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Termination of the iterative proportional
fitting procedure

Fabian P. Reffel∗

March 12, 2014

Abstract The iterative proportional fitting procedure (IPF procedure) alter-
nately fits a given nonnegative matrix to given positive row marginals and
given positive column marginals. This paper proves that if the IPF procedure
terminates, then this has to be within the first two steps.
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1 Introduction
The IPF procedure aims to solve the following problem: Given a nonnegative k × `
matrix A and positive marginals, find a nonnegative k × ` matrix B which fulfills the
given marginals and is biproportional to A. To this end, the IPF procedure generates
a sequence of matrices (A(t)), called the IPF sequence, by alternately fitting rows and
columns to match their respective marginals. The procedure is in use in many disciplines
for problems such as calculating maximum likelihood estimators in graphical log-affine
models (Lauritzen, 1996, Chapter 4.3.1), ranking webpages (Knight, 2008), determining
passenger flows (McCord et al., 2010) or calculating seats in parliaments (Pukelsheim,
2014b, Chapter 14).

We say that the IPF procedure terminates in step T , when T is the smallest number
such that the even-step IPF subsequence and the odd-step IPF subsequence replicate
themselves after step T . That is, the two subsequences have converged in step T ,
respectively in step T + 1. This paper shows that T only takes the values 0, 1, or 2.

Section 2 specifies the IPF procedure. The termination in the case of a converging IPF
sequence is based on linear algebra and discussed in Section 3. This is the first main
result. The second main result about the termination in case of a nonconverging IPF
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sequence relies on more sophisticated results and is presented in Section 4. Moreover,
a characterization for the termination within two steps is given. Section 5 proposes
perspectives for a further generalization.
In the sequel, all indices i belong to the set {1, . . . , k} whereas all indices j belong to

the set {1, . . . , `}. A subscript plus-sign indicates the summation over the index that
would otherwise appear in its place. A set as a subscript denotes the summation over
all entries belonging to that set, i. e. rI =

∑
i∈I ri. The transposed vector or transposed

matrix is indicated by a prime. For all n ∈ N, we define 1n := (1, . . . , 1)′ ∈ Rn.

2 IPF procedure
We specify the IPF procedure in full detail. The IPF procedure takes as input a
nonnegative matrix A ∈ Rk×`

≥0 with positive row sums, ai+ > 0 for all i, and positive
column sums, a+j > 0 for all j, and two positive vectors r ∈ Rk

>0 and c ∈ R`
>0. The

matrix A is referred to as the input matrix, whereas the vector r is called the row
marginals and the vector c is called the column marginals. The triple (A, c, r) forms the
input problem.

The procedure is initialized by setting A(0) := A. Subsequently, the IPF sequence (A(t))
is calculated by iteratively repeating the following two steps:

• Odd steps t+ 1 fit row sums to row marginals. To this end, all entries in the same
row are multiplied by the same multiplier according to

aij(t+ 1) := ri

ai+(t) · aij(t) for all entries (i, j). (2.1)

• Even steps t+ 2 fit column sums to column marginals. To this end, all entries in
the same column are multiplied by the same multiplier according to

aij(t+ 2) := cj

a+j(t+ 1) · aij(t+ 1) for all entries (i, j). (2.2)

For all steps t ≥ 0 the inequality aij(t) > 0 holds if and only if aij > 0 holds.
Consequently, all row sums ai+(t) and all column sums a+j(t) always stay positive. Thus,
the IPF procedure is well defined. We say that the IPF procedure converges when the
IPF sequence (A(t)) converges.
If A(T ) = A(T + 2) holds for some T ∈ N, then A(T + 1) = A(T + 3) holds as well.

In this case, the even-step subsequence (A(t)) and the odd-step subsequence (A(t+ 1))
stays constant for all even steps t ≥ T . Therefore, the procedure can be terminated. We
say that the IPF procedure terminates in step T ∈ N when T is the smallest natural
number such that A(T ) = A(T + 2) holds.
As already mentioned by Rüschendorf (1995, p. 1164) and Vejnarová (2003, p. 585),

the IPF procedure terminates after at most two steps if the input matrix A is of product
form.

2



Reffel Termination of the iterative proportional fitting procedure

Example 2.1 (Input matrix of product form). Let (A, c, r) be an input problem such that
for all entries (i, j) and some u ∈ Rk

>0, v ∈ R`
>0 it holds aij = uivj .

Then, the first three steps of the IPF procedure yield for all entries (i, j) the equations

aij(1) = ri

ai+
aij = ri∑

q uivq
uivj = ri

v+
vj , (2.3)

aij(2) = cj

a+j(1)aij(1) = cj∑
p

rp

v+
vj

ri

v+
vj = ricj

r+
, (2.4)

aij(3) = ri

ai+(2)aij(2) = ri∑
q

ricq

r+

ricj

r+
= ricj

c+
. (2.5)

Further steps reproduce the matrices A(2) and A(3). Therefore, the IPF procedure
terminates in step T = 2 at the latest. Moreover, if c+ = r+ holds, the IPF procedure
converges within two steps. ♦

3 Termination in case of convergent IPF procedure
In this section, we discuss the termination in case the IPF procedure is convergent. Then,
the condition A(T ) = A(T + 2) is equivalent to A(T ) = A(T + 1). We show that T only
attains the values 0, 1, or 2. To this end, we define x2 := (x2

1, . . . , x
2
n) for all x ∈ Rn.The

following lemma is crucial.

Lemma 3.1 (Quadratic system of equations). Let z ∈ Rn
>0 be given. Then x ∈ Rn is a

solution of the system of equations

z′x = z+, (3.1)
z′x2 = z+, (3.2)

if and only if x = 1n.

Proof. Let x ∈ Rn be a solution of equation (3.1). It holds

z′x2 =
∑

i

zix
2
i =

∑
i

zi(2xi − 1 + (xi − 1)2) = 2
∑

i

zixi −
∑

i

zi +
∑

i

zi(xi − 1)2 (3.3)

= 2z′x− z+ +
∑

i

zi(xi − 1)2 = z+ +
∑

i

zi(xi − 1)2 ≥ z+. (3.4)

If x 6= 1n holds, the above inequality is strict. However, this contradicts equation (3.2).
Thus, x = 1n follows.

Now we are ready to present the first main theorem.

Theorem 3.2 (Termination in the case of a convergent IPF procedure). If the IPF
procedure converges and terminates in step T , then it holds T ∈ {0, 1, 2}.
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Proof. The proof is by contradiction.
I. Assume the IPF procedures terminates in an even step T > 2, that is ai+(T ) = ri =

ai+(T − 1) for all i and a+j(T ) = cj 6= a+j(T − 1) for some j. To simplify the notation,
we define two scaling factors by

x :=
(
a+1(T − 1)

c1
, . . . ,

a+`(T − 1)
c`

)′
and y :=

(
a1+(T − 2)

r1
, . . . ,

ak+(T − 2)
rk

)′
.

(3.5)

II. According to equation (2.2), A(T − 1) is a reversed column fit of A(T ) and fulfills
the row marginals,

A(T − 1) = A(T ) Diag(x), (3.6)
A(T − 1)1` = A(T )x = r. (3.7)

By equation (2.1), A(T − 2) is a reversed row fit of A(T − 1),

A(T − 2) = Diag(y)A(T − 1), (3.8)

and since we assumed T > 2 the matrix A(T − 2) fulfills the column marginals,

1′kA(T − 2) = y′A(T − 1) = c′. (3.9)

III. Substituting equation (3.6) in equation (3.9) we obtain

y′A(T ) Diag(x) = c′. (3.10)

Therefore, it holds

y′A(T )x = y′A(T ) Diag(x)1` = c′1` = c+ = a++(T ). (3.11)

IV. Equation (3.7) in combination with A(T )1` = r yields

A(T )x = r = A(T )1`. (3.12)

Applying equation (3.10), 1′kA(T ) = c′ and equation (3.12), it holds

y′A(T ) Diag(x)x = c′x = 1′kA(T )x = 1′kA(T )1` = a++(T ). (3.13)

Using the notation x2 := (x2
1, . . . , x

2
` ), we rewrite the above equation (3.13) as

y′A(T )x2 = a++(T ). (3.14)

V. From equation (3.12) and equation (3.11) we derive

y′A(T )1` = y′A(T )x = a++(T ). (3.15)
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Hence, for z′ := y′A(T ) we have z+ = a++(T ). By definition of the IPF procedure it
holds ai+ > 0 for all i and a+j > 0 for all j and therefore it follows y > 0 and thus z > 0
as well. According to equations (3.11) and (3.14), the vector x has to fulfill the system
of equations

z′x = z+, (3.16)
z′x2 = z+ (3.17)

with z > 0. By Lemma 3.1 the only solution to this system of equations is x = 1`. But
then A(T ) = A(T − 1) holds contradicting the assumption a+j(T − 1) 6= cj for some j.
Consequently, we conclude T ∈ {0, 1, 2}.
VI. The case that the IPF procedure terminates in an odd step T + 1 > 2 follows

analogously.

Theorem 3.2 shows that in case of a convergent IPF procedure, the IPF procedure
terminates either within the first two steps, or else the convergence happens in the limit.
For a termination after two steps the input matrix does not necessarily have to be of
product form as shown by the following example.
Example 3.3 (Termination after two steps without product form of input matrix). Let
the input problem (A, c, r) be given by

A =

12 0 4
6 1 1
6 2 0

 , c = (20, 12, 8) and r = (8, 16, 16). (3.18)

Since A contains zero entries, it can not be of a product form. It holds

A(1) =
(
ri

ai+
aij

)
ij

= Diag(1/2, 2, 2)A =

 6 0 2
12 2 2
12 4 0

 (3.19)

and

A(2) =
(

cj

a(1)+j
aij(1)

)
ij

= A(1) Diag(2/3, 2, 2) =

4 0 4
8 4 4
8 8 0

 . (3.20)

Hence, the matrix A(2) fulfills the row marginals as well as the column marginals. Thus,
the IPF procedure terminates in the second step. However, starting the IPF procedure
with a column fitting step does not result in a termination in the second step. In that
case, the IPF procedure terminates in the limit with the same limit matrix A(2). ♦

4 Termination of the IPF sequence
In this section, we examine the termination of the IPF procedure without any further
restrictions on the input problem (A, c, r). Thus, the IPF procedure might not converge.
In this case, the IPF has at most two accumulation points.
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Theorem 4.1 (Accumulation points of the IPF sequence). Let (A, c, r) be an input
problem and (A(t)) be the respective IPF sequence. Then the following two statements
hold:

(i) The even-step IPF subsequence (A(t))t=0,2,4,... converges.

(ii) The odd-step IPF subsequence (A(t+ 1))t=0,2,4,... converges.

Proof. See Gietl and Reffel (2013, Theorem 5.3).

To characterize the convergence of the IPF procedure the set of all columns connected
in A, JA(I) := {j ∈ {1, . . . , `} | ∃i ∈ I : aij > 0}, plays an important role. The input
problem (A, c, r) can then be checked for convergence by the flow inequalities according
to the following theorem.

Theorem 4.2 (Convergence of the IPF procedure). Let (A, c, r) be an input problem.
Then the IPF procedure converges if and only if c+ = r+ holds and all row subsets
I ⊆ {1, . . . , k} fulfill the flow inequalities

rI ≤ cJA(I). (4.1)

Proof. See Hershkowitz et al. (1997, Theorem 3.2) or Pukelsheim (2014a, Theorem 3).

We call a nonnegative matrix C connected when it is not disconnected. A nonnegative
matrix D is disconnected when there exists a permutation of rows and a permutation of
columns such that D acquires block format,

D =
( J J

I D(1) 0
I 0 D(2)

)
, (4.2)

where at least one of the subsets I ⊆ {1, . . . , k} or J ⊆ {1, . . . , `} is nonempty and proper.
Here, the overline indicates the complement of a set.
The odd-step limit matrix R∗ := limt=0,2,4,...A(t+ 1) is not necessarily connected. It

decomposes into p ≥ 1 connected submatrices with index sets I1×J1, . . . , Ip×Jp. For each
of these submatrices, a quotient rIn/cJn , n = 1, . . . , p, can be calculated. We subsume the
submatrices with the largest quotients and call this submatrix the largest block. Hence,
the largest block is a union of several connected submatrices of the matrix R∗. The row
set of the largest block is determined by the input problem as follows.

Theorem 4.3 (Row set of the largest Block). Let A be connected and (A, c, r) be an
input problem. Then the set of rows with maximal cardinality among the sets I that
maximize the quotient rI/cJA(I) is unique and equals the set of rows of the largest block.

Proof. See Aas (2014, Lemma 3 and Theorem 3) or Reffel (2014, Theorem 10.22).

The combination of Theorem 4.2 and Theorem 4.3 yield the second main theorem of
this paper, a generalization of Theorem 3.2.
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Theorem 4.4 (Termination). If the IPF procedure terminates in step T , then it holds
T ∈ {0, 1, 2}.

Proof. I. Without loss of generality we may assume that A is connected. Otherwise the
IPF procedure can be applied separately on each input problem consisting of a connected
submatrix of A and the respective marginals. Then, the IPF procedure terminates, if
every IPF procedure applied on the single input problems terminates.
II. If c+ 6= r+ holds, we rescale the row marginals to r̃i = (c+/r+)ri for all i. As a

result, we have r̃+ = c+. Let (Ã(t)) be the IPF sequence obtained from the input problem
(A, c, r̃). By an easy induction it holds Ã(t) = A(t) and Ã(t+ 1) = (c+/r+)A(t+ 1) for
all even steps t. Consequently, we have

min{T ∈ N |A(T ) = A(T + 2)} = min{T ∈ N | Ã(T ) = Ã(T + 2)}. (4.3)

Therefore, we assume without loss of generality c+ = r+.
III. If the IPF sequence converges, the statement follows from Theorem 4.4. Otherwise,

with the assumption made above and by Theorem 4.2, it holds rI > cJA(I) for some
proper and nonempty subset I ⊂ {1, . . . , k}. Hence, the set of rows Ĩ with maximal
cardinality among the sets I that maximize the quotient rI/cJA(I) has to be a nonempty
and proper subset of {1, . . . , k} as well. According to Theorem 4.3, the set of rows of the
largest block is a proper subset of {1, . . . , k}. As a result, the odd-step limit matrix R∗
is disconnected. Since A is assumed to be connected, some positive entries of A have
to converge to 0. But this is only possible in the limit, because all matrices A(t), t ≥ 0,
share the same zero entries.

From step III of the proof above, the following corollary is immediately.

Corollary 4.5. Let (A, c, r) an input problem with A connected and c+ = r+ such that
the IPF procedure does not converge. Then the IPF procedure does not terminate and the
accumulation points of the IPF sequence are disconnected.

Input problems such that the IPF procedure terminates after two steps may be
characterized in the following way. The asymmetry is caused by fixing the first step of
the IPF procedure to be a row fitting (cf. Example 3.3).

Theorem 4.6 (Characterization of input problems). Let B ∈ Rk×`
≥0 be connected and

define r := B1` as well as c := 1′kB. Then the input problems (A, r, c) such that the
respective IPF procedure converge to the limit matrix B and terminates after at most two
steps are of the form

A := Diag(x)BDiag(y) (4.4)

for an arbitrary x ∈ Rk
>0 and some y ∈ (1` + ker(B)) ∩ R`

>0.

Proof. I. We show that equation (4.4) is sufficient. Since By = B1` = r, it holds

aij(1) = ri

ai+
aij = ri∑

j xibijyj
xibijyj = ri∑

j bijyj
bijyj = ri

ri
bijyj = bijyj for all (i, j).

(4.5)
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From c = 1′kB we conclude

aij(2) = cj∑
i bijyj

bijyj = cj∑
i bij

bij = cj

cj
bij = bij for all (i, j). (4.6)

II. To prove the necessity of equation (4.4), observe that by Corollary 4.5 the IPF
procedure has to be convergent in order to terminate. Consequently, for some y ∈ R`

>0 it
has to hold

A(1) = BDiag(y), A(1)1` = r and aij(1) cj

a+j(1) = bij for all (i, j). (4.7)

The latter equation is always fulfilled since

aij(1) cj

a+j(1) = bijyj
cj∑

i bijyj
= bij

cj∑
i bij

= bij for all (i, j). (4.8)

From equations (4.7) it follows By = r. Because of B1` = r, we conclude y ∈
(1` + ker(B)) ∩ R`

>0.
For the input matrix A, it has to hold

A = Diag(x)A(1) and aij
ri

ai+
= aij(1) for all (i, j). (4.9)

However, the latter equation holds for all x ∈ Rk
>0 since

aij
ri

ai+
= xiaij(1) ri∑

j xiaij(1) = aij(1) ri

ai+(1) = aij(1) for all (i, j). (4.10)

From equations (4.7) and (4.9) it follows A = Diag(x)BDiag(y) for an arbitrary x ∈ Rk
>0

and some y ∈ (1` + ker(B)) ∩ R`
>0.

5 Outlook
We showed that the IPF procedure may only terminate within the first two steps. If it
does not do so, the transition to the limit of the IPF sequence is necessary. This motivates
the analysis of the limit behavior of the IPF sequence, which has been examined by Gietl
and Reffel (2013) and the literature quoted therein.
A possible generalization of the IPF procedure is the passage from the finite sample

space {1, . . . , k} × {1, . . . , `} with the power set as the σ-algebra to an arbitrary sample
space Ω1 × Ω2 with a product σ-algebra A1 ⊗ A2. The input matrix is replaced by a
bivariate probability distribution and the marginals by univariate probability distributions
on the respective measurable spaces. This has been analyzed by Rüschendorf (1995).
Theorem 3.2 can be generalized to this setting as well. For details see Reffel (2014,
Theorem 3.3). A generalization of Theorem 4.4 seems out of reach at the moment,
because only necessary conditions for the convergence of the IPF procedure are available.

Acknowledgements. I am very grateful to my advisor Friedrich Pukelsheim for contin-
uing support. Moreover, we would like to thank my colleague Christoph Gietl for helpful
remarks on an earlier version of this paper.
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