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Disorder-enhanced delocalization and local-moment quenching in a disordered antiferromagnet
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The interplay of disorder and spin-fluctuation effects in a disordered antiferromagnet is studied. In the
weak-disorder regimeW/=U), while the energy gap decreases rapidly with disorder, the sublattice magneti-
zation, including quantum corrections, is found to remain essentially unchanged in the strong correlation limit.
Magnon energies and Metemperature arenhancedy disorder in this limit. A single paradigm of disorder-
enhanced delocalization qualitatively accounts for all these weak disorder effects. Vertex corrections and
magnon damping, which appear only at ordéf/U)*, are also studied. With increasing disorder a crossover
is found atW~U, characterized by a rapid decrease in sublattice magnetization due to quenching of local
moments, and formation of spin vacancies. The latter suggests a spin-dilution behavior that is indeed observed
in softened magnon modes, lowering of életemperature, and enhanced transverse spin fluctuations.
[S0163-182608)00137-4

[. INTRODUCTION fluctuations and quantum corrections to the sublattice mag-
netization enhanced by disorddi) Does a gapless AF state
The manifestation of quantum antiferromagnetism in par-exist, and, if so, at what critical disorder strength is AF long-
ent cuprate$,discovered soon after the birth of high-su- range ordefAFLRO) destroyed7iii) Is the AF state desta-
perconductivity in the doped materidl$ias led to intensive bilized by disorder at finite temperature such that thelNe
efforts to understand the nature of this phase both within théeemperature(for dimensionsd>2) is lowered? To answer
Hubbard model, as well as its strong-coupling counterpartthese questions we will examine the influence of diagonal
the quantum Heisenberg modeFeatures such as the sub- disorder on various properties of the Hubbard antiferromag-
stantially reduced sublattice magnetizatigelative to the net, such as sublattice magnetization, quantum spin fluctua-
classical valug as deduced from neutron-scattering tions, magnon energy and damping,eNeemperature, Hub-
experiments, the substantially enhanced linewidth observedbard energy gap, and electronic density of states.
in the two-magnon Raman scattering experiméntas well Recently spin-fluctuation effects were examined in
as a detailed fitting of the temperature dependence of thenpurity-doped antiferromagnets, both within the Heisen-
spin-correlation lengfh’ have confirmed the importance of berg modef®>*°as well as the Hubbard mod@;??in order
guantum spin fluctuations in these low-dimensional, low-to study magnetic dynamics in cuprate antiferromagnets
spin systems. Antiferromagnetié\F) spin correlations are doped with nonmagnetic and magnetic impurities such as Zn,
also present in other strongly correlated systems, notably thal, Ga, and Fe, Ni, Co, respectively. It was found that a
transition-metal oxides such as NiO, ,®; LaVO;, static vacancy, created by the replacement of a fermion with
NiS,_,Se, and heavy-fermion compounds such as YbP,a nonmagnetic impurity, for instance, leads to strong magnon
U, Zn;7, UCd;;, UCws that exhibit AF ordering ofl and f scattering. It is therefore also of interest to contrast scattering
electrons, respectively, in their ground stdte's. of magnons caused by disorder with that caused by static
Many of the correlated electron systems are intrinsicallyvacancies. The third, related, case is that of magnon scatter-
disordered, and the metal-insulator transition observed iing off mobile vacancies, as in hole-doped cuprates, which is
several amorphous materials, such as doped semiconductood,course much more efficient at destroying AFLRO; spin-
amorphous Ge ,Au, and B,_,Cu, alloys, and granular alu- correlation lengths of order of {k for hole concentratiox
mina, have the character of both the Mott transition and thévave been reported from neutron-scattering stutfies.
Anderson localization transitiof?. The role of strong disor- This study therefore complements earlier works on the
der effects has also been emphasized in the recently studielisordered Hubbard model where other aspects have been
transition-metal oxides such as LgNjCo0O; and studied, such as the metal-insulator transifift, local-
NaWOj,.13 The square-root dip in the electronic density of moment formatiorf®~2% phase diagram, etc. A variety of
states near the Fermi energy, characteristic of disordemethods have been used earlier, including the scaling
induced enhancement of interaction effeééthas been found theory?® field-theoretic approaché®;3? renormalization
to change to a linear form and then to a soft quadratic gap ogroup  (RG),**3* real-space  RG>3®  slave-boson
the insulating sidé*™® In some cases, such as in formulation®” dynamical mean-field theoR?, *° quantum
La, _,Sr,VOs, V,0s, the insulator-metal transition is accom- Monte Carlo studie$! and unrestricted Hartree-Fock theory
panied with loss of AF order®*°whereas Ni$_,Sg exhib-  together with random-phase approximation, and Onsager-
its an AF metallic phas¥ reaction-field correction to mean-field theory of equivalent
It is therefore of interest to study the interplay of quantumspin model$?~** The disordered Hubbard model exhibits
spin fluctuation and disorder effects. Of particular interestextremely rich physics and contains the noninteracting
are questions such as the following) Are transverse spin Anderson localization transition, the purely interacting mag-
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netic transition, and of course the nontrivial fixed point de- 1.0 T T T

scribing the metal-insulator transition in the disordered, in- 0.8 .

teracting theory. In addition, various ingredients such as the 0.6 A=4 7

phenomena of weak localization, disorder-induced enhance- 04 7

ment of interaction effects leading to singularities at the = 02r 7

Fermi energy, local-moment behavior, etc., are also = 00

contained?® Generally, the simultaneous presence of interac- = 02r 5 |

tion and disorder leads to a new coupling of the quantum 'g'g: v

degrees of freedom in two-particle quantities that has no :0'8 | ]

counterpart in noninteracting, disordered, or interacting, pure -1:0 . . .

systems. -4 -2 0 2 4
We consider the following Hubbard Hamiltonian with w

random on-site energies, and with a filling of one fermion

; . . FIG. 1. Local-host Green’s functi({rg?,(w)]ii VS w in the pure
per site, so that an AF ground state is obtained:

AF state. Intersections with lines\®and — 2/W show the extent to
which disorder-induced states are formed within the Hubbard gap.
H= E eiﬁirr_t (aitré'jrr—’_ H.c)+ UE ﬁiTﬁii . D In all figures energies are in units of the hopping paramieter
' e | gap and determine the critical disorder strength at which the

The random on-site energies are chosen from a uniform gap vanishes. We use tiematrix approach and a numerical
distribution with —W/2<&;<W/2, the distribution widthW  UHF approach, described in Secs. Il A and Il B, respectively.
parametrizing the disorder strength. We consider both thehe T-matrix approach is exact for a single impurity, and has
strong correlation limit, with the correlation terkd much  peen used earlier to study the formation of defect states
larger than the free-particle bandwidB=2Zt, whereZ  within the gap due to a single nonmagnetic impurity in the
=2d is the coordination number, as well as the intermediatgqubbard AF?° In order to use this approach for the disor-
correlation regime, withJ~B. For concreteness, we con- dered AF, with random potentials @very site we make a
sider the square lattice, generalization to three dimensiongcal approximationin which we consider a single site, and
and to other bipartite lattices being straightforward. treat the random potentia} on this site as an impurity po-

We will use several methods/approximations in this pa+tential. Comparison with results of the numerical UHF analy-
per. The broken-symmetry state is obtained in the unresjs, in which disorder is treated exactly, indicates that this
stricted Hartree-FockUHF) approximation, and transverse approximation actually works quite well, particularly in the
spin fluctuations about this state are studied in the randonstrong correlation limit, where states are strongly localized.
phase approximatio(RPA). Disorder is treated both pertur- Spin-fluctuation processes will lead to small changes in the

batively as well as within a numerical diagonalization ap-energy gap of orded in the strong-correlation limit.
proach on finite lattices. In the latter approach the

eigenfunctions and eigenvalues of the HF Hamiltonian in the A. T-matrix approach

fully self-consistent state are used to obtain sublattice mag- Within this approach the location of impurity-induced
netization, energy gap, and the magnon spectrum. The

T-matrix approach, used earlier for impuritsis also em- S_tatisllf °bt§"”ed from rt]he pol% n t_ﬁ'e matml(’ T‘lf(ﬁ’) ¢
ployed for comparison. Quantum spin-fluctuation corrections_ €i (1-€l9,(w)]ii), where [g,]; is the local-hos

are obtained at the one-loop le&IThe Neel temperature, C'een’s function. For the pure AF it is givéim the Hartree-

: , - :Fock approximationby [g%(w)]ii= (1/IN)2 (0 F oA)/(w?
energy gap, and electronic spectrum are also studied withifi > pproxime Y19, Ak )
the dynamical mean field theofPMFT).*° —E2), for sitei in the A or B sublattice?® Here 2A=mU is

The outline of the paper is as follows. Section Il dealsthe Hubbard energy gap in the pure AR,= JA%+ €2 is the
with the reduction of the Hubbard gap due to formation of AF band energy, and is obtained from the self-consistency
disorder-induced states. Disorder renormalizations of theondition (1N)=,(2E,) 1=U"1.
magnon energy, damping, and sublattice magnetization are Now, for a given disorder strengtl, the inverse poten-
described in Secs. Ill and IV, based on results of a perturbaial (absolute valughas a lower bound (l¢;|>2/MW. There-
tive analysis in powers ofV/U, discussed in the Appendix. fore poles in thel matrix are present fol{ g°];;|>2/MW, so
A qualitative explanation of the disorder effects is given inthat disorder-induced states are formed within the gap, as

Sec. V in terms of the notion of disorder-enhanced delocalshown by hatched regions in Fig. 1. 4#A andA mark the
ization. Section VI describes the crossover to the strong disspergies(shown by arrowsup to which states are formed,

order regime \WV>U), where the electronic spectrum is 9a8P- wanX is obtained fron{g®(—&)];;= 2. The remaining
less, and spin vacancies are formed due to quenching of loca v !

moments. Magnon softening, enhancement in transverse spifiPPard gap 2 is thus obtained from the solution of
fluctuation due to spin vacancies, and robustness of the gap-

less AF state are discussed. Conclusions are given in Sec. EE ﬂz E )
VII. N% E2-A2 W
Il. DISORDER-INDUCED STATES IN THE GAP A plot of the normalized energy gapA\?2A is shown in Fig.

2 as a function of the relative disorder strenthU for
In this section we examine the formation of disorder-U/t=10, indicating an almost linear reduction with disorder
induced states within the Hubbard gap that reduce the chargtrength.
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FIG. 2. Normalized energy gap W/U at T=0, from the FIG. 3. Energy gap v® from the numerical UHF analysis at

T-matrix analysis(line), and the numerical UHF analysis for a 10 different temperatureshown against plotting symbols
X 10 lattice(squares
1. MAGNON RENORMALIZATION
With increasing disorder strength states are formed deeper o ) )
in the Hubbard gap, and when states have approached from Magnons are the low-energy excitations associated with

both sides in the middle of the Hubbard gap, the energy gaHansverse spin qu_ctuationg in the br(_)ken-sy_mmetry state of
vanishes. The critical disorder streng¥, at which the en- SYStems possessing continuous spin-rotational symmetry.

ergy gap A vanishes is therefore given bﬁ/g?,(O)]” Therefore they play an important role in several macroscopic

_ . : . . ! properties such as the temperature dependence of the order
&szé\::/jgr sttr:g::g}['r'flds the following equation for the critical parameter, Nel temperature, specific heat, etc. We therefore

consider the magnon propagator and obtain the disorder-
induced renormalizations in magnon energies, transverse
12 A2 3 spin correlations, and the quantum spin-fluctuation correc-
N4 A2+eﬁ_Wc' 3 tion to sublattice magnetization. The magnon propagator
with site indices i,j is defined in terms of
. . LT .
Considering the strong-correlation limit as a special Case§p|n—lowerlgg imd, spin-raising - operators , by .
and keeping terms up to ordé?/U?, the critical disorder =(VTLS (DS (t)]|¥c). We take the Green's-function

strength is then given by, /U =1+ 8t%U2, where we used 2PProach and write the RPA resulténspace as

m=1-8t%/U? and (1N)Ze2=4t? for the square lattice. 0 G0
Thus, with decreasing interaction strength, the rig/U G *t= Xdis  _ ) (4)
actually increases This is because the kinetic energy be- 1-Ux%s 1-3G°

comes relatively important with decreasing interaction

strength, and the bandwidth starts competing with disorde}'€'® the mat_rlx(m site indice3 xgs is the zeroth_-order
strength. antiparallel-spin particle-hole propagator for the disordered

AF, with matrix elements given by [xJ{)];
_ _ =if(do'12m)[g;(®")]j[9,(e’— )]}, written in terms of

B. Numerical UHF analysis the one-particle Green’s functidig,(»)];;, and evaluated

In order to check the validity of th&-matrix approxima- in the self-consistent, broken-symmetry state. ﬁére we
tion, we have also used a numerical UHF analysis. In thiglefine the corresponding quantity for the pure AF, in terms
approach, the HF Hamiltonian on a finite lattice is numeri-of which the matrixGO:Xgur(_j(l—UXgure) is the magnon
cally diagonalized self-consistently, so that disorder ispropagator for the pure AF. Furthermore, the disorder self-
treated exactly. This approach has been described earlier gnergyEZUZ(sXO is expressed in terms of the disorder-
the context of hole/impurity doping in the Hubbard induced perturbatiody®= xgis— xpure Details of the pertur-
antiferromagnet®*’ The energy gap is obtained from the pative analysis fos® in the strong-coupling limit are given
energy difference between the lowest-energy state of the upn the Appendix, and we use the result here for the disorder
per Hubbard band and the highest-energy state of the lowgjg|f-energys. that has diagonal and nearest-neightidN)
Hubbard band. Configuration averaging is performed oveferms. For the pure AF in the strong-coupling limit and in the
100 different realizations of the random on-site potentials oRyo-sublattice basiéindicesA,B), the propagator ik space
a 10x 10 lattice. The reduction in energy gap with disorderigkes the forrff
strength using this method is also shown in Fig. 2. The nu-
merical analysis shows a saturation of the energy difference 01_1 1+w 7y
at W/U~1 due to finite system size. Deviations from the [G"] *(k,w)= y 1-w
T-matrix approach are more pronounced at lower interaction
strengths where the fermion states are more extended. Tfig energy units where P=8t’/U=1. Here y,=(cog,
almost linear reduction of energy gap with disorder is alsotC0%,)/2, so that in real spacgG°] ' has only diagonal
seen at finite temperatures, as shown in Fig. 3. The criticatlements[ G®]; '=1+ o for sitei in A andB sublattices,
disorder strength decreases rapidly with increasing temperand NN matrix eIementEGO]i"il+ s=1/Z, wherei + & refers
ture. to NN of i.

: 5
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We first consider the configuration-averaged self-energy 11

(2)=U%5x°%. This approximation neglects vertex correc- (S's )= 5 NE —+1|.

tions that, however, appear only at ord&¥/(J)*, and are K 1-9%

discussed separately in the next section. Fromothe resuli§ere the second result is obtained using the relationship
given in the Azppend|x for the matrix elements 8" up to G/ (w)=Gga (w) that follows from spin-sublattice sym-
‘fder/ W/u)*, V\;e 2‘;*/’2&;“ <hE“>::U/ a”‘;'/ <2Ei:i+fg metry. The result for total transverse spin fluctuation
= —olZ, in units ofUTY/A”, wheres=(1/6)W/U". Sub- gt | 55 s thus identical to the RPA result for the
stituting the trar(;sl_alnonally Sym”.‘e”@? n EQ'(A') ’ FO““eT pure Hubbard AF? as well as the spin-wave-theot@WT)
transformlng[G | _<2.>' and finally inverting, we obtain result for the quantum Heisenberg antiferromagnet
the following expression for the renormalized magnon(QHAF).48,49 Therefore up to orderW/U)? the quantum
propagator irk space and the two-sublattice basis: spin-fluctuation correction to sublattice magnetization in the
strong-coupling limit remains unchanged from the spin-
wave-theory resulmge=(1/N)=,[(1— ) ~¥?—1]~0.39

w
1— 5 in two dimensiong®4°
1 1
G "(kw)=—=
(k,@) 2 J1— yﬁ IV. VERTEX CORRECTIONS AND MAGNON DAMPING
— Yk 1+ —=
In this section we consider vertex corrections that were
neglected in the previous section due to use of the
« 1 3 1 5 configuration-averaged self-energ) in Eq. (4). As at
w—o+in wto—i7y ' 6) higher orders this approximation produces terms like

G%2)G%2)GP in Eq. (4); we therefore subtract out this

o ) term and focus here on the configuration-averaged proper
containing both the retarded and advanced parts having po'%%lf-energy at second order

below and above the real-axis, respectively. Herd=J(1 o o

+0), andw,=23\/1— 47 is the disorder-renormalized mag- I'=(2G"%)—(2)G%(%), ®

non energy. Thus ab(W/U)? the form of the magnon hich precisely incorporates the vertex corrections. As
propagator remains unchanged, and there is only 8hown later in this section, this second-order scattering pro-
momentum-independent multiplicative renormalization Ofcess results in magnon damping, which therefore on|y ap-
magnon energies, leading to an effective stiffening of theyears at orderyy/U)*. We note here that the term “magnon
magnon modes by disorder. An upward shift of the magnojamping” in this section refers to the decay of a momentum
band in the strong-correlation and weak-disorder limit hasnode, and not to the decay into particle-hole excitations,
also been observed in a numerical RPA study in threguhich is energetically ruled out in the strong-correlation
dimensiong’ limit where J<U.

This effective enhancement of the magnon energy scale considering the matrix elemefiy; , we note that sinc&
can also be viewed as resulting from the enhancement in thg o1y fimited to diagonal and NN matrix elements, if sites
configuration-averaged NN exchange energ)?ZI(U T €& andj are far apart, then there are no correlations between the
—€;)) which, to second order iWV/U, is (1+0)t/U. To  two S terms, and the difference vanishes. Therefore the
the extent that the finite-temperature reduction in sublattlc%roper self-energyl” arises only from local correlations in
magnetization due to thermal excitation of magnons is supie disorder self-energy terms, and has diagonal, NN, and
pressed by this enhancement, the disordered AF exhibits fext-nearest-neighboiNNN) matrix elements. The vertex
slower n(T) vs T falloff, and therefore anigher Neel tem-  corrections therefore result in new NNN spin couplings in
perature(for D>2). For strong coupling, the Neéstate is  the magnon propagator, besides renormalizing the NN cou-
thereforestabilizedby weak disorder, as also reported in the plings. Such longer-range spin couplings also arise in the
DMFT (Ref. 40 and the Onsager-reaction-fiéfdstudies. Hubbard AF at intermediate and weak couplings.

Quantum correction to sublattice magnetizatids only For the square latticeZ(=4), we give below the results
the effective exchange energy scale gets modified iN@d.  for matrix elements of” for the case in A sublattice {
while the form is not changed by dlso'rd’@rthe magnitude  _ A); results for the other case following from symmetry.
of equal-time, same-site transverse spin correla{@sS’)  Also given are the results after substitution of the matrix
and(S"S) remain unchanged. These transverse spin correslements ofG°(k, ), obtained from Eq(5). We now illus-
lations are obtained by frequency integration of the diagonarate the evaluation of for the diagonal-matrix element.
elements of transverse spin propagato(’S{(t)Sﬁ(t’)) Expanding the matrix product, and using the property of

=—if(dw/27)[G™ *(w)]iiexp[—iw(t—t')}, where the ap-
propriate part(retarded or advancgsf G~ " is taken de-
pending on whether <t ort’>t. Takingt’—t~, and using
the retarded part o6~ * from Eq. (6), we obtain

<Sf5.*>=%$§

' (7)
1- v ’

the disorder self-energy that the diagonal elen¥ptequals
the sum of the NN elementy; ;, 5, this can be written
as Ti=[((Zii+oZico,) = (Ciiv ) (Siv o)) (G + G 5
+Gi0’i+5,+Gi0+ sive) s where summation over
6 and &' is implied. Configuration averaging, witlor,
=(e?)/U? and o,=(e€})/U*% for the second and fourth
moments,  vyields (& s%i+o ) ~(Ziiv N Zit o)
=Z (04— 0%) +(04+303)355]. Substituting Gf} ()
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=(1N) 2 GOk, w)expfik- (r;—r;)}, and taking the appro- 2 2 '
priate matrix elements dB°(k,w) in the two-sublattice ba- ONg :N-EA [Sin?(6/2)(I;i + T ;. Zcog,cogyy
sis, depending on sublattices of sifeandj, yields the ex- e

pression forl’;; in Eq. (9). Similarly evaluating the NN and + T4 0 ZY2g) —SIN(0/2)cOK O12) T i 1 5Zv4]
NNN elements, with + 8, i + k, andi + ' standing for the 5
NN, NNN (diagonal, and NNN(straigh} of i, respectively,
N obtain( gona) (straighy p y +N§B [CO(0/2)(Tj;+T i+ ZCOK],COH,
Ti=(04— 05)[Gaat (GRa+ GEa) vi+ Goge] 4T} 4 0 Zv2q) —COL OI2)SIN 12T ;4 5Z 7]
_ (10
+Z Yoy +30H)[G+ (G5 + Gy + Gl
N ZLTAR AB T TBATIKCT BB In the second term abovor sitesj in the B sublattice the
= (04— 03)[(1— 0)(1— YD) (0i— 0?)] matrix elements oF follow from Eq. (9) with w replaced by

—w, in view of Eq.(5). The magnon energy for modgis
then given by the solution of 4\w?+y3—on("
— P (w)=0. Here A V= —a(1-»}) is the eigenvalue

+Z Y o4+ 303)[2(1— yD) (wi— 0?)],

_7-1 2 0 0 2
Liivs=2 (04— 02)[(Gaat Gpa)(1+ %) correction due to the first-order self-ener@y); its effect on
+2(G0.+ G0 147252 (G0 4+ GO magnon snffenu_wg has been discussed ea}rl|e_r. .
(Gapt Goa) 7l ool (Gaat Gee) We first consider the magnon renormalization in the long-
+(GRet Gaa) %id wavelength §<1), low-energy (p<1) limit for simplicity.
. 5 ) ) We can dropw in the numerators in Eq9) for the self-
=Z (04— 0)[2(1~ yi)(wi— )] energyl’, which removes the sublattice dependence, and the

_ above eigenvalue correction simplifies in this limit to
+42 205 2(1- yp)l (g~ w?)], g P

5)\512)(w< 1)=[I;+T; Zcog,coxy,
Tt e=2 2(04— 03)2[ GIAC0%K,COK, + T4 0 ZY2q— T4 5Z7gSIN6]

+(GRg+Gga) v+ Ghel =Z[T 4 s(1— ygsing)

=Z (04— 05)2[{2(1- yp) — (1~ ) —T' i+ (1—cosy,coqyy)

_ 2_ 2
X (1—cok,coky)H (wi— w)], T (1 y29)]
~ 2
Liis =2 2(04= 0)[GRavak+ (Gas* Gon) vit Gigl ~ag’. (D
R YO NV As expected the eigenvalue correction goes tjkeHere the
=Z (4= o) [{2(1 =) identity T'i=Z[T ;45— T+ «—Tii+«], which ensures the
— (1= @) (1= ya) H(w2— 0?)]. (9  Preservation of the Goldstone mode has been used, and the
coefficienta is given by
Here the summation over momentuk is implied. A I I
straightforward check confirms that the sum of matrix ele- q=z| 2 ThiEs po (12)
mentsI'; +ZI; ;4 .+ ZI' i+ .~ involving sites of the same 4 2 ’

sublattice (diagonal and NNN exactly equals the sum  cgnsidering now the case of a genesalwe find that the

ZI'; i+ s involving sites on opposite sublattices. This ensuregy|owing terms are present in addition to those given in Eq.
that the Goldstone mode, which has amplitudes 1-addon 12):

the two sublattice sites, is preserved, as expected from the
continuous spin-rotational symmetry. We also notice that the_ ,, 2 _
various terms involvek sums of the typeSk?/(c2k’—w?) Mg~ 9g ("’<1)_‘”C°99(1/N)§k:
from long-wavelength internal magnon modes. Therefore the

self-energy terms are all nonsingular in two dimensions. X[ (04— 03)(1— v (02— w?)
We now proceed with the magnon renormalization due to 4 )
this proper self-energy correctidh up to ordetW*. To this —2Z" (04— 0)cOHCOY,
order, it is sufficient to examine the lowest-order correction 2_ 2
' ; . X (1—cok,coK,)/(wg—
(qIT'|a) to the eigenvalue of th&)(1—Uxp,) matrix for ( Kcosky)l (wje= %)
the pure AF. The relevant eigenvalue is-3/w?+ 2 in en- —Z Y04 05) yag(1— y2) (0]

ergy units such thatP2=1. The magnon amplitudes for state 5
|q) are sir/2 and—cos4/2 in the two-sublattice basis, where —o9)]. (13
co=wlw’+y; and sif=y,/\Jw’+v;.*" For w=w, We now focus on the imaginary part of this second-order
=y1-7y, the magnon energy, these amplitudes becomeorrections\(?. For this purpose we examine the internal
V1—wq and — 1+ g, respectively. Using the matrix ele- momentum sums of the type N_YEKZwE/(wE— w?) that ap-
ments of[" from above we obtain for the eigenvalue correc-pear in the eigenvalue correction above. Using the following
tion SA{P=(q|T'|q), identity for the imaginary part,
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1o 20} 1 16
3—2 K =7T—E wd(w— w)=ToN(w), 1.4
N w0 N% 12

(14 1.0

for positive w, we obtain the imaginary part in terms of the 0.8
magnon density of statd$(w). We consider the two limit- 0.6
ing cases of low-energy magnon modes<l and high- 0.4
energy modes witho~1. For long-wavelength, low-energy
modes, N(w)~w, therefore 36\ ?)~Dg?w? where D

=Jal w? in terms of theg? coefficient given in Eq(12). We

thus find the magnon energy to be given by €

density

0.2
0.0 1 1 ! ] 1 1 ]

wq=cq[1+iDq2], (15) FIG._4. Spm-dependent electronic densities onAhsublattice _
vs on-site energy in the low-temperature ordered state as obtained

where ¢ is the renormalized magnon velocity. The ratio Within the DMFT. The bandwidth is chosd~8, as ind=2.
I'y/wq of the magnon damping term to the energy thus van- ) N .
ishes likeg? in the long-wavelength limit, indicating weak Pling, disorder enhances, and Stablllgesjhe het state, the
disorder scattering caused by the averaging-out of the on-sif@€havior is reversed for weak coupliffy: Both behaviors
potential disorder at long length scales. can be understood in terms of an effectiét ratio that

Long-wavelength magnon modes therefore continue to becreases with disorder. This is because in the pure Hubbard
well-defined excitations even with disorder. However, forantiferromagnefly vs U/t actually goes through a maxi-
short-wavelength, high-energy modes with enesgy1, the ~ Mum, so that with decreasirid/t, Ty is either enhanced or
presence in the imaginary term of the magnon density ofuppressed depending on whether one is on the strong- or
states, which actually divergeogarithmically in two di- Weak-coupling side of the peak. _
mensiongat the upper band edge at energl thdicates that Similar effects are also seen in the magnon veloaty,
high-energy modes are strongly damped. A self-consisten @q/d In the limit g—0, which also shows a peak
evaluation is therefore required, with an imaginary term inStructur€’® For this purpose we have considered the low-
the internal magnon mode propagator. This leads to a selfNergy magnon modes on aX40 lattice. Magnon energies
the two-magnon Raman Scattering process probes ShorX_O(w) matrix, evaluated in the self-consistent state USing the
wavelength, high-energy magnon modes, this magnon damgiimerical UHF approact?. The low-energy modes are four-
ing of order (W/U)* will be important in an analysis of fold degenerate for the pure AF on a square lattice, and
eraging w,(W)/w,(0) over the four lowest-energy modes.
The normalized magnon velocity, configuration averaged
over 20 different configurations, is shown in Fig. 5, for sev-

All the disorder effects in the AF state obtained so far careral values ot/t. For strong coupling, the magnon velocity
be understood within a single paradigm afisorder- increases with disorder, almost quadratically, in agreement
enhanced delocalizatigri.e., an enhancement of the effec- with the perturbative result from Ed6). The behavior is
tive t/U ratio due to disorder. Thus, the disorder-inducedreversed for weak coupling, and the magnon velocity de-
enhancement of magnon energy scale andl Nemperature creases with disorder strength. As the temperature depen-
in strong coupling, as well as the reduction of sublatticedence of the sublattice magnetization in the low-temperature
magnetizatior(discussed in the Appendixcan be viewed as limit depends only on the energy scale of low-energy mag-
arising from this enhancement of the effecttyd ratio. This ~ non modes, this also implies slowgaste) temperature fall-
delocalization effect of disorder, contrary to its usual ten-Off of m in the strong{weaky coupling limit.
dency to localize, is characteristic of the AF state with its
inherent localization due to Coulomb barriers, and can be 1.06
understood as follows. A positive on-site energyreduces 1.04
the potential barrier for the majority-spin electron, which en-
hances its probability for tunneling through, thereby lower-
ing the on-site density. On the other hand, a negative on-site
energy increases the potential barrier, which hageaker
effect if the electron is already localized. Thus the effects of
positive and negative on-site energies agymmetrical
leading to enhanced delocalization on the average. This
asymmetrical effect is clearly seen in Fig. 4 showing the 0.80 0'1 0'2 0'3 0'4 0'5 0'6 0'7 0'8 0.9
electronic densities for different on-site energies, obtained R 'W/U' R
within the DMFT.

This disorder-enhanced delocalization also qualitatively FIG. 5. Normalized magnon velocity(W)/c(0) vs W/U for
accounts foroppositedisorder effects orily that are ob- several interaction strengths, obtained from the low-energy magnon
served for strong and weak coupling. While for strong cou-modes on a 18 10 lattice.

V. DISORDER-ENHANCED DELOCALIZATION
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1.0 T T T T T T induced enhancement in transverse spin fluctuation has not
09T *“*;,;:{F‘*“*“*‘-+~-+\k 7 been studied, and we discuss this in the following subsection.
08 “ J

0.7 ﬁk\q- T . . .

06F muF — Mgy T, A A. Enhanced fluctuations due to spin vacancies

We present a simple estimate of the enhancement of
transverse spin fluctuations due to spin vacancies. We con-
sider the following Hubbard Hamiltonian on a square lattice
with binary-distributed, random NN hopping:

H=- 2 tij(éi-rg-éjo-—’_H-C-)_i_Uz ﬁiTﬁil! (17)
<ij>o i
FIG. 6. Sublattice magnetizatian vs W at the HF level for a _ o _
10x 10 lattice (dashed ling and including spin fluctuationgolid ~ where the hopping ternty; =0 if sitesi or j are vacancy

line). sites, and;; =t otherwise. Thus for a vacancy on siteall
hopping termg; ; , 5 connecting to its NN sitesi + & are set
VI. STRONG DISORDER (W>U) to zero. The vacancy site is thus completely decoupled from
AND CROSSOVER BEHAVIOR the system. Half-filling is retained by having one fermion per

We h lier that with i . disord remaining site. We consider thd/t—oo limit, where the
€ h a\ée seen ear 'eé at wi | mcre?smgl ‘Izorr] ®local moments are fully saturated, and the model maps to the
strength, the energy gap decreases almost linearly With -5 i764-spin Heisenberg model. In this limit the vacancy

and e\(entually closes whew~U. Therefore forw>U, roblem becomes identical to the spin vacancy problem in
assuming a single-occupancy constraint, the two Hubbarihe SLAF for which magnon renormalization was studied
bands would overlap, indicating that single occupancy for allearlier.ls ’

sites is no Ionger.ener.getically favorable. Electrons from the The structure of the®() matrix in the host AF, and the
highest-energy _S|te(;/_v|th €>U/2) are tr_ansferred to the modification introduced by spin vacancies has been consid-
lowest-energy siteswith ¢ <—U/2), making them doubly o104 earlier in the context of static impurit@sSince the
occupied and shifting up the energy by, The electronic \acancy spin is completely decoupled from the system, the

states asspciated with these essentially empty a_nd do“bmagnitude of the diagonal-matrix elemdnt°];, on the va-
occupied sites are therefore located near the Fermi energy @éncy sitei is irrelevant. To minimize the perturbation, we

U/2. As these unoccupied and doubly occupied sites are nozeay the vacancy site as occupied with an isolated spin. For a
r_nagnetlc_, the _sub_lattlce magnetization s_tar_ts falling reIaVacancy on sité, a perturbation is induced in the neighbor-
tively rapidly with dlsordgr strength. In the limitcU,W the hood due to the absence of hopping between vacancy site
bands are nearly flat with bandwidthW, and the overlap 54 NN sites + 8. In terms of the notation used in Sec. lll,

region is~(W—U), so that a simple estimate for the frac- y,e following self-energy correctioh = U250 is obtained:
tion of these nonmagnetic sites yields

W-U %=1,
X~ (16)
Siite=2itsi= Jitei+s— 14, (18
indicating an almost linear decrease in sublattice magnetiza- . . )
tion for W~U. Thus a crossover takes placevdt-U from  Where again 2 has been set to 1. Thus, a diagonal contribu-
the essentially flat sublattice magnetization to an almost linfion i arises if a vacancy exists either on sifeor on any
ear falloff with disorder. This is clearly seen in Fig. 6 where Of the four NN sites + 5. For a finite vacancy concentration
the configuration-averaged sublattice magnetization obtainef¢ the probability that a vacancy exists on a sit&.isThere-
within the UHF approximation is plotted against the disorderfore, ~ configuration = averaging = yields(%;)=2x, and
strengthW. (2ii+s)=2x/4. From Eq.(4) we obtain the same expression
However, a more significant consequence of the formafor the magnon propagator as in E§), except that now
tion of these nonmagnetic sites is that they essentially ackJj(1—2x), so thatw,=2J(1—2x)/1— y?k yields a soften-
like spin vacanciesn the antiferromagnet, which leads to ing of the magnon mode, reflecting the spin-dilution
spin-dilution behavior, as discussed in the following subsechehavior’® This magnon softening is in contrast to the stiff-
tion. The above picture suggests that WU the system  ening in the weak-disorder regime, obtained earlier in Sec.
can be viewed as a composite of a disordered AF With 1ll. Enhanced thermal excitation of magnons due to this soft-
=U, and a spin-diluted system with a concentraticn(W  ening will result in a faster temperature falloff of the sublat-
—U)/W of spin vacancies. Strong magnon scattering offtice magnetization, and hence to a lowering of theNem-
static vacancies, leading to substantial softening of low{erature.
energy, long-wavelength modes and magnon damping has Since the form of the magnon propagator is not changed,
been obtained earliéf:1®2* The ratio of magnon damping as already discussed in Sec. lll, the transverse spin correla-
term to its energy now goes like\(—U)/W, to be con- tions(S S') and(S'S ), as well as the lattice-averaged
trasted with the small damping ratidU)“qg? in the weak-  spin-fluctuation correction to sublattice magnetization re-
disorder regime, obtained earlier in Sec. IV. Vacancy-main unchanged. Therefore, from the SWT result given after
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FIG. 7. Neel temperaturdy vs W obtained within the DMFT. . . .
FIG. 8. Electronic density of statéf w) in the low-temperature

. . . ordered state for several disorder values, as obtained within the
Eq. (7), émge~0.39 in two dimensions. However, as the pyet The charge gap closes naat=U.

number of spins is reduced to-I, the quantum correction
per spinis enhanced

In a recent numerical, finite-size study of the spin-
vacancy problem! focusing on the exact evaluation of
transverse spin fluctuations in the RPA, thdependence of
the quantum correction per spéimgg/(1—x) was foundsto
T e o205 topy procecure s e
agreement with the perturbative result obtained asgt,)ve. The As expected for V\_/eak _and mtermedlate.couplm'lj,s,ls
lattice-averaged sublattice magnetization for the disordereg- " to dec_r ease with disorder strength, n contrast to the

. ; . . _“strong-coupling result of an enhancement in the magnon en-

AF, obtained by accounting for the quantum spin-fluctuation

corTection Usingm=mye— Mg, With Smse= (1—x)(0.39 ergy scale, and hence imy. Also, the critical disorder
=Myr SF» SF— . ; ; ;
+0.42+6.57), where the vacancy concentration- (W strength wherd  vanishes is seen to be nearly W.5which

— U)/W for W>U, is compared with the HF result in Fig. 6. is intermediate between the critical values of nearly tor

; ; -+ the milder semicircular distribution and neary for the

The crossover &V~ U is again clearly seen from the rapid : o ;

) . o much more severe binary distributionln fact, for the bi-
decrease in sublattice magnetization.

nary alloy case, the zero-temperature transition is expected to
_ _ occur atW~U, when all sites abruptly become either unoc-
B. Gapless antiferromagnetic state cupied or doubly occupied and the sublattice magnetization

The above result indicates that substantial AF ordering/anishes.
remains even fotW~U, where the energy gap closes. Since
AF order persists fokW>U the gapless AF state is appar-
ently quite robust even in two dimensions. This feature was
also observed in the quantum Monte Carlo studylin2,** Two fundamentally different mechanisms—disorder-
where substantial AF correlations were seen WU enhanced delocalization and local-moment quenching—
=4t, while the compressibility indicated an absence of thewere identified to control the magnetic behavior of an AF in
charge gap. This leads to the possibility, in three dimensionshe regimes of weak and strong disorder, respectively. In the
of a metallic AF state, if states at Fermi energy are not loweak disorder regimeW<U) disorder effects on sublattice
calized. Gapless AF states, both metallic and insulating, wermagnetization, magnon-mode energies, anelNempera-
also obtained for the three-dimensional disordered Hubbartlre can be qualitatively understood within the disorder-
model, the phase diagram of which has been recently studieshhanced delocalization effect. Thabilizationof the Neel
within the UHF approacf? A region of metallic AF state in  state by disorder in the strong-correlation limit, reflected in
d=3 was also recently identified in the-t" Hubbard model an enhancemenof the magnon energy scale and théeNe
without disorder; here it is the NNN hopping amplitutle  temperature, is a striking consequence. In this regime the AF
that leads to frustration of AF ordef. state is remarkably robust against disorder, particularly in the

The robustness of the gapless AF state is also seen fromstrong-correlation limit. Low-energy, long-wavelength mag-
DMFT calculation of the Nel temperaturdy, for a rectan- non modes are weakly damped, and continue to be well-
gular distribution ofe; , as obtained from an extrapolation to defined excitations.
zero of the inverse AF susceptibility. Both exact enumeration With increasing disorder strength there is a crossover at
and Monte Carlo evaluation were employed. Details of theW~U, characterized by a rapid decrease in sublattice mag-
application of DMFT to the disordered Hubbard model havenetization and quenching of local moments due to formation
been described earlié?where binary alloy and semicircular of nonmagnetic sites. Driven by band overlap, this local-
distributions were studied. The variation ®f, with W is  moment quenching can be viewed as the reverse of local-
shown in Fig. 7 ford/B=1. This corresponds td/t=8 in  moment formation in the disordered metallic state with in-
the two-dimensional case. Appreciable spin ordering is eviereasing U/W. These nonmagnetic sites act like spin
dent from the fairly highl'y even atW~U where the energy vacancies in the antiferromagnet, leading to characteristic

gap vanishes. Within the DMFT, this closing of the energy
gap with disorder, in the low-temperature ordered state is
seen in Fig. 8 from the single-particle density of states
N(w), which was obtained by analytically continuing the

imaginary-time Green’s function using the maximum en-

VIl. CONCLUSION AND DISCUSSION
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spin-dilution behavior. Vacancy-induced magnon scatterindion) and (ii) energy. Diagrams in which the potential scat-
results in enhanced transverse spin fluctuations, softenddring is interbandinvolving different Hubbard bandsesult
magnon modes, lowering of Nk temperature, and strong in transfer of spectral weight across the Hubbard bands, and
magnon damping. therefore yield density changes. However, the intraband pro-
As discussed in Sec. VI, in the gapless AF state\iér cesseginvolving all propagators from the same bamepre-
>U, the electronic states near the Fermi energy are assocsent energy renormalization due to disorder potential, and do
ated with (and localized aroundthe essentially empty and not contribute to any density change. In the particle-hole
doubly occupied sites. These states are nonmagnetic in thatopagatory®, while both energy and density renormaliza-
they do not contribute significantly to local moments. There-tions need to be considered, diagrams involving only energy
fore it is interesting to note that the low-frequency conduc-renormalization do not contribute as both the particle and
tivity behavior involves these nonmagnetic states near thlole energies are shifted identically by the disorder potential.
Fermi energy. Further investigation of the gapless AF state,
focusing on the low-frequency conductivity behavior, mag- 1. First order
non damping due to decay into particle-hole excitations, and

an estimation of the critical disorder strength where AFLRO | € first-order correctiog, Vg, yields the following in-
is destroyed, is presently in progréés. terband contribution to the local one-particle Green’s func-

tion for spin up:
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APPENDIX: PERTURBATIVE ANALYSIS IN  W/U: 25 o—(—A)—ip TPo—A+iy
STRONG-CORRELATION LIMIT A2)

In this Appendix we treat the disorder tev=2,€ini,  wherei+ & refers to the NN sites of. The correction to
in the Hamiltonian as a perturbation and obtain disorder corgensity results from the spectral weight transferred to the
rections in the broken-symmetry state up to second order ifpper band,
W/U. With g?, representing the one-electron HF Green’s
function in the pure AF, the corresponding Green'’s function
for the disordered AFg,=g°%/[1—Vg], then yields disor- do t2 ei_%: €i+ /4
der corrections to electronic densities and sublattice magne- 5”?%)= J ﬁe"‘”’[ 59%1)]n =—2- - u
tization. Similarly, the magnon renormalization within RPA m A
is obtained from the correctiody®=xgs— Xoue i the (A3)
zeroth-order antiparallel-spin particle-hole propagator de- Thys for positivee; (and €. s=0, for the sake of argu-
fined below Eq(4). _ _ men) the electron on site is more delocalized as its energy
For analytic convenience we conS|der2the Strong+is pushed up, leading to the above decrease in density. A
correlation limit and retain terms of ordef/U? only, at simple way to see this is in terms of the escape probability

which level the pure AF is equivalent to the NN Heisenbergtor the spin-up electron from siteto its nearest neighbors
model. Up to this order the Green’s functipg,J;; in sit¢ .+ 5 due to the virtual hopping process. The net probability
basis has only diagonal, nearest-neightldN), and next- of escape changes from?/U? to (L/4)S % (U+e€ . s
nearest-neighbofNNN) matrix elements. Only the former — )2, which to first order ine precisely yields the above
two are actually required in the strong-coupling analysis, anglag|t.

are given below for spin up and sitein the A sublattice. From the particle-hole symmetry with spin flip in the
Expressions for other spin and sublattice cases follow fromyypbard antiferromagnét,the spin-down hole experiences
the spin-sublattice symmetry. These Green’s functions arghe same effect, except that the potentials are reversed for the
easily obtained by starting with the atomic limit, where thehole. Therefore, there is d@ncreaseof identical magnitude
bands are at energiesA and A, with 2A=U, and then jn the spin-down hole density, implying an identical decrease
obtaining corrections up to second order in the hopping termy, the spin-down particle density. This leads to a vanishing
t. The diagonal and NN matrix elements of the time-orderec{:hange in the local magnetizatiom,, and the particle-hole
Green'’s function matrixg], containing both the advanced propagatory®. This cancellation would be absent if the ran-
(lower band and retardedupper bang parts are dom potential was spin dependent, and is connected to the
time-reversal symmetry. Thus,

o 1-tAAZ . t?/A?
(Al) HF
—t/2A t/2A

2. Second order

0
L a= — 4+ — .
P Y P e e T
Second-order changes in densiti#rs2) are similarly ob-
We note here that the corrections to one-particle Green'tained from the second-order correctighvVg2VgP . As this
functions involve renormalizations ¢if) density(wave func-  term is invariant under the transformativa- —V, identical
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changes are obtained for spin-up electron and spin-down Turning now to the second-order correctionsxty we
hole. The changes in spin-up and spin-down electronic derfind that processes containing energy renormalization in the
sities are therefore equal and opposite, and hence the changgmionic propagatorseither solely, or along with density
in local magnetization adds up to renormalizatioh cancel, so that the net result to order
(W/U)? is
2 1Q (6 €49)°

omP=—6— > (A5) 2 1 (e— €y )2
2 2 02— _ T\ LS FiHe
A245 U [8x°)P= AME@) TR
This result also follows from the second-order correction 5 ) (A7)
to the net escape probability, discussed earlier below Eq. [s o](z) __t_E (€= €i+5)
(A4). Configuration averaging, withe?)=W?/12, therefore XDiite™ " 3347 )2

yields the following quadratic decrease of sublattice magne- hat th £ all i el . isel
tization with disorder, which is suppressed by the small fac-,\[/r\]/e g_ote L altt et §um| ora tN;l matrix S_e{nents IS precise yf
tor t/U2. As discussed in Sec. lll, quantum spin-fluctuation ¢ dlagonarmatrix eement. An Immediate consequence o

. : : . . this correlation is that the Goldstone mode is preserved, as
effects do not substantially modify this result, which quali- expected from spin-rotational symmetry, and that generally

tatively agrees with the quantum Monte Carlo studies of thqhe effective scattering of low-energy, long-wavelength mag-
disordered Hubbard model non modes is weak. This disorder-induced perturbafigh
2 W2 directly yields the magnon self-energy, and disorder renor-
<5m(H2F)>:_4_2_2_ (A6)  malization effects on magnon properties are discussed in
U Secs. Il and IV.
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