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Abstract

For mixture models on the simplex, we discuss the improvement of a given design in terms of increasing

symmetry as well as obtaining a larger moment matrix under the Loewner ordering. The two criteria
together constitute the Kiefer design ordering. The latter can be discussed either in the usual Scheffé model

algebra, or in Kronecker product algebra which better reflects the symmetries of the simplex experimental

region. For the first-degree mixture model, we show that the vertex points design is the unique optimal
design under the Kiefer ordering. For the second-degree mixture models with two or three ingredients,

complete class results relative to the Kiefer ordering are derived. A brief overview of related literature
completes the paper.

1991 Mathematics Subject Classifications: Primary 62K99, 62J05; secondary 15A69, 15A45.

Keywords: Complete class results for the Kiefer design ordering; Kronecker product; Loewner matrix

ordering; Matrix majorization; Moment identities; Permutation invariant designs; Scheffé canonical poly-
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1. Introduction

Many practical problems are associated with the investigation of mixture ingredients

t1, t2, . . . , tm of m factors, with ti ≥ 0 and further restricted by
∑
ti = 1. The definitive

text Cornell (1990) lists numerous examples and provides a thorough discussion of both

theory and practice. Early seminal work was done by Scheffé (1958, 1963) in which he

suggested (1958, page 347) and analyzed canonical model forms of degrees one, two and

three for the expected response. We shall refer to these as the S-models, or S-polynomials.
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In this paper, we use an alternative representation of mixture models which appears

to have certain advantages; see Draper and Pukelsheim (1998b). Our versions are based

on the Kronecker algebra of vectors and matrices, and give rise to model functions that

are homogeneous in t1, . . . , tm. We shall refer to the corresponding expressions as the

K-models, or K-polynomials. An outline of the present paper is as follows.

In Section 2 we review the S- and K-models. Section 3 discusses exchangeability in

first degree models. Section 4 shows that the unique Kiefer optimal design for the first

degree model is the vertex points design.

Exchangeability in second degree models is discussed in Section 5. Section 6 treats

the two factor case which involves fourth order moments µ4, µ31 and µ22. The three factor

case in Section 7 requires the additional moment µ211. Cases for four or more factors

are considerably more complicated and are discussed in Draper, Heiligers and Pukelsheim

(1998).

Section 8 consists of a concise review of the relevant literature.

2. Mixture models of type S and K

We consider multifactor experiments, form deterministic ingredients that are assumed

to influence the response only through the percentages or proportions in which they are

blended together. For i = 1, . . . ,m, let ti ∈ [0, 1] be the proportion of ingredient i in

the mixture. As usual, we assemble the individual components to form the vector of

experimental conditions,

t = (t1, . . . , tm)′.

The domain of variation for the column vector t, the experimental domain T , then is the

standard probability simplex in the space RI m. Let 1m = (1, . . . , 1)′ ∈ RI m be the unity

vector, whence 1′mt = t1 + · · ·+ tm is the sum of the components of the vector t. Thus the

experimental domain T can be represented as

T = {t ∈ [0, 1]m : 1′mt = 1}.

Under experimental conditions t, the experimental response Yt is taken to be a scalar

random variable. Replications under identical experimental conditions, or responses from

distinct experimental conditions are assumed to be of equal (unknown) variance σ2, and

uncorrelated. Mixture models were introduced by Scheffé in his seminal (1958) paper, with
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a special emphasis on the consequences of the simplex restriction 1′mt = 1. The simplex

restriction entails linear dependencies that we shall monitor carefully as we proceed.

In this paper, we deal with first- and second-degree polynomials in t to model the

expected response, E[Yt]. The first-degree model is

E[Yt] =
m∑
i=1

tiθi = t′θ.

This model does not include an overall effect θ0. The reason is that θ0 would be confounded

with the linear effects, through θ0 = (t1 + · · ·+ tm) · θ0 =
∑m

i=1 tiθ0.

For the second-degree model, Scheffé (1958) overcomes the parameter redundancy by

deliberately choosing to include only the linear terms and the crossproduct terms,

E[Yt] =
m∑
i=1

tiβi +
m∑
i=1

m∑
j>i

titjβij .

Draper and Pukelsheim (1998b) refer to this model as the second-degree S-model, and to

its regression function as the second-degree S-polynomial.

As an alternative, Draper and Pukelsheim (1998b) propose a representation involving

the Kronecker square t⊗ t, the m2 × 1 vector consisting of the squares and cross products

of the components of t in lexicographic order of the subscripts. This is referred to as the

K-model, with a K-polynomial as the regression function,

E[Yt] =

m∑
i=1

m∑
j=i

titjθij = (t⊗ t)′θ.

The parameters βi and βij of the S-model are in a one-to-one relation with the parameters

of the K-model parameters θij , if θij = θji is assumed. See Draper and Pukelsheim (1998b)

for details.

In the present paper we derive results for the Kiefer ordering of experimental designs.

We emphasize elsewhere (Draper and Pukelsheim 1998a, Section 6) that the Kiefer ordering

does not depend on the coordinate system that is used to represent the regression function.

Hence, within the scope of the present paper, S- and K-models are equivalent. We find that

the S-models deal with the model parameters in a more parsimonious manner, in contrast

to the overparameterized K-models. On the other hand, the K-models more visibly reflect

the symmetry structure of the problem. We shall make use of both model representations.
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3. Exchangeability in first-degree models

An experimental design τ on the simplex T is a probability measure that has finite

support. Suppose the weights w1, . . . , wℓ are assigned to the support points t1, . . . , tℓ ∈ T ,

respectively. The experimenter is then directed to draw a proportion wj of all observations

under experimental conditions tj .

Given a permutation π of the ingredients 1, . . . ,m, we denote the corresponding per-

mutation matrix by Rπ,

Rπ =
m∑
i=1

eπ(i)e
′
i,

where ei designates the i th Euclidean unit vector of RI m, with i th entry one and zeros

elsewhere. The permutation matrix Rπ acts on the simplex T by usual left multiplication,

Rπ

 t1
...

tm

 =
m∑
i=1

eπ(i)e
′
it =

m∑
i=1

tieπ(i) =
m∑
i=1

tπ−1(i)ei =

 tπ−1(1)

...

tπ−1(m)

 .

The action results in a permutation of the factor labels according to the inverse of π.

Let Perm(m) be the group of all m×m permutation matrices. A design τ is said to

be permutationally invariant when

τR = τ for all R ∈ Perm(m),

where τR(t) = τ(R−1t) is the image of τ under R. We call a design with this invariance

property an exchangeable design. It means that the design does not depend on how the

labels 1, . . . ,m are assigned to the available ingredients. This notion, of exchangeability

of a design, does not involve the regression function.

If the linear model has regression function f(t), the statistical properties of a design τ

are captured by its moment matrix

M(τ) =
ℓ∑

j=1

wj f(tj)f(tj)
′ =

∫
T
f(t)f(t)′ dτ.

In the first-degree model on the simplex, E[Yt] = t′θ, the regression function is the identity,

f(t) = t. The first-degree moment matrix of the design τ thus is the m × m matrix

M(τ) =
∫
T tt

′ dτ . The simplex restriction has an immediate effect on moment matrices,

1′mM(τ)1m =

∫
T
1′mt t

′1m dτ = 1.

That is, the entries of any first-degree moment matrix sum to one, for every design on the

simplex.
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The group that acts on the experimental domain T induces a group Q acting on the

range of the regression function f . For the first-degree model on the simplex, the regression

function is the identity whence the groups Q and Perm(m) coincide,

f(Rt) ≡ Rt = Qt ≡ Qf(t) for all t ∈ T =⇒ Q = R.

The group Q = Perm(m) acts on moment matrices by congruence, M 7→ QMQ′. A

first-degree moment matrix M is said to be permutationally invariant when

M = RMR′ for all R ∈ Perm(m),

in which case we speak of an exchangeable first-degree moment matrix.

It is evident and well known that the action of the permutation group leaves the

present problem invariant. For a general discussion of invariant design problems see, for

instance, Pukelsheim (1993, page 342).

Given an arbitrary design τ , we obtain an exchangeable design τ by averaging over

the permutation group,

τ =
1

m!

∑
R∈Perm(m)

τR.

If the original design τ itself is exchangeable, then no modification is necessary, τ = τ .

Otherwise the average τ is an improvement over τ , in that it exhibits more symmetry,

or balancedness. In terms of matrix majorization (relative to the congruence action of

the induced group Q), the moment matrix of the averaged design τ is majorized by the

moment matrix of τ ,

M(τ) ≺M(τ).

The terminology “is majorized by” is standard, even though for design purposes the em-

phasis is reversed: M(τ) is superior to M(τ) since it exhibits more symmetry. As a

consequence, the design τ yields better values than τ , under a large class of optimality

criteria (Pukelsheim 1993, page 349).

Symmetry and balancedness have always been a prime attribute of good experimental

designs, and comprise the first step of the Kiefer design ordering. The second step concerns

the usual Loewner matrix ordering. In view of the symmetrization step it suffices to search

for improvement when the Loewner ordering is restricted only to exchangeable moment

matrices, a much simpler task.
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4. Kiefer optimality in the first-degree model

The Kiefer design ordering has two steps. The first step is the majorization ordering

of Section 3, to improve balancedness. The second step is an improvement relative to the

usual Loewner matrix ordering within the class of exchangeable moment matrices, which

we tackle now.

The first-degree moment matrix of an exchangeable design τ is the m×m matrix

M(τ) =


µ2 µ11 · · · µ11

µ11 µ2 · · · µ11
...

...
. . .

...

µ11 µ11 · · · µ2

 ,

with identical on-diagonal entries µ2, the pure second moments, and identical off-diagonal

entries µ11, the mixed second moments. The moments are the averages over the corre-

sponding, possibly distinct individual moments of τ ,

µ2 = µ2(τ) =

∫
T
t21 d τ = · · · =

∫
T
t2m d τ =

∫
T

(
1

m

m∑
i=1

t2i

)
dτ,

µ11 = µ11(τ) =

∫
T
t1t2 d τ = · · · =

∫
T
tm−1tm d τ =

∫
T

 1

m(m− 1)

m∑
i=1

∑
j ̸=i

titj

 dτ.

The reduction by exchangeability drastically reduces the dimensionality of the problem.

It leaves just two parameters, µ2 and µ11, irrespective of the number of ingredients, m.

Furthermore, the simplex restriction

1 = 1′mM(τ)1m = mµ2 +m(m− 1)µ11

permits a final reduction to the single parameter µ2, say. Accordingly, the Loewner com-

parison of the moment matrices of two exchangeable designs amounts to comparing their

second moments µ2, as follows.

Lemma 4.1. Let η and τ be two exchangeable designs on the simplex T . Then we have

M(η) ≥M(τ) ⇐⇒ µ2(η) ≥ µ2(τ).

Proof. If M(η) ≥ M(τ) then we get in particular µ2(η) = e′1M(η)e1 ≥ e′1M(τ)e1 =

µ2(τ). Conversely, we assume that δ = µ2(η) − µ2(τ) ≥ 0. The simplex restriction yields

µ11(η)− µ11(τ) = − 1
m−1δ. This gives

M(η)−M(τ) =
m

m− 1
δKm ≥ 0,
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since the centering matrix Km = Im− 1
m 1m 1′m is nonnegative definite. (Pukelsheim 1993,

page 88).

Let η1 be the vertex points design assigning uniform weights to the vertices e1, . . . , em

of the simplex T ,

η1(e1) = · · · = η1(em) =
1

m
,

where again ei designates the i th Euclidean unit vector of RI m. The design η1 is exchange-

able, with moments µ2(η1) = 1/m and µ11(η1) = 0.

Lemma 4.2. Let τ be an exchangeable design on the simplex T . Then we have

M(η1) ≥M(τ),

with equality if and only if τ = η1.

Proof. From Lemma 4.1 we have M(η1)−M(τ) = m
m−1δKm, with δ = 1/m−µ2(τ). The

simplex restriction yields δ = (m− 1)µ11(τ) ≥ 0. This proves M(η1) ≥M(τ).

Equality holds if and only if 0 = µ11(τ) =
∫
T titj d τ for all i ̸= j. Therefore the

support points of τ must be among the vertices ei. Because of exchangeability the design τ

assigns constant weight 1/m to each vertex, whence τ = η1.

Now we view matrix majorization and Loewner ordering together, to obtain the main

result on the Kiefer design ordering in first-degree models.

Theorem 4.3. Among all designs on the simplex T , the unique Kiefer optimal design

for a first-degree model is the vertex points design η1, with moment matrix M(η1) =
1
m Im.

Proof. Let τ be an arbitrary design on the simplex T . Section 3 and Lemma 4.2 yield

M(η1) ≥M(τ) ≺M(τ). This establishes Kiefer optimality of M(η1).

Let τ be also Kiefer optimal. Then τ and η1 are Kiefer equivalent, and the antisym-

metry property of the Kiefer ordering (Pukelsheim 1993, page 356) entails M(τ) =M(η1).

Now Lemma 4.2 proves uniqueness, so τ = η1.
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The theorem has a companion version for rotatable first-degree moment matrices when

the experimental domain is the ball, see, for instance, Pukelsheim (1993, page 389). In

both cases the Kiefer optimal moment matrices are multiples of the identity matrix Im,

whence one would speak of orthogonal designs.

The Kiefer optimal design η1 consists of pure “mixtures” only, and is of little practical

value. The reason is the poverty of the first-degree model, not the conceptual weakness of

the Kiefer ordering. Nevertheless, the discussion of the first-degree model proves instructive

when we turn to higher degree models.

We append some details that are specific to the first-degree model. On the simplex, the

Cauchy inequality 1 = (1′mt)
2 ≤ 1′m1m ·t′t entails 1

m ≤ t′t ≤ 1 for all t ∈ T . Hence the pure

second moment satisfies 1/m ≤ mµ2 ≤ 1, and the linear relationship mµ2+m(m−1)µ11 =

1 implies 0 ≤ m2µ11 ≤ 1. Thus the ranges of the second order moments are adjacent

intervals,

µ11 ∈
[
0,

1

m2

]
, µ2 ∈

[
1

m2
,
1

m

]
.

The inequality µ11 ≤ µ2 can also be deduced from 0 ≤ 1
2

∫
T (t1 − t2)

2 d τ = µ2 − µ11.

While there are plenty of exchangeable designs, just two of them suffice to generate

all possible exchangeable first-degree moment matrices. To this end let ηm be the overall

centroid design, that is the one-point design in the overall centroid point of the simplex T ,

ηm

(
1

m
1m

)
= 1.

Its moment matrix is M(ηm) = 1
m2 1m1′m. For an arbitrary exchangeable design τ with

moments µ2 and µ11 we define

α1 = m(µ2 − µ11), αm = m2µ11.

These two numbers satisfy α1 ≥ 0, αm ≥ 0, and α1 + αm = 1. Hence the convex

combination α1η1 + αmηm is a legitimate design. In fact, this design reproduces the

given moments,

µ2(α1η1 + αmηm) = α1µ2(η1) + αmµ2(ηm) = µ2,

µ11(α1η1 + αmηm) = α1µ11(η1) + αmµ11(ηm) = µ11.

In other words, the convex combinations of the vertex points design η1 and of the overall

centroid design ηm exhaust all possible exchangeable first-degree moment matrices.
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5. Exchangeability in second-degree models

Since the experimental domain remains the simplex T , the notion of exchangeability

remains the same, too, as far as the designs themselves are concerned.

However, we now advance to the second-degree model. We choose the K-regression

function f(t) = t ⊗ t, see Draper and Pukelsheim (1998b). This choice proves convenient

to determine the group Q that is induced on the K-regression range,

f(Rt) ≡ (Rt⊗Rt) = Q(t⊗ t) ≡ Qf(t) for all t ∈ T =⇒ Q = R⊗R.

Therefore the induced group consists of the Kronecker squares of all permutation matrices,

Q = {R⊗R : R ∈ Perm(m)}.

This is a proper subgroup of the permutation matrices on the space RI m2

where the

regression function takes its values. In fact, Q only has order m!, while Perm(m2) has

order m2!.

An arbitrary design τ has second-degree K-moment matrix

M(τ) =

∫
T
(t⊗ t)(t⊗ t)′ dτ.

As in the first-degree model, the simplex restriction has the effect that

(1m ⊗ 1m)′M(τ)(1m ⊗ 1m) =

∫
T
(1′mt)

4 d τ = 1.

That is, the entries of any second-degree K-moment matrix sum to one.

A second-degree K-moment matrix is said to be permutationally invariant when

M = (R⊗R)M(R⊗R)′ for all R ∈ Perm(m),

in which case we speak of an exchangeable second-degree K-moment matrix. An exchange-

able second-degree K-moment matrix depends on the various moments of order four. The

initial cases of 2 and 3 ingredients are treated separately in Sections 6 and 7. The general

case of m ≥ 4 is dealt with in Draper, Heiligers and Pukelsheim (1998).
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6. Two factors

For the two-ingredient model, let τ be an arbitrary exchangeable design on T . Its

fourth order moments are µ4 =
∫
t41 d τ, µ31 =

∫
t31t2 d τ, µ22 =

∫
t21t

2
2 d τ . The second-

degree K-moment matrix is

M(τ) =



t1t1 t1t2 t2t1 t2t2

t1t1 µ4 µ31 µ31 µ22

t1t2 µ31 µ22 µ22 µ31

t2t1 µ31 µ22 µ22 µ31

t2t2 µ22 µ31 µ31 µ4

.

Since the regression function repeats the term t1t2 as t2t1, the K-moment matrix is rank

deficient. Evidently, a corresponding nullvector is (0, 1,−1, 0)′.

The set of moments of order four determines all lower order moments. For instance,

the pure third moment expands to order four by way of µ3 =
∫
t31(t1 + t2) d τ = µ4 + µ31.

In this way we get the following relations:

µ3 = µ4 + µ31,

µ21 = µ31 + µ22;

µ2 = µ3 + µ21 = µ4 + 2µ31 + µ22,

µ11 = 2µ21 = 2µ31 + 2µ22.

The simplex restriction entails

1 = 2µ4 + 8µ31 + 6µ22,

1 = 2µ3 + 6µ21,

1 = 2µ2 + 2µ11.

The Loewner comparison of two second-degree moment matrices can now be expressed in

terms of moment conditions. Let

µ(2) = (µ2, µ11)
′

be the vector of moments up to order two. Because of the simplex restriction either one

of the two second order moments determines the other one. Note that the first moment is

constant, µ1 = 1/2, for all designs that are exchangeable.
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Lemma 6.1. Let η and τ be two exchangeable designs on the simplex T . Then we have

M(η) ≥M(τ) ⇐⇒ µ(2)(η) = µ(2)(τ), µ4(η) ≥ µ4(τ).

Proof. For the direct part we assume that ∆ =M(η)−M(τ) is nonnegative definite. Then

(12 ⊗ 12)
′∆(12 ⊗ 12) = 1 − 1 = 0 forces ∆(12 ⊗ 12) = 0, which implies M(η)(12 ⊗ 12) =

M(τ)(12 ⊗ 12). This means µ(2)(η) = µ(2)(τ), since

M(τ)(12 ⊗ 12) =

∫
T
(t⊗ t)(t⊗ t)′(12 ⊗ 12) dτ =

∫
T
(t⊗ t) dτ =


µ2(τ)

µ11(τ)

µ11(τ)

µ2(τ)

 .

In addition, we have 0 ≤ (e1 ⊗ e1)
′∆(e1 ⊗ e1) = µ4(η)− µ4(τ).

For the converse part note that, for two ingredients, equality of second order moments

implies equality of third order moments. The fourth order moment differences then are,

using γ = µ4(η)− µ4(τ) ≥ 0,

µ31(η)− µ31(τ) = −γ,

µ22(η)− µ22(τ) = γ.

In terms of matrices this means

M(η)−M(τ) = γ


1 −1 −1 1

−1 1 1 −1

−1 1 1 −1

1 −1 −1 1

 = γE ≥ 0,

where E = w12w
′
12 and w12 = (e1 − e2)⊗ (e1 − e2).

Note that the condition µ4(η) ≥ µ4(τ) could alternatively be replaced by µ31(η) ≤
µ31(τ), or by µ22(η) ≥ µ22(τ).

A similar argument can be used to establish the corresponding result for the S-model,

as follows. A second-degree S-moment matrix has the form

MS-model =


t1 t2 t1t2

t1 µ2 µ11 µ21

t2 µ11 µ2 µ21

t1t2 µ21 µ21 µ22

.
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The difference between the S-moment matrices of the weighted centroid design η and of

the given design τ is

γ


0 0 0

0 0 0

0 0 1

 ≥ 0.

Hence Lemma 6.1 and its proof carry over with only minor adjustments.

Again the vertex points design η1 and the overall centroid design η2 play a special

role,

η1

(
1

0

)
= η1

(
0

1

)
=

1

2
, η2

( 1
2
1
2

)
= 1.

Their moments of order four are µ4(η1) = 1
2 and µ31(η1) = µ22(η1) = 0, and µ4(η2) =

µ31(η2) = µ22(η2) =
1
16 . We call the designs η1 and η2 elementary centroid designs. They

are used to generate weighted centroid designs, in the sense of the following definition.

Definition. For weights α1, α2 ≥ 0 with α1 + α2 = 1, the design η = α1η1 + α2η2 is

called a weighted centroid design.

There is a simple fourth order moment check to find out whether an exchangeable

design is a weighted centroid design.

Lemma 6.2. Let τ be an exchangeable design on the simplex T . Then we have

µ31(τ) ≥ µ22(τ),

with equality if and only if τ is a weighted centroid design.

Proof. On the simplex T , the function

ψ(t1, t2) = t1t2(t1 − t2)
2

is nonnegative. This gives µ31(τ)− µ22(τ) =
1
2

∫
ψ(t1, t2)d τ ≥ 0.

Equality holds if and only if ψ(t1, t2) = 0 for all support points t = (t1, t2)
′ of τ ,

which happens only for the points (1, 0)′, (0, 1)′, or ( 12 ,
1
2 )

′. Because of exchangeability, τ

is a weighted centroid design.



N.R. Draper, F. Pukelsheim / Kiefer ordering of simplex designs 13

We are now in a position to take another look at the converse part of the proof

of Lemma 6.1. There, the central quantity is the difference γ between the pure fourth

moments of η and τ . In the special instance when η is a weighted centroid design we may

use Lemma 6.2 to obtain

µ31(τ)− γ = µ31(η) = µ22(η) = µ22(τ) + γ,

whence γ may be expressed solely in terms of moments of τ ,

γ =
1

2

(
µ31(τ)− µ22(τ)

)
≥ 0.

Therefore, when η is a weighted centroid design, the moment matrix difference

M(η)−M(τ) =
1

2

(
µ31(τ)− µ22(τ)

)
cc′

is determined by quantities that solely depend on τ . This may suggest that the improving

design η itself is already determined by τ .

In order to find a weighted centroid design η = α1 η1 + α2 η2 that improves upon

a given exchangeable design τ , in the Loewner ordering sense of having M(η) ≥ M(τ),

Lemma 6.1 is instrumental. We determine the weights α1 and α2 by equating selected

lower order moments,

µ1(η) ≡
1

2
α1 +

1

2
α2 =

1

2
,

µ11(η) ≡
1

4
α2 = µ11.

The first line is trivially true since the first order moment of exchangeable designs is

constant. The solutions are α2 = 4µ11 ≥ 0, and α1 = 1 − 4µ11 = 2(µ2 − µ11) ≥ 0. In

fourth order terms we get α2 = 8(µ31 + µ22) and α1 = 2(µ4 − µ22). This motivates the

following result.

Lemma 6.3. Let τ be an exchangeable design on the simplex T , with fourth order

moments µ4, µ31, µ22. Then the weighted centroid design η = α1η1 + α2η2, with weights

α1 = 2(µ4 − µ22) and α2 = 8(µ31 + µ22), satisfies

M(η) ≥M(τ),

with equality if and only if τ = η.
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Proof. The simplex restriction entails 2µ4+8µ31+6µ22 = 1 and α1+α2 = 1. Clearly we

have α2 ≥ 0. We also have α1 ≥ 0, since the function ψ(t1, t2) = (t21 − t22)
2 is nonnegative

and satisfies α1 =
∫
ψ(t1, t2) d τ ≥ 0. Hence the weighted centroid design η is well-defined.

It is easily seen that µ(2)(η) = µ(2)(τ). Using γ = 1
2 (µ31−µ22) ≥ 0 we find µ4(η)−µ4 =

γ. Lemma 6.1 establishesM(η) ≥M(τ). More precisely, we obtainM(η)−M(τ) = γcc′ ≥
0, with the same vector c as in the proof of Lemma 6.1.

Equality holds if and only if γ = 0. By Lemma 6.2, τ then is a weighted centroid

design. Since it shares the same moments with η, the two designs must be the same.

As an illustration of Lemma 6.3, we consider a family of exchangeable designs that

depends on a single support parameter r,

τr

(
1− r

r

)
= τr

(
r

1− r

)
=

1

2
for all r ∈

[
0,

1

2

]
.

Of course, for the limiting value r = 1
2 we set τr(

1
2 ,

1
2 ) = 1. The weighted centroid design

improving upon τr has weights that are quadratic in r,

α1 = (1− 2r)2, α2 = 4r(1− r).

The vertex points design, η1, has r = 0 and α1 = 1. The overall centroid design, η2, has

r = 1
2 and α2 = 1, as it should. For r ∈

(
0, 12

)
the weights α1 and α2 lie strictly between

zero and one, and M(α1η1 + α2η2)
≥
̸=M(τr). The two elementary centroid designs η1 and

η2 occur with equal weight 1
2 at about r ≈ 0.15.

The following theorem joins the partial steps together to obtain our main result on the

Kiefer ordering, that the mixtures of the vertex points design η1 and of the overall centroid

design η2 form a minimal complete class. Since the Kiefer ordering does not depend on

the basis that is chosen for the regression function, we do not have to distinguish whether

we refer to the K-model, or to the S-model.

Theorem 6.4. In the two-ingredient second-degree model, the set of weighted centroid

designs

C = {α1η1 + α2η2 : (α1, α2)
′ ∈ T }

constitutes a minimal complete class of designs for the Kiefer ordering.

Proof. Completeness of C means that for every design τ not in C there is a member η in

C that is Kiefer better than τ . That is, we must show that η is more informative than τ ,
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M(η) ≫M(τ), but that the two are not Kiefer equivalent, M(τ) ̸≫M(η). From Section 5

and with the weights from Lemma 6.3, the weighted centroid design η = α1η1 + α2η2

satisfies M(η) ≥M(τ) ≺M(τ), that is, M(η) ≫M(τ).

If, in addition, we assume the reverse relation to hold true, M(τ) ≫ M(η), then the

two moment matrices are Kiefer equivalent and hence coincide (Pukelsheim 1993, page

356). This forces the two designs to be equal, contradicting the assumption that τ does

not lie in C. Therefore η and τ are not Kiefer equivalent.

Minimal completeness of C means that no proper subset of C is complete. It suffices

to show that, if we take away a member τ = β1η1 + β2η2 from C, the remaining subclass

is no longer complete. The proof is by contradiction. We assume that some design η =

α1η1 +α2η2 ∈ C does improve upon τ , M(η) ≥M(τ). Lemma 6.1 says that η and τ share

the same lower order moments. The latter determine the weights uniquely, contradicting

the assumption that the designs are distinct. Therefore the assumption M(η) ≥ M(τ)

cannot hold true, rendering the class C minimal complete.

The implication of the above is that any design which does not consist of a mixture

of elementary centroid designs can be improved upon, in terms of symmetry and Loewner

ordering, by using an appropriate combination of elementary centroid designs. Within

the class of weighted centroid designs, however, other criteria would be needed to attain

further improvement, for example, the determinant criterion.

7. Three factors

In the three-ingredient second-degree model, an exchangeable design τ picks up an

additional moment of order four, µ211 =
∫
t21t2t3 d τ . Its K-moment matrix is

M(τ) =



t1t1 t1t2 t1t3 t2t1 t2t2 t2t3 t3t1 t3t2 t3t3

t1t1 µ4 µ31 µ31 µ31 µ22 µ211 µ31 µ211 µ22

t1t2 µ31 µ22 µ211 µ22 µ31 µ211 µ211 µ211 µ211

t1t3 µ31 µ211 µ22 µ211 µ211 µ211 µ22 µ211 µ31

t2t1 µ31 µ22 µ211 µ22 µ31 µ211 µ211 µ211 µ211

t2t2 µ22 µ31 µ211 µ31 µ4 µ31 µ211 µ31 µ22

t2t3 µ211 µ211 µ211 µ211 µ31 µ22 µ211 µ22 µ31

t3t1 µ31 µ211 µ22 µ211 µ211 µ211 µ22 µ211 µ31

t3t2 µ211 µ211 µ211 µ211 µ31 µ22 µ211 µ22 µ31

t3t3 µ22 µ211 µ31 µ211 µ22 µ31 µ31 µ31 µ4



.
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The Kronecker representation evidently causes three nullvectors, e.g.,

(0, 1, 0,−1, 0, 0, 0, 0, 0)′, (0, 0, 1, 0, 0, 0,−1, 0, 0)′, (0, 0, 0, 0, 0, 1, 0,−1, 0)′.

The lower order moments are expressed through the fourth order moments as follows:

µ3 = µ4 + 2µ31,

µ21 = µ31 + µ22 + µ211,

µ111 = 3µ211;

µ2 = µ3 + 2µ21 = µ4 + 4µ31 + 2µ22 + 2µ211,

µ11 = 2µ21 + µ111 = 2µ31 + 2µ22 + 5µ211.

The simplex restriction entails

1 = 3µ4 + 24µ31 + 18µ22 + 36µ211,

1 = 3µ3 + 18µ21 + 6µ111,

1 = 3µ2 + 6µ11.

The analogue of Lemma 6.1 uses the initial section of moments up to order three,

µ(3) = (µ2, µ11;µ3, µ21, µ111)
′.

Lemma 7.1. Let η and τ be two exchangeable designs on the simplex T . Then we have

M(η) ≥M(τ) ⇐⇒ µ(3)(η) = µ(3)(τ), µ4(η) ≥ µ4(τ).

Proof. For the direct part we refine the argument in the proof of Lemma 6.1. Assume

that ∆ = M(η) −M(τ) is nonnegative definite. Then (13 ⊗ 13)
′∆(13 ⊗ 13) = 0 forces

∆(13 ⊗ 13) = 0 and equality of second order moments. Now we get

(e1 ⊗ 13)
′M(η)(e1 ⊗ 13) =

∫
T
t21d η = µ2 =

∫
T
t21d τ = (e1 ⊗ 13)

′M(τ)(e1 ⊗ 13).

This yields ∆(e1 ⊗ 13) = 0, that is,
∫
(t ⊗ t)t1d η =

∫
(t ⊗ t)t1d τ . Hence the third order

moments of η and τ are equal as well. This means µ(3)(η) = µ(3)(τ). In addition, we have

0 ≤ (e1 ⊗ e1)
′∆(e1 ⊗ e1) = µ4(η)− µ4(τ).
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For the converse part, equality of the third order moments forces the differences of

the fourth order moments to even out according to, using γ = µ4(η)− µ4(τ) ≥ 0,

µ31(η)− µ31(τ) = −γ
2
,

µ211(η)− µ211(τ) = 0,

µ22(η)− µ22(τ) =
γ

2
.

In terms of matrices this means

M(η)−M(τ) =
γ

2



2 −1 −1 −1 1 0 −1 0 1

−1 1 0 1 −1 0 0 0 0

−1 0 1 0 0 0 1 0 −1

−1 1 0 1 −1 0 0 0 0

1 −1 0 −1 2 −1 0 −1 1

0 0 0 0 −1 1 0 1 −1

−1 0 1 0 0 0 1 0 −1

0 0 0 0 −1 1 0 1 −1

1 0 −1 0 1 −1 −1 −1 2



=
γ

2
E ≥ 0,

where E = w12w
′
12 + w13w

′
13 + w23w

′
23 and wij = (ei − ej)⊗ (ei − ej) = wji.

The same results can be derived using the S-models. A three-ingredient second-degree

S-moment matrix has the form

MS-model =



t1 t2 t3 t1t2 t1t3 t2t3

t1 µ2 µ11 µ11 µ21 µ21 µ111

t2 µ11 µ2 µ11 µ21 µ111 µ21

t3 µ11 µ11 µ2 µ111 µ21 µ21

t1t2 µ21 µ21 µ111 µ22 µ211 µ211

t1t3 µ21 µ111 µ21 µ211 µ22 µ211

t2t3 µ111 µ21 µ21 µ211 µ211 µ22


.

The difference between the S-moment matrices of the weighted centroid design η and a
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given design τ is

γ

2



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


≥ 0.

There are three elementary centroid designs: η1 is supported on the vertices, η2 on

the edge midpoints, and η3 on the overall centroid point,

η1

 1

0

0

 = η1

 0

1

0

 = η1

 0

0

1

 =
1

3
, η2


1
2
1
2

0

 = η2


1
2

0
1
2

 = η2

 0
1
2
1
2

 =
1

3
, η3


1
3
1
3
1
3

 = 1.

The moments of order four of these designs are, respectively:

µ4(η1) =
1

3
,

µ31(η1) = µ22(η1) = 0,

µ211(η1) = 0,

µ4(η2) =
1

24
,

µ31(η2) = µ22(η2) =
1

48
,

µ211(η2) = 0,

µ4(η3) =
1

81
,

µ31(η3) = µ22(η3) =
1

81
,

µ211(η3) =
1

81
.

Definition. For weights α1, α2, α3 ≥ 0 with α1 + α2 + α3 = 1, the design η = α1η1 +

α2η2 + α3η3 is called a weighted centroid design.

The following Lemma 7.2 is a close analogue to Lemma 6.2.

Lemma 7.2. Let τ be an exchangeable design on the simplex T . Then we have

µ31(τ) ≥ µ22(τ),

with equality if and only if τ is a weighted centroid design.

Proof. On the simplex T , the symmetric function

ψ(t1, t2, t3) = t1t2(t1 − t2)
2 + t1t3(t1 − t3)

2 + t2t3(t2 − t3)
2

is nonnegative, giving µ31(τ)− µ22(τ) =
1
6

∫
ψ(t1, t2, t3) d τ ≥ 0.

Equality holds if and only if ψ vanishes for all support points of τ . Hence the support

points of τ must be vertices, edge midpoints, or the overall centroid point. Because of

exchangeability, τ is a weighted centroid design.
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For the case when η = α1η1 + α2η2 + α3η3 is a weighted centroid design, we can now

express the difference between the pure fourth order moments of η and τ in the converse

part of the proof of Lemma 7.1 solely in terms of moments of τ ,

γ = µ31(τ)− µ22(τ) ≥ 0.

In order to find an appropriate set of weights we equate selected moments of order lower

than four:

µ1(η) ≡
1

3
α1 +

1

3
α2 +

1

3
α3 =

1

3
,

µ11(η) ≡
1

12
α2 +

1

9
α3 = µ11,

µ111(η) ≡
1

27
α3 = µ111.

The solutions are α3 = 27µ111, α2 = 12(µ11 − 3µ111), α1 = 1− α2 − α3. When the lower

order moments are expressed using fourth order moments, these weights are seen to be the

ones given in the following lemma.

Lemma 7.3. Let τ be an exchangeable design on the simplex T , with fourth order

moments µ4, µ31, µ22, µ211. Then the weighted centroid design η = α1η1 + α2η2 + α3η3,

with weights α1 = 3(µ4 − 2µ22 + µ211), α2 = 24(µ31 + µ22 − 2µ211), α3 = 81µ211, satisfies

M(η) ≥M(τ),

with equality if and only if τ = η.

Proof. The relation 3µ4+24µ31+18µ22+36µ211 = 1 entails α1+α2+α3 = 1. Clearly we

have α3 ≥ 0. We also have α2 ≥ 0, since the function ϕ(t1, t2, t3) = 12(t1 − t2)
2(t1t2 +2t23)

is nonnegative and integrates to α2. For α1, we use the symmetric function

ψ(t1, t2, t3) = t41 + t42 + t43 − 2t21t
2
2 − 2t21t

2
3 − 2t22t

2
3 + t21t2t3 + t1t

2
2t3 + t1t2t

2
3.

It can be shown that, on the simplex, ψ is nonnegative. This ensures α1 ≥ 0. Hence the

weighted centroid design η is well-defined.

We readily verify µ(3)(η) = µ(3)(τ). Using γ = µ31 − µ22 ≥ 0 we find µ4(η)− µ4 = γ.

Lemma 7.1 establishes M(η) ≥M(τ). More precisely, we obtain M(η)−M(τ) = γ
2E ≥ 0,

with the same matrix E as in the proof of Lemma 7.1.

Equality holds if and only if γ = 0. By Lemma 7.2, τ then is a weighted centroid

design. Since it shares the same moments with η, the two design must be the same.
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As an illustration of Lemma 7.3 we consider the one-parameter family of exchangeable

designs that is given by

τr

 1− 2r

r

r

 = τr

 r

1− 2r

r

 = τr

 r

r

1− 2r

 =
1

3
for all r ∈

[
0,

1

2

]
.

This family includes the vertex points design, τ0 = η1, and the edge midpoints design,

τ1/2 = η2. Of course, for the value r = 1
3 we take τr to be the overall centroid design η3.

The weighted centroid design η from Lemma 7.3 then has weights that are cubic in r,

α1(r) = (1− 2r)(1− 3r)2, α2(r) = 8r(1− 3r)2, α3(r) = 27r2(1− 2r).

The vertex points design has α1(0) = 1, the edge midpoints design has α2(
1
2 ) = 1, and the

overall centroid design has α3(
1
3 ) = 1, as one would expect.

As another example, we consider for the initial design the {3, 3} simplex lattice design

(Scheffé 1958; Cornell 1990, page 23) assigning weight 1/10 to each of the 10 points 1

0

0

 ,

 0

1

0

 ,

 0

0

1

 ,


2
3
1
3

0

 ,


2
3

0
1
3

 ,


1
3
2
3

0

 ,


1
3

0
2
3

 ,

 0
1
3
2
3

 ,

 0
2
3
1
3

 ,


1
3
1
3
1
3

 .

This initial design has moments µ4 = 116
810 , µ31 = 11

810 , µ22 = 9
810 , µ211 = 1

810 . The sixth

root of the determinant of the corresponding S-moment matrix is equal to 0.0352.

A better design, from the Loewner ordering point of view, is the weighted centroid

design η, with weights α1 = 11
30 , α2 = 16

30 , α3 = 3
30 . The scalar γ

2 that determines the

moment matrix improvement equals 1/810. The moments are µ4 = 118
810 , µ31 = µ22 =

10
810 , µ211 = 1

810 . The S-moment matrix of this design has sixth root of the determinant

equal to 0.0388. Thus it is 10 percent more D-efficient than the initial design. The improved

design uses only seven support points, namely, the three vertices, the three edge midpoints,

and the overall centroid point. However, the weights α1, α2, α3 are such that the design is

not realizable for sample size n = 10.

As a remedy, we consider a slight shift of weights to β1 = 3
10 , β2 = 6

10 , β3 = 1
10 .

This suggests reallocating the 10 observations that the simplex lattice design calls for,

and to take one observation of each single-component mixture, two observations of each

binary blend of equal proportion, and one observation with all three ingredients at equal

proportions. This design has moments µ4 = 102.25
810 , µ31 = µ22 = 11.125

810 , µ211 = 1
810 . The
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sixth root of the determinant of its S-moment matrix is 0.0371. So this compromise design

is 5 percent more D-efficient than the initial design.

The above efficiency comparisons are made with respect to a second order model. In

fact, the {3, 3} simplex lattice design could be used to fit a cubic regression function and,

it could be argued, provides lack of fit degrees of freedom, if only a quadratic model is

fitted. These considerations are of course important in some contexts.

Again we conclude that, in the Kiefer design ordering, it suffices to restrict attention

to the convex combinations of the vertex points design η1, the edge midpoints design η2,

and the overall centroid design η3. Since the representation of the second-degree regression

function is immaterial, we do not need to distinguish between the K-model and the S-model.

Theorem 7.4. In the three-ingredient second-degree model, the set of weighted centroid

designs

C = {α1η1 + α2η2 + α3η3 : (α1, α2, α3)
′ ∈ T }

constitutes a minimal complete class of designs for the Kiefer ordering.

Proof. The completeness part is established just as in Theorem 6.4. For minimal com-

pleteness, we remove a weighted centroid design τ from C and assume that η ∈ C improves

upon τ , M(η) ≥ M(τ). By Lemma 7.1 the two designs share the same lower order mo-

ments. The latter determine the weights uniquely, contradicting the assumption that τ

and η are distinct. Hence the class C is minimal complete.

Cases m ≥ 4 are considerably more complicated and are discussed in Draper, Heiligers

and Pukelsheim (1998).

8. Brief review of related literature

Atwood (1969) deduces (page 1574) from his Theorem 2.2 that any D-optimal design

is supported on the centroid points of the faces of the simplex (i.e., on the barycenters).

The second-degree D-optimal design uses the elementary centroid designs η1 and η2, and

the third-degree D-optimal design uses η1, η2, and η3. He then shows (page 1575) that

the fourth-degree D-optimal design needs support points other than those provided by η1,

η2, η3, and η4. In fact, his arguments cover any degree greater than three, in models for

which the number of factors exceeds the degree, 3 < d < m.
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Chan (1995) helpfully summarizes 104 references which deal with optimal design for

mixture models. Section 1 discusses the variety of models used, Section 2 presents opti-

mality criteria, and Section 3 reviews specific optimal designs that have been obtained for

various circumstances.

Chan, Guan and Zhang (1998) obtain A-optimal designs for a mixture model due

to Darroch and Waller (1985) that contains 2m terms involving ti and t2i . The designs

combine m equally weighted points that are centers of faces with other design points that

vary with m.

Chan, Meng, Jiang and Guan (1998) investigate quadratic models with 2m terms in

ti and t
2
i , and cubic models with 3m terms in ti, t

2
i and t3i (i = 1, . . . ,m) in terms of axial

designs. These designs consist of two symmetric axial point sets for the quadratic model,

and three such sets for the cubic model. D-optimality is achieved by taking one set as the

corner points, with specified levels for the other point set(s).

Chan and Sandhu (1999): For m = 3 components, the A-, D- and E-optimality

properties of an orthogonally blocked eight point design of P.W.M. John are considered.

Cheng (1995) derives results for the Kiefer ordering when, for the m × m moment

matrices, the induced group is the full permutation group, Q = Perm(m). Hence our

discussion of the first-degree model is subsumed by his results. For second- and higher

degree models, however, a proper subgroup of the permutation group is induced, Q ̸=
Perm(m), whence our results cannot be derived from his.

Cornell (1990) is the definitive text on Scheffé-type mixture models.

Cornell and Ramsey (1998) construct a mixture model with the aim of representing

in every mixture one or more minor components, selected from a category of major com-

ponents. The inter-category and between-category blending properties are modeled by

forming the Kronecker product of appropriate submodels.

Cox (1971) provides an alternative to the S-models, by using a polynomial represen-

tation that admits the interpretation of standard operating conditions as a base.

Crosier (1984) uses a transformation (page 211) to reduce the ill-conditioning in fitting

Scheffé’s polynomials. The paper may be taken as an indication to study other transfor-

mations of the Scheffé model, thus encouraging our K-model approach.

Darroch and Waller (1985): For m = 3 mixture ingredients, various models are dis-

cussed, including models whose forms involve the addition of submodels containing a single
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ingredient. Ways of representing interaction effects by “non-blandness” parameters are

then investigated.

Dean, Lewis, Prescott and Draper (1992): In Draper, Prescott, Lewis, Dean, John,

and Tuck (1993), the symbolic algebra system program, MAPLE, can be used to obtain

D-optimal designs. The brute force of the computer program is often too complicated and

causes failure. Neater and more thoughtful programming is essential. This paper discusses

some of the problems and how they were solved.

Dette (1997) observes that, in polynomial regression, the entries of the moment matrix

may turn out to be scaled quite differently. As a remedy, he proposes matching the distinct

scaling by choice of an appropriately “standardized” optimality criterion. We address the

same intrinsic problem but instead suggest a transition from S- to K-models.

Draper and Pukelsheim (1998a) provide a synopsis of the Kiefer ordering of rotatable

designs on the ball, for first-, second-, and third-degree models, and demonstrate the

advantages of Kronecker algebra.

Draper and Pukelsheim (1998b) point out inhomogeneity of the entries of the moment

matrix in S-models, and propose, as an alternative, a switch to the K-models whose moment

matrices are homogeneous. The paper shows how the S- and K-parameters transform.

Draper, Prescott, Lewis, Dean, John and Tuck (1993): Latin squares of side four are

used to construct mixture designs in orthogonal blocks. Selected squares are each paired

with their “mate”, namely with a square with which it can satisfy the block orthogonality

condition. A design is built up by using two or more pairs of mates and adding an additional

run, usually (0.25, 0.25, 0.25, 0.25) to each block. A versatile selection of designs can thus

be found. D-optimal designs, with points on the edges, can be selected. An industrial

example illustrates the practical uses of such designs.

Farrell, Kiefer and Walbran (1967): For the third-degree model with three factors, the

D-optimal design is shown (page 119) to assign equal mass to the ten points consisting of

the three vertices, the simplex centroid point (1/3, 1/3, 1/3)′, and the six permutations of

(r, 1 − r, 0)′ with r = (1 + 1/
√
5)/2. Verification of the equivalence theorem is based on

the orthogonalization of the regression functions relative to the optimal design.

Gaffke and Heiligers (1996) have a comprehensive review of invariance in design prob-

lems. Lemma 3.3 (page 1167) was initially instrumental to our Lemmas 6.1 and 7.1, but

has been superseded by direct arguments.

Galil and Kiefer (1979) is a seminal paper for optimality of designs in second-degree
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S-model, with extensive results when the criterion is one of the matrix means. Optimal

designs must be supported by the centroids of the faces of the simplex, and must be invari-

ant under permutations of the coordinates of their support points (page 448). Whereas

we prefer to rely on the moments µ11, µ111, µ1111, they pick (page 448) µ11, µ21, µ22.

The geometry of the polyhedron that is generated by the moment vectors (µ11, µ21, µ22)
′

is discussed (page 451).

Gorman and Hinman (1962) provide an early illustration of the applicability of mixture

models as introduced by Scheffé (1958) with formulas up to fourth-degree.

Hilgers and Bauer (1995) extend the simplex towards the origin, which allows the

modelling of a total amount in addition to the mixtures of the ingredients. The model

then includes an overall mean θ0. For higher degree models, the authors aim at generalizing

the results of Atwood (1969).

Kiefer (1959) discusses admissibility of designs, and essentially and minimal complete

classes of designs relative to the Loewner matrix ordering (page 286).

Kiefer (1961): For the general m-ingredients second-degree S-model, the D-optimal

design is shown (page 320) to assign equal weight to the vertices and the centroids of the

edges. The method of proof is to determine a system of polynomials that are orthonormal

under the optimal design, and then verify the Equivalence Theorem. For the special case of

the three-ingredients second-degree model, the mixture αη1+(1−α)η2 with α = (9−
√
17)/8

is shown (page 322) to be D-optimal for the subsystem of parameters that belongs to the

quadratic terms in the S-model. For the three-ingredients third-degree model, various

partial results are discussed.

Kiefer (1975a) introduces the notion of universal optimality. See also Pukelsheim

(1993).

Kiefer (1975b) is about invariance reduction in the second-degree S-model. As a

consequence of the Equivalence Theorem for the matrix mean criteria, Kiefer concludes

that any optimal designs can have only the centroids of the faces for its support points.

He therefore restricts the search for optimal designs to convex combinations of elementary

centroid designs.

Kiefer (1978): Asymptotics for m-ingredients second-degree S-models, as the num-

ber of ingredients tends to infinity, m → ∞, are discussed. For the smallest-eigenvalue

criterion, formulas for the limiting weights αj of the elementary centroid designs ηj are

characterized (page 1356). Kiefer then concentrates on the basic solutions in which only
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four of the weights are positive. It emerges that α1 and α2 must always be positive, the

remaining two weights then being αj and αh with 2 < j < h. Formulas are given when

j = 2, or j = 3 (page 1357).

Laake (1975) discusses optimality in the second-degree S-model, relative to the inte-

grated variance criterion. In the class of simplex lattice design this leads to equal weights

on the vertices, and equal weights on the edge midpoints. The total vertex weight is tab-

ulated for some selected number of factors m ≥ 4. Results for the third-degree model are

quoted from his 1973 thesis at the University of Oslo. The same program is then carried

out for the class of simplex centroid designs.

Lewis, Dean, Draper and Prescott (1994): Latin squares of general side q are explored

for their use in orthogonally blocked mixture designs. Some general results for any q are

established and some examples for 6 and 8 ingredients shown.

Lim (1990) is about D-optimal design in the m-ingredients third-degree model, elab-

orating on the approach for the m = 3 result of Farrell, Kiefer and Walbran (1967). Case

m = 4 is solved conclusively, the cases m = 5, . . . , 10 are solved numerically.

Liu and Neudecker (1995) discuss optimality under the integrated variance criterion,

for S-models of arbitrary degree. They use the notion of a “weighted simplex-centroid

design” (page 254). In Liu and Neudecker (1997, page 55), weighted simplex-centroid

designs are applied to Becker’s models.

Mikaeili (1988): Optimality in third-degree S-models, under the integrated variance

criterion, the determinant criterion, and the average-variance criterion is discussed. The

class of competing designs is taken to depend on a single parameter a, in that the edge

midpoints are replaced by the vectors (a, 1 − a, 0, . . . , 0)′ and permutations thereof. The

method is to find orthonormal polynomials under the optimal design.

Mikaeili (1989) finds the D-optimal design in a third-degree S-model with cubic three-

ingredients effects. It puts uniform weights on the vertices and the Farrell–Kiefer–Walbran

(1967) edge support points (a, 1− a, 0, . . . , 0)′ with a = (1 + 1/
√
5)/2.

Mikaeili (1993) provides verification of the numerical evidence of Lim (1990). He uses

identities between symmetric functions on the simplex, and also employs orthonormaliza-

tion under the optimal design.

Prescott, Draper, Dean and Lewis (1993): Latin squares of side five are used to

construct mixture designs in orthogonal blocks. This extends the work in Dean, Draper,
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John, Lewis, Prescott and Tuck (1993) in a parallel development (but excluding the optimal

choices).

Prescott, Draper, Lewis and Dean (1997): D-optimal mixture designs for five factors,

in orthogonal blocks, are obtained, thus developing the material in Dean, Draper, Lewis

and Prescott (1993).

Pukelsheim (1993) defines (page 352) the Kiefer ordering as an extension of Kiefer’s

(1975) notion of “universal optimality”. Examples include balanced incomplete block

designs, multiple linear regression designs on the unit cube, and rotatable designs on the

ball. See also Draper and Pukelsheim (1998a).

Scheffé (1958) is a seminal paper on mixture models and introduces the simplex lattice

designs. Scheffé (1963) introduces the simplex centroid designs.

Smith and Beverly (1997) discuss the shortcomings of canonical polynomials, and

instead use the polynomial representation of Cox (1971). Given the base point of the Cox

polynomial, designs can be generated using a program supplied by the authors.

Uranisi (1964) extends a result of Kiefer (1961, page 323) from m = 2 to m ≥ 3. This

says that the weighted centroid design assigning equal weights to the union of the support

points of all elementary centroid designs is D-optimal, for the special cubic mixture model.
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