 1d8
0

1Gi 1d,i 1d8
0 )#, where summation ove

d and d8 is implied. Configuration averaging, withs2

[^e i
2&/U2 and s4[^e i

4&/U4, for the second and fourth
moments, yields (̂S i ,i 1dS i 1d8,i&2^S i ,i 1d&^S i 1d8,i&)
5Z22@(s42s2

2)1(s413s2
2)ddd8#. Substituting Gi j

0 (v)
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5(1/N)(kG
0(k,v)exp$ik•(r i2r j )%, and taking the appro

priate matrix elements ofG0(k,v) in the two-sublattice ba-
sis, depending on sublattices of sitesi and j , yields the ex-
pression forG i i in Eq. ~9!. Similarly evaluating the NN and
NNN elements, withi 1d, i 1k, and i 1k8 standing for the
NN, NNN ~diagonal!, and NNN~straight! of i , respectively,
we obtain

G i i 5~s42s2
2!@GAA

0 1~GAB
0 1GBA

0 !gk1GBB
0 gk

2#

1Z21~s413s2
2!@GAA

0 1~GAB
0 1GBA

0 !gk1GBB
0 #

5~s42s2
2!@~12v!~12gk

2!/~vk
22v2!#

1Z21~s413s2
2!@2~12gk

2!/~vk
22v2!#,

G i ,i 1d5Z21~s42s2
2!@~GAA

0 1GBB
0 !~11gk

2!

12~GAB
0 1GBA

0 !gk#14Z22s2
2@~GAA

0 1GBB
0 !

1~GAB
0 1GBA

0 !gk#

5Z21~s42s2
2!@2~12gk

2!/~vk
22v2!#

14Z22s2
2@2~12gk

2!/~vk
22v2!#,

G i ,i 1k5Z22~s42s2
2!2@GAA

0 coskxcosky

1~GAB
0 1GBA

0 !gk1GBB
0 #

5Z22~s42s2
2!2@$2~12gk

2!2~12v!

3~12coskxcosky!%/~vk
22v2!#,

G i ,i 1k85Z22~s42s2
2!@GAA

0 g2k1~GAB
0 1GBA

0 !gk1GBB
0 #

5Z22~s42s2
2!@$2~12gk

2!

2~12v!~12g2k!%/~vk
22v2!#. ~9!

Here the summation over momentumk is implied. A
straightforward check confirms that the sum of matrix e
mentsG i i 1ZG i ,i 1k1ZG i ,i 1k8 involving sites of the same
sublattice ~diagonal and NNN! exactly equals the sum
ZG i ,i 1d involving sites on opposite sublattices. This ensu
that the Goldstone mode, which has amplitudes 1 and21 on
the two sublattice sites, is preserved, as expected from
continuous spin-rotational symmetry. We also notice that
various terms involvek sums of the type(k2/(c2k22v2)
from long-wavelength internal magnon modes. Therefore
self-energy terms are all nonsingular in two dimensions.

We now proceed with the magnon renormalization due
this proper self-energy correctionG up to orderW4. To this
order, it is sufficient to examine the lowest-order correct
^quGuq& to the eigenvalue of theU(12Uxpure

0 ) matrix for
the pure AF. The relevant eigenvalue is 12Av21gq

2 in en-
ergy units such that 2J51. The magnon amplitudes for sta
uq& are sinu/2 and2cosu/2 in the two-sublattice basis, wher
cosu5v/Av21gq

2 and sinu5gq /Av21gq
2.21 For v5vq

5A12gq
2 the magnon energy, these amplitudes beco

A12vq and 2A11vq, respectively. Using the matrix ele
ments ofG from above we obtain for the eigenvalue corre
tion dlq

(2)5^quGuq&,
-

s

he
e

e

o

n

e

-

dlq
~2!5

2

N (
i PA

@sin2~u/2!~G i i 1G i ,i 1kZcosqxcosqy

1G i ,i 1k8Zg2q!2sin~u/2!cos~u/2!G i ,i 1dZgq#

1
2

N (
j PB

@cos2~u/2!~G j j 1G j , j 1kZcosqxcosqy

1G j , j 1k8Zg2q!2cos~u/2!sin~u/2!G j , j 1dZgq#.

~10!

In the second term above~for sites j in the B sublattice! the
matrix elements ofG follow from Eq. ~9! with v replaced by
2v, in view of Eq. ~5!. The magnon energy for modeq is
then given by the solution of 12Aw21gq

22dlq
(1)

2dlq
(2)(v)50. Heredlq

(1)52s(12gq
2) is the eigenvalue

correction due to the first-order self-energy^S&; its effect on
magnon stiffening has been discussed earlier.

We first consider the magnon renormalization in the lon
wavelength (q!1), low-energy (v!1) limit for simplicity.
We can dropv in the numerators in Eq.~9! for the self-
energyG, which removes the sublattice dependence, and
above eigenvalue correction simplifies in this limit to

dlq
~2!~v!1!5@G i i 1G i ,i 1kZcosqxcosqy

1G i ,i 1k8Zg2q2G i ,i 1dZgqsinu#

5Z@G i ,i 1d~12gqsinu!

2G i ,i 1k~12cosqxcosqy!

2G i ,i 1k8~12g2q!#

'aq2. ~11!

As expected the eigenvalue correction goes likeq2. Here the
identity G i i 5Z@G i ,i 1d2G i ,i 1k2G i ,i 1k8#, which ensures the
preservation of the Goldstone mode has been used, and
coefficienta is given by

a5ZS G i ,i 1d

4
2

G i ,i 1k

2
2G i ,i 1k8D . ~12!

Considering now the case of a generalv, we find that the
following terms are present in addition to those given in E
~11!:

dlq
~2!2dlq

~2!~v!1!5vcosu~1/N!(
k

3@~s42s2
2!~12gk

2!/~vk
22v2!

22Z21~s42s2
2!cosqxcosqy

3~12coskxcosky!/~vk
22v2!

2Z21~s42s2
2!g2q~12g2k!/~vk

2

2v2!#. ~13!

We now focus on the imaginary part of this second-ord
correctiondlq

(2) . For this purpose we examine the intern
momentum sums of the type (1/N)(k2vk

2/(vk
22v2) that ap-

pear in the eigenvalue correction above. Using the follow
identity for the imaginary part,
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I
1

N(
k

2vk
2

vk
22v2

5p
1

N(
k

vkd~vk2v!5pvN~v!,

~14!

for positivev, we obtain the imaginary part in terms of th
magnon density of statesN(v). We consider the two limit-
ing cases of low-energy magnon modesv!1 and high-
energy modes withv;1. For long-wavelength, low-energ
modes, N(v);v, therefore Idlq

(2);Dq2v2, where D
5Ia/v2 in terms of theq2 coefficient given in Eq.~12!. We
thus find the magnon energy to be given by

vq5cq@11 iDq2#, ~15!

where c is the renormalized magnon velocity. The rat
Gq /vq of the magnon damping term to the energy thus v
ishes likeq2 in the long-wavelength limit, indicating wea
disorder scattering caused by the averaging-out of the on
potential disorder at long length scales.

Long-wavelength magnon modes therefore continue to
well-defined excitations even with disorder. However,
short-wavelength, high-energy modes with energyv;1, the
presence in the imaginary term of the magnon density
states, which actually diverges~logarithmically in two di-
mensions! at the upper band edge at energy 2J, indicates that
high-energy modes are strongly damped. A self-consis
evaluation is therefore required, with an imaginary term
the internal magnon mode propagator. This leads to a s
consistent magnon damping of order (W/U)4. In as much as
the two-magnon Raman scattering process probes s
wavelength, high-energy magnon modes, this magnon da
ing of order (W/U)4 will be important in an analysis o
Raman linewidth in disordered antiferromagnets.

V. DISORDER-ENHANCED DELOCALIZATION

All the disorder effects in the AF state obtained so far c
be understood within a single paradigm ofdisorder-
enhanced delocalization, i.e., an enhancement of the effe
tive t/U ratio due to disorder. Thus, the disorder-induc
enhancement of magnon energy scale and Ne´el temperature
in strong coupling, as well as the reduction of sublatt
magnetization~discussed in the Appendix!, can be viewed as
arising from this enhancement of the effectivet/U ratio. This
delocalization effect of disorder, contrary to its usual te
dency to localize, is characteristic of the AF state with
inherent localization due to Coulomb barriers, and can
understood as follows. A positive on-site energye i reduces
the potential barrier for the majority-spin electron, which e
hances its probability for tunneling through, thereby low
ing the on-site density. On the other hand, a negative on
energy increases the potential barrier, which has aweaker
effect if the electron is already localized. Thus the effects
positive and negative on-site energies areasymmetrical,
leading to enhanced delocalization on the average. T
asymmetrical effect is clearly seen in Fig. 4 showing t
electronic densities for different on-site energies, obtain
within the DMFT.

This disorder-enhanced delocalization also qualitativ
accounts foroppositedisorder effects onTN that are ob-
served for strong and weak coupling. While for strong co
-
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pling, disorder enhancesTN and stabilizes the Ne´el state, the
behavior is reversed for weak coupling.40,44 Both behaviors
can be understood in terms of an effectiveU/t ratio that
decreases with disorder. This is because in the pure Hub
antiferromagnetTN vs U/t actually goes through a maxi
mum, so that with decreasingU/t, TN is either enhanced o
suppressed depending on whether one is on the strong
weak-coupling side of the peak.

Similar effects are also seen in the magnon velocityc
5vq /q in the limit q→0, which also shows a pea
structure.46 For this purpose we have considered the lo
energy magnon modes on a 10310 lattice. Magnon energie
in the RPA are obtained by exact diagonalization of t
x0(v) matrix, evaluated in the self-consistent state using
numerical UHF approach.46 The low-energy modes are four
fold degenerate for the pure AF on a square lattice, a
therefore the normalized magnon velocity is obtained by
eragingvn(W)/vn(0) over the four lowest-energy mode
The normalized magnon velocity, configuration averag
over 20 different configurations, is shown in Fig. 5, for se
eral values ofU/t. For strong coupling, the magnon veloci
increases with disorder, almost quadratically, in agreem
with the perturbative result from Eq.~6!. The behavior is
reversed for weak coupling, and the magnon velocity
creases with disorder strength. As the temperature de
dence of the sublattice magnetization in the low-tempera
limit depends only on the energy scale of low-energy m
non modes, this also implies slower~faster! temperature fall-
off of m in the strong-~weak-! coupling limit.

FIG. 4. Spin-dependent electronic densities on theA sublattice
vs on-site energy in the low-temperature ordered state as obta
within the DMFT. The bandwidth is chosenB58, as ind52.

FIG. 5. Normalized magnon velocityc(W)/c(0) vs W/U for
several interaction strengths, obtained from the low-energy mag
modes on a 10310 lattice.
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VI. STRONG DISORDER „W>U…

AND CROSSOVER BEHAVIOR

We have seen earlier that with increasing disor
strength, the energy gap decreases almost linearly withW,
and eventually closes whenW;U. Therefore forW.U,
assuming a single-occupancy constraint, the two Hubb
bands would overlap, indicating that single occupancy for
sites is no longer energetically favorable. Electrons from
highest-energy sites~with e i.U/2) are transferred to the
lowest-energy sites~with e i,2U/2), making them doubly
occupied and shifting up the energy byU. The electronic
states associated with these essentially empty and do
occupied sites are therefore located near the Fermi energ
U/2. As these unoccupied and doubly occupied sites are n
magnetic, the sublattice magnetization starts falling re
tively rapidly with disorder strength. In the limitt!U,W the
bands are nearly flat with bandwidth;W, and the overlap
region is;(W2U), so that a simple estimate for the fra
tion of these nonmagnetic sites yields

x;
W2U

W
, ~16!

indicating an almost linear decrease in sublattice magne
tion for W;U. Thus a crossover takes place atW;U from
the essentially flat sublattice magnetization to an almost
ear falloff with disorder. This is clearly seen in Fig. 6 whe
the configuration-averaged sublattice magnetization obta
within the UHF approximation is plotted against the disord
strengthW.

However, a more significant consequence of the form
tion of these nonmagnetic sites is that they essentially
like spin vacanciesin the antiferromagnet, which leads t
spin-dilution behavior, as discussed in the following subs
tion. The above picture suggests that forW.U the system
can be viewed as a composite of a disordered AF withW̃
5U, and a spin-diluted system with a concentrationx5(W
2U)/W of spin vacancies. Strong magnon scattering
static vacancies, leading to substantial softening of lo
energy, long-wavelength modes and magnon damping
been obtained earlier.16,18,21 The ratio of magnon damping
term to its energy now goes like (W2U)/W, to be con-
trasted with the small damping ratio (W/U)4q2 in the weak-
disorder regime, obtained earlier in Sec. IV. Vacanc

FIG. 6. Sublattice magnetizationm vs W at the HF level for a
10310 lattice~dashed line!, and including spin fluctuations~solid
line!.
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induced enhancement in transverse spin fluctuation has
been studied, and we discuss this in the following subsect

A. Enhanced fluctuations due to spin vacancies

We present a simple estimate of the enhancemen
transverse spin fluctuations due to spin vacancies. We c
sider the following Hubbard Hamiltonian on a square latt
with binary-distributed, random NN hopping:

H52 (
, i j .s

t i j ~ âis
† â j s1H.c.!1U(

i
n̂i↑n̂i↓ , ~17!

where the hopping termt i j 50 if sites i or j are vacancy
sites, andt i j 5t otherwise. Thus for a vacancy on sitei , all
hopping termst i ,i 1d connectingi to its NN sitesi 1d are set
to zero. The vacancy site is thus completely decoupled fr
the system. Half-filling is retained by having one fermion p
remaining site. We consider theU/t→` limit, where the
local moments are fully saturated, and the model maps to
localized-spin Heisenberg model. In this limit the vacan
problem becomes identical to the spin vacancy problem
the QHAF, for which magnon renormalization was studi
earlier.16

The structure of thex0(v) matrix in the host AF, and the
modification introduced by spin vacancies has been con
ered earlier in the context of static impurities.21 Since the
vacancy spin is completely decoupled from the system,
magnitude of the diagonal-matrix element@x0# i i on the va-
cancy sitei is irrelevant. To minimize the perturbation, w
treat the vacancy site as occupied with an isolated spin. F
vacancy on sitei , a perturbation is induced in the neighbo
hood due to the absence of hopping between vacancy
and NN sitesi 1d. In terms of the notation used in Sec. II
the following self-energy correctionS5U2dx0 is obtained:

S i i 51,

S i ,i 1d5S i 1d,i5S i 1d,i 1d51/4, ~18!

where again 2J has been set to 1. Thus, a diagonal contrib
tion S i i arises if a vacancy exists either on sitei , or on any
of the four NN sitesi 1d. For a finite vacancy concentratio
x, the probability that a vacancy exists on a site isx. There-
fore, configuration averaging yieldŝ S i i &52x, and
^S i ,i 1d&52x/4. From Eq.~4! we obtain the same expressio
for the magnon propagator as in Eq.~6!, except that nowJ̃

[J(122x), so thatṽk52J(122x)A12gk
2 yields a soften-

ing of the magnon mode, reflecting the spin-dilutio
behavior.50 This magnon softening is in contrast to the sti
ening in the weak-disorder regime, obtained earlier in S
III. Enhanced thermal excitation of magnons due to this so
ening will result in a faster temperature falloff of the subla
tice magnetization, and hence to a lowering of the Ne´el tem-
perature.

Since the form of the magnon propagator is not chang
as already discussed in Sec. III, the transverse spin cor
tions ^Si

2Si
1& and ^Si

1Si
2&, as well as the lattice-average

spin-fluctuation correction to sublattice magnetization
main unchanged. Therefore, from the SWT result given a
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Eq. ~7!, dmSF'0.39 in two dimensions. However, as th
number of spins is reduced to 12x, the quantum correction
per spinis enhanced.

In a recent numerical, finite-size study of the sp
vacancy problem,51 focusing on the exact evaluation o
transverse spin fluctuations in the RPA, thex dependence o
the quantum correction per spindmSF/(12x) was found to
be best described by the expression 0.3910.42x16.5x3.
This results in a nearly vanishingO(x) term in dmSF, in
agreement with the perturbative result obtained above.
lattice-averaged sublattice magnetization for the disorde
AF, obtained by accounting for the quantum spin-fluctuat
correction usingm5mHF2dmSF, with dmSF5(12x)(0.39
10.42x16.5x3), where the vacancy concentrationx5(W
2U)/W for W.U, is compared with the HF result in Fig. 6
The crossover atW;U is again clearly seen from the rap
decrease in sublattice magnetization.

B. Gapless antiferromagnetic state

The above result indicates that substantial AF order
remains even forW;U, where the energy gap closes. Sin
AF order persists forW.U the gapless AF state is appa
ently quite robust even in two dimensions. This feature w
also observed in the quantum Monte Carlo study ind52,41

where substantial AF correlations were seen forW5U
54t, while the compressibility indicated an absence of
charge gap. This leads to the possibility, in three dimensio
of a metallic AF state, if states at Fermi energy are not
calized. Gapless AF states, both metallic and insulating, w
also obtained for the three-dimensional disordered Hubb
model, the phase diagram of which has been recently stu
within the UHF approach.42 A region of metallic AF state in
d53 was also recently identified in thet2t8 Hubbard model
without disorder; here it is the NNN hopping amplitudet8
that leads to frustration of AF order.52

The robustness of the gapless AF state is also seen fro
DMFT calculation of the Ne´el temperatureTN , for a rectan-
gular distribution ofe i , as obtained from an extrapolation
zero of the inverse AF susceptibility. Both exact enumerat
and Monte Carlo evaluation were employed. Details of
application of DMFT to the disordered Hubbard model ha
been described earlier,40 where binary alloy and semicircula
distributions were studied. The variation ofTN with W is
shown in Fig. 7 forU/B51. This corresponds toU/t58 in
the two-dimensional case. Appreciable spin ordering is e
dent from the fairly highTN even atW;U where the energy

FIG. 7. Néel temperatureTN vs W obtained within the DMFT.
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gap vanishes. Within the DMFT, this closing of the ener
gap with disorder, in the low-temperature ordered state
seen in Fig. 8 from the single-particle density of sta
N(v), which was obtained by analytically continuing th
imaginary-time Green’s function using the maximum e
tropy procedure.53

As expected for weak and intermediate couplings,TN is
seen to decrease with disorder strength, in contrast to
strong-coupling result of an enhancement in the magnon
ergy scale, and hence inTN . Also, the critical disorder
strength whereTN vanishes is seen to be nearly 1.5U, which
is intermediate between the critical values of nearly 2U for
the milder semicircular distribution and nearlyU for the
much more severe binary distribution.40 In fact, for the bi-
nary alloy case, the zero-temperature transition is expecte
occur atW'U, when all sites abruptly become either uno
cupied or doubly occupied and the sublattice magnetiza
vanishes.

VII. CONCLUSION AND DISCUSSION

Two fundamentally different mechanisms—disorde
enhanced delocalization and local-moment quenchin
were identified to control the magnetic behavior of an AF
the regimes of weak and strong disorder, respectively. In
weak disorder regime (W,U) disorder effects on sublattic
magnetization, magnon-mode energies, and Ne´el tempera-
ture can be qualitatively understood within the disord
enhanced delocalization effect. Thestabilizationof the Néel
state by disorder in the strong-correlation limit, reflected
an enhancementof the magnon energy scale and the Ne´el
temperature, is a striking consequence. In this regime the
state is remarkably robust against disorder, particularly in
strong-correlation limit. Low-energy, long-wavelength ma
non modes are weakly damped, and continue to be w
defined excitations.

With increasing disorder strength there is a crossove
W;U, characterized by a rapid decrease in sublattice m
netization and quenching of local moments due to format
of nonmagnetic sites. Driven by band overlap, this loc
moment quenching can be viewed as the reverse of lo
moment formation in the disordered metallic state with
creasing U/W. These nonmagnetic sites act like sp
vacancies in the antiferromagnet, leading to characteri

FIG. 8. Electronic density of statesN(v) in the low-temperature
ordered state for several disorder values, as obtained within
DMFT. The charge gap closes nearW5U.
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spin-dilution behavior. Vacancy-induced magnon scatter
results in enhanced transverse spin fluctuations, softe
magnon modes, lowering of Ne´el temperature, and stron
magnon damping.

As discussed in Sec. VI, in the gapless AF state forW
.U, the electronic states near the Fermi energy are ass
ated with ~and localized around! the essentially empty an
doubly occupied sites. These states are nonmagnetic in
they do not contribute significantly to local moments. The
fore it is interesting to note that the low-frequency condu
tivity behavior involves these nonmagnetic states near
Fermi energy. Further investigation of the gapless AF st
focusing on the low-frequency conductivity behavior, ma
non damping due to decay into particle-hole excitations,
an estimation of the critical disorder strength where AFLR
is destroyed, is presently in progress.54

ACKNOWLEDGMENT

One of us~A.S.! gratefully acknowledges support from
the Alexander von Humboldt Foundation.

APPENDIX: PERTURBATIVE ANALYSIS IN W/U:
STRONG-CORRELATION LIMIT

In this Appendix we treat the disorder termV[( ise i n̂is
in the Hamiltonian as a perturbation and obtain disorder c
rections in the broken-symmetry state up to second orde
W/U. With gs

0 representing the one-electron HF Green
function in the pure AF, the corresponding Green’s funct
for the disordered AF,gs5gs

0/@12Vgs
0 #, then yields disor-

der corrections to electronic densities and sublattice mag
tization. Similarly, the magnon renormalization within RP
is obtained from the correctiondx0[xdis

0 2xpure
0 in the

zeroth-order antiparallel-spin particle-hole propagator
fined below Eq.~4!.

For analytic convenience we consider the stron
correlation limit and retain terms of ordert2/U2 only, at
which level the pure AF is equivalent to the NN Heisenbe
model. Up to this order the Green’s function@gs

0 # i j in site
basis has only diagonal, nearest-neighbor~NN!, and next-
nearest-neighbor~NNN! matrix elements. Only the forme
two are actually required in the strong-coupling analysis, a
are given below for spin up and sitei in the A sublattice.
Expressions for other spin and sublattice cases follow fr
the spin-sublattice symmetry. These Green’s functions
easily obtained by starting with the atomic limit, where t
bands are at energies2D and D, with 2D5U, and then
obtaining corrections up to second order in the hopping te
t. The diagonal and NN matrix elements of the time-orde
Green’s function matrix@gs

0 #, containing both the advance
~lower band! and retarded~upper band! parts are

@g↑
0# i i 5

12t2/D2

v2~2D!2 ih
1

t2/D2

v2D1 ih
,

~A1!

@g↑
0# i ,i 1d5

2t/2D

v2~2D!2 ih
1

t/2D

v2D1 ih
.

We note here that the corrections to one-particle Gree
functions involve renormalizations of~i! density~wave func-
g
ed

ci-

at
-
-
e

e,
-
d

r-
in

n
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tion! and ~ii ! energy. Diagrams in which the potential sca
tering is interband~involving different Hubbard bands! result
in transfer of spectral weight across the Hubbard bands,
therefore yield density changes. However, the intraband p
cesses~involving all propagators from the same band! repre-
sent energy renormalization due to disorder potential, and
not contribute to any density change. In the particle-h
propagatorx0, while both energy and density renormaliz
tions need to be considered, diagrams involving only ene
renormalization do not contribute as both the particle a
hole energies are shifted identically by the disorder poten

1. First order

The first-order correctiongs
0Vgs

0 yields the following in-
terband contribution to the local one-particle Green’s fun
tion for spin up:

@dg↑
~1!# i i u interband52F 1

v2~2D!2 ih
e i

t2/D2

v2D1 ih

1(
d

2t/2D

v2~2D!2 ih
e i 1d

t/2D

v2D1 ihG ,
~A2!

where i 1d refers to the NN sites ofi . The correction to
density results from the spectral weight transferred to
upper band,

dni↑
~1!5E dv

2p i
eivh@dg↑

~1!# i i 522
t2

D2
S e i2(

d
e i 1d/4

U
D .

~A3!

Thus for positivee i ~and e i 1d50, for the sake of argu-
ment! the electron on sitei is more delocalized as its energ
is pushed up, leading to the above decrease in density
simple way to see this is in terms of the escape probab
for the spin-up electron from sitei to its nearest neighbor
i 1d due to the virtual hopping process. The net probabi
of escape changes fromt2/U2 to (1/4)(dt2/(U1e i 1d
2e i)

2, which to first order ine precisely yields the above
result.

From the particle-hole symmetry with spin flip in th
Hubbard antiferromagnet,46 the spin-down hole experience
the same effect, except that the potentials are reversed fo
hole. Therefore, there is anincreaseof identical magnitude
in the spin-down hole density, implying an identical decrea
in the spin-down particle density. This leads to a vanish
change in the local magnetizationmHF, and the particle-hole
propagatorx0. This cancellation would be absent if the ra
dom potential was spin dependent, and is connected to
time-reversal symmetry. Thus,

dmHF
~1!50; @dx0#~1!50. ~A4!

2. Second order

Second-order changes in densitiesdnis
(2) are similarly ob-

tained from the second-order correctiongs
0Vgs

0Vgs
0 . As this

term is invariant under the transformationV→2V, identical
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changes are obtained for spin-up electron and spin-do
hole. The changes in spin-up and spin-down electronic d
sities are therefore equal and opposite, and hence the cha
in local magnetization adds up to

dmi
~2!526

t2

D2

1

4(d

~e i2e i 1d!2

U2
. ~A5!

This result also follows from the second-order correctio
to the net escape probability, discussed earlier below
~A4!. Configuration averaging, witĥe2&5W2/12, therefore
yields the following quadratic decrease of sublattice magn
tization with disorder, which is suppressed by the small fa
tor t2/U2. As discussed in Sec. III, quantum spin-fluctuatio
effects do not substantially modify this result, which qua
tatively agrees with the quantum Monte Carlo studies of t
disordered Hubbard model41

^dmHF
~2!&524

t2

U2

W2

U2
. ~A6!
n
n-
nge

q.

-
-

e

Turning now to the second-order corrections tox0, we
find that processes containing energy renormalization in
fermionic propagators~either solely, or along with densit
renormalization! cancel, so that the net result to ord
(W/U)2 is

@dx0# i i
~2!52

t2

D3

1

4(d

~e i2e i 1d!2

U2
,

~A7!

@dx0# i ,i 1d
~2! 52

t2

D3

1

4

~e i2e i 1d!2

U2
.

We note that the sum of all NN matrix elements is precis
the diagonal-matrix element. An immediate consequenc
this correlation is that the Goldstone mode is preserved
expected from spin-rotational symmetry, and that gener
the effective scattering of low-energy, long-wavelength m
non modes is weak. This disorder-induced perturbationdx0

directly yields the magnon self-energy, and disorder ren
malization effects on magnon properties are discusse
Secs. III and IV.
t.

B
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26M. Milovanović, S. Sachdev, and R. N. Bhatt, Phys. Rev. Let

63, 82 ~1989!.
27A. Langenfeld and P. Wo¨lfle, Ann. Phys.~Leipzig! 4, 43 ~1995!.
28S. Sachdev, Philos. Trans. R. Soc. London, Ser. A356, 173

~1998!.
29W. L. McMillan, Phys. Rev. B24, 2739~1981!.
30M. Ma and E. Fradkin, Phys. Rev. B28, 2990~1983!.
31A. M. Finkelshtein, Zh. E´ ksp. Teor. Fiz.84, 168 ~1983! @Sov.

Phys. JETP57, 97 ~1983!#.
32C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev.

30, 527 ~1984!; C. Castellani, C. Di Castro, and M. Grilli,ibid.
34, 5907~1986!.

33A. M. Finkelshtein, Z. Phys. B56, 189 ~1984!.
34C. Castellani, C. Di Castro, P. A. Lee, M. Ma, S. Sorella, and E

Tabet, Phys. Rev. B30, 1596~1984!; 33, 6169~1986!.
35M. Ma, Phys. Rev. B26, 5097~1982!.
36J. Yi, L. Zhang, and G. S. Canright, Phys. Rev. B49, 15 920

~1994!.
37G. T. Zimanyi and E. Abrahams, Phys. Rev. Lett.64, 2719

~1990!.
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