
Universität Augsburg

Kleene Under a Demonic Star

Jules Desharnais Bernhard Möller Fairouz Tchier

Report 2000-3 Februar 2000

Institut für Informatik

D-86135 Augsburg

Copyright c© Jules Desharnais Bernhard Möller Fairouz Tchier
Institut für Informatik
Universität Augsburg
D–86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg.DE
— all rights reserved —

Kleene Under a Demonic Star

Jules Desharnais1, Bernhard Möller2, and Fairouz Tchier3

1 Département d’informatique, Université Laval, Québec QC G1K 7P4 Canada
Jules.Desharnais@ift.ulaval.ca

2 Institut für Informatik, Universität Augsburg, D-86135 Augsburg, Germany
Bernhard.Moeller@informatik.uni-augsburg.de

3 Mathematics Department, King Saud University, P.O.Box 22452, Riyadh 11495,
Saudi Arabia, f66m002@ksu.edu.sa

Abstract. In relational semantics, the input-output semantics of a pro-
gram is a relation on its set of states. We generalize this in considering
elements of Kleene algebras as semantical values. In a nondeterministic
context, the demonic semantics is calculated by considering the worst
behavior of the program. In this paper, we concentrate on while loops.
Calculating the semantics of a loop is difficult, but showing the cor-
rectness of any candidate abstraction is much easier. For deterministic
programs, Mills has described a checking method known as the while
statement verification rule. A corresponding programming theorem for
nondeterministic iterative constructs is proposed, proved and applied to
an example. This theorem can be considered as a generalization of the
while statement verification rule to nondeterministic loops.

Keywords: while loop, demonic semantics, relational abstraction, verifi-
cation, Kleene algebra, rule, generalization.

1 Introduction

We use elements of Kleene algebras as abstractions of the input-output semantics
of nondeterministic programs. In the concrete Kleene algebra of homogeneous
binary relations, the operators ∪ and ; have been used for many years to define
the so-called angelic semantics, which assumes that a program goes right when
there is a possibility to go right. The demonic choice t and demonic composition
2 do the opposite: if there is a possibility to go wrong, a program whose semantics
is given by these operators goes wrong. The demonic semantics of a while loop is
given as a fixed point of a monotonic function involving the demonic operators.

While there is no systematic way to calculate the relational abstraction of
a while loop directly from the definition, it is possible to check the correctness
of any candidate abstraction. For deterministic programs, Mills [15,16] has de-
scribed a checking method known as the while statement verification rule. We
generalize this rule to nondeterministic loops.

The rest of the paper is organized as follows. In Section 2, we present our
mathematical tool, namely Kleene algebra [8]. There, a concept of type can

be defined that allows an abstract treatment of the domain (of definedness) of
an element, and also of assertions. After some auxiliary results (Section 3 on
fixed points and Section 4 on demonic operators), we present in Section 5 a
generalization of the while statement verification rule of Mills. This is followed
by an example of application in Section 6.

We note here that half of the generalized theorem has been shown by Sek-
erinski [20], who uses an approach based on predicative programming [12]. A
related theorem has been given by Norvell [18] in the framework of predica-
tive programming with time bounds. Norvell’s theorem shows how to refine the
specification R of a while loop under the condition that R is strongly bounded,
which guarantees termination after a finite amount of time. Further refinement
theorems for loops can be found in [2], presented in the framework of predicate
transformers.

While the research programme around Mills’s rule had originally been car-
ried out by J. Desharnais and F. Tchier [21,22] in the framework of binary
homogeneous relations, we show in the present paper that all the results can
be generalized to the setting of Kleene algebras with types as introduced by B.
Möller in [17]. In particular, the operator of forming the converse of an element
is not needed. A remarkable feature is that the proofs in the generalized setting
are considerably simpler and more perspicuous than the corresponding ones in
terms of relations or predicate transformers.

2 Kleene Algebras

2.1 Definition and Basic Laws

In our definition of a Kleene algebra, we follow [8], since we want to admit general
recursive definitions, not just the Kleene star. We are well aware that there are
different definitions (see e.g. [13]).

Definition 2.1. A Kleene algebra (KA) is a quintuple (K,≤,>, ·, 0, 1) satisfy-
ing the following properties:
(a) (K,≤) is a complete lattice with least element 0 and greatest element >. The

supremum of a subset L ⊆ K is denoted by tL.
(b) (K, ·, 1) is a monoid.
(c) The operation · is universally disjunctive (i.e. distributes through arbitrary

suprema) in both arguments.

The supremum of two elements x, y ∈ K is given by x+ y
∆= t{x, y}.

Perhaps the best-known example of a KA is LAN ∆= (P(A∗), ⊆ , A∗, • , ∅, ε) ,
the algebra of formal languages over some alphabet A, where A∗ is the set of all
finite words over A, • denotes concatenation and ε the empty word (as usual,
we identify a singleton language with its only element).

Another important KA is REL ∆= (P(M × M), ⊆ ,M × M, ; , ∅, I), the
algebra of homogeneous binary relations over some set M under relational com-
position ; . More generally than the concrete relation algebra REL, every abstract
relation algebra (see e.g. [7,19]) is a KA.

3

Definition 2.2. A KA is called Boolean if its underlying lattice (K,≤) is a
Boolean algebra, i.e. a completely distributive and complemented lattice. The
complement of an element a ∈ K is denoted by a.

2.2 Types

Definition 2.3. A type of a KA is an element t with t ≤ 1.

This definition is best illustrated in the KA REL. There a type 1T ⊆ I is
a partial identity relation of the form 1T

∆= {(x, x) | x ∈ T} for some subset
T ⊆M . So it models the assertion of belonging to T .

Now, restriction of a relation R ⊆ M ×M to arguments of type T , i.e. the
relation R ∩ T ×M , can also be described by composing R with 1T from the
left: R ∩ T ×M = 1T ; R. Similarly, co-restriction is modeled by composing
a partial identity from the right. Finally, consider types S, T ⊆ M and binary
relation R ⊆ M ×M . Then R ⊆ S × T ⇔ 1S ; R ; 1T = R. In other words,
the “default typing” M ×M of R can be narrowed down to S × T iff restriction
to S and co-restriction to T do not change R.

These observations are the basis for our view of types as subidentities and our
algebraic treatment of restriction and co-restriction. For a different, but related,
approach see [13].

Lemma 2.4. Assume a Boolean KA. Then the following hold:

(a) All types are idempotent, i.e. t ≤ 1 ⇒ t · t = t.
(b) The infimum of two types is their product: s, t ≤ 1 ⇒ s · t = s u t. In

particular, all types commute under the · operation.
(c) For all families L of types, (L) · > = (L · >).

Definition 2.5. The negation of a type x ≤ 1 in a typed KA is ¬x ∆= x u 1.

2.3 Domain and Codomain

Definition 2.6. In a KA (K,≤,>, ·, 0, 1), we define, for a ∈ K, the domain pa
via the Galois connection (y ranges over types only!) pa ≤ y def⇔ a ≤ y · >.

This is well defined because of Lemma 2.4, see also [1]. Hence the operation
p is universally disjunctive and therefore monotonic and strict. Moreover, the
definition implies a ≤ pa · >. The co-domain aq is defined symmetrically.

We list a number of useful properties of the domain operation (see again also
[1]); analogous ones hold for the co-domain operation.

Lemma 2.7. Consider a KA (K,≤,>, ·, 0, 1) and a, b, c ∈ K.

(a) pa = min{x : x ≤ 1 ∧ x · a = a} ,
(b) pa · a = a ,
(c) x ≤ 1 ∧ x · a = a ⇒ pa ≤ x ,
(d) p(a · b) ≤ pa ,

(e) x ≤ 1 ⇒ px = x ,

(f) p(a · b) ≤ p(a · pb) ,

(g) pa = 0 ⇔ a = 0 .

4

According to Lemma 2.7(g) the domain of an element also decides its “de-
finedness” if we identify 0 with ⊥ as used in denotational semantics.

2.4 Locality of Composition

It should be noted that the converse inequation of Lemma 2.7(f) does not follow
from our axiomatization. A counterexample is given in [10]. Its essence is that
composition does not work “locally” in that only the domain of the right factor
of a composition would decide about its definedness.

Therefore we say that a KA has left-local composition if it satisfies

pb = pc ⇒ p(a · b) = p(a · c) .

Right-locality is defined symmetrically. A KA has local composition if its com-
position is both left-local and right-local.

Lemma 2.8.

(a) A KA has left-local composition iff it satisfies p(a · b) = p(a · pb) .
(b) If a KA has left-local composition then p(pa · b) = pa u pb = pa · pb.

Analogous properties hold for right-locality. In the sequel we only consider
KAs with local composition. All examples given in Section 2.1 satisfy that prop-
erty.

2.5 Type Implication

Types also play the rôle of assertions. The following operator will be instrumental
in propagating assertions through compositions.

Definition 2.9. The binary operator →, called type implication, is defined as
follows:

a→ b
∆= ¬p(a · ¬pb) .

Hence a→ b characterizes the type of points from which no computation as
described by a may lead outside the domain of b. If a and b are types then a
straightforward calculation shows that a → b = ¬a + b, so that both the name
“implication” and the symbol are justified.

This operator is closely related to the monotype factor as defined by Back-
house in [4]. For the case of a type t, one can interpret a→ t also as [a]t, where
[a] is the modal “always” operator as used in dynamic logic (see, e.g., [11]).

Lemma 2.10. Let t be a type.

(a) 1→ b = pb
(b) (a+ b)→ c = (a→ c) · (b→ c)
(c) a · b→ c = a→ (b→ c) (Currying)
(d) (t · a→ y) · t = (a→ y) · t (Modus Ponens)
(e) (a→ t · b) · a = (a→ t · b) · a · t (Type Propagation)
(f) a→ b · pc = a→ b · c (Domain Absorption)
(g) a→ t · b = (a→ t) · (a→ b) = (a→ b) · (a→ t) (Weak Distributivity)

5

3 Fixed Points

We recall a few basic facts about fixed points.

Definition 3.1. A function f between complete lattices is strict if f(0) = 0 and
co-strict if f(>) = >. Further, f is called continuous if f(tL) = t f(L) for
every chain L, and co-continuous iff f(L) = f(L) for every chain L.

Every universally disjunctive function is continuous and strict; every univer-
sally conjunctive function is co-continuous and co-strict. Moreover, every con-
tinuous or co-continuous function is monotonic.

Theorem 3.2. (Knaster/Tarski and Kleene)
(a) A monotonic function f on a complete semilattice has a least (greatest) fixed

point µ(f) (ν(f)) provided its set {x : x ≥ f(x)} of contracted elements (its
set {x : x ≤ f(x)} of expanded elements) is non-empty. These fixed points
satisfy

µ(f) = (x :: f(x) = x)} = (x :: f(x) ≤ x) ,
ν(f) =

⊔
(x :: f(x) = x)} =

⊔
(x :: x ≤ f(x)) .

(b) Every monotonic function f on a complete lattice has a least fixed point µ(f)
and a greatest fixed point ν(f).

(c) If f is continuous, then µ(f) =
⊔

(i : i ∈ IN : f i(0)). If f is co-continuous,
then ν(f) = (i : i ∈ IN : f i(0)).

Because we assume our KAs to be complete lattices (Definition 2.1), least
and greatest fixed points of monotonic functions exist.

Definition 3.3. Let (X,≤) be an ordered set. The relation � on the set of
functions on X is defined by f � g ⇔ ∀(x : x ∈ X : f(x) ≤ g(x)) .

Theorem 3.4. (See, e.g., [3]) The following properties hold:
(a) f � g ⇒ µ(f) ≤ µ(g) (µ monotonic),
(b) Let g be continuous and strict. Then f ◦ g = g ◦ h ⇒ µ(f) = g(µ(h))

(µ-fusion law),
(c) µ(f ◦ g) = f(µ(g ◦ f)) (permutation law).

Analogous laws hold for the greatest fixed point. This can be shown more
easily than by direct proof using the notion of a dual function.

Definition 3.5. Let f be an function on a Boolean lattice. The dual function
of f , notated f#, is defined by f#(x) ∆= f(x).

Lemma 3.6. Let f be an function on a Boolean lattice. Then

ν(f#) = µ(f) and µ(f#) = ν(f) .

¿From this and Theorem 3.4, one obtains

Theorem 3.7. (a) f � g ⇒ ν(f) ≤ ν(g) (ν monotonic),
(b) Let g be co-continuous and co-strict. Then f ◦ g = g ◦ h ⇒ ν(f) = g(ν(h))

(ν-fusion law),
(c) ν(f ◦ g) = f(ν(g ◦ f)) (permutation law).

6

3.1 Finite Iteration

Two central operations in KAs are finite iteration and non-empty finite iteration,
defined for every element a by

a∗ = µ(x :: a · x+ 1) and a+ = µ(x :: a · x+ a) . (1)

By the monotonicity of + and ·, and the Knaster-Tarski-Kleene Theorem 3.2,
these operations are well defined. Since + and · are even continuous, we have

a∗ =
⊔

(i : i ≥ 0 : ai) and a+ =
⊔

(i : i > 0 : ai) , (2)

where a0 = 1 and ai+1 = a · ai. This explains the name “finite iteration”. In
the algebra of relations, a∗ coincides with the reflexive transitive closure and a+

with the transitive closure.

3.2 Infinite Iteration and Termination

In the following, we introduce notions that are useful to describe the set of initial
states of a program for which termination is guaranteed. These notions are the
infinite iteration of an element, its terminating part and progressive finiteness.

Definition 3.8. The infinite iteration of an element a is

aω
∆= ν(x :: a · x) .

The terminating part of an element a, denoted T (a) is the complement of the
infinite iteration:

T (a) ∆= aω = µ(x :: a · x) (by Lemma 3.6) .

In the algebra of relations, the terminating part is also known as the initial
part [19]. It is a vector characterizing the set of points s0 such that there is no
infinite chain s0, s1, s2, . . ., with (si, si+1) ∈ a, for all i ≥ 0. In the semantics of
while programs, an analogue of the terminating part will be used to represent
sets of states from which no infinite looping is possible.

Definition 3.9. An element a is said to be progressively finite iff T (a) = >
[19].

In the algebra of relations, progressive finiteness of a relation R is the same as
well-foundedness of R̆ . By Boolean algebra, a is progressively finite iff aω = 0 .

We now list some useful properties of infinite iteration.

Theorem 3.10. Let a and b be elements.
(a) a ≤ b⇒ aω ≤ bω,
(b) a∗ · aω = a+ · aω = aω,
(c) ¬p(aω) · a is progressively finite,
(d) If b is progressively finite and a ≤ b then also a is progressively finite.

7

Proof. (a) Immediate from monotonicity of the fixed point operators.
(b) Easy calculation.
(c) Set q ∆= ¬p(aω) · a. Since q ≤ a we get qω ≤ aω and hence p(qω) ≤ p(aω). On

the other hand, by Lemma 2.7(d,e)

p(qω) = p(q · qω) = p(¬p(aω) · a · qω) ≤ p(¬p(aω)) = ¬p(aω) .

So p(qω) ≤ p(aω) u ¬p(aω) = 0 and hence qω = 0.
(d) Straightforward from (a).

Finally, we can give an analogue of the terminating part at the level of types:

Definition 3.11. Tp(a) ∆= µ(x :: a→ x) .

Using the correspondence with the modal operator, we have that Tp(a) =
µ(x :: [a]x). In the propositional µ-calculus, this is known as the halting predi-
cate (see, e.g., [11]).

It is easy to check that ¬p(aω) is a fixed point of (x :: a→ x). Hence,

Corollary 3.12. (a) Tp(a) ≤ ¬p(aω) .
(b) Tp(a) · a is progressively finite.

Proof. (a) is immediate from the least fixed point property of Tp(a). For (b), by
monotonicity of ω we get (Tp(a) ·a)ω ≤ (¬p(aω) ·a)ω = 0 using Theorem 3.10(c).

3.3 Connecting Finite and Infinite Iteration

The next theorem connects finite and infinite iteration.

Theorem 3.13. Let f(x) ∆= a ·x+ b. Then µ(f) = a∗ · b and ν(f) = a∗ · b+aω .

The proof is by fixed point fusion. For the second assertion, this depends
crucially on the complete distributivity of the underlying lattice. The theorem
entails the following corollary that highlights the importance of progressive finite-
ness in the simplification of fixed point-related properties.

Corollary 3.14. Let again f(x) ∆= a · x + b. If a is progressively finite, then f
has a unique fixed point, viz. a∗ · b [3].

To conclude this section, we study analogous iterations at the level of types.

Theorem 3.15. Let t be a type and set, for x ∈ TYP, h(x) ∆= p(a · x) + t and
k(x) ∆= ¬t · (a→ x).
(a) x ≤ 1 ⇒ h(x) = ¬k(¬x) ,
(b) µ(h) = p(a∗ · t) ,
(c) ν(h) = p(a∗ · t) + ¬Tp(a) ,

(d) Tp(a) ≤ p(a∗ · ¬pa) ,
(e) µ(k) = Tp(a) · (a∗ → ¬t) ,
(f) ν(k) = (a∗ → ¬t) .

8

Proof. Part (a) is straightforward. Parts (b) and (e) follow by fixed point fusion,
which is applicable by continuity and strictness of the p and · operations. Note
that h(x) ≤ 1 and k(x) ≤ 1 for any x ∈ K. Hence, any fixed point of h or k is a
type. Because the types constitute a complete Boolean algebra, one can consider
h and k to be functions on the set of types for the purpose of calculating fixed
points. Thus, h and k are dual (Part (a)). One can then apply Lemma 3.6 to
obtain Parts (c) and (f). For assertion (d), we first show (a → x) ≤ p(a · x) +
¬pa; the proof uses shunting, locality of composition, distributivity and Boolean
algebra:

(a→ x) ≤ p(a · x) + ¬pa ⇔ ¬p(a · ¬px) ≤ p(a · x) + ¬pa ⇔
pa ≤ p(a · px) + p(a · ¬px) ⇔ pa ≤ pa .

Now, using the above derivation, the monotonicity of µ, and (b), we can conclude

Tp(a) = µ(x :: a→ x) ≤ µ(x :: p(a · x) + ¬pa) = p(a∗ · ¬pa) .

4 The Demonic Operators

4.1 Refinement Ordering

We now define a partial ordering, called the refinement ordering. This ordering
induces a complete join semilattice, called a demonic semilattice. The associated
operations are demonic join (t), demonic meet (u) and demonic composition (2).
Again, we generalize from the case of relation algebra to general KAs. For more
details on relational demonic semantics and demonic operators, see [4,5,6,7,9,21].

Definition 4.1. We say that an element a refines an element b [14], denoted
by a v b, iff pb ≤ pa ∧ pb · a ≤ b .

It is easy to show that v is indeed a partial ordering.

Theorem 4.2. (a) The partial order v induces a complete upper semilattice,
ie., every subset L ⊆ K has a least upper bound (wrt v)

⊔
L which is called

its demonic join. One has⊔
L = ((a : a ∈ L : pa)) ·

⊔
L with p(

⊔
L) = (a : a ∈ L : pa) .

(b) a v b ⇔ a t b = b .
(c) If a and b satisfy the condition p(au b) = pau pb, their greatest lower bound,

denoted a u b and called their demonic meet, exists and its value is

a u b = (a u b) + ¬pa · b+ ¬pb · a with p(a u b) = pa+ pb .

Otherwise, the greatest lower bound does not exist.

The existence condition for u simply means that on the intersection of their
domains, a and b have to agree for at least one value.

9

4.2 Demonic Composition

Definition 4.3. Let a and b be elements. The demonic composition of a and b,
denoted by a 2 b, is defined as a 2 b

∆= (a→ b) · a · b .

In the algebra of relations, a pair (s, t) belongs to a 2 b if and only if it belongs
to a·b and there is no possibility of reaching, from s, by a, an element u that does
not belong to the domain of b. For example, with a

∆= {(0, 0), (0, 1), (1, 2)} and
b

∆= {(0, 0), (2, 3)}, one finds that a 2 b = {(1, 3)}; the pair (0, 0), which belongs
to a · b, does not belong to a 2 b, since (0, 1) ∈ a and 1 is not in the domain of b.
Note that we assign to 2 and · the same binding power.

A fundamental property is

Theorem 4.4. The demonic composition is associative.

For the next theorem we need a notion of determinacy [10].

Definition 4.5. An element a is deterministic iff CD(a) holds, where

CD(a) ∆= ∀(b : b ≤ a : b = pb · a) (characterization by domain).

We quote from [10]:

Lemma 4.6. All types are deterministic. If a is deterministic and b ≤ a, then
b is deterministic as well.

The following properties are shown by straightforward calculations.

Theorem 4.7. (a) a deterministic⇒ a 2 b = a · b ,
(b) pa · pb = 0⇒ (a+ b) 2 c = a 2 c+ b 2 c ,
(c) pa · pb = 0⇒ a u b = a+ b .

5 The Semantics of Nondeterministic Loops

5.1 Intuition and Notation

A general nondeterministic loop is best described by a graph of the form

-����1 ����2-

a���� b

It may “execute” a as long as the intermediate states remain in the domain
of a and it may exit if a state in the domain of b is reached. The domains of a and
b need not be disjoint. Since a may be nondeterministic, it can take a starting
state s to many successor states. If among these there exists a state outside the
domains of a and b (abnormal termination), then in the demonic view s must
be excluded from the domain of the loop semantics. Hence, in addition to Tp(a),
we introduce a type P(a, b) (P stands for proper) that characterizes the states
from which no abnormal termination is possible.

10

We now define the corresponding semantic functions formally. Let a and b
be elements. The abbreviations ϕ, ϕp,P(a, b), sµ and sν are defined as follows:

ϕ(x) ∆= (a→ x) · (a · x+ b) , P(a, b) ∆= a∗ → (a+ b) ,
ϕp(x) ∆= (a→ x) · p(a+ b) , sµ

∆= P(a, b) · Tp(a) · a∗ · b .
(3)

The subscript p in ϕp expresses that ϕp is a domain-oriented counterpart of ϕ.
The element sµ, which we take as the semantics of the loop, is the restriction

of the angelic loop semantics a∗b to P(a, b) and Tp(a). Hence the domain of sµ
represents the set of states from which proper termination is guaranteed. We
want to show that sµ is the least fixed point of ϕ.

Lemma 5.1. Assume, as in Theorem 3.13, f(x) ∆= a · x+ b .
(a) If s is a type then ϕ(s · x) = ϕp(s · x) · f(x) .
(b) ϕ(x) = (a→ x) · f(x) = ϕp(x) · f(x) = a 2 x+ (a→ x) · b .
(c) If pa · pb = 0, then ϕ(x) = a 2 x u b .

Proof. (a) ϕ(s · x)
= {[definitions]}

(a→ s · x) · (a · s · x+ b)
= {[distributivity and type propagation (Lemma 2.10(e))]}

(a→ s · x) · (a · x+ b)
= {[since p(a · x+ b) ≤ p(a+ b)]}

(a→ s · x) · p(a+ b) · (a · x+ b)
= {[definitions]}

ϕp(s · x) · f(x)
(b) Immediate from (a) by setting s = 1 and from the definitions.
(c) This follows from Part (b) by monotonicity of p , Boolean laws and Theo-

rem 4.7(c).

Item (c) justifies why we are talking about a demonic star operator.

5.2 Properties of the Semantics

The following lemma presents the relationship between the fixed points of the
functions ϕ and ϕp (Equations 3). It is again proved by straightforward calcu-
lation.

Lemma 5.2. (a) p(ϕ(x)) = ϕp(px),
(b) If y is a fixed point of ϕ then py is a fixed point of ϕp.

In the following we give bounds on the fixed points of ϕp.

Theorem 5.3. (a) µ(ϕp) = P(a, b) · Tp(a) and ν(ϕp) = P(a, b).
(b) If y is a fixed point of ϕ, then P(a, b) · Tpa ≤ py ≤ P(a, b).

Proof. Immediate from Lemma 5.2(b) and Theorem 3.15(e,f).

11

The next theorem characterizes the domain of sµ. It is the set of points for
which normal termination is guaranteed (no possibility of abnormal termination
or infinite loop).

Theorem 5.4. (a) P(a, b) ≤ p(a∗ · b) + ¬Tp(a) ,
(b) P(a, b) · Tp(a) ≤ Tp(a) · p(a∗ · b) ,
(c) psµ = P(a, b) · Tp(a) = µ(ϕp) .

Proof. (a) P(a, b) ≤ p(a∗ · b) + ¬Tp(a)
⇔ {[shunting]}
Tp(a) ≤ p(a∗ · b) + ¬P(a, b)

⇔ {[Equations 3, Definition 2.9, Boolean algebra, Lemma 2.8]}
Tp(a) ≤ p(a∗ · pb) + p(a∗ · ¬pa · ¬pb)

⇔ {[distributivity, Boolean algebra]}
Tp(a) ≤ p(a∗ · (pb+ ¬pa))

⇐ {[monotonicity]}
Tp(a) ≤ p(a∗ · ¬pa)

⇔ {[Theorem 3.15(d)]}
true

(b) Immediate from (a).
(c) psµ

= {[by (3)]}
p(P(a, b) · Tp(a) · a∗ · b)

= {[locality of composition (Lemma 2.8)]}
P(a, b) · Tp(a) · p(a∗ · b)

= {[(b), Boolean algebra]}
P(a, b) · Tp(a)

In the following theorem, we show that sµ is a fixed point of ϕ.

Theorem 5.5. ϕ(sµ) = sµ .

Proof. ϕ(sµ)
= {[Equations 3, and Theorems 5.4(c) and 3.13]}

ϕ(µ(ϕp) · µ(f))
= {[Lemma 5.1(a)]}

ϕp(µ(ϕp) · µ(f)) · f(µ(f))
= {[Equations 3, Theorems 5.4(c) and 3.13, fixed point property]}

ϕp(sµ) · µ(f)
= {[Equations 3, Definition 2.9, Lemma 2.7]}

ϕp(psµ) · µ(f)
= {[Theorem 5.4(c)]}

ϕp(µ(ϕp)) · µ(f)
= {[fixed point property]}

12

µ(ϕp) · µ(f)
= {[Equations 3, Theorems 5.4(c) and 3.13]}

sµ

The following theorem uniquely characterizes the least fixed point of ϕ by a
simple condition and shows that sµ is the least fixed point of ϕ.

Theorem 5.6. Recall Equations 3. For all elements a,

(a) c = µ(ϕ) ⇔ ϕ(c) = c ∧ pc ≤ Tp(a) ,
(b) µ(ϕ) = sµ .

Proof. (a) (⇒) Assume c = µ(ϕ). The property ϕ(c) = c then obviously follows.
From Theorem 5.5 and Theorem 3.2(a), we get c ≤ sµ and hence, by
Theorem 5.4(c), pc ≤ psµ = P(a, b) · Tp(a) ≤ Tp(a) .

(⇐) Assume ϕ(c) = c and pc ≤ Tp(a). Theorem 5.3 implies P(a, b) · Tp(a) ≤
pc ≤ P(a, b). Hence pc = P(a, b) · Tp(a) = µ(ϕp). This is used in the fol-
lowing derivation, which also employs Lemma 5.1(b), domain absorption
(Lemma 2.10(f)), a fixed point property and distributivity.

c = ϕ(c) = ϕp(c) · f(c) = ϕp(pc) · f(c) = ϕp(µ(ϕp)) · f(c) =
µ(ϕp) · f(c) = µ(ϕp) · a · c+ µ(ϕp) · b .

By Theorem 5.4(c), Corollary 3.12(b) and Theorem 3.10(d), µ(ϕp) · a
is progressively finite. Invoking Corollary 3.14 shows that the function
(x :: µ(ϕp) · a · x+ µ(ϕp) · b) has a unique fixed point. Thus all elements
c such that ϕ(c) = c and pc ≤ Tp(a) are equal. But µ(ϕ) is such an
element, as we have shown above (part ⇒). We conclude that c = µ(ϕ).

(b) By Theorem 5.5, sµ = ϕ(sµ). By Theorem 5.4(c), psµ ≤ Tp(a). Now the
claim is a consequence of part (a) of this theorem.

5.3 Relating Angelic and Demonic Semantics

In the following, we will show that the element sµ is the greatest fixed point
with respect to v of the function ϕ (Equations 3). But first, we show

Lemma 5.7. The function ϕ is monotonic wrt v.

Proof. Assume x v y. First, using Lemma 5.2(a) and monotonicity of ϕp wrt ≤,

pϕ(y) ≤ pϕ(x) ⇔ ϕp(py) ≤ ϕp(px) ⇐ py ≤ px .

Second, using Lemma 5.2(a), Equations 3, Lemma 2.10(g), the hypothesis and
monotonicity of ϕ wrt ≤,

pϕ(y) · ϕ(x) = ϕp(py) · ϕ(x) = (a→ py) · p(a+ b) · (a→ x) · (a · x+ b) =
(a→ py · x) · (a · py · x+ b) = ϕ(py · x) ≤ ϕ(y) .

13

Recall thatv is a complete t-semilattice. Since the function ϕ isv-monotonic
and sµ is a fixed point, i.e. an expanded element, by Theorem 3.2 the v-greatest
fixed point of the function ϕ exists and is given by

w =
⊔

(x :: x = ϕ(x)) . (4)

Theorem 5.8. The element sµ (Equations 3) is the v-greatest fixed point of ϕ,
that is sµ = νv(ϕ).

Proof. Since sµ = ϕ(sµ), by (4) we get sµ v w. Hence, the definition of v
implies pw ≤ psµ. Using Theorem 5.4(c) now gives pw ≤ Tp(a), so that, by
Theorem 5.6(a), we finally obtain w = µ≤(ϕ) = sµ .

In other words, the least fixed point of ϕ wrt ≤ is equal to the greatest fixed
point of the same function ϕ wrt v.

6 Application

In Mills’s approach, the semantics w of a deterministic loop do g→ C od is
given as the least fixed point (wrt ≤) of the function

wgc(x) ∆= g · c · x+ ¬g, (5)

where the type g is the semantics of the loop guard g and the element c is the
semantics of the loop body C.

Lemma 6.1. If the loop body c is deterministic, then

wgc(x) = (g · c→ x) · (g · c · x+ ¬g) = g 2 c 2 x u ¬g .

Hence, in this case, the demonic and angelic semantics coincide, as expected.
In this case, one can also prove that, under mild additional assumptions on the
underlying KA, the semantics of the loop is deterministic as well.

Calculating the relational abstraction (semantics) of a loop is difficult, but
showing the correctness of any candidate abstraction is much easier. For deter-
ministic programs, Mills [15,16] has described a checking method known as the
while statement verification rule. In a nondeterministic context, the abstraction
is calculated by considering the worst behavior of the program (demonic seman-
tics) [21]. Given a loop condition and a loop body, Theorem 5.6 (with a

∆= g · c
and b

∆= ¬g; notice that pa · pb = 0) can be used to verify if an element w is
indeed the semantics of the loop.

The following example is rather contrived, but it is simple and fully illustrates
the various cases that may happen. Consider the following loop, where the unique
variable n ranges over the set of integers [7,22]:

Example 6.2. Consider the program

14

do n > 0 → if n = 1 → n := 1 n = 1 → n := −3
n = 3 → n := 2 n = 3 → n := −1
n ≥ 4 → n := −4

fi od

Notice that all n > 0 such that n mod 4 = 1 may lead to termination with a
final value n′ = −3, but may also lead to an infinite loop over the value n = 1;
these initial values of n do not belong to the domain of the element giving the
semantics of the loop. Note also that all n > 0 such that n mod 4 = 3 may lead
to termination with a final value n′ = −1, but may also lead to a value n = 2,
for which the loop body is not defined (by the semantics of if fi); these n do not
belong to the domain of w. Because they also lead to n = 2, all n > 0 such that
n mod 4 = 2 do not belong to the domain of w.

The semantics of the loop guard in the concrete KA REL is given by:

g = {n > 0 ∧ n′ = n} (whence ¬g = {n ≤ 0 ∧ n′ = n}).

The semantics of the loop body is:

c = {n = 1 ∧ n′ = n} 2({n′ = 1} t {n′ = −3})
u {n = 3 ∧ n′ = n} 2({n′ = 2} t {n′ = −1})
u {n ≥ 4 ∧ n′ = n} 2 {n′ = n− 4} .

By Proposition 4.7(a), g 2 c = g · c = c. Using Theorem 5.6(a), we show that

w
∆= {(n ≤ 0 ∧ n′ = n) ∨ (n > 0 ∧ n mod 4 = 0 ∧ n′ = 0)}

is the semantics of the loop. The condition ϕ(w) = w of theorem 5.6(a) follows
from straightforward calculations. The second condition pw ≤ Tp(g · c) can be
established informally by noting that the domain of w is {n ≤ 0∨n mod 4 = 0} ,
and that there is no infinite sequence by g · c for any n in the domain of w.

A more satisfactory way to show pw ≤ Tp(g · c) is to calculate Tp(g · c).
However, because Tp(g · c) characterizes the domain of guaranteed termination
of the associated loop, there is no systematic way to compute it (this would solve
the halting problem). To demonstrate termination of the loop from every state in
the domain of w, classical proofs based on variant functions or well-founded sets
could be given. But formal arguments based on the definition of the terminating
part (Definition 3.8) can also be used [7].

In this example, Theorem 5.6 was used to verify that the guessed semantics
w of the loop was correct, given the semantics g of the loop guard and c of the
loop body. The theorem can also be used in the other direction. If we are given a
specification w, we can guess g and c, and then apply Theorem 5.6 to verify the
correctness of the guess. If it is correct, then a loop of the form do g→ C od,
where C is an implementation of c, is correct with respect to w.

Acknowledgments. The authors thank Thorsten Ehm and Dexter Kozen for help-

ful comments. This research was supported by FCAR (Fonds pour la Formation de

Chercheurs et l’Aide à la Recherche, Québec) and NSERC (Natural Sciences and En-

gineering Research Council of Canada).

15

References

1. C. J. Aarts. Galois connections presented calculationally. Eindhoven University of
Technology, Dept. of Mathematics and Computer Science, July 1992.

2. R. Back and J. von Wright. Refinement Calculus — A Systematic Introduction.
Springer, 1998.

3. R. C. Backhouse et al. Fixed point calculus. Inform. Proc. Letters, 53:131–136,
1995.

4. R. C. Backhouse and J. van der Woude. Demonic operators and monotype factors.
Mathematical Structures in Comput. Sci., 3(4):417–433, 1993.

5. R. Berghammer and H. Zierer. Relational Algebraic semantics of deterministic and
nondeterministic programs. Theoret. Comput. Sci., 43:123–147, 1986.

6. N. Boudriga, F. Elloumi, and A. Mili, On the lattice of specifications: Applications
to a specification methodology. Formal Aspects of Computing, 4:544–571, 1992.

7. C. Brink, W. Kahl, and G. Schmidt (eds). Relational Methods in Computer Science.
Springer, 1997.

8. J. H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London,
1971.

9. J. Desharnais, N. Belkhiter, S. B. M. Sghaier, F. Tchier, A. Jaoua, A. Mili, and
N. Zaguia. Embedding a demonic semilattice in a relation algebra. Theoret. Com-
put. Sci., 149(2):333–360, 1995.

10. J. Desharnais and B. Möller. Characterizing functions in Kleene algebras. In J. Des-
harnais (ed.), Proc. 5th Seminar on Relational Methods in Computer Science
(RelMiCS’5). Université Laval, Canada, pages 55–64, 2000.

11. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. Forthcoming book.
12. E. Hehner. Predicative programming, Parts I and II. CACM, 27:134–151, 1984.
13. D. Kozen: Kleene algebras with tests. ACM TOPLAS 19:427–443, 1997.
14. A. Mili, J. Desharnais, and F. Mili. Relational heuristics for the design of deter-

ministic programs. Acta Inform., 24(3):239–276, 1987.
15. H. D. Mills. The new math of computer programming. CACM, 18(1):43–48, 1975.
16. H. D. Mills, V. R. Basili, J. D. Gannon and R. G. Hamlet. Principles of Computer

Programming. A Mathematical Approach. Allyn and Bacon, Inc., 1987.
17. B. Möller: Typed Kleene algebras. Universität Augsburg, Institut für Informatik,

Report, 1999
18. T. S. Norvell. Predicative semantics of loops. In R. S. Bird and L. Meertens (eds),

Algorithmic Languages and Calculi, Chapman & Hall, 1997, pages 415–437.
19. G. Schmidt and T. Ströhlein. Relations and Graphs. EATCS Monographs in Com-

puter Science, Springer-Verlag, Berlin, 1993.
20. E. Sekerinski. A calculus for predicative programming. Second International Conf.

on the Mathematics of Program Construction. R. S. Bird, C. C. Morgan and
J. C. P. Woodcock (eds), Oxford, June 1992, Lect. Notes in Comput. Sci., Vol.
669, Springer-Verlag, 1993.

21. F. Tchier. Sémantiques relationelles demoniaques et vérification de boucles non-
déterministes. Ph.D. Thesis, Département de Mathématiques, Université Laval,
Canada, 1996.

22. F. Tchier and J. Desharnais. Applying a generalization of a theorem of Mills to
generalized looping structures. Colloquium Science and Engineering for Software
Development, organized in the memory of Dr. Harlan D. Mills, and affiliated to
the 21st International Conference on Software Engineering, Los Angeles, 18 May
1999, pages 31–38.

16

	Kleene Under a Demonic Star
	Introduction
	Kleene Algebras
	Definition and Basic Laws
	Types
	Domain and Codomain
	Locality of Composition
	Type Implication

	Fixed Points
	Finite Iteration
	Infinite Iteration and Termination
	Connecting Finite and Infinite Iteration

	The Demonic Operators
	Refinement Ordering
	Demonic Composition

	The Semantics of Nondeterministic Loops
	Intuition and Notation
	Properties of the Semantics
	Relating Angelic and Demonic Semantics

	Application

