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ADAPTIVE MIXED HYBRID AND

MACRO–HYBRID FINITE ELEMENT METHODS

R. H. W. HOPPE and B. I. WOHLMUTH

Abstract. In this paper, we consider efficient multilevel based iterative solvers
and efficient and reliable a posteriori error estimators for mixed hybrid and macro-
hybrid finite element discretizations of elliptic boundary value problems. We give
an overview concerning the state-of-the-art techniques for these nonconforming ap-
proaches and illustrate the performance of the adaptivity concepts realized by some
selected numerical examples.

1. Introduction

We consider adaptive mixed hybrid and primal macro-hybrid finite element

methods for elliptic boundary value problems. Both approaches have in common

that they represent nonconforming discretizations but differ in so far as the first

one is based on a dual formulation of the problems under consideration whereas

the second one is founded on a macro-hybrid primal variational formulation with

respect to a geometrical conforming nonoverlapping decomposition of the compu-

tational domain. We note that these techniques have attracted a lot of attention

during the last couple of years (cf.,e.g., [1], [2], [3], [4], [7], [8], [14], [15], [23],

[24]) and are still subject of active research.

In this paper, we will present efficient multilevel preconditioned iterative solvers

as well as a posteriori error estimators that may serve as a tool for local adaptive

refinement of the triangulations. Both approaches will be outlined for a model

problem in terms of a boundary value problem for a linear second order elliptic

differential operator in a bounded polygonal or polyhedral domain Ω ⊂ Rd, d = 2

or d = 3

Lu := −∇ · (a∇u) + bu = f in Ω,(1.1)

u = 0 on Γ = ∂Ω,(1.2)

Received November 17, 1997.

1980 Mathematics Subject Classification (1991 Revision). Primary 65N15, 65N30, 65N50,
65N55.

Key words and phrases. Mixed hybrid finite element methods, domain decomposition on
nonmatching grids, mortar finite elements, a posteriori error estimators, local adaptive grid
refinement.

This work was supported in part by the Deutsche Forschungsgemeinschaft.



160 R. H. W. HOPPE and B. I. WOHLMUTH

where only for simplicity we have chosen homogeneous Dirichlet boundary con-

ditions. The coefficients a and b are assumed to be a symmetric, matrix-valued

function a = (aij)
d
i,j=1, aij ∈ L

∞(Ω), 1 ≤ i, j ≤ d, and a scalar function b ∈ L∞(Ω)

satisfying

α | ξ |2 ≤
d∑

i,j=1

aij(x)ξiξj ≤ α | ξ |
2, ξ ∈ Rd, 0 < α ≤ α,(1.3)

0 ≤ β ≤ b(x) ≤ β(1.4)

for almost all x ∈ Ω.

The paper is organized as follows:

In Section 2, we will briefly introduce the idea of mixed hybridization in case

of quadrilateral or hexalateral triangulations (cf. subsection 2.1) followed by the

construction of a multilevel preconditioned cg-iteration (subsection 2.2). The mul-

tilevel solver is based on the equivalence of the mixed hybrid approach with a non-

standard nonconforming primal method in terms of the so-called rotated bilinear

resp. trilinear functions. This enables us to utilize multilevel preconditioners de-

signed for the nonconforming setting. Finally, in subsection 2.3 we will introduce

an efficient and reliable a posteriori error estimator for the discretization errors

both in the primal and dual variables that can be motivated by a superconvergence

result known to hold true in the mixed hybrid case.

Section 3 is devoted to adaptive domain decomposition methods on nonmatching

grids which are based on the mortar finite element approach that will be described

in subsection 3.1. Then, in subsection 3.2 we will sketch the construction of sub-

structuring multilevel preconditioners, whereas in subsection 3.3 we concentrate

on the development of a hierarchical type a posteriori error estimator that does

provide a lower and an upper bound for the discretization error.

Finally, in Section 4 we will demonstrate the benefits of the adaptive finite element

approaches by giving numerical results for some selected illustrative problems.

2. Adaptive Mixed Hybrid Finite Element Methods

2.1 The Mixed Hybrid Approach

Mixed finite element methods are based on a dual formulation of the elliptic

boundary value problem (1.1),(1.2). Introducing the flux j := a∇u and the flux

space H(div;Ω) := {q ∈ L2(Ω)d | divq ∈ L2(Ω)}, the elliptic differential equation

(1.1) can be formally written as a first order system whose variational formulation

gives rise to the following system of variational equations:

Find (j, u) ∈ H(div;Ω)× L2(Ω) such that

a(j,q) + b(q, u) = 0, q ∈ H(div;Ω),(2.1)

b(j, v)− c(u, v) = −(f, v)0;Ω, v ∈ L2(Ω),(2.2)
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where the bilinear forms a : H(div; Ω)×H(div; Ω)→ R, b : H(div;Ω)×L2(Ω)→ R

and c : L2(Ω)× L2(Ω)→ R are given by

a(q1,q2) :=

∫
Ω

a−1q1 · q2 dx,qν ∈ H(div;Ω), 1 ≤ ν ≤ 2,

b(q, v) :=

∫
Ω

divqv dx,q ∈ H(div;Ω), v ∈ L2(Ω),

c(v1, v2) :=

∫
Ω

bv1v2 dx, vν ∈ L
2(Ω), 1 ≤ ν ≤ 2.

As usual, we denote by (·, ·)k;Ω, k ≥ 0, the standard inner product on Hk(Ω)d and

| · |k;Ω, ‖ · ‖k;Ω stand for the associated seminorms and norms, respectively. We

further observe that H(div;Ω) is a Hilbert space with respect to the graph norm

‖q‖div;Ω := (‖q‖20;Ω + ‖divq‖20;Ω)1/2.

For the applications in subsection 2.4, we consider a quadrilateral or hexalateral

triangulation Th of Ω. For D ⊆ Ω, we denote by Nh(D), Eh(D),Fh(D), and

Mh(D) the sets of vertices, edges, faces, and midpoints of edges resp. faces of the

triangulation Th in D. If D = Ω, we simply write Nh, Eh, Fh, and Mh and we

further refer to N int
h , Einth , F inth , and Mint

h as the sets of vertices, edges, faces,

and midpoints of edges resp. faces being situated in the interior of Ω. To obtain

a unified notation for d = 2 and d = 3, we identify the sets of edges and faces in

case that d = 2, i.e. Eh with Fh and Einth with F inth . Moreover, Pk(D), k ≥ 0,

stands for the set of polynomials of degree ≤ k on D.

We approximate the primal variable u by elementwise constants, i.e., we con-

sider the ansatz space

W[0](Ω;Th) :=
{
vh ∈ L

2(Ω) | vh |T∈ P0(T ), T ∈ Th
}
.

The corresponding approximation of the flux j is then given in terms of the lowest

order Raviart-Thomas-Nédélec elements RT[0](T ), T ∈ Th, given by

RT[0](T ) := Q1,0,...,0(T )× · · · ×Q0,...,0,1(T ),

where Qα1,...,αd(T ) := {p : T → R | p(x) =
∑
βi≤αi

aβ1,...,βdx
β1

1 . . . xβdd }.
Note that any vector field q ∈ RT[0](T ) is uniquely determined by the following

degrees of freedom

lF (q) :=

∫
F

n · q dσ, F ∈ Fh(T )

so that the dimension of RT[0](T ) is dimRT[0](T ) = 2d (cf., e.g., [14]).

Then, if we choose the global ansatz space according to

RT−1
[0] (Ω;Th) :=

∏
T∈Th

RT[0](T ),
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we are in a nonconforming situation, since RT−1
[0] (Ω;Th) is not a subspace of

H(div;Ω). Indeed, any vector field qh ∈ RT
−1
[0] (Ω;Th) is in H(div;Ω) if and only

if for all µh ∈ L2(F inth ), µh |F∈ P0(F ), F ∈ F inth∑
F∈Finth

∫
F

µh[n · qh]J dσ = 0,

where [n · qh]J denotes the jump of the normal component of qh across the in-

terelement boundaries.

Therefore, in order to establish consistency of the nonconforming approach we

impose continuity constraints on the interelement boundaries by means of La-

grangian multipliers from the multiplier space

M[0](Ω;F inth ) :=
{
µh ∈ L

2(F inth ) | µh |F∈ P0(F ), F ∈ F inth

}
.

Introducing the bilinear form d : M[0](Ω;F inth )×RT−1
[0] (Ω;Th)→ R according to

d(µh,qh) := −
∑

F∈Finth

∫
F

µh[n · qh]J dσ, µh ∈M[0](Ω;F inth ), qh ∈ RT
−1
[0] (Ω;Th),

the mixed hybrid finite element approximation of (1.1), (1.2) is:

Find (jh, uh, λh) ∈ RT
−1
[0] (Ω;Th)×W[0](Ω;Th)×M[0](Ω;F inth ) such that

a(jh,qh) + b(qh, uh) + d(λh,qh) = 0, qh ∈ RT
−1
[0] (Ω;Th),(2.3)

b(jh, vh)− c(uh, vh) = −(f, vh)0;Ω, vh ∈W[0](Ω;Th),(2.4)

d(µh, jh) = 0, µh ∈M[0](Ω;F inth ).(2.5)

Note that the idea of mixed hybridization is due to Fraeijs de Veubeke [18]. Analyt-

ical investigations including a priori error estimates and postprocessing techniques

have been done by Arnold and Brezzi [5] (cf. also [14]).

2.2 Multilevel Iterative Solvers

Identifying vector-valued and scalar finite element functions with vector fields

and vectors, respectively, in its algebraic form the saddle point problem (2.3),

(2.4), (2.5) gives rise to the linear system

(2.6)

Ah BTh DT
h

Bh −Ch 0

Dh 0 0

 jh
uh
λh

 =

 0

−fh
0


with a symmetric, but indefinite 3×3 block coefficient matrix. Since Ah represents

a blockdiagonal matrix with 2d × 2d blocks in the diagonal and Eh := Ch +
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BhA
−1
h BTh turns out to be a diagonal matrix, static condensation of both the

discrete flux jh and the discrete primal variable uh in (2.6) can be easily performed.

Setting Gh := DhA
−1
h BTh , this yields the linear system

(2.7) Shλh = −GhE
−1
h fh

with the symmetric, positive definite Schur complement Sh := DhA
−1
h DT

h −
GhE

−1
h GTh (see [14]). The efficient iterative solution of the saddle point prob-

lem (2.6) resp. the Schur complement system (2.7) will be based on the fact that

it is equivalent to a modified nonstandard nonconforming primal approach ob-

tained by the so-called rotated bilinears (d = 2) resp. trilinears (d = 3) (cf., e.g.,

[19], [27]).

In particular, the rotated elements resulting from a rotation in the (xi, xi+1)-

plane by 450 are given by

Q̃1(T ) := {1, xi, xi+1, x
2
i − x

2
i+1 | 1 ≤ i ≤ d− 1}.

Note that any function v ∈ Q̃1(T ) is uniquely determined by the following degrees

of freedom

lF (v) :=
1

|F |

∫
F

v dσ, F ∈ Fh(T ),

where |F | denotes the area of F .

Then the global nonconforming ansatz space is as follows

RML[1](Ω;Th) :=
{
vh ∈ L

2(Ω) | vh |T∈ Q̃1(T ), T ∈ Th,

lF (v|T ) = lF (v|T ′) if F = ∂T ∩ ∂T ′ and

lF (v|T ) = 0 if F ⊂ ∂T ∩ ∂Ω
}
.

The modification consists in an enrichment of RML[1](Ω;Th) according to

(2.8) NC[1](Ω;Th) := RML[1](Ω;Th)⊕B2(Ω;Th),

where B2(Ω;Th) stands for the space of elementwise d-quadratic bubble functions

vanishing on the boundary of the elements

B2(Ω;Th) := {vh ∈ L
2(Ω) | vh |T∈ Q2,...,2(T ), vh |∂T= 0}.

We further denote by P the orthogonal L2-projection P : L2(Ω)→W[0](Ω;Th), by

Pa−1 the weighted L2-projection Pa−1 : L2(Ω)d → RT−1
[0] (Ω;Th) given by∫

Ω

a−1(Pa−1q) · p dx =

∫
Ω

a−1q · p dx,q ∈ L2(Ω)d,p ∈ RT−1
[0] (Ω;Th),
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and by P̂ the orthogonal projection P̂ : NC[1](Ω;Th) → M[0](Ω;F inth ) according

to ∫
F

(P̂ uh)vh dσ =

∫
F

uhvh dσ, F ∈ F inth , vh ∈ P0(F ).

We recall that
∫
F
uhvhdσ, vh ∈ P0(F ) is well defined because of the defini-

tion of the global ansatz space NC[1](Ω;Th). We introduce the bilinear form

aNC : NC[1](Ω;Th)×NC[1](Ω;Th)→ R by

aNC(uh, vh) :=
∑
T∈Th

∫
T

(Pa−1(a∇uh) · ∇vh + b(Puh)(Pvh)) dx,

and we consider the following nonconforming primal finite element approximation

of (1.1), (1.2): Find uNC ∈ NC[1](Ω;Th) such that

(2.9) aNC(uNC , vh) = (Pf, vh)0;Ω, vh ∈ NC[1](Ω;Th).

There is a close relationship between the mixed hybrid approach (2.3), (2.4), (2.5)

and (2.9):

Theorem 2.1. Let (jh, uh, λh) ∈ RT−1
[0] (Ω;Th) × W[0](Ω;Th) ×M[0](Ω;F inth )

and uNC ∈ NC[1](Ω;Th) be the unique solutions of (2.3), (2.4), (2.5) and (2.9),

respectively. Then there holds

(2.10) Pa−1(a∇uNC) = jh, PuNC = uh, P̂ uNC = λh.

Proof. The assertion follows easily by verifying that jh, uh, and λh as given by

(2.10) satisfy the variational equations (2.3), (2.4) and (2.5). �

We can take advantage of the equivalence stated in the previous theorem by

using an efficient multilevel preconditioner for the preconditioned cg-iterative so-

lution of the nonconforming primal approximation (2.9). In particular, due to the

fact that the stiffness matrix associated with the bilinear form aNC(·, ·) is spec-

trally equivalent to its blockdiagonal and using basic properties of the projection

operators Pa−1 and P , an appropriate preconditioner is given by

(2.11) RNC =

(
RRML 0

0 RB2

)
.

Here RRML is a preconditioner for the stiffness matrix ARML associated with the

bilinear form

aRML(uh, vh) :=
∑
T∈Th

∫
T

(a∇uh · ∇vh + buhvh) dx, uh, vh ∈ RML[1](Ω;Th),
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and RB2 is a preconditioner for the stiffness matrix AB2 induced by the bilinear

form

aB2(uh, vh) :=
∑
T∈Th

∫
T

(aPId(∇uh) ·PId(∇vh)+bPuhPvh) dx, uh, vh ∈ B2(Ω;Th).

A detailed proof of the spectral equivalence in case of simplicial triangulations is

given in [22]. Since the bubble functions spanning B2(Ω;Th) are strictly local, AB2

is a diagonal matrix and we may thus take RB2 = AB2 . Therefore, it only remains

to specify an appropriate preconditioner RRML for ARML. For that purpose, we

assume that we are given a hierarchy (Tk)
j
k=0 of quadrilateral or hexalateral tri-

angulations generated by the adaptive refinement process that will be described

in the following subsection. We denote by (RML[1](Ω;Tk))
j
k=0 the associated se-

quence of finite element spaces in terms of the rotated bi- resp. trilinears with

respect to the triangulations Tk, 0 ≤ k ≤ j. As with all nonconforming approxi-

mations we are then faced with the problem that this sequence is nonnested. We

note that in case of simplicial triangulations appropriate remedies have been sug-

gested in [13], [26], and by the authors [22]. Here, we will follow the approach in

[22] and adopt a pseudo-interpolation operator originally due to Sarkis [28]. The

nonconforming finite element space RML[1](Ω;Tj) can be identified with a closed

subspace of a conforming counterpart. This enables us to construct a multilevel

preconditioner by means of the BPX-preconditioner (cf., e.g., [11], [33]) for the

associated sequence of conforming finite element spaces.

We denote by T̃j+1 the triangulation obtained from Tj by uniform refinement

and we refer to S1(Ω; T̃j+1) as the finite element space associated with the standard

conforming P1 approximation of (1.1), (1.2) with respect to T̃j+1. We define the

pseudo-interpolation operator PRML : RML[1](Ω;Tj)→ S1(Ω; T̃j+1) according to

(PRMLvj)(p) :=


lF (vj) if p = mF ∈Mint

j ⊂ Ñ int
j+1

1
νp

νp∑
ν=1

lFpν (vj) if p ∈ Ñ int
j+1 \M

int
j

,

where νp is the number of edges (d = 2) and faces (d = 3) emanating from

p ∈ Ñ int
j+1 \ M

int
j and F pν ∈ Mj , 1 ≤ ν ≤ νp, stand for the corresponding edges

and faces.

We denote by RBPX the BPX-preconditioner with respect to the nested hier-

archy S1(Ω;T0) ⊂ · · · ⊂ S1(Ω; T̃j+1) and by P+
RML : S1(Ω; T̃j+1)→ RML[1](Ω;Tj)

the pseudo-inverse of the pseudo-interpolation operator PRML. Then the noncon-

forming BPX-type preconditioner RRML is given by means of

(2.12) R−1
RML := P+

RMLR
−1
BPX(P+

RML)T .

We remark that in its algebraic form the pseudo-inverse P+
RML represents an mj×

nj+1 rectangular matrix of the form

P+
RML = (I 0),
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where mj := dimRML[1](Ω;Tj), nj+1 := dimS1(Ω; T̃j+1) and I stands for the

mj ×mj identity matrix. Thus P+
RML and (P+

RML)T are easily computable and

R−1
RML is of the same arithmetical complexity as R−1

BPX .

Theorem 2.2. Let RRML be given by means of (2.12). Then there exist con-

stants 0 < γRML ≤ ΓRML depending only on the ellipticity constants and on the

local geometry of T0 such that

(2.13) γRMLI ≤ R
−1
RMLARML ≤ ΓRMLI.

Proof. The assertion can be proved by using Nepomnyaschikh’s fictitious do-

main lemma [25]. The proof follows the same lines as in the case of hierarchies of

simplicial triangulations (cf. [22]). �

As an immediate consequence of the preceding result we obtain:

Corollary 2.3. Let ANC be the stiffness matrix associated with the bilinear

form aNC partitioned according to the splitting (2.8) of NC[1](Ω;Tj). Further, let

RNC be given by (2.11) with RRML as in (2.12) and RB2 = AB2 . Then there exist

constants 0 < γNC ≤ ΓNC depending only on the ellipticity constants and on the

local geometry of T0 such that

(2.14) γNCI ≤ R
−1
NCANC ≤ ΓNCI.

2.3 A Posteriori Error Estimation and Adaptive Refinement

Local adaptive refinement of the triangulations can be performed by means of

an a posteriori error estimator for the discretization error eu := u − uh in the

primal variable measured in the L2-norm and the discretization error ej := j− jh
in the fluxes measured in the H(div ; Ω)-norm.

The estimator for the error in the primal variable is based on the following

superconvergence result:

Lemma 2.1. Let uh ∈W[0](Ω;Th) be the elementwise constant approximation

of the primal variable u ∈ L2(Ω) and let ûh be the nonconforming extension of the

interelement multiplier λh ∈M[0](Ω;Th). Then, under the regularity assumptions

u ∈ H2(Ω), f ∈ H1(Ω) there holds

(2.15) ‖u− uh‖0;Ω ≤ Ch, ‖u− ûh‖0;Ω ≤ Ch
2.

Proof. The proof is similar to that in case of simplicial triangulations (cf.,

e.g., [14]). �
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The preceding result (2.15) motivates the saturation assumption

(2.16) ‖u− ûh‖0;Ω ≤ β‖u− uh‖0;Ω, 0 ≤ β < 1

which implies that ‖uh − ûh‖0;Ω provides a lower and an upper bound for the

discretization error in the primal variable

(1 + β)−1‖uh − ûh‖0;Ω ≤ ‖u− uh‖0;Ω ≤ (1− β)−1‖uh − ûh‖0;Ω.

An estimator for the discretization error in the fluxes can be obtained by means

of an interpolation operator K : RT−1
[0] (Ω;Th) → RML[1](Ω;Th)d due to Brandts

[12] which is locally defined by∫
F

Kq dσ :=
1

2

∫
F

(q |T1 +q |T2) dσ, ∂T1 ∩ ∂T2 = F ∈ F inth ,∫
F

t ·Kq dσ := 0,

∫
F

n ·Kq dσ :=

∫
F

n · q |TF dσ, F ⊂ ∂TF ∩ Γ,

where t is an abitrary vector orthogonal to n. The error term ‖jh−Kjh‖0;Ω then

provides an estimate of the discretization error in the fluxes. Combining both

estimators we obtain

(2.17) η2
S :=

∑
T∈Th

η2
S;T ,

(2.18) η2
S;T := ‖jh −Kjh‖

2
0;Ω + ‖uh − ûh‖

2
0;T + ‖f − π0f‖

2
0;T ,

where π0f stands for the L2-projection of the right-hand side f onto W[0](Ω;Th).

Theorem 2.4. Let ηS be given by means of (2.17), (2.18). Under appropriate

regularity assumptions and (2.16) there exist constants 0 < γS ≤ ΓS depending

only on the ellipticity constants and on the shape regularity of the triangulation

such that

(2.19) γSη
2
S ≤ ‖u− uh‖

2
0;Ω + ‖j− jh‖

2
div;Ω ≤ ΓSη

2
S .

Proof. The proof is virtually the same as in case of simplicial triangulations

(cf., e.g., [12], [22]). �

We remark that in practice we only have approximations ũh for uh and j̃h for

jh at hand and thus want to estimate the total errors u − ũh and j − j̃h. In this

case, the iteration errors ‖uh − ũh‖0;Ω and ‖jh − j̃h‖div;Ω additionally enter the

estimator ηS . However, due to the fact that ũh and j̃h are determined by means
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of an optimal multilevel preconditioned cg-iteration, the iteration errors can be

controlled within the iterative solution process, for instance, by monitoring the

residuals with respect to the iterates.

A final remark is due to the refinement process. We compute the average of the

local error terms

η2
av :=

1

Nh

∑
T∈Th

η2
S;T ,

where Nh := card {T | T ∈ Th} and mark an element T ∈ Th for refinement if

η2
S;T ≥ ση

2
av

with σ > 0 being an appropriate safety factor (e.g. σ ≈ 0.9).

An element T ∈ Th marked for refinement will be subdivided into four (d = 2)

resp. eight (d = 3) congruent subelements. We note that nonconforming nodal

points arising from that refinement are treated in the standard way as slave nodes

within the subsequent iterative solution process.

3. Adaptive Domain Decomposition on Nonmatching Grids

3.1 The Mortar Finite Element Approach

For the elliptic boundary value problem (1.1), (1.2) in a bounded polygonal

domain Ω ⊂ R2, we consider a decomposition

(3.1) Ω =
N⋃
i=1

Ωi, Ωi ∩Ωj = ∅, 1 ≤ i 6= j ≤ N,

Ω into N mutually disjoint, polygonal subdomains Ωi. We assume that this par-

tition is geometrically conforming in the sense that any edge of ∂Ωi, 1 ≤ i ≤ N is

either part of the boundary ∂Ω of the entire domain Ω or coincides with an edge

of an adjacent subdomain of the partition. We refer to

(3.2) S =
N⋃
i=1

(∂Ωi \ ∂Ω) =
⋃
{Γij := ∂Ωi ∩ ∂Ωj | Γij 6= ∅}

as the skeleton of the decomposition and define

(3.3) X(Ω) :=

{
v ∈

N∏
i=1

H1(Ωi)
∣∣∣ ∑

Γij

∫
Γij

λ[v]J dσ = 0, λ ∈ H−1/2(S), v |Γ= 0

}
,

where [v]J denotes the jump of v across Γij ∈ S.
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Then, the macro-hybrid variational formulation of (1.1), (1.2) with respect to

the decomposition (3.1) is:

Find u ∈ X(Ω) such that

(3.4) a(u, v) = (f, v)0;Ω, v ∈ X(Ω),

where

a(u, v) :=
N∑
i=1

ai(u, v), ai(u, v) :=

∫
Ωi

(a∇u · ∇v + buv) dx, 1 ≤ i ≤ N.

We further consider individual simplicial triangulations Ti of the subdomains Ωi,

1 ≤ i ≤ N , and denote by

S1(Ωi; Ti) :=
{
v ∈ H1(Ωi) | v |T∈ P1(T ), T ∈ Ti, v |∂Ωi∩∂Ω= 0, if ∂Ωi ∩ ∂Ω 6= ∅

}
the standard conforming P1 finite element space with respect to Ti.

We decompose the skeleton S according to

(3.5) S =
L⋃
l=1

γl, γl ∩ γm = ∅, 1 ≤ l 6= m ≤ L

into the so-called mortars γl, 1 ≤ l ≤ L, where each mortar γl is the entire open

edge of some subdomain ΩM(l), M(l) ∈ {1, . . . , N}. We denote by ΩM(l) the

adjacent subdomain and refer to its corresponding edge as the nonmortar Γl. This

formal distinction between mortars and nonmortars is essential, since due to the

different triangulations of the trace spaces

WM(l)(γl) :=
{
v |γl | v ∈ S1(ΩM(l), TM(l))

}
,

WM(l)(Γl) :=
{
v |Γl | v ∈ S1(ΩM(l), TM(l))

}
do not necessarily coincide. We denote the outer unit normal vector on ΩM(l) by

n whereas ni stands for the outer unit normal vector on Ωi. Then, the jump on

Γl is defined by [v]J := v|Ω
M(l)
− v|ΩM(l)

.

We impose weak continuity constraints on the internal subdomain boundaries

by means of Lagrangian multipliers from the multiplier space

M1(S) :=
{
µ ∈ L2(S) | ∃v ∈ S1(ΩM(l), TM(l)), 1 ≤ l ≤ L,

µ |Γl= v |Γl , µ |E∈ P0(E), E ∩ ∂Γl 6= ∅
}

where E are the edges of the nonmortar faces Γl. Note that {µ |Γl | µ ∈M1(S)} is

a subspace of WM(l)(Γl) of codimension 2.
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We define

(3.6) X1(Ω;T ) :=

{
v ∈

N∏
i=1

S1(Ωi; Ti)
∣∣∣ L∑
l=1

∫
Γl

µ[v]J dσ = 0, µ ∈M1(S)

}
.

Then, the mortar finite element approximation of (1.1), (1.2) amounts to the

computation of um ∈ X1(Ω;T ) such that

(3.7) a(um, v) = (f, v)0;Ω, v ∈ X1(Ω;T ).

We note that (3.8) can be equivalently stated as a saddle point problem. Intro-

ducing the bilinear form

b(µ, v) := −
L∑
l=1

∫
Γl

µ[v]J dσ, µ ∈M1(S), v ∈
N∏
i=1

H1(Ωi),

we are looking for a pair (um, λm) ∈
∏N
i=1 S1(Ωi; Ti)×M1(S) satisfying

a(um, v) + b(λm, v) = (f, v)0;Ω, v ∈
N∏
i=1

S1(Ωi; Ti),(3.8)

b(µ, um) = 0, µ ∈M1(S).(3.9)

In particular, (3.8), (3.9) satisfies the Babuška-Brezzi condition and the existence

and uniqueness of a solution is guaranteed (cf., e.g., [8], [9]). Note that the

Lagrangian multiplier λM ∈M1(S) provides an approximation of the normal flux

n · a∇u on the skeleton S of the decomposition.

3.2 Multilevel Preconditioned Iterative Solvers

The algebraic form of the saddle point problem (3.8), (3.9) is given by the linear

system

(3.10) A

(
um
λm

)
=

(
A BT

B 0

)(
um
λm

)
=

(
b

0

)
,

where the first diagonal block A of the stiffness matrix A is a blockdiagonal matrix

A = diag (A1, . . . AN ) with Ai, 1 ≤ i ≤ N , referring to the ni × ni subdomain

stiffness matrices, ni := dimS1(Ωi; Ti). The offdiagonal blocksB andBT represent

the continuity constraints on the skeleton.

We will solve (3.10) by preconditioned Lanczos iterations with a blockdiagonal

preconditioner

(3.11) R :=

(
Ru 0

0 Rλ

)
,
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where Ru := diag (R1, . . . , RN ) consists of preconditioners Ri, 1 ≤ i ≤ N , for

the subdomain stiffness matrices Ai and Rλ is a preconditioner for the Schur

complement Sλ := BA−1BT .

We will construct subdomain preconditioners Ri, 1 ≤ i ≤ N , and a precondi-

tioner Rλ for the Schur complement Sλ with respect to hierarchies (T (k)
i )Kk=0 of

nonuniform triangulations of the subdomains Ωi such that the spectral condition

numbers of the preconditioned matrices are independent of the refinement level. In

particular, a natural candidate for the preconditioners Ri, 1 ≤ i ≤ N , is the BPX-

preconditioner (cf.,e.g., [11], [33]). We may also use a BPX-type preconditioner

for the Schur complement. Indeed, taking advantage of the decomposition

Ai =

(
A

(i)
II A

(i)
IΓ

A
(i)
ΓI A

(i)
ΓΓ

)
, BTi =

(
0

(B
(i)
ΓΓ)T

)
of the matrices Ai and BTi with I and Γ referring to interior and boundary nodal

points, respectively, we have a corresponding partition of Sλ according to

(3.12) Sλ =
N∑
i=1

B
(i)
ΓΓ(S

(i)
ΓΓ)−1(B

(i)
ΓΓ)T ,

where S
(i)
ΓΓ := A

(i)
ΓΓ − A

(i)
ΓI(A

(i)
II )−1A

(i)
IΓ, 1 ≤ i ≤ N are the individual subdomain

Schur complements. We obtain a Schur complement preconditioner Rλ, if in (3.12)

we replace (S
(i)
ΓΓ)−1 by (R

(i)
ΓΓ)−1 where R

(i)
ΓΓ can be constructed by means of the

boundary diagonal blocks of the BPX-preconditioners. For a more detailed dis-

cussion of this issue we refer to [17], [23].

3.3 A Hierarchical Type a Posteriori Error Estimator

We construct a hierarchical basis a posteriori error estimator by a localization of

the defect equation on the subdomains’ level replacing the unknown normal fluxes

on the skeleton by the available multiplier λM ∈ M1(S). The resulting Neumann

problems are then solved by using the standard conforming P2 approximation on

the individual subdomains and performing a further localization by means of the

hierarchical two-level splitting of the higher order finite element spaces. We note

that this technique can be interpreted as a hybrid approach with respect to the

hierarchical type a posteriori error estimation concepts as developed by Bank and

Weiser [6] and by Deuflhard, Leinen, and Yserentant [16]. We further remark that

hierarchical type a posteriori error estimators for standard nonconforming finite

element discretizations of elliptic boundary value problems have been established

by the authors in [20], [21].

We assume that (T (k)
i )k∈N0 are regular, locally quasiuniform, nested sequences

of simplicial triangulations of Ωi, 1 ≤ i ≤ N . We denote by E(D)
k the sets of edges
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of Tk = ∪Ni=1T
(k)
i in D ⊆ Ω and by 0 < c ≤ C generic constants that only depend

on the shape regularity of T (0)
i , 1 ≤ i ≤ N , and possibly on the constants α, α, β, β

in (1.3), (1.4).

Assuming that the solution u of the macro-hybrid variational formulation (3.4)

satisfies u ∈
∏N
i=1H

2(Ωi) and [n · a∇u]J = 0 on S, it is easy to see that the

discretization error e := u− um solves the variational equation

(3.13) a(e, v) = r(v), v ∈
N∏
i=1

H1(Ωi),

where the residual r(·) is given by

(3.14) r(v) := (f, v)0;Ω − b(n · a∇u, v)− a(um, v).

Now, setting ei := e |Ωi , 1 ≤ i ≤ N , we obtain from (3.13)

(3.15) ai(ei, v) = (f, v)0;Ωi − ai(um, v) +

∫
∂Ωi\∂Ω

ni · a∇uv dσ, v ∈ H1(Ωi).

We replace the unknown normal fluxes n·a∇u in (3.15) by the available Lagrangian

multiplier λm and approximate the resulting Neumann problems by using the finite

element spaces S2(Ωi; T
(k)
i ), 1 ≤ i ≤ N , of continuous, piecewise quadratic finite

elements:

Find ẽi ∈ S2(Ωi; T
(k)
i ) such that

(3.16) ai(ẽi, v) = r̃i(v), v ∈ S2(Ωi; T
(k)
i ),

r̃i(v) := (f, v)0;Ωi − ai(um, v) +

∫
∂Ωi\∂Ω

λm[v]J dσ,

where v is extended to zero outside of Ωi.

If we assume that the weak solution u is continuous on Ω, we can define Dirichlet

boundary conditions of a discrete finite element solution pointwise on the nodal

points on ∂Ωi. Let u2,i ∈ S2(Ωi; T
(k)
i ), 1 ≤ i ≤ N , be the solution of the discrete

Dirichlet boundary value problem on Ωi

(3.17) ai(u2,i, v) = (f, v)0;Ωi , v ∈ S2;0(Ωi; T
(k)
i ),

where S2;0(Ωi; T
(k)
i ) := {v ∈ S2(Ωi; T

(k)
i ) | v|∂Ωi = 0} and u2,i on the boundary

∂Ωi is given by

u2,i(x) := u(x),
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where x is either a vertex or the midpoint of an edge on ∂Ωi. We impose a

saturation assumption by requiring the existence of constants 0 ≤ βi ≤ β, 1 ≤ i ≤
N , with β small enough and independent of the refinement level such that

(3.18) ||| u2,i − u |||Ωi≤ βi ||| ei |||Ωi , 1 ≤ i ≤ N,

where ||| · |||Ωi := ai(·, ·)1/2, 1 ≤ i ≤ N . In the sequel, we will further refer to

||| · |||Ω:= (
∑N
i=1 ||| · |||

2
Ωi

)1/2 as the broken energy norm associated with the

bilinear form a(·, ·) =
∑N
i=1 ai(·, ·).

The solutions ẽi of (3.16) only provide a lower bound for the discretization error.

In view of

(3.19) ||| e |||2Ω=
N∑
i=1

r̃i(ei) +
L∑
`=1

∫
Γ`

(n · a∇u− λm)[um]J dσ,

we further have to take into account the jumps [um]J across the interfaces. It can

be shown that (
L∑
l=1

∑
E⊂Γl

h−1
E ‖[um]J‖

2
0;E

)1/2

, hE := |E|

is an appropriate tool for measuring the nonconformity of the mortar finite element

solution.

To prove boths upper and lower bounds for the error in the broken energy norm

we have to impose another saturation assumption concerning the approximation

of the normal fluxes n · a∇u on S by the multipliers from M1(S)

(3.20) inf
µ∈M1(S)

‖µ− n · a∇u‖0;S ≤ C ||| u− um |||,

where ‖ · ‖0;S stands for the weighted L2-norm

‖v‖0;S :=

(∑
E⊂S

hE‖v‖
2
0;E

)1/2

.

Remark 3.1. The saturation assumption (3.20) is motivated by a priori error

estimates

||| u− um ||| ≤ C

(
N∑
i=1

h2
i ‖u‖

2
2;Ωi

)1/2

inf
µ∈M1(S)

‖µ− n · a∇u‖0;S ≤ C

(
N∑
i=1

h3
i ‖u‖

2
2;Ωi

)1/2

which are due to Bernardi, Maday, and Patera [8], [9] and Ben Belgacem [7],

respectively.

As a consequence of the saturation assumption (3.20) we have:
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Lemma 3.1. Suppose that (3.20) is satisfied. Then there holds

(3.21) ‖λm − n · a∇u‖0;S ≤ C ||| e |||Ω .

For the proof of (3.21) we refer to [31].

Summarizing the preceding results, we obtain:

Theorem 3.1. Under the saturation assumptions (3.17) and (3.20), there holds

(3.22) c ||| e |||2Ω≤
N∑
i=1

||| ẽi |||
2
Ωi +

L∑
l=1

∑
E∈Γl

h−1
E ‖[um]J‖

2
0;E ≤ C ||| e |||

2
Ω

For a proof of Theorem 3.1 we refer to [32].

A localization of the Neumann problems (3.16) can be achieved by taking ad-

vantage of the hierarchical two-level splitting

(3.23) S2(Ωi; T
k)
i ) = S1(Ωi; T

(k)
i )⊕ S̃2(Ωi; T

(k)
i ),

where S̃2(Ωi; T
(k)
i ) stands for the hierarchical surplus spanned by the quadratic

nodal basis functions ϕE associated with E ∈ EΩi\Γ
k .

Lemma 3.2. Let S̃2(Ωi; T
(k)
i ) = span {ϕE | E ∈ E

Ωi\Γ
k } and αE :=

r̃i(ϕE)/ai(ϕE , ϕE), 1 ≤ i ≤ N , with r̃i(·) given by (3.16). Then, for 1 ≤ i ≤ N

there holds

(3.24) c
∑

E∈E
Ωi\Γ
k

α2
E ||| ϕE |||

2
Ωi≤||| ẽi |||

2
Ωi≤ C

∑
E∈E

Ωi\Γ
k

α2
E ||| ϕE |||

2
Ωi .

Proof. The assertion follows from the strengthened Cauchy-Schwarz inequalities

ai(vi, wi) ≤ q1 ||| vi |||Ωi ||| wi |||Ωi , vi ∈ S1(Ωi; T
(k)
i ), wi ∈ S̃2(Ωi; T

(k)
i ),

ai(ϕE , ϕE′) ≤ q2 ||| ϕE |||Ωi ||| ϕE′ |||Ωi , E,E′ ∈ EΩi\Γ
k , E 6= E′,

where 0 ≤ qν < 1, 1 ≤ ν ≤ 2, are independent of the refinement level (cf.,

e.g., [16]).

We are thus led to the following hierarchical type error estimator

ηH :=

(∑
T∈Tk

η2
H;T

)1/2

,

η2
H;T :=

∑
E∈Ek(T )

α2
E ||| ϕE |||

2 +
L∑
l=1

∑
E∈Ek(T )∩Γl

h−1
E ‖[um]J‖20;E , T ∈ Tk.

(3.25)

The preceding results imply that ηH delivers a lower and an upper bound for the

broken energy norm of the discretization error.
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Theorem 3.2. Let ηH be the hierarchical error estimator as given by (3.25).

Then, under the saturation assumptions (3.17) and (3.20) there exist constants

0 < γH ≤ ΓH depending only on the shape regularity of T0 and on α, α, β, β in

(1.3), (1.4) such that

(3.25) γHηH ≤||| e |||≤ ΓHηH .

Proof. The assertion follows readily from Theorem 3.1 and Lemma 3.3. �

Remark 3.2. In practice, we only have iterative approximations (ũm, λ̃m) for

the exact solution (um, λm) of (3.8), (3.9) at hand. Then, the iteration errors |||
um−ũm ||| and ‖λm−λ̃m‖0;S also enter the bounds in (3.26). We remark that, due

to the optimality of the iterative solvers described in subsection 3.2, the iteration

errors can be controlled during the iterative solution process by monitoring the

residuals with respect to the computed iterates.

Remark 3.3.. We note that residual based a posteriori error estimators for

mortar finite element discretizations have been developed in [17], [31]. The hi-

erarchical basis error estimator and a fully hierarchical basis error estimator that

includes the error (n · a∇u) have been analyzed in [32].

4. Numerical Results

In this section, we present some numerical results illustrating the benefits of

the adaptive mixed and the adaptive macro-hybrid finite element methods.

As an example for the mixed hybrid approach, we consider (1.1) with a = 1.0

and b = 0.25 and homogeneous Dirichlet boundary on the three dimensional unit

cube Ω = (0, 1)3 where the right-hand side f has been chosen such that u(x) =

1000 · exp(−100((x − 0.4)2 + (y − 0.2)2 + (z − 0.3)2)) · x(x − 1)y(y − 1)z(z − 1)

is the solution of the problem. Note that u exhibits an exponential peak at the

interior point x = (0.4, 0.2, 0.3)T . We solve the problem by mixed hybridization

with respect to a hierarchy of adaptively generated hexalateral triangulations using

the multilevel preconditioned cg-iteration as described in subsection 2.2 and local

adaptive grid refinement based on the a posteriori error estimator of subsection 2.3.

Nonconforming nodal points arising from the adaptive refinement process have

been treated in the usual way as hanging nodes.

Figure 4.1 shows the adaptively generated final triangulation at different clip-

ping planes whereas Table 4.1 contains the history of the refinement process by

displaying the number of unknowns, the estimated and true errors as well as the

effectivity index for each refinement level. Note that the effectivity index is the

ratio of the estimated and the true error. We can see that there is a pronounced

refinement in the vicinity of the exponential peak and we also observe that the

effectivity index rapidly approaches its optimal value 1.
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Figure 4.1. Final triangulation.

Level # Nodes Error Est. Error Eff. Index

0 20 0.328555 0.0328704 0.118
1 208 0.322324 0.1057 0.328
2 886 0.195379 0.133779 0.685
3 2186 0.113028 0.0963011 0.852
4 9874 0.0573235 0.0548544 0.957
5 59267 0.0287311 0.0283626 0.987

Table 4.1. Effectivity index.

A real-life application of the algorithm, namely the simulation of the neutron

kinetics of a nuclear power plant, can be found in [10].

The second example concerns the performance of the hierarchical type error

estimator for adaptive mortar finite element methods. We consider a problem on

a domain with a reentrant corner (cf. Figure 4.2a) where a = 1, b = 100 and f is

chosen such that u = r
2
3 sin(2

3φ) is the solution of the problem. We have further

investigated a diffusion equation in Ω = (0, 1)2 with a discontinuous coefficient

(a = 1 in Ω1 := {(x, y) ⊂ Ω | x < 1/2, x < y < 1− x or x > 1/2, x > y > 1− x}
and a = 100 elsewhere) with the solution u(x, y) = (x − y)(1 − x − y). We have

solved both problems with respect to an adaptively generated simplicial trian-

gulation using a preconditioned Lanczos iteration with substructuring multilevel

preconditioners of BPX-type (cf. subsection 3.2) and we have used the hierarchical

error estimator described in subsection 3.3.

The history of the refinement process is given by Tables 4.2a and 4.2b. We again

observe that the effectivity index quickly approaches 1. Figures 4.2a and 4.2b show

the adaptively generated final triangulation in the two cases.
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Level # Nodes Est. Error Error Eff. Index

0 24 0.265 0.313 0.847
1 50 0.137 0.142 0.965
2 100 0.891·10−1 0.939·10−1 0.952
3 154 0.651·10−1 0.676·10−1 0.963
4 277 0.455·10−1 0.470·10−1 0.969
5 599 0.314·10−1 0.321·10−1 0.976
6 1069 0.217·10−1 0.221·10−1 0.981
7 2342 0.143·10−1 0.145·10−1 0.981
8 5190 0.957·10−2 0.975·10−2 0.981
9 11510 0.631·10−2 0.641·10−2 0.984

Table 4.2a. Reentrant corner.

Level # Nodes Est. Error Error Eff. Index

0 24 0.241 0.408 0.592
1 60 0.150 0.147 1.02
2 116 0.764·10−1 0.759·10−1 1.01
3 320 0.392·10−1 0.393·10−1 0.997
4 1150 0.196·10−1 0.197·10−1 0.998
5 4372 0.100·10−1 0.991·10−2 1.01
6 17044 0.497·10−2 0.495·10−2 1.00

Table 4.2b. Discontinuous coefficient.

Figure 4.2a. Reentrant corner. Figure 4.2b. Discontinuous coefficient.

For further numerical results, including fully potential flows around airfoils we

refer to [17], [31], [32].
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