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1 Introduction

This paper deals with the complexity of the solution-process of linear programming
problems of the following type:

maximize vTx

subject to aT1 x ≤ 1, . . . , aTmx ≤ 1
where x, v, a1, . . . , am ∈ IRn andm ≥ n.

(1)

Note that the lower dimension n is the number of variables, and that the larger
dimension m gives the number of restrictions defining the feasible polyhedron

X = {x | aT1 x ≤ 1, . . . , aTmx ≤ 1}. (2)

We are interested in the expected numbers of iteration steps of solution algorithms.
So we have to base our considerations on a stochastic model on the distribution of
the input data of (1) and choose the Rotation-Symmetry-Model (RSM):

a1, . . . , am, v and an auxiliary vector u are distributed on IRn \{0}
identically, independently and symmetrically under rotations.

(3)

Linear programming problems generated according to (3) satisfy with probability 1
(almost surely) the Nondegeneracy-Condition:

Any n vectors out of {a1, . . . , am, u, v} are linearly independent
and any n+ 1 points out of {a1, . . . , am} are in general position.

(4)

Hence the concentration on nondegenerate cases does not affect the calculation of
the expected value of bounded random variables, as e.g. the number of required
iterations in a special variant of the Simplex-Method, whose general description is
given als follows:

Phase I: Decide whether X possesses a vertex. STOP if the answer
is NO. If the answer is YES, calculate such a vertex x0 ∈ X.

(5)

Phase II: Construct a sequence of vertices x0, . . . , xs ∈ X, such
that for i = 0, . . . , s− 1 the vertices xi and xi+1 are adjacent and
vTxi < vTxi+1 . The final vertex xs is either the optimal vertex or
a vertex where the nonexistence of an optimum becomes obvious.

(6)



Since Phase I can be organized similarly to Phase II, it makes sense to concentrate
on Phase II at the moment. We shall discuss Phase I in section VI. Let us first
ask for the number s. The natural probabilistic question is: How large is s on the
average for a fixed dimension-pair (m,n)? Note that in (6) there is no unique rule
for determining the successor vertex. Such a rule will characterize a variant of the
Simplex-Algorithm. Different variants may lead to completely different paths.

Figure 1: A polyhedron X, vectors v and u, shadow-vertices x0, . . . x9, a shadow-vertex path x0, . . . x5
from the u-optimum to the v-optimum, and an alternative (gray) Simplex-Path in the background.

One of these variants, the so-called shadow-vertex-algorithm, will be the object of
our investigation, because it admits a simple geometric interpretation. Suppose that
a vertex x0 has been derived in Phase I. Then x0 is an extremal point of X and
there are some objectives, which are maximized exactly at x0. Let u be such an
objective direction, i.e. x0 maximizes uTx on X. Remember that our original
objective was vTx. Now project X ⊂ IRn on Span(u, v), the two-dimensional plane
spanned by u and v . This projection induces a classification of the vertices of X:

Some vertices are mapped on vertices of the two-dimensional image of X
and can still be identified after the projection. These vertices will be called
shadow-vertices.
The other vertices are mapped into the interior of the image of X.

Now, there is a path from x0 to xs visiting only shadow-vertices, which can easily
be realized by implementing the shadow-vertex-algorithm. Hence the number of
shadow vertices is a natural upper bound for the number of vertices visited on this
path from x0 to xs. And, it turns out that with the RSM the expected number
of necessary vertex-exchanges Em,n(s) is just a quarter of the expected number of
shadow vertices Em,n(S) . So it suffices to derive upper (and lower) bounds Em,n(S),
as done in [1], [2], [3] . The most important result was given in [3]:

Em,n(S) ≤ Const. m
1

n−1 · n3 for all (m,n) and for all RSM-distributions. (7)



But from [1] we knew an upper bound for all RSM-distributions with bounded
support, which only applies to a subset of dimension pairs, namely the so called
“asymptotic case” m → ∞, n fixed, (i. e. n is fixed and m must be larger than
an unspecified value m(n)). Then

Em,n(S) ≤ Const. m
1

n−1 · n2 for m→∞ and n fixed. (8)

Numerical experiments and some crude estimations in the derivation of (7) made it
plausible that (8) might hold for all dimension-pairs. The proof for that (10 years
open) conjecture was given in [4] and is very long and technical. Now we know

Em,n(S) ≤ Const. m
1

n−1 · n2 for all (m,n) and for all RSM-distributions. (9)

The existence of a derivation for a lower bound in [3] for Em,n(S), when a special
RSM-distribution is applied, shows that our new result is in a certain sense sharp:
For uniform distribution on ωn – the unit sphere in IRn – we know that

Em,n(S) ≥ Const. m
1

n−1 · n2 for m→∞ and n fixed. (10)

So it will not be possible to improve (9) by giving lower orders of growth for m

resp. n without deteriorating the growth in the other dimension.

It is the aim of this paper to give background information, why the new approach
in [4] could deliver the better (upper) bound and why the old approach in [3] had
to fail in getting absolute precision. For this purpose, and as [4] contains the formal
proof, we concentrate on giving illustrative, plausible arguments for the comparison
of both approaches. In addition to [4], we show (in section VI) the impact of the new
proof on the average-case analysis of the number st of pivot steps in the complete
Simplex-Method (including Phase I). Here, the bound can now be reduced to

Em,n(st) ≤ Const.m
1

n−1 · n3 for all (m,n) and for all RSM-distributions. (11)

2 Analysis of the Primal and the Polar Polyhedron

Since we are to count a certain subset of the vertices of X and since the impact of
the random data a1, . . . , am on X is rather indirect, it is recommended to shift our
analysis to the corresponding polar (resp. dual) polyhedron

Y := CH(0, a1, . . . , am), where CH stands for convex hull. (12)

The key to our translation lies in the following one-to-one correspondence.

Let 4 be an n-element index set {41,42, . . . ,4n} ⊂ {1, . . . ,m}. (13)

This index set 4 uniquely defines a point x4 in the primal space as the solution
point of the system of equations

aT41x = 1, . . . , aT4nx = 1. (14)



In x4 exactly n restrictions are active, hence x4 is one of
(
m
n

)
such basic solutions

of (1). On the other side, 4 uniquely defines a simplex CH(a41, . . . , a4n) in the
dual space. Only the

(
m
n

)
basic solutions are candidates for being shadow vertices

of X. For that purpose, x4 must simultaneously satisfy two conditions:

1. it must be a vertex ofX,which is equivalent to aTi x4 ≤ 1 ∀i /∈ 4 (15)

2. it must optimize some objective wTx onX,where w ∈ Span(u, v) ∩ ωn (16)

Due to the Lemma of Farkas this can equivalently be expressed in the polar space.
CH(a41, . . . , a4n) corresponds to a shadow vertex x4, iff simultaneously

1. CH(a41, . . . , a4n) is a facet of Y = CH(0, a1, . . . , am) (17)

2. CH(a41, . . . , a4n) ∩ Span(u, v) 6= ∅. (18)

Now we can fully concentrate on Y and count its basic simplices satisfying both

Figure 2: A dual polyhedron Y and the facets that are intersected by Span(u, v). The cut is illustrated
by the white line. The left figure shows those background and the right one those foreground facets.
Note that IR+v and IR+u intersect exactly one facet each.

conditions (17),(18). Hence the number of these simplices is S as well. The
evaluation of Em,n(S) is simplified by the linearity of expectation-values and the
symmetry of index-choices in RSM. If 4 is an arbitrary index-set as in (13), then

P (x4 is a shadow vertex) = P (CH(a41, . . . , a4n) satisfies (17) and (18))

is identical for all
(
m
n

)
candidate-sets 4. So it is clear that

Em,n(S) =

m
n

 · P (CH(a1, . . . , an) satisfies (17) and (18)). (19)

And,we could derive a (rather complicated) integral-formula for that figure. But a
direct evaluation (resp. estimation) worked only for the asymptotic case (m → ∞, n



fixed), since in that configuration the calculation-tools are much higher developed.
These methods led to the bound of (9). In order to manage an estimation for general
dimensions, we used a somehow tricky idea. We compared Em,n(S) with another
expected value Em,n(Z), where Z is a random variable closely related to S. This
is effective, because Em,n(Z) can be trivially bounded from above.

Let Z denote the number of facets of Y, which are intersected by IR+v.

It is clear that under nondegeneracy (4) at most one facet of Y will be intersected
by IR+v, hence Em,n(Z) ≤ 1. This enables us to conclude that

Em,n(S) ≤ Em,n(S)

Em,n(Z)
(≤ J) . (20)

(20) means that if we find an upper bound J for the quotient, that J will be an
upper bound for Em,n(S) as well. Since Em,n(S) is given in a rather complicated,
unevaluable integral form, it is much easier to compare the two expectation values,
because their integral formuals differ only slightly. The next section will give some
details and insight in that comparison.

3 Comparison of Spherical Measures

In this section we study the two kinds of intersection-probabilities and we exploit
the assumption of rotation-symmetry in the distribution of v and u .

Lemma 1: For a fixed simplex CH(a1, . . . , an) we have

P (IR+v intersects CH(a1, . . . , an) ) =

λn(CC(a1, . . . , an) ∩ Ωn)

λn(Ωn)
=: V (a1, . . . , an). (21)

Here λk is the k-dimensional Lebesgue-measure, Ωk is the unit ball of IRk

and CC(a1, . . . , an) is the convex cone generated by a1, . . . , an corresponding to
the convex hull CH(a1, . . . , an) . The first equation of Lemma 1 tells us that the
intersection probability is identical with the share of Ωn contained in CC(a1, . . . , an).
V (a1, . . . , an) is a notation for the spherical measure of this sector.
A bit more complicated is our insight on intersection-probabilities with Span(u, v).

Lemma 2: 1) For a fixed (n− 2)-dimensional simplex CH(a1, . . . , an−1) we have

P (Span(u, v) intersects CH(a1, . . . , an−1) ) =

2λn−1{CC(a1, . . . , an−1) ∩ Ωn}
λn−1{Ωn−1}

:= 2W (a1, . . . , an−1). (22)

2) Each intersection of Span(u, v) with CH(a1, . . . , an) produces exactly
two intersected simplex sides of type CH(a1, . . . , ai−1, ai+1, . . . , an) and

P (Span(u, v) intersects CH(a1, . . . , an)) =
n∑
i=1

W (a1, . . . , ai−1, ai+1, . . . , an). (23)



Figure 3: CC(a1, a2) intersects Span(u2, v2), but
not Span(u1, v1). The intersection-probability is
proportional to the spherical measure of the sec-
tor spanned by the two points.

Figure 4: CC(a1, a2, a3) intersects IR+v2, but
not IR+v1, IR

+u1, IR
+u2. The intersection-

probability is proportional to the spherical mea-
sure of the sector spanned by the three points.

Here, we introduce a spherical measure W, for a sector generated by n− 1 points.
In our expectation values, where we average also over a1, . . . , an , this reads

Em,n(S) =

m
n

n ∫
IRn

.
∫

IRn

P (a1, ., an induce facet) ·W (a1, ., an−1)dF̃ (a1).dF̃ (an)(24)

Em,n(Z) =

m
n

 ∫
IRn

.
∫

IRn

P (a1, ., an induce facet) · V (a1, ., an)dF̃ (a1).dF̃ (an) (25)

In (24) and (25) F̃ denotes the distribution function of ai.
So we can write our relation in the following form:

Em,n(S)

Em,n(Z)
= n

∫
IRn
. . .

∫
IRn
· · ·W (a1, . . . , an−1) · · ·∫

IRn
. . .

∫
IRn
· · ·W (a1, . . . , an−1) · V (a1,...,an)

W (a1,...,an−1) · · ·
. (26)

It can be regarded as (the inverse of) an expectation value of V
W under the rather

strange density function P (a1, . . . , an induce facet )·W (a1, . . . , an−1). This quotient
of spherical measures (of different dimensions) plays the crucial role for our analysis.
The comparison becomes more evident, when we exploit

V (a1, . . . , an)

W (a1, . . . , an−1)
= C(n) · λn(CC(a1, . . . , an) ∩ Ωn)

λn−1(CC(a1, . . . , an−1) ∩ Ωn)
, (27)

which means that it is proportional to the quotient of Lebesgue measures of two
ball-sectors of different dimension. If we are able to derive a lower positive bound
for that expected quotient, then this yields an upper bound for Em,n(S).

4 Old and New Comparison

Let us think about techniques to compare both sector-volumes. The crucial role
plays an, which appears only in the numerator, whereas CC(a1, . . . , an−1) ∩ Ωn is
measured in the denominator and appears in the numerator as one side of the sector.



This comparison was the challenge within the old approach. We found a lower bound
for the quotient in (27) by replacing the set in the numerator CC(a1, . . . , an) ∩ Ωn

by a subset CH( an
‖an‖ , CC(a1, . . . , an−1) ∩ Ωn). By the way, the volume decreases.

But for the new geometric figure, the Cavalieri-Principle delivers a simple formula:

λn{CH( an
‖an‖ , CC(a1, . . . , an−1) ∩ Ωn)}

λn−1{CC(a1, . . . , an−1) ∩ Ωn}
=

1

n
· dist( an

‖an‖
, H(a1, . . . , an−1)), (28)

where H(a1, . . . , an−1) stands for the hyperplane containing 0, a1, . . . , an−1 and
dist( an

‖an‖ , H) gives the distance of an
‖an‖ to that hyperplane.

It simply remains to evaluate the average value of that distance, as in [2] and [3].

Figure 5: The spherical triangle and the spherical
sector generated by a1, a2, a3

Figure 6: Underestimation of the spherical sector
with the Cavalieri-Principle

But we should be aware of the fact that this replacement led to a dramatic under-
estimation of V and of the relation in (27), because we now ignore the curvature
of our sector between an

‖an‖ and the ground area completely. This explains the loss

of a factor
√
n in the old result. The underestimation would be harmless if all n

points were close together. This is a typical feature of facets in the “asymptotic
case” (m →∞, n fixed), providing a reason for the better result in (8).

Our new approach took the curvature into account. While doing this, we lost a
strong advantage of Cavalieri’s principle. It is so simple, because in (28) the ex-
tension factor V

W exclusively depends on the distance of an
‖an‖ to the hyperplane

H(a1, . . . , an−1). But for a precise calculation of the curvature, the relative position
of an
‖an‖ to CC(a1, . . . , an−1) must be fully specified, because V

W strongly depends
on the complete location. This drawback forces us to introduce additional levels of
integration in our multiple integral formulas.
Besides that we had to use sharper estimates for the marginal density of the uniform
distribution on ωn. Combining this with the evaluation of the extended integration
formulas yields a sharper bound on Em,n(S)

Em,n(Z) and saves a (second) factor
√
n.

5 Comparison of Expectations of Sums of Variables

For explaining another saving of
√
n, we enter the proof in [4] at an inequality

Em,n(S)

Em,n(Z)
≤ C(n) ·

1∫
t

t∫
0
G(h)m−n Rn−3

rn−2T

[
T + 1√

n
R
]
dh dF (r)

1∫
t

t∫
0
G(h)m−n Rn−3

rn−2T

[
1
r

(
T 2 + 1√

n
R2

)]
dh dF (r)

. (29)



Here we find two integration variables h and r and a fixed threshold t such that

0 ≤ h ≤ t ≤ r ≤ 1, T := T (h) =
√
t2 − h2, R := R(h) =

√
r2 − h2. (30)

Note that R(h) ≥ T (h) for all h ∈ [0, t] . F denotes the distribution function of
r and G represents a marginal distribution function, evaluated at h.

Essentially, (29) can be seen as a comparison between expected values of
[
T + 1√

n
R
]

and
[

1
r

(
T 2 + 1√

n
R2

)]
, when we regard G(h)m−n Rn−3

rn−2T as a “density function”. But it

is hard to compare precisely, as long as the objectives in numerator and denominator
are sums of random variables. Our first idea to avoid the sums is to replace

T +
1√
n
R by Max {T, 1√

n
R} · 2 and T 2 +

1

n
R2 by Max {T 2,

1

n
R2}. (31)

By the way, we have increased the numerator and decreased the denominator, hence
we achieve an upper bound for (29). But now we have to determine the maximum
of the two terms. Unfortunately, the dominance between T (h) =

√
t2 − h2 and

1√
n
R(h) = 1√

n

√
r2 − h2 may switch for fixed r at a value hr (depending on r). So,

the dominance principle requires a partition of the inner integrals, where the bounds
depend on the outer integration variable r. That overcomplicates an evaluation.
To avoid partitions, we made a crude estimation in [3]. We respectively replaced

T+
1√
n
R by 2Max{T,R} = 2R and T 2+

1

n
R2 by

1

n
Max

{
T 2, R2

}
=

1

n
R2(32)

Since this time the R-term dominates consistently, in (29) the essential quotient

changes from
T + 1√

n
R

1
r

[
T 2 + 1√

n
R2

] to n · 2 · r
R
. (33)

But we observe the appearance of the factor n very sceptically, because the left
quotient in (33) seems to justify at most a factor of

√
n (if R >> T ).

After (32) and (32) we had in [3] developed an estimation technique for the quotient

C(n)2n

1∫
t

t∫
0
G(h)m−n Rn−3

rn−2T [R] dh dF (r)

1∫
t

t∫
0
G(h)m−n Rn−3

rn−2T

[
R2

r

]
dh dF (r)

= C(n)2n

1∫
t

t∫
0
G(h)m−n Rn−2

rn−2T dh dF (r)

1∫
t

t∫
0
G(h)m−n Rn−2

rn−2T

[
R
r

]
dh dF (r)

(34)

The main step in that derivation was an application of Jensen’s inequality for an
integral quotient for fixed values of r (r > t) and an arbitrary value ξ ∈ (0, t).

t∫
ξ

1
T
Rn−2

rn−2 dh

t∫
ξ

1
T
Rn−1

rn−1 dh
≤


t∫
ξ

1
T dh

t∫
ξ

1
T
Rn−1

rn−1 dh



1
n−1

≤ [n]
1

n−1
r√

r2 − ξ2
. (35)

Now we explain essentials of the new approach. Instead of determining dominators
as in (31), (32), we bound the denominator from below and insert into (29)



[
T 2 +

1

n
R2

]
≥ 1

2

1√
n
R

T +
1√
n
R

 . (36)

Em,n(S)

Em,n(Z)
≤ C(n) 2

√
n

1∫
t

t∫
0
G(h)m−n Rn−3

rn−2 T

[
T + 1√

n
R
]
dh dF (r)

1∫
t

t∫
0
G(h)m−n Rn−3

rn−2 T

[
T + 1√

n
R
]
{Rr } dh dF (r)

(37)

This time the extracted factor is only
√
n, but now we have a joint factor

[
T + 1√

n
R
]

in both integral formulas. This factor can be regarded as part of the “density”. The
“objective variable” R

r is the same as in (34). The remaining question is whether
the “expected value” of R

r will change dramatically under that modification of the
“density function”. For checking this, we employ Jensen’s inequality and show

t∫
ξ

1
T
Rn−3

rn−2

[
T + 1√

n
R
]
dh

t∫
ξ

1
T
Rn−3

rn−2

[
T + 1√

n
R
]
R
r dh

≤
1 +

1√
n

 1
n−1


t∫
ξ

1
T dh

t∫
ξ

1
T
Rn−1

rn−1

[
T
R + 1√

n

]
dh



1
n−1

≤

≤
[
n(
√
n+ 1)

] 1
n−1 ·

[
r√

r2 − ξ2

] 1
n−1

. (38)

With this intermediate result we are allowed to enter the old proof and to proceed
in the known manner. Note that (38) resembles (35) very closely. New is only the
factor (

√
n+ 1)

1
n−1 , which can be bounded from above by a small constant. So the

saving of
√
n between (33) and (36) can be pulled through the complete proof.

The consequence of the two (factor
√
n)-savings (described in sections IV and V) is

Theorem 1:
For all RSM-distributions and all (m,n) pairs with m ≥ n we know that the
expected number of shadow vertices satisfies

Em,n(S) ≤ Const. ·m
1

n−1 n2. (39)

6 The Average Number of Steps in the Complete Algorithm

So far, we dealt only with Phase II. Now consider the complete method for solving
the LP (1). Let us denote

Πk(x) :=


x1

...
xk

 for x =


x1

...
xn

 ∈ IRn. (40)

That means that Πk is the orthogonal projection of IRn onto IRk .



And let Ik be the following LP in k variables (k = 1, . . . , n).

maximize Πk(v)TΠk(x)
subject to Πk(ai)

TΠk(x) ≤ 1 for i = 1, . . . ,m
where x, v, a1, . . . , am ∈ IRn andm ≥ n.

(41)

Xk will be called the feasible polyhedron of Ik. Note that In coincides with the
original LP (1). For a complete solution we may apply the following algorithm.
Dimension-By-Dimension-Algorithm

1. Set k = 1 and find a vertex of X1.

2. If existing, find the optimal vertex (x̂1) of I1 . Else go to 6).

3. If k = n, then go to 7). Set k = k + 1.

4. For a k ∈ {2, . . . , n} the solution of Ik−1 may be available. We call it
x̂1

...
x̂k−1

 . Then


x̂1

...
x̂k−1

0

 is feasible for Ik on an edge of Xk. Determine


x̃1

...
x̃k

,
which denotes a vertex on that edge.

5. Use Span (Πk(ek),Π(v)) as projection plane and start the shadow vertex algo-

rithm in


x̃1

...
x̃k

 to find an optimal vertex


x̂1

...
x̂k

 for Ik. Go to 3) if x̂ exists.

6. A solution of the complete problem does not exist. STOP

7. The vector x̂ ∈ IRn is the solution of In (the original problem). STOP

Note that all input vectors of Ik in (41), namely Πk(ai),Πk(v), are distributed
according to RSM. So the theory of sections I - V applies to each use of the shadow-
vertex-algorithm in step 5) with u replaced by ek. For counting the total number
of pivot steps st, we simply have to cumulate over all n − 1 applications of the
shadow vertex algorithm and to add the n−1 vertex exchanges in step 4). A simple
upper bound would result from summation over all upper bounds given in Theorem
1. But that would give a false impression, because we would ignore that most of
the RSM-distributions over IRk are no possible projection-distributions from IRn

after applying Πk. Instead we have to deal here with a subset of the distributions
studied for Theorem 1. In [3] it had been shown, that for the set of projection-
distributions over IRk there is a better upper bound on the expected number of
shadow vertices of Ik. So, we study Ek

m,n(S), the average number of shadow-vertices
for those distributions. The case k = 1 is trivial, and already in [3] the case k = 2
had been clarified with

E2
m,n(S) ≤ 4m

1
n−1 · n. (42)



Also in [3], it had been shown that for k = 3, . . . , n

Ek
m,n(S) ≤ Const. m

1
n−1 · k

3
2 · n

3
2 . (43)

Hence the old upper bound for Em,n(st) had been Em,n(st) ≤ Const. m
1

n−1 · n4.

The saving of a factor n in Theorem 1 (the analysis for stage n) suggests that such
a saving may even be possible for each stage. We want to clarify this conjecture
and deal with the stages k = 3, . . . , n. For that purpose, we simulate the analysis
of sections I to V, regarding that our k-distribution has a root in IRn . First, we
introduce some notation comparing the configurations in IRn and IRk. Let fn be
the original density of the ai-distribution over IRn. Correspondingly, we define a
density fk over IRk, which is the density for the Πk-projected vectors

fk(x1, . . . , xk) =
∞∫
−∞

. . .
∞∫
−∞

fn(x1, . . . , xk, ηk+1, . . . , ηn) dηk+1 . . . dηn. (44)

An important insight concerns marginal distributions on the first coordinate. They
are not affected by the transfer from x ∈ IRn to Πk(x) ∈ IRk. In particular

Gn(h) := Pn[x
1 ≤ h] = Pk

[
(Πk(x))1 ≤ h

]
=: Gk(h) for h ∈ IR, (45)

where Pn is the probability over IRn and Pk is a probability over IRk (based
on the distribution of the k-projected vectors). Gn(h) and Gk(h) denote the
respective marginal distribution functions. The simple reason for (45) is that the
first coordinate of x coincides with the first coordinate of Πk(x).
Now we enter the proof of [4], resp. of (39) at an appropriate inequality. Our k-
(projection)-distribution satisfies all RSM conditions for general IRk-distributions.
In stage k we have

(
m
k

)
candidates for being a shadow vertex. In our inequality n

can recklessly be replaced by k.

Ek
m,n(S) ≤ Const. · k

3
2 ·

t∫
0
Gk(h)m−k T−1 ∫

IRk−1
|T − ck−1|fk(c) dc dh

t∫
0
Gk(h)m−kT−1h

t

∫
IRk−1
|T − ck−1|2 ψ(h,t,‖c‖k)

‖c‖k fk(c) dc dh
(46)

We use c = (c1, ., ck−1)T , ‖c‖k :=
√

(c1)2 + .+ (ck)2, Gk as in (45); h, t, T as in (30),

and Ψ(h, t, ‖c‖k) :=
1

hh
t·‖c‖k +

(
1− hh

t‖c‖k

)
1√
k

. (47)

We exploit that this inequality for a k-dimensional figure is based on a generation
of input data in IRn reflecting an n-dimensional distribution. This is partly done
by translating and substituting the k-terms into the n-terms and partly by showing
that a replacement of k-terms by corresponding n-terms increases our bound.
As explained in (45), we can replace Gk(h) by Gn(h). Besides, the integration over



c ∈ IRk−1 with density fk(c) may be substituted by an integration over η ∈ IRn−1

with density fn(η) over IRn, when we define η = (η1, . . . , ηn−1)T . This reflects the
definition of fk in (44). And we can replace |T − ck−1| by |T − ηk−1| and go on to
|T − ηn−1|, since fn(η) is invariant under permutations of coordinates.

Finally, let us have a look at
Ψ(h, t, ‖c‖k)
‖c‖k

. (48)

Here a direct substitution is not possible, but we know that for a vector c ∈ IRn

‖c‖k =
√

(c1)2 + . . .+ (ck)2 ≤
√

(c1)2 + . . .+ (cn)2 = ‖c‖n. (49)

This allows the following estimation

Ψ(h, t, ‖c‖k)
‖c‖k

≥
√
k

hh
t

(
1− 1√

n

) √
n+ ‖c‖n

=

√
k√
n
· Ψ(h, t, ‖c‖n)

‖c‖n
. (50)

The replacement, admitted by (50), leads us to

Ek
m,n(S) ≤ Const. ·k

3
2 ·
√
n√
k
·

t∫
0
Gn(h) T−1 ∫

IRn−1
|T − ηn−1| fn(η) dη dh

t∫
0
Gn(h)T−1 ∫

IRn−1
|T − ηn−1|2 Ψ(h,t,‖c‖n)

‖c‖n fn(η) dη dh
(51)

This integral quotient had been under investigation in [4], which yields

Ek
m,n(S) ≤ Const. · k

3
2 ·
√
n√
k
·m

1
n−1 ·

√
n = Const. k · n ·m

1
n−1 . (52)

Summing up over all stages of k, shows that the saving of two factors
√
n (as in the

derivation of an upper bound for Em,n(S) ) works for the complete algorithm as well.

Theorem 2:
For all RSM-distributions and for all dimension pairs (m,n) with m ≥ n the
Dimension-By-Dimension-Algorithm requires on the average for solving the LP (1)
completely Em,n(st) pivot steps, where

Em,n(st) ≤ Const. m
1

n−1 · n3 .
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