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0. Introduction

Since the last century it is known that a minimal surface in 3-space (up to
coverings) allows a one-parameter family of isometric deformations preserv-
ing the principal curvatures and rotating the principal curvature directions:
the associated family. An example is the well-known deformation of the
catenoid into the helicoid. The associated family deformation is constant
only if the minimal surface is a plane. Associated families were also ob-
served for minimal surfaces in spheres and complex projective spaces (e.g.
cf. [EGT]), but in these target spaces there are interesting minimal surfaces
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with constant associated families which could be classified (cf. [C], [B],
[DZ], [EW], [CW]). Eventually, the existence of an associated family was
proven for harmonic maps of Riemann surfaces into any compact symmetric
space (cf [U], [Hi], [BFPP], [DPW]), and it became a cornerstone for the
loop group representation of these objects.

If we pass from surfaces to KS_hler manifolds of higher dimension, we
have to replace harmonic by pluriharmonic maps whose restrictions to all
complex one-dimensional submanifolds are harmonic. A pluriharmonic iso-
metric immersion is called pluriminimal or (1,1)-geodesic; its restriction to
any complex one-dimensional submanifold is a minimal surface. Plurihar-
monic maps also have an associated family. This was first shown by Ohnita
and Valli [OV] if the target space is a compact Lie group, and was general-
ized by Burstall et al. [BFPP] to symmetric spaces of compact type, using
the Cartan embedding of a symmetric space S = G / I f  into its isometry
group G. In fact, pluriharmonic maps are characterized by this property of
having an associated family. One purpose of our paper is to give a simple
direct proof of this fact for any symmetric space S using the geometry of S
without passing to G. Further, we characterize the pluriharmonic maps with
trivial associated family, the so called isotropic ones; it turns out that they
all arise from holomorphic maps into a flag manifold or flag domain over S.

Besides minimal surfaces, also constant mean curvature surfaces in 3-
space allow isometric deformations rotating the second fundamental form.
These surfaces are generalized by Kahler submanifolds whose second fun-
damental form has parallel (1,1)-part. These (1, 1)-parallel immersion allow
also some kind of associated families (called "weak") which is the subject
of our last chapter.

1. Associated families

Let (M, ( , ) ,  J )  be a Kahler manifold of complex dimension m. For any
angle 0 E [0, 27r] let 7"40 : T M  ---* T M ,

J-go(X) = cos(O)X + sin(O)JX.

This is a parallel endomorphism field on TM.  As usual, the complexified
tangent bundle T M  ® C is decomposed into the parallel eigenbundles of J ,
called T t M  and T ' M ,  corresponding to the eigenvalues i and - i ,  and the
elements of T t M  and T ' M  are called vectors of type (1,0) and (0,1). Clearly,
7-4o has eigenvalue e i° on T t M  and e -i° on T ' M .  Any linear map ~ defined
on T M  will be complex linearly extended to T M  ® C; its restrictions to
T t M  and T ' M  will be denoted by a; / and w'.

Further, let S be any Riemannian manifold with Riemannian metric
g -- ( , ) .  Any naturally defined covariant derivative will be denoted by D.
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A smooth map f : M --~ S is called pluriharmonic if the (1,1)-part of its
Hesseian vanishes, i .e.

D" d' f = D' d" f = 0

where df : T M  ~ f * T S  denotes the differential of f .  Here, D is the co-
variant derivative in the bundle Hom(TM,  f *TS )  which is induced by the
Levi-Civita derivatives of M and S. A pluriharmonic isometric immersion
f : M ~ S is called (1,1)-geodesic since the (1,1)-part of its second funda-
mental form a = Ddf vanishes. Equivalently, f ]C is a minimal surface for
any complex one-dimensional submanifold ("curve") C C M.  Therefore,
such an immersion is also called pluriminimal.

From now on, let S be a Riemannian symmetric space of compact, eu-
clidean or noncompact type, and suppose that M is simply connected (but
not necessarily complete). Let f : M ---, S be a smooth map. An associated
family for f is a smooth family of maps fo : M ~ S such that

(AF) q~o o dfo = df o TOo

for some parallel bundle isomorphism ~0 : f ~ T S  ~ f * T S  which preserves
the full curvature tensor Rs  of S.

Theorem 1. A smooth map f : M --+ S is pluriharmonic if and only if
there is an associated family for f .

Recall the integrability condition for a differential (cf. [ET 1 ]): If  a smooth
map f : M ~ S is given, the differential F = df : T M  ~ E := f * T S
satisfies the following structural equations for all sections X, Y of T M  and
A of E:

D F ( X ,  Y)  = DF(Y ,  X )  (1)
RE(X ,  Y ) A  = R s ( F X ,  F Y ) A  (2)

where RE denotes the curvature tensor on E with its induced connection, Rs
the curvature tensor (Lie triple product) on S and D F ( X ,  Y)  = ( D x F ) . Y .
Vice versa, i fa  vector bundle E over M with connection D and a parallel Lie
triple product Rs  on each fibre, isomorphic to that of S, and a bundle map
F : T M  ---* E satisfying (1) and (2) are given, then there exists a smooth
map f : M ~ S and a parallel bundle isomorphism ~ : f * T M  ~ E
preserving Rs  such that • o df = F. Thus, to prove the theorem we only
have to show that the pluriharmonicity for f is equivalent to (1) and (2) for
Fo = df o T¢o.

We need another piece of preparation. Recall the substitute for Gauss and
Codazzi equations for a smooth map f : M ~ S: For any X,  Y, Z E T M ,

RE(X ,  Y ) d f  .Z = df .( R ( X ,  Y ) Z )  + D x ( D d f ) ( Y ,  Z) - D y ( D d f ) ( X ,  Z)
(3)

where E = f *TS .  As a consequence, we get
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Lemma.  (cf [OU], p. 374) Let f : M ---+ S be a pluriharmonic map. Then
Rs(df .X,  df.Y) and RE(X,  Y)  vanish forall X,  Y E T'M.

Proof Since Ddf (1,1) vanishes by pluriharmonicity and since TtM and
T ' M  are parallel, we get (Dx(Ddf))  (1,1) = 0 for any X. Thus the right
hand side of (3) vanishes for X, Y E T~M and Z c T ' M ;  recall that
R(X,  Y ) Z  = 0 by the K~ihler property of M.  Thus RE(X,  Y)df .Z  = 0 by
(3) and hence Rs(df .X,  df .Y)df.Z = 0 by (2). In particular,

(Rs(df.X,  d f .Y)df .2 ,  df.  )  = o

for all X, Y c T~M. Since the curvature operator Rs : A2TS ~ A2TS
is semi-definite, we obtain Rs(df .X,  df.Y) = 0. The result for RE follows
from (2). []

After these preparations, we can prove Theorem 1. Assume first that
f : M ~ S is pluriharmonic. Put E = f i T S  and F = df : T M  ~ E. Fix
0 E (0, 27r). Let Fo = F o T¢o. We have to show that Fo satisfies (1) and
(2). In fact, by parallelity of 7~0 we have for all X, Y

DFo(X, Y)  = (DF)(X,  7-4o.Y). (4)

Thus, if X and Y have both the same type ((1,0) or (0,1) vectors), then
DFo(X, Y) = e+i°DF(X, Y) which is symmetric in X and Y, while
D F ( X ,  7~oY) vanishes by pluriharmonicity if X and Y have different type.
This shows (1). Equation (2) holds since by the Lemma above, both sides
vanish if X,  Y have the same type, and if they have different type, the two
factors e ~° and e - i°  from 7~0 on the right hand side cancel each other. This
proves the existence of a map fo : M --+ S with dfo = Fo up to a parallel
isomorphism between f ~TS  and f i T S .  Clearly fo is again pluriharmonic
since ~0  preserves type.

Vice versa, suppose only that f : M ~ S is a smooth map with dif-
ferential F = df : T M  ~ f i T S  and that Fo := F o 7~0 satisfies (1)
for all 0. Then we have for all X E T~M, Y C T ' M  that DFo(X, Y)  =
e- i°F(X,  Y) while DFo(Y, X)  = ei°F(Y, X)  by (4). Therefore, (1) im-
plies that D F ( X ,  Y) = 0 for all X C T'M, Y C T"M; in other words, f
is pluriharmonic. []

Remark.  If f : M ~ S is a pluriharmonic isometric immersion then so
is fo since 7~0 is an isometry on T M .  Note that the parallel isomorphism
~o : f ~ T S  ~ f * T S  with ~0 o dfo = df o TOo maps dfo(TM), the tangent
bundle of fo, onto clf(TM). Thus 450 restricts to a parallel map between
the normal bundles of fo and f .  So the geometries of the tangent and the
normal bundle of  f and fo agree, but by (4), the second fundamental forms
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are different. In fact, since a ( X ,  Y) = 0 i f X  and Y have different type, we
can express (4) also in the following way:

so(X, Y) =  o/2r)  (5)
for all X and Y.

2. Isotropic pluriharmonic maps

Now let us consider the special case of those pluriharmonic maps f : M
S where the associated family is trivial, i.e. fo = f for all 0. Let E :
f * T S .  Adopting a notion from [EW] for surfaces in C P  ~, we will call
these pluriharmonic maps isotropic. By Ch.1, Equation (AF) ,  a smooth
map f • M ~ S is isotropic pluriharmonic if and only if there is a family
of parallel automoqohism 4)o of (E, Rs)  (called associated rotations) such
that

(AR)  4)0 o df = df o no.

Examples.
1. If S is hermitian symmetric with complex structure j and f : M --~ S

is holomorphic, i.e. df o J = j o dr, then f is isotropic pluriharmonic
where 4)0 is the rotation ro = c o s ( 0 ) / ÷  sin(0)j  on S.

2. Consider a K/ihler manifold Z with complex structure j ,  a symmetric
space S and a Riemannian submersion 7r : Z ~ S whose fibres are
complex submanifolds. Let f : M ---* Z be a horizontal holomorphic
map, i.e. f is holomorphic with d f ( T M )  c f * ~  where 7-/ C T Z  is
the horizontal subbundle. Then f = 7r o f is isotropic pluriharmonic.
In fact, since the rotation ro = cos(0)I + sin(0)j  on Z is parallel and
preserves the vertical and horizontal components, it leaves invariant the
curvature tensor of Z and also the O'Neill tensor A x Y  = (DxY)vcr t  of
the Riemannian submersion: A x r o Y  = r o A x Y  for any two horizontal
vector fields X, Y. Hence, by O'Neill 's formula (cf. [CE], p.67f, (3.25),
(3.30)), ro preserves also the curvature tensor R s  of S. (Using dTr, we
identify 7r*TS with ~ . )  Thus the pullback of rolTr*TS by f defines a
parallel automorphism 4)o on E = f * T S .  Many examples are of this
type (e.g. [EW], [ErW], [OU], [ET2], [K]).

3. In certain cases, the submersion 7r : Z ~ S need not be Riemannian,
i.e. dTr[~ need not be isometric, but the values of f : M ~ Z lie in a
parallel subbundle 7-/1 of Tf such that dTrlT-tl is isometric, see the Remark
following Theorem 2 below.

Proposition, The associated rotations ~bo of a full isotropic pluriharonic
map f : M ---. S have the following properties:
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(a) They form a one-parameter group, i.e. ~o+o' = qPo °~bo', with ~2~ = I.
(b) There is a ~o-invariant parallel subbundle E1 containing the values of

df  where ~o has precisely the eigenvalues e ±iO.
(c) ~ -- - I  and hence j := ~ r /2  is a parallel complex structure on E.

(A map f : M ~ 5: will be called full if the values of f do not lie in a
totally geodesic proper subspace of 5:.)

Proof Let E1 be the smallest parallel subbundle of  E = f*Ts:  containing
the values of dr. From (AR) and the parallelity o f~0  we see that ~b0 preserves
E1 with eigenvalues e ±iO. Moreover from the group law 7~0 o 7~0, - 7~0+0,
we get the corresponding group law for ¢0]el-  Since all ¢0 are automor-
phisms for the curvature tensor Rs,  we obtain the same group law on the
smallest Rs-stable subbundle E0 containing E l .  (A subbundle Eo C E is
called Rs-stable if Rs(A ,  B )C  E Eo for any A, B,  C E Co.) Since R s  is
parallel, also Eo is a parallel subbundle, and moreover, E0 is Rs-stable and
contains d f ( T M ) .  Since f is full, we conclude Eo = E (cf. lET1], Thm.
2). Further, ~b2~ = I on E1 and hence on E0 -- E .

Now we consider the case 0 = zr. Since ~ ]  -- ~b2~ = I ,  the only
eigenvalues of ~ are ±1 .  Let E _  C E be the (-1)-eigenbundle.  This
is parallel and contains d f ( T M ) ,  and it is also Rs-stable since for any
A, B, C E E_ we have

• ~ (Rs(A ,  B)C)  : R s ( ~ , A ,  4)~B)4)~C = - R s ( A ,  B)C.

As before we conclude E _  = E which finishes the proof. []

Coro l la ry  1. If there exists a full pluriharmonic isotropic map f : M ~ 5:,
then the symmetric space 5: is inner (in particular, S is even dimensional).

Proof A Riemannian symmetric space S -- G / K  is called inner if the
geodesic symmetry 7 at the base point o lies in the connected component of
K which is the connected automorphism group of  the Lie triple (ToS, Rs).
(In particular, T has a square root in K which is a complex structure on ToS.)
Assuming that f (xo)  : o for some xo C M ,  we have a one-parameter group
qSo(xo) of such automorphisms with 4~Tr(x0) : - I ,  hence S is inner. []

Corol la ry  2. Any isotropic pluriharmonic map f : M --~ R 2n : C n is
holomorphic up to isometries o f ~  2n.

Proof If S : ]1( 2n, then the parallel complex structure j : ~5./2 has a
parallel extension to all of  R 2n. []

Remark .  An isotropic pluriharmonic map f : M ~ S is also pluri-
conformal, i.e. d f ( T ' M )  is isotropic (the complexified metric g vanishes
there), since by (AR),  d f ( T ' M )  is contained in the isotropic subbundle



                                                       301

E' = {A E E ® C; j(A) = iA} where j = ~b~/2. Hence, if f is an
immersion, f*9 is a compatible K~ihler metric on M (cf. [ET2], and f is
pluriminimal with respect to this metric.

Now we shall give another geometric interpretation of the associated
rotations. Consider again a full isotropic pluriharmonic map f : M ~ S
where S = G/K is an inner symmetric space of compact or noncompact
type and 1~ = t + P the corresponding Cartan decomposition of the Lie
algebra of G. Let 4~0 be the associated rotations on E = f*TS. By the
Proposition above, 4~0 = exp (0.() for some parallel derivation ( of (E, Rs) .
Moreover, since , / i  = - I ,  all eigenvalues of ( are of the form ik where
(i = x/Z-1 and) k is an odd integer, and on the subbundle El ,  the eigenvalues
are +i .  For any x E M,  we consider ~o(x) as a one-parameter subgroup of
Gf(x) (the isotropy group of S at the point f(x)) and ((x)  as an element in
its Lie algebra Of(z) C g. In particular, ¢~(x)  = exp Try(x) is the geodesic
symmetry of S at f(x).  Since ( is parallel, all ( (x)  E ~ are conjugate to
~0 := ((x0) E t~ by a parallel translation along some curve from o = f(xo)
to s = f (x)  in S, hence by some 9 E G with g(o) = s (recall that G is
generated by transvections). Thus ~ may be considered as a smooth map
~ : M --~ Ad(G)~o.

This adjoint orbit has been extensively studied (cf. [BR]). Its isotropy
group is the centralizer H of ~0,

H = {h E G; Ad(h)~o = ~0}

We claim that H C K.  In fact, recall that the Cartan involution r of G
corresponding to S is the conjugation with exp (Tr • ~0). If h E H ,  then
Ad(h) fixes ~0 and hence h commutes with exp (t(0) for all t E ItS, and in
particular, h lies in the fixed point set of r which is K.

Therefore we have a fibration

7r : Ad(G)~o ~ S, 7r(Ad(g)~o) = g(o)

which is (abstractly) just the canonical map 7r : G/H -~ G/K.  We may
consider Ad(G)~o as a subbundle of End(TS)  which is invariant under
parallel displacement. So the Levi-Civita connection on S (given by the
Caftan decomposition g = t~ + p on the principal bundle G --~ S) induces
a horizontal distribution on Ad(G)~o: By definition, horizontal curves in
Ad(G)~o are given by parallel displacements of the endomorphism ad(~o)
on p = ToS. In other terms, the bundle Ad(G)~o --* S is associated to the
principal K-bundle G ---* S with associated fibre Ad(K)~o, and it inherits
a horizontal structure 7-/from the Levi-Civita connection on the principal
bundle G ~ S. If we identify Ad(G)~o with Z := G/H, this is the hor-
izontal structure given by p, more precisely, if ~ = 13 + q is a reductive
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decomposition, the horizontal subbundle is

~- G X Ad(H ) p C G X Ad(H ) (p -~ q) ~- T Z .

In [BR], Z = G / H  is called flag manifold over S if S is of compact
type andflag domain if S is of noncompact type, and the embedding

~ : G / H  -~ Ad(G)@ C 9, ~(gH) = Ad(g)@

is called canonical section. It is well known that Z is a complex manifold (in
fact, a K~ihler manifold, but if S is of noncompact type, this K~ihler metric
will be indefinite, cf. [BR], p.48), and 7-[ C T Z  is a complex subbundle;
see Remark below for the definition of the complex structure j .

Returning to our isotropic pluriharmonic map f : M ~ S, we consider
our map ~ : M ~ Ad(G)(o as a smooth mapping ] : M ~ Z with
7r o / = f (a lift of f )  by putting

=

Since ( is a parallel section of E n d ( f i T S ) ,  this map f is horizontal, i.e.
d / takes  values in 7-/. From (AR) we have df o J = Ad(exp 7~() o dr. On
the other hand, d]  takes values in the so called superhorizontal (cf. [BR])
subbundle 7-[1 c ~ where the eigenvalues of ad(~) are only i i  (this is
equivalent to the fact that df takes values in El).  But on 7-[1 we have in fact
Ad(exp ~ )  = j and therefore f is holomorphic.

Vice versa, if a superhorizontal holomorphic map / : M ---, Z is given,
then f ^ =  7r o f : M ~ S is a full isotropic pluriharmonic map. In fact,
since f is horizontal, ~ := ~ o f defines a parallel derivation of (E, Rs)
where E = f*7-( = f i T S .  From holomorphicity and the definition of the
complex structure on 7-/1 we get on (~l)](x) for any x E M:

d L  o J = Ad(exp 2~(x))  o dL = ad(~(x)) o d]x

Thus putting ~/i(O) = exp (0. ~) = cos(O)I + sin(O)ad(~), we obtain (AR).
So we have proved:

Theorem 2. Let S be an inner symmetric space o f  compact (resp. noncom-
pact) type and f : M ~ S a full smooth map. Then f is isotropic plurihar-
monic if  and only if there is a flag manifold (resp. flag domain) Z over S
with canonical projection 7r : Z ~ S and a holomorphic superhorizontal
map f : m --* Z such that f = 7r o f .
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Remark. If S is of compact type, the complex structure j on Z = G / H
is defined as follows. Fix a maximal abelian subalgebra t of  ft with 40 E t
(thus t C D). For each positive root ct of (ft, t), the (real) root space g~ is
spanned by two nonzero vectors X~, Ya such that for all 4 E t

[4,  : [4,  =

Corresponding to Z we have the reductive decomposition g = 3 + I)
where 3 is the sum of those root spaces f~,~ with o~(40) ~ 0. N o w j  is defined
on 3 by j (X~)  = Yo, j(Y~) = -X,~. The K~ihler metric on 3 is defined by
(X, Y)  = -B(~o, [X, jY]) where B denotes the Killing form of 9. Since
t C D C ~, the roots of ~ form a subset of the root set of 1~ (cf. also [H],
p.424), and we have 3 = P + q where q contains the root spaces in [~ and p
contains those which are not in re. Let Pl C p be the sum of the root spaces g,~
with c~(~0) = 1. On Pl we h a v e j  = ad(~o) and ( , )  = - B .  The subspaces
p and Pl extend to the horizontal and the superhorizontal bundles ~ and
7-/1 on Z. Thus the submersion ~r : Z ~ S is "partial Riemannian", namely
dTrlT-t 1 is isometric. Example 2 is precisely the case where p = Pl-

3. (1,1)-parallel immersions

Isometric deformations are known not only for minimal surfaces, but also
for constant mean curvature surfaces in 3-space. The generalizations of
these surfaces to higher-dimensional K~ihler manifolds are the (1,1)-parallel
immersions.

Throughout this chapter, let f : M ~ S be a full isometric immersion of
a K~ihler manifold M into a symmetric space S. Let N M  denote the normal
bundle of f and o~ = Ddf : T M  ® T M  ---, N M  the second fundamental
form. Using dr, we consider T M  as a subbundle of E = f*TS;  hence
E = T M  ® N M ,  and df becomes simply the inclusion T M  c E. We shall
consider only immersions f : M ~ S which are adapted to the structure
of S (which is no condition if S is a space of constant sectional curvature):
We assume that TpM c Tf(p)M is Rs-invariant (a Lie subtriple) for all
p E M,  and the rotations 7-40 are automorphisms of  Rs  [TpM. Consequently,
Rs(X ,  Y)  preserves the splitting or E into tangent and normal bundle, for
any two tangent vector fields X,  Y of  M.

We complexify c~ to a C-linear map c~ : TOM ® TCM ---, N~M (com-
plexified bundles) and consider its decomposition

O~ ~-- Ol (2'0) q- 0,: (1'1) Jr- O~ (0'2)

where o~(1,1) (resp. c~ (2'°), o~ (°'2)) is the restriction of  c~ to TIM ® T " M  +
T" M ® T t M  (resp. T t M ®  Tr M, T" M ® T" M). The immersion f is called
(1,1)-parallel if c~0,1) is parallel with respect to the normal connection D ±
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on NCM. If M is a surface (m = 1), then O~ (1 '1 )  = ( . ,  .)  • g] where r/ is
the mean curvature vector of the immersion. Hence a surface immersion is
(1, 1)-parallel iff it has parallel mean curvature vector.

The possible deformations of such an immersion must be more general
than the asssociated family (which by Theorem 1 exists only if c~ (~'1) = 0);
in fact, one changes Ddf  instead of dr. Namely, for any 0 E [0, 7r] let
so : T M  ® T M  ~ N M ,

so(x, Y) = c  (  oX,  ROY). (6)

A weak associated family for f is a smooth family of adapted isometric
immersions fo : M --0 S, such that fo and f have the "same" normal
bundle (up to a parallel isometric isomorphism of the normal bundles which
interchanges with R s ( X ,  Y) for all tangent vectors X, Y of M) and the
same second fundamental form Ddfo = c~0. By equation (5) of Ch. 1, an
associated family is also a weak associated family (with fo replaced with
fo/2). Under some additional assumption, (1, 1)-parallel immersions are
characterized by the existence of a weak associated family:

Theorem 3. Let f : M ---+ S be an adapted isometric immersion such that

R ± ( X ,  Y ) [  = Rs (X;  Y)~ (7)

for any X,  Y E T~M and ~ E N M  where R ± is the curvature tensor
of ( N M ,  D±). Then f has a weak associated family if and only if f is
(1,1)-parallel.

Proof (cf. [FI'] for the case S = Rn.) Let D T and D ± denote the con-
nections in the tangent and normal bundles of f .  Let c~ = Ddf  be the
second fundamental form and A~(X)  = (Dx~) T the Weingarten map (for
X E T M ,  ~ E N M ) .  We define a new connection D o on the bundle
E = T M  ® N M  as follows: for X, Y E T M ,  ~ E N M  put

D o  y = D T y  + & o ( X , Y )

D°x( = D ~  + A~X

where

so(X ,  Y)  = c~(TCoX, TCoY), A~ = 7~-~1A~o.

We have to show the structure equations (1) and (2), Ch.1, for E = T M
N M  with the connection D o and F : T M  ~ E the inclusion. (1) is trivial
since (D°xF)Y = c~o(X, Y )  is symmetric by definition. (2) is equivalent to
Gauss, Codazzi and Ricci equations:
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(ns(X, z ) z ,  w)  - (R(X, Z)Z, W)

+  oZ),   (raoY,   ¢oW)
0 = ( R s ( X ,  Y ) Z ) =

oZ)  - (D  .)(raoX,   oZ)  (2b)
(Rs(X, ± - R ± ( X ,

=c~ ( Tgo X , A~ TCo Y ) - ct ( Tgo Y, A~ TCo X ) (2c)

The verification is straight-forward: We compare the desired equations (2a),
(2b), (2c) for arbitrary 0 with the given ones for 0 = 0. Since f is adapted we
know that R s ( X ,  Y ) Z  = 0 if X, Y, Z have the same type because e ±:~i° is
not an eigenvalue off/C0. Thus, if X, Y, Z, W E T ' M U T " M ,  the right hand
side of (2a) picks up a common factor eik° while the left hand side vanishes
unless two of the four vector are of type (1,0) and the other two (0,1) in
which case the common factor is 1. This shows (2a). A similar argument
holds for (2c): If X, Y have the same type, the left hand side vanishes by
assumption (7), and the right hand side picks up a common factor, and if X
and Y have different type, the factors at the right hand side cancel each other.
In (2b), the left hand side is always zero since f is adapted. If all three types
are equal, the right hand side picks up a common factor; otherwise, if f is
(1,1)-parallel (this is the only point where we use this assumption), one of
the terms vanishes while the other term picks up a factor. Thus the structure
equations hold, and we get adapted immersions fo with the same tangent
and normal connections and second fundamental form c~0 as desired.

Vice versa, if such immersions fo are given, we use (2b) in the case
where Y, Z have different type and X, Z equal type. Then only the second
term at the right hand side picks up a factor e ~:2i° which shows that both
terms vanish, hence D~(o~ (1,1) = 0 for all X. []

Remark .  If f is a (1, 1)-geodesic (or pluriminimal) immersion, the assump-
tion (7) in Theorem 3 is automatically satisfied. To see this observe that the
terms like o~(X, A~Y) arising in the Ricci equation (cf. (2c) for 0 = 0)
must vanish for X,  Y ¢ T ' M  since the Weingarten maps A~ interchange
T ' M  and T"M: For any Y E T ' M  and 2 C T " M  we have (A~Y, Z) = 0
and hence A~Y ¢ (T"M)  ± = T " M  (remember that T " M  is maximal
isotropic).

Now we consider the case of an adapted (l,1)-parallel immersion f :
M ~ S which satisfies assumption (7) of Theorem 3 and whose weak
associated family is constant: fo = f for all 0; such an immersion will be
called isotropic (1,1)oparallel. By the previous theorem, this holds if and
only if there is a parallel endomorphism family k~0 : N M  --. N M  which
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commutes with Rs(X ,  Y)[NM for any X, Y E T M  such that

a o  = +o o a ,  (8)
where ao is defined by (6). Equivalently, the extension of  +0 to E = T M  ®
N M  by the identity on T M  is a parallel Rs-automorphism from (E,  D)  to
(E,  Do).

Theorem 4. An adapted immersion f : M --+ S with (7) is isotropic (1, 1)-
parallel if and only if its complexified normal bundle N¢ M splits orthogo-
nally as

NCM = N 2 M  ® N ° M  ® N - U M

where the factors N k M  are subbundles of NCM which are parallel with
respect to D ± and invariant under Rs (X ,  Y) for all X,  Y E T M  such that
the values of a (2'°) (a  (1'1), a (°'2) are contained in N 2 M  (N°M, N-2M).

Proof Any eigenbundle of~o in N M  is parallel and stable under R s  (X, Y)
for all X, Y E T M .  In particular, let N2M, N ° M  and N - 2 M  be the
eigenbundles corresponding to the eigenvalues e 2i°, 1 and e -2{°. Then by
(8), the components a (2'°), a (1'1) and a (°'2) of a take values in these three
bundles. Since f is full, they must form a complete decomposition of NCM
(cf. [ETI]).

Vice versa, if such a splitting of NCM is given, we define a linear bundle
map k~0 on N e M  with ~0 = Ak • id on N k M  where Ak = eik° for k E
{2, 0, - 2 } .  Then g'e is parallel and commutes with Rs(X ,  Y)  for all X, Y E
T M .  Putting ae  = 7 ~ a  as in (6) we obtain that ae  = k~e o a.  Thus fe := f
is a weak associated family for f (with isomorphism g'6 between the normal
bundles of  f and fe = f) .  Hence f is (1, 1)-parallel by Theorem 3, and
from fe = f we see that f is isotropic (1, 1)-parallel. []

Examples .  1. Any isotropic minimal surface in a sphere S n- 1 is isotropic
(1, 1)-parallel in IR n. Higher dimensional examples of  this type (other than
surfaces) do not exist since by the Lemma in Ch. 1, the differential of a
pluriharmonic map into the sphere (having positive curvature operator) must
have rank < 2.
2. Let M be complete K~ihler with no euclidean factor in its universal cover
and f : M --~ R n an isometric immersion with D±a = 0. Then f ( M )  C
•n is extrinsic symmetric and f : M --* f ( M )  is a covering map (cf. [F]),
but f ( M )  need not to be K ~ l e r  (e.g. f ( M )  can be the real projective plane).
Clearly, f is (1,1)-parallel. Moreover, (7) holds: For all X, Y C T ' M  and
17, W E T M  we have by the parallelity of  a and the K~ihler property of M:

R ± ( X ,  Y)(o~(V, W))  = a(R(X ,  Y)V,  W) +a(V,  R(X,  Y ) W )  = O. (.)
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This shows (7) since for a full immersion with parallel ~, the normal space
is spanned by vectors of the type c~(V, W). Now we want to show that f is
isotropic. Fix p E M.  Since R(X,  Y) = 0 if X and Y have the same type,
we have R( ~oX,  TCoY ) = R( X, Y) for all X, Y C TpM, and therefore, 7~0
is an automorphism of the Lie triple (TpM, R). Hence, 7~0 is the differential
of an isometry ~b0 of M fixing p. Since M is a symmetric space without local
euclidean factor the connected component of its isometry group is generated
by compositions of geodesic symmetries, and these have an extension to the
ambient space R ~. Hence ~b0 extends to an isometry ~b0 of R ~ fixing f(p),
more precisely, f o 4>o = <b0 o f .  Let q/O,p = d(~o)f(p)lNpM. Now letting
p E M be variable, we get a map qJo : P ~ qJo,p which is a section of
E n d ( N M )  with

for all X, Y E TM.  Since g 0  and c~ are parallel and the values of (~ span
N M ,  q/o must be parallel, too.

The classification of extrinsic symmetric spaces (cf. [KN]) shows that
the only examples are the standard embedded hermitean symmetric spaces
(see below) and the standard embedded Grassmannians G2 (R p) of 2-planes
in RP. These are not K~ihler manifolds but doubly covered by the space of
oriented 2-planes in Rp which is K~ihler hermitean symmetric (it is isometric
to the hyperquadric in complex projective (p - 1)-space).
3. A subcase of the previous example leads also to isotropic (1,1)-parallel
immersions in other symmetric spaces: Let f : M ---, R n be the standard
embedding of an hermitean symmetric space M. These embeddings are
characterized by the assumption

c~( JX,  JY )  = ~(X, Y) (**)

for any X, Y c T M  (cf. IF]), in other words c~ (z'°) = 0; in particular, they
are extrinsic symmetric (cf. Remark 3 below). Recall from [F] or [EH] that
an extrinsic symmetric space is a certain orbit of the isotropy representation
of a symmetric space. Hence in the above example 2 we may assume that
the receiving space N n is the tangent space p = ToS of a symmetric space
S = G / I f  (where o = elf) and that f ( M )  is a If-orbit in p. Let et : ToS
S, x H exp o(tX). We consider the immersions (in fact embeddings)

f t = e t o f : m - - + S

for every sufficiently small t > O. Since et is If-equivariant and I f  contains
the geodesic symmetries of f (M) ,  we see that ft (M) C S is again extrinsic
symmetric, i.e. the geodesic symmetry at each point p E M extends to an
isometry rp of the ambient space S fixing ft(P) and the normal space at ft(P).
As in the euclidean case this implies that the second fundamental form c~ of ft
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is parallel: If we apply d~-p to both sides of the equation ~ := (Dxc~)(y, z)
where x, y, z E TpM, ~ E NpM, then the right hand side changes sign
(three --s igns)  while the left hand side stays the same; thus ~ = 0. In
particular, ft is (1, 1)-parallel.

Further, recall that dfp(TpM) c p = ToS is the (-1)-eigenspace of
d('rp)o which is an automorphism of Rs .  Thus dfp(TpM) is a Lie sub-
triple of ToS. The same holds for d(ft)p(TpM) c Tft(p)S, being the ( -1) -
eigenspace o f  d('rp)ft(p ). Since 7~o(p) extends to an intrinsic isometry of
M and hence to an extrinsic isometry of f t(M), it is an automorphism of
RSIay,(TpM). This shows that ft is adapted to S.

It remains to show (7). As in the previous example (cf. (*)) Dc~ = 0
implies that R±(X,  Y)~ = 0 for all X, Y E TtM and ~ E NM.  Hence we
have to show Rs(X,  Y)~ = 0. For this we need the extra assumption (**):
It implies that the isometry j E K whose differential at p is the complex
structure J on TpM extends as identity on NpM. Now

j (Rs (X ,  Y)~) = Rs ( jX ,  jY) j~  = - R s ( X ,  Y)~
for any X, Y E TpM, but - 1 is not an eigenvalue o f j .  Hence Rs (X, Y)~ =
0 which completes the proof of (7).

As above, the weak associated family is trivial since ~0  extends to an
isometry. So ft is isotropic (1,1)-parallel.

Remarks .  1.) We do not know other isotropic (l,l)-parallel immersions.
2.) The exclusion of local euclidean factors in example 2 is necessary: The

cylinder R x S 1 C 1~ 3 and the torus S 1 x S 1 C IR 4 are extrinsic
symmetric and Kahler but not isotropic.

3.) One might ask also for the isometric immersions f : M --~ S where
the (2,0)-part of c~ is parallel ((2, O)-parallel immersions). If S = R n,
the Codazzi equations imply immediately that c~ is parallel since we can
always assume that two of the three argument of D±c~ have the same
type. Ferus [F] has already noticed that these spaces are precisely the
standard embedded hermitean symmetric spaces.
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previous version of this paper and suggested the result of Theorem 2.

Note added in proof. E Burstall has pointed out to us that our arguments
yield in fact the following improvement of Theorem 3"
Theorem 3'.  Let f : M ~ S be any isometric immersion of a Kiihler
manifold M with second fundamental form c~ such that TpM C T{ f (p) } S
is Rs-invariant for any p E M. Then f has a weak associated family if and
only if the following three conditions are satisfied:
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(a) {7~}0 is an automorphism of R s t { T p M }  for any p E M.
(b) D±c~{(1,  1)} = 0,
(c) R i ( x , Y ) ~  = R s ( X , Y ) ~ f o r a l l  X ,  Y E T 'A I  and~ E N M .

In fact, the "if" statement has already been proved in the paper. For the
"only if" statement we have to conclude (a)-(c) from equations ( 2 a ) - ( 2 c )
in the proof of Theorem 3. Clearly, ( c) follows from (2c)for X ,  Y E T'  M
since the right hand side picks up a common factor e{ 2i0} and thus must
vanish, and the tangent part of  R s ( X ,  Y)~  vanishes anyway since T M  is
Rs-invariant. Further, (b) follows from (2b) by choosing X ,  Z E T~M and
Y E T " M ;  moreover we get D~T"M}c~{  (2, 0)} --  0. Finally, (a) follows
from (2a)  since the right hand side and the second term on the left hand side
are unchanged if X ,  )I, Z, W are replaced by their images under {7~}0.
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