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1 Introduction

In this paper we discuss the solution process of linear programming problems (LPs)
of the following type:

maximize vTx subject to aT1 x ≤ 1, . . . , aTmx ≤ 1
where v, x, a1, . . . , am ∈ IRn and m ≥ n, m, n ∈ IN,

(P)

when an interior-point-method (IPM) is employed to solve the problem.
We call vTx the objective function and X = {x | aT1 x ≤ 1, . . . , aTmx ≤ 1} the fea-

sible region. The interior of X is denoted by IntX. The matrix AT = (a1, . . . , am)
collects all the restriction vectors ai. Furthermore, we agree in the following as-
sumption on nondegeneracy:

Each n-elementic subset of {a1, . . . , am, v} is linearly independent and
each (n+ 1)-elementic subset of {a1, . . . , am} is in general position.

Note, that the origin 0 is a point of IntX andX is pointed because of nondegeneracy.

IPMs solve LPs with optimal solutions via performing the following steps.

Phase I: Determination of a point x0 belonging to IntX and satisfying some start-
criteria (which depend on the specific IPM).

Phase IIa: Construction of a sequence x0, x1, . . . , xk, xk+1, . . . , xK in IntX, such
that the duality gap (or a barrier-/potential-function) is successively reduced
until a certain desired size is achieved at xK .

Phase IIb: Determination of the optimal point xopt based on the information about
the last iterate xK (usually called the termination procedure).

We denote the duality gap at x by z − vTx, where z is an upper bound of vTxopt.
Notice, that the reduction of the duality gap (or barrierfunction via the barrier-
parameter) will result in a reduction of the gap vTxopt − vTxk in the end, so we will
focus our considerations on this gap and on the number of iterations K.

IPMs as presented in [3] and other publications are superior to the Simplex-
Method in two aspects. First, the computational effort of IPMs can be bounded from
above by a polynomial in the encoding length L of the specific problem instance. And
for large dimensions (m,n) and sparse matrices the IPMs stand the test versus the



Simplex-Method very well. But, finding a suitable x0 (Phase I), doing the iteration
process and finding xopt (Phase II) may be a great challenge for such a method.

In this paper we leave the starting problem aside, but mention:

Remark: If X provides an optimal vertex, then it is possible to find a suitable
starting point (compare [8]). Although 0 ∈ IntX, 0 is not in general a suitable
starting point. Starting at 0 we can apply a ”Phase I”-Algorithm. The effort for
doing Phase I is not counted here, where we deal with the complexity of Phase II.

The worst-case analysis makes use of the following facts (compare [3], [6]).

Lemma 1:
a) It is possible to find a starting point x0, whose duality gap is less than O(2L).
b) The iteration procedure assures a linear reduction of the duality gap in each

step with a reduction rate depending on m.
c) There are termination procedures for Phase IIb, which will deliver the optimal

vertex xopt, if vTxk ≤ vTxII . Here xII is the second best vertex of X, i. e.
vTxopt > vTxII , but there is no vertex x̄ of X such that vTopt > vT x̄ > vTxII .

d) Two vertices x1 and x2 with vTx1 ≥ vTx2 differ in their objective values at
least by 2−L. In particular, this means that vTxopt − vTxII > 2−L.

We call the region {x | x ∈ X, vTx > vTxII} the safety region and vTxopt − vTxII
the safety gap. Often the reduction rate is given by a factor

(
1− 1

R(m)

)
where R(m)

depends on the interior-point variant (typically, R(m) = O(m) or O(
√
m)). So, we

get an upper bound on the duality gap and vTxopt − vTxk:

vTxopt − vTxk ≤
(
1− 1

R(m)

)k
(z0 − vTx0). (1)

This and the results of Lemma 1 lead to the following worst-case result.

Theorem 2:
a) It is sufficient to proceed with Phase IIa until vTxopt − vTxK < 2−L.
b) To reduce the duality gap from O(2L) to 2−L not more than O(R(m)L) itera-

tions are necessary.

So, the IPMs are called polynomial – but not strongly polynomial, because the
upper bound polynomial does not depend on the dimensions (m,n) only. Theorem
2a) shows why L enters the ”finishing effort”. Practical experience suggests that
the mentioned bounds overestimate the usual number of iterations dramatically.

If we want to have a convincing theoretical explanation for that effect, we should
try to carry out a probabilistic analysis. For that purpose one has to make as-
sumptions on the distribution of the data of (P). We will base our investigation on
the Rotation-Symmetry-Model (RSM), which had been used by Borgwardt [2] in his
analysis of the Simplex-Method. So we can compare IPMs with the Simplex-Method
on the basis of their average-case-behaviour. The RSM demands that

a1, . . . , am, v are distributed on IRn \ {0}
identically, independently and symmetrically under rotations.



We specialize this model here to the uniform distribution on the unit sphere ωn

in IRn and refer to it as uni-RSM. Note, that the RSM gives nondegeneracy the
probability 1. So, the assumption of nondegeneracy does not influence our results.

Some approaches towards such a probabilistic analysis have been done already
(compare [1], [5], [7] and [8]), but they apply to special variants of IPMs or often
artificial stochastic assumptions are necessary for the probabilistic evaluation.

The main result of this paper is that the expected number of iterations in Phase II
is strongly polynomial in m and n, (i. e. the encoding length L will not appear in
upper bounds for the expected behaviour of Phase II).

We proceed in the following steps: First, we explain a termination procedure,
which will work for every bounded problem, when vTxK > vTxII . Secondly, we give
an algorithm (II) which enables us to recognize that the safety region is reached. In
section 3 the information on the guaranteed reduction of the IPM and information on
the distribution of the safety gap are composed to a result on the expected number
of iterations. In section 4 we report on an analysis in [4], where the stochastic
variable vTxopt − vTxII and its distribution have been evaluated. At this point we
can derive an explicit upper bound on the expected number of iterations in Phase
II. At last, we give another algorithm (III), based on Algorithm II, which solves all
complication cases, too (i. e. no optimal point, no starting point, etc.) and show
that our result on the average effort applies to Algorithm III as well.

2 A Termination Procedure and an Algorithm for Phase II

Suppose that a point xk ∈ IntX is available. Let vTx be bounded on X. Then
consider the following vertex-finding procedure.

Vertex-Finding Procedure: VF(A, v, xk)

Initialization: l := 0, d0 := v, ξ0 := xk, I0 = ∅. Provide space for a matrix Ā with
n columns and a specified number of rows. Ā0 is an ”empty” matrix.

Typical step:
for l = 0, 1, . . . , n− 1 do begin

1) Determine λ̄ := Min
{
1−aTi ξl
aTi dl

| i /∈ Il, aTi dl > 0
}
and the arg-min index il /∈ Il

such that aTil (ξl + λ̄dl) = 1.

2) Set ξl+1 := ξl + λ̄dl, Il+1 := Il ∪ {il} and Āl+1 :=



 Āl

aTil



 .

3) Calculate dl+1 := (E − ĀT
l+1(Āl+1ĀT

l+1)
−1Āl+1)v.

end.
Output: ξn

Lemma 3:
Let vTx be bounded on X. Under the assumption of nondegeneracy we know:
a) The procedure VF delivers a vertex ξn of X.



b) If vTxk > vTxII , then the procedure VF delivers xopt.
c) VF requires a computational effort of O(n3) arithmetical operations.

If vTxk ≤ vTxII , then VF leads to a vertex, but not necessarily to xopt.
But still, we do not know vTxII and therefore we do not recognize being better

than vTxII or not. Our expedient lies in applying the VF-procedure as a test in
each iteration.
Algorithm II ”Test-and-Iterate” for Phase II

Input: A point x0 ∈ IntX, which is a suitable starting point for the interior point
variant under consideration, A and v. Set k = 0.

Typical Step:

1) Given xk, ξn (the result of VF(A, v, xk)) decide whether ξn is optimal or
not (by checking the dual variables at ξn).

2) If ξn is optimal, then STOP with Output: ξn = xopt and vT ξn = vTxopt.

3) Apply an iteration step of the interior-point-variant under consideration to
calculate xk+1 at the base of xk.

4) Set k := k + 1 and goto 1).

Remark: The work of step 1) can be done in O(n3) operations, this does not
exceed the effort of an iteration of an IPM.

3 The random size of the safety gap and its impact on the
number of iterations

Assume that Phase I has produced a suitable starting point x0 with a duality gap of
at most C, where C is a given constant, and let vTx be bounded on X. Moreover,
suppose that the IPM used in step 3) of Algorithm II provides a reduction guarantee

as described in (1). It follows that vTxopt−vTxk ≤
(
1− 1

R(m)

)k
C. Now we can derive

an upper bound for the number of iterations for reaching the safety gap.

Lemma 4:
If vTx is bounded on X and if U denotes the safety gap vTxopt − vTxII , then

Algorithm II requires at most

K =





0 for U ≥ C,
ln |UC | ·R(m) for U < C.

iteration steps.

In a probabilistic analysis it will be desirable to know the distribution function
of U , which is a function FU(ε) : [0,∞] → [0, 1] (the knowledge of FU is desirable
at least for U < C). We conclude

EFU [K] ≤ R(m)
∫ C

0
| ln ε

C
| dFU(ε) = R(m)

(

FU(C) lnC −
∫ C

0
ln ε dFU(ε)

)

(2)

Remark: We will increase the expectation EFU [K], if we replace FU in (2) by
another distribution function F̃U such that FU(ε) ≤ F̃U(ε) ∀ε with 0 < ε < C.



4 Results of Stochastic Geometry

The methodology of stochastic geometry, which had been successfully used in the
probabilistic analysis of the Simplex-Method in [2] was exploited in [4] for getting
information on the required figures. Here we only report on the results.

The first result concerns a distribution function F̃U , which dominates FU , the
conditional distribution function of U when xopt exists and ‖xopt‖ ≤ 1

q , q ∈ (0, 1).

Theorem 5: Let a1, . . . , am, v be distributed according to uni-RSM,

let n ≥ 3, m ≥ 5n
3
2 , q ∈ (0, q̃(2nm )) with q̃(η) :=

√
1− ( |ωn|(n−1)

|ωn−1| η)
2

n−1 . Then defining

the distribution function

F̃U(ε) :=





s1(n, q)ε

1
3 + s2(m,n, q)ε+ s3(m,n, q)ε

1
3 for ε ∈ [0, ε̄],

1 for ε > ε̄,

it is guaranteed that FU(ε) ≤ F̃U(ε). Here: ε̄ = inf{ε | F̃U(ε) ≤ 1} ≈ 1
5 q

6nn−9m− 3
n−1 ,

s1(n, q) = n2q−n, s2(m,n, q) = 4.2n
5
2q−2nm

3
n−1 and s3(m,n, q) = 3.3n3q−2nm

1
n−1 .

We set C = 1
q , (q ∈ (0, 1)). Now we can bound the probability of not satisfying

the condition that an optimal vertex exists with ‖xopt‖ ≤ 1
q .

1) P (X is unbounded) ≤ C(n)
(m−1)2m−1 with C(n) = π

n−2
2 (2n)

n
2 (n−2)

1
2 (n(n−2)−1)−

1
2 .

2) P (there is an optimal vertex, but ‖xopt‖ ≥ 1
q ) ≤ 0.8G(q)m−n

(
m
n

)
, where G is the

marginal distribution function of the last (any) component of a random vector
distributed according to the RSM.

All unfavourable cases (where our assumptions are not valid and therefore Algorithm
II may not work) are covered by these two events.

5 Results for the Average Complexity of IPMs

Since the sum of the quantities in 1) and 2) tends to 0 drastically in the asymptotic
case (m → ∞, n fixed) for q ∈ (0, q̃(2nm )), the probability of satisfying our conditions
tends to 1. That means that the function FU asymptotically converges to the total
distribution function and we can use Theorem 4 in a calculation of E[K]. Insertion
of Theorem 4 in formula (2) for EF̃U

[K] delivers one of the main results:

Theorem 6: Let a1, . . . , am, v be distributed according to uni-RSM. Let n ≥ 3,
m ≥ 5n

3
2 , q ∈ (0, q̃(2nm )). Let a suitable starting point x0 be given and ‖xopt‖ ≤ 1

q .
Then an IPM with a reduction guarantee as in (1) (i. e. Algorithm II) does – on
the average – reach the safety region in less than R(m) · O(lnm + lnn + n| ln q|)
iterations.

But still the unfavourable cases may not be solved by Algorithm II.
When we employ the Simplex-Method to solve all these cases, then the average

effort for the Simplex-Method can be bounded from above by
(
m
n

) (
C(n)

(m−1)2m−1 +
(
m
n

)
0.8G(q)m−n

)
→ 0 for m → ∞, n fixed, q ∈ (0, q̃( (2n+1) lnm

m ).



But – when we want to solve all problems of type (P) – we have to manage the
problem that we do not recognize the critical problems a priori. To get rid of that
obstacle, we suggest to use the following hybrid algorithm.

Algorithm III

Phase 1: Let the work of Phase I be done for the IPM and the Simplex-Method in
parallel. Then the Simplex-Method provides a vertex of X (X is pointed) and
the Phase I for the IPM delivers (if successful) a suitable starting point x0.

Phase 2: In case that the step 1) has been successful, start a parallel iteration-
procedure consisting on
– a Simplex-Iteration (pivot-step)
– an iteration of the Iterate-and-Check-Algorithm (Algorithm II)

STOP as soon as Algorithm II reaches the optimal vertex or unboundedness
becomes obvious.

Note, that the effort of an iteration of Algorithm II (resp. an IPM) is again greater
than the effort of an pivot-step.

For this algorithm we can show that for m → ∞, n fixed, the following holds:

Theorem 7: Let a1, . . . , am, v be distributed according to uni-RSM and q ∈
((mn)−

1
n , q̃( (2n+1) lnm

m )). Let the IPM, that is involved in Algorithm III, guarantee

that the duality gap is reduced by a factor
(
1− 1

R(m)

)
in each step, and let x0 be a

suitable starting point.
Then for m → ∞, n fixed, Algorithm III does not need more than R(m)O(lnm)
iterations on the average to solve a linear programming problem of type (P).
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