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Abstract

Previous applications of ridge analysis to second order response surfaces based on mixture ingredients

(x1, x2, . . . , xq) which sum to 1 have required transforming from the origin (0, 0, . . . , 0), which is not in

the mixture space, to a point inside the space, most often the centroid ( 1
q
, 1
q
, . . . , 1

q
). We show that this

transformation is not necessary for tracking the maximum ŷ and the minimum ŷ paths. In addition, we

show that the application of ridge analysis is somewhat simplified if the Scheffé model form is replaced by

the K (Kronecker) model form, an alternative, homogeneous model given elsewhere.
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1. Introduction

Ridge analysis was initially suggested by A.E. Hoerl (1959, 1962) in the context of

fitted second order response surface models where the factors were not restricted. Some

theoretical foundation for the method was later given by Draper (1963). See also A.E. Hoerl

(1964) and R.W. Hoerl (1985). The basic method defines a series of paths outward from

the origin (x1, x2, . . . , xq) = (0, 0, . . . , 0) of the factor space. Suppose the fitted second

order surface is written as

ŷ = b0 + x′b+ x′Bx (1)

where

x′ = (x1, x2, . . . , xq), b′ = (b1, b2, . . . , bq),

and

B =


b11

1
2b12 . . . 1

2b1q
1
2b12 b22 . . . 1

2b2q
...

...
. . .

...
1
2b1q

1
2b2q . . . bqq

 . (2)

Then (1) is the matrix format for the second order fitted equation

ŷ = b0 + b1x1 + b2x2 + . . .+ bqxq + b11x
2
1 + b22x

2
2 + . . .+ bqqx

2
q

+ b12x1x2 + b13x1x3 + . . .+ bq−1,qxq−1xq.
(3)
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The outward paths mentioned above are defined by imagining a sphere about the origin

x = (0, 0, . . . , 0)′ of radius R, say. On such a sphere, we can find the point of maximum

response and the point of minimum response. In general, there may also be points at

which ŷ has stationary values that are neither maxima nor minima. As R is increased

from zero outwards, the loci of the maximum ŷ and the minimum ŷ can be followed out,

thus giving us (second order) paths of steepest ascent and descent. Typically, the paths

of the intermediate stationary values, if any exist, begin at non-zero values of R which

depend on the specific response surface being analyzed.

2. Mixtures Ridge Analysis

Mixtures ridge analysis has been featured in only a few papers to date. Related refer-

ences are Becker (1969), Cornell and Ott (1975), St.John (1984) and R.W. Hoerl (1987).

In the last-mentioned paper, ridge analysis is done by first transforming the q mixture

variables to (q − 1) orthogonal variables, essentially removing the mixture restriction, but

also unbalancing the coordinate system. This makes ridge analysis somewhat awkward

to apply, and also makes it necessary to transform any conclusions back into the mixture

coordinates.

We now show how ridge analysis can be applied directly to mixtures applications in

which x′1 = x1+x2+ . . .+xq = 1. For the moment, however, we shall continue to use the

general form (1) and (2) for the response surface, particularizing to specific mixture forms

when needed. Consider the Lagrangian function

F = b0 + x′b+ x′Bx− λ1(x
′1− 1)− λ2(x

′x−R2). (4)

When λ1 = 0, we fall back to the “usual” second order ridge analysis Lagrangian function,

as in A.E. Hoerl (1959, 1962) and Draper (1963). Differentiating (4) with respect to x

(which can be achieved by differentiating (4) with respect to x1, x2, . . . , xq in turn and

rewriting these equations in matrix form) gives

∂F

∂x
= b+ 2Bx− λ11− 2λ2x. (5)

Setting (5) equal to zero leads to

2(B− λ2I)x = −(b− λ11). (6)

Superficially, it would seem that if (B− λ2I)
−1

exists, which will happen as long as λ2 is

not an eigenvalue of B, we obtain solutions for all the stationary points of ŷ on the sphere

of radius R from the q equations

x = −1

2
(B− λ2I)

−1
(b− λ11). (7)
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In fact, however, solutions exist via (6) or (7) for the mixtures problem even at those

eigenvalues, in general. This is because we must add, to the q equations of (7), the two

restrictions

1′x ≡ x′1 ≡ x1 + x2 + . . .+ xq = 1 (8)

which ensures that the solution lies in the mixture subspace, and

x′x ≡ x2
1 + x2

2 + . . .+ x2
q = R2, (9)

which means that the solution is also on a sphere of radius R.

Moreover, for mixtures models, b0,B and b can take only certain forms, as will be

explained in Section 4. As in ordinary ridge regression, we could in theory fix R, substitute

from (8) and (9) into (7) and then solve (7); it is far simpler to first select a value for λ2

in (7), however, whereupon we can apply (8) to obtain

1 = 1′x = −1

2
1′(B− λ2I)

−1
(b− λ11) (10)

which implies that

1 +
1

2
1′(B− λ2I)

−1
b =

1

2
λ11

′(B− λ2I)
−1

1 (11)

so that

λ1 =
1 + 1

21
′(B− λ2I)

−1b
1
21

′(B− λ2I)
−1

1
. (12)

We can now in general invoke (7) to give a value for x for the particular combination of

λ2 (chosen) and λ1 (from (12)) and evaluate R2 = x′x from (9) and ŷ from (1) or (3). We

thus have a point on one of the stationary paths defined by (λ2, λ1,x, R, ŷ). Furthermore,

all such points satisfy (8).

Note that from (5) and (6), it is apparent that when we set λ2 = 0, whereupon from

(12),

λ1 =
1 + 1

21
′B−1b

1
21

′B−11
, (13)

Eqn. (7) will deliver the stationary point on the mixture space.

How do we know which path we are on — overall maximum ŷ on (9), overall minimum

ŷ on (9), or intermediate stationary values, such as local maxima or minima? The usual

matrix of second derivatives {
∂2F

∂xi∂xj

}
= 2(B− λ2I) (14)
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is not appropriate here, because it does not reflect the fact that the solution has to be on

the mixture space. Consider the (q − 1) by q matrix

Tq =


t11 t12 . . . t1q

t21 t22 . . . t2q
...

...
. . .

...

tq−1,1 tq−1,2 . . . tq−1,q

 (15)

say, where each row consists of a vector of orthogonal polynomial coefficients, normalized

so that the row sum of squares is 1. For q = 3 and 4, needed for our examples later, we

have

T3 =

(
− 1√

2
0 1√

2

1√
6

− 2√
6

1√
6

)
, (16)

T4 =


− 3√

20
− 1√

20
1√
20

3√
20

1
2 − 1

2 − 1
2

1
2

− 1√
20

3√
20

− 3√
20

1√
20

 . (17)

[See, for example, Draper and Smith (1998, p 466).]

The addition of a last row u′
q = ( 1√

q ,
1√
q , . . . ,

1√
q ) =

1√
q1

′ converts Tq into a transfor-

mation matrix Uq = (T′
q,uq)

′ which allows the x1, x2, . . . , xq coordinates to be converted

into values z1, z2, . . . , zq−1, 1/
√
q, via z = Uqx or x = U−1

q z = U′
q(z1, z2, . . . , zq−1, 1/

√
q)′,

due to the orthogonality of Uq. It follows that, if we define w = (z1, z2, . . . , zq−1)
′, so that

z = (w′, 1/
√
q)′,

x′Bx = z′UqBU′
qz = w′TqBT′

qw +
2
√
q
u′
qBT′

qw +
1

q
u′
qBuq. (18)

This means that we can replace (14), after differentiating (18) twice with respect to w, by

2(TqBT′
q − λ2I). (19)

Note that the size of this square matrix is (q− 1) not q because Tq is (q− 1)× q. We

see that, if (19) is positive definite, we have a minimum, while if (19) is negative definite,

we have a maximum. If (19) is indefinite, intermediate stationary values are indicated.

In fact, the theory at this point is a complete parallel of that in Draper (1963). If the

eigenvalues of TqBT′
q are µ1 ≤ µ2 ≤ . . . ≤ µq−1, arranged in order with due regard to

sign then on the mixture space:

(a) Choosing λ2 > µq−1 provides a locus of maximum ŷ as R changes, and

(b) Choosing λ2 < µ1 provides a locus of minimum ŷ as R changes.
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(c) Choosing µ1 ≤ λ2 ≤ µq−1 gives intermediate stationary values.

As in the non-mixture case, when λ2 = µi exactly for i = 1, 2, . . . , q − 1, R is infinite.

[See Draper, 1963.]

Note that we do not need these eigenvalues to obtain the paths, but only to distinguish

between paths. For the loci of maximum ŷ and the minimum ŷ, the eigenvalues are not

necessary since choosing λ2 values decreasing from ∞ gives the path of maximum ŷ, while

using values increasing from −∞ gives the path of minimum ŷ.

3. The Geometry

To see why the solution works without moving to an origin on the 1′x = 1 plane, we

show geometrically the simplest cases; see Figure 1. Imagine a sphere x2
1 + x2

2 + x2
3 = R2

centered at the origin O in Figure 1(b). When R < 1/
√
q, the sphere will not intersect the

mixture space x1 + x2 + x3 = 1 so there will be no solutions to (7). When R = 1/
√
q, the

sphere just touches the mixtures centroid (1/
√
q, 1/

√
q, . . . , 1/

√
q) = (1/

√
q)1, which will

thus be the only solution point x of Eqns (7), (8), and (9). It can easily be confirmed that,

for this solution, λ2 = ∞, λ1 = −∞, x = (1/
√
q)1 and R = 1/

√
q. [Or λ2 = −∞, λ2 = ∞,

etc.] When R > 1/
√
q, the sphere will intersect the plane x1 + x2 + x3 = 1 in a circle

centered at the mixture centroid, which is exactly the way we wish to apply ridge analysis

in this q = 3 mixture space. [Figure 1(a) shows the more elementary q = 2 case where the

“spheres” are now circles and the “circles” are now pairs of points equally spaced on the

line x1 + x2 = 1 around the centroid ( 12 ,
1
2 ).] For q ≥ 4, the picture of Figure 1(b) must

be mentally extended to higher dimensions. For q = 4, for example, the “spheres” cannot

be drawn and the “circles” are spheres around the centroid of a pyramid.

Figure 1 about here.

4. Choice of Mixture Model.

In actually carrying out the calculations (7) for selected λ2, and with λ1 derived

from (12) we have to specify the particular form of second order mixture model to fit.

Most readers would probably choose the Scheffé model (S-model) which, for second order,

consists only of terms in xi and in xixj . In such a case B in (2) has all diagonal terms

zero, while b is, in general non-zero. Certainly the calculations offer no difficulty if carried

out in this form.

A more interesting possibility, we suggest, is to employ the K-model where K stands

for Kronecker. This involves using no xi terms, replacing them by x2
i terms to obtain

ŷ = b11x
2
1 + b22x

2
2 + . . .+ bqqx

2
q + b12x1x2 + b13x1x3 + . . .+ bq−1,qxq−1xq. (20)
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This form has been suggested by Draper and Pukelsheim (1998); a comparison between

the second order S- and K-models has been provided therein. The advantage in the ridge

analysis formulation is that while B now contains diagonal terms, b = 0. Thus (12)

becomes

λ1 = 2
{
1′(B− λ2I)

−11
}−1

(21)

whereupon (7) reduces to

x =
{
1′(B− λ2I)

−11
}−1

(B− λ2I)
−11. (22)

Our examples will be analyzed using the K-approach; either approach gives the same

numerical solutions, of course. The proof of this follows from the fact that BS + 1
2b1

′ +
1
21b

′ = BK , where subscript S denotes the Scheffé form of B and subscript K denotes the

Kronecker form of b. We can now premultiply both sides by x′, postmultiply both sides

of the result by x, set 1′x = x′1 = 1 and we obtain x′BSx+ 1
2 (x

′b+ b′x) = x′BKx, the

bracketed terms being identical and reducing to b1x1 + . . .+ bqxq.

All solutions x will be on the subspace 1′x = 1, but depending on the λ2 value chosen,

some points will have coordinates that exceed 1 or that are negative. Since the mixture

space is such that 0 ≤ xi ≤ 1, solutions that violate these reductions are not relevant. We

shall discuss this in our examples.

5. Examples

Example 1. [Kurotori, 1966; see also Draper and Smith, 1998, pp. 418–419.] A set

of 10 experimental runs was performed on a propellant problem with three ingredients

(q = 3). In the original experiment, a restricted region with x1 ≥ 0.2, x2 ≥ 0.4, and

x3 ≥ 0.2 was explored, and the best predictions were found to be on the x1 = 0.20

boundary. In the present paper we do not restrict the surface to the smaller region, but

follow the maximum ŷ path from the centroid (which is outside the region explored) into

the restricted region. Note, in this regard, that the ridge paths may exist mathematically

even when they might not be practically relevant.

Fitting the surface in K-model form, we obtain the following equation

ŷ = −2.732x2
1 − 3.340x2

2 − 17.259x2
3 + 3.249x1x2 + 14.694x1x3 + 28.813x2x3

whereupon

B =

−2.732 1.624 7.347

1.624 −3.340 14.406

7.347 14.406 −17.259


with eigenvalues (−27.50,−4.24, 8.40). However, these eigenvalues are not the ones that

affect movement on the mixture surface. With T3 defined as in (16) we find the eigenvalues
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Table 1. Ridge path (x1, x2, x3) of maximum ŷ as λ2 decreases

and R increases, Kurotori data

λ2 x1 x2 x3 R ŷ

∞ 0.333 0.333∗ 0.333 0.577 2.603

50 0.321 0.359∗ 0.320 0.578 2.714

20 0.302 0.384∗ 0.314 0.581 2.800

10 0.276 0.412 0.312 0.586 2.883

9 0.271 0.417 0.312 0.587 2.900

7 0.258 0.429 0.313 0.590 2.928

5 0.239 0.447 0.314 0.596 2.969

3 0.208 0.474 0.318 0.608 3.021

1 0.152∗ 0.522 0.326 0.634 3.082

0 0.101∗ 0.564 0.335 0.664 3.099

−1 0.015∗ 0.635 0.350 0.725 3.050

−2 −0.165† 0.781 0.383 0.886 2.635

Restrictions in the original data set: x1 ≥ 0.2, x2 ≥ 0.4, x3 ≥ 0.2
∗ Point lies outside the original restricted data space.
† Point lies outside the main simplex.

of T3BT′
3 to be (−27.28,−3.86). The path for the maximum ŷ will thus be mapped out

for values of λ ≥ −3.86. [Because this problem is not well conditioned, slightly different

numbers may be obtained by different programs.]

Table 1 shows some selected calculations for this path, moving out from the centroid

( 13 ,
1
3 ,

1
3 ). We see that the path enters the restricted subspace across the x2 = 0.40 bound-

ary, and exits it across the x1 = 0.20 boundary later. The maximum predicted ŷ in or on

the restricted subspace is at about (0.20, 0.48, 0.32), close to the λ2 = 3 entry of Table 1.

In examining the path, we can ignore points which violate the conditions of the practi-

cal problem. Note that a path could in theory pass outside the mixture space (or a defined

restricted sub-region of it) and then come back in. The practical interpretation of such

behavior would be to follow the path to the border and then move along the border until

the path returned to the valid part of the mixture region.

Figures 2 and 3 are helpful in understanding the calculations made for Table 1. Fi-

gure 2 shows how the radius R varies with λ2, leaping to infinity at the eigenvalues −27.28

and −3.86 of T3BT′
3. Table 1 corresponds to the upper part of Figure 2 only, of course;

this upper part is smooth and so not shown. Since the sphere of radius R passes outside

the mixture space when R > 1, only the lower portion of Figure 2 is meaningful in practice.
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The radius R ≥ 1/
√
q always [here 0.577]. When λ2 = −∞ or ∞, we are at the centroid

exactly. The two separate curves forming the U-shaped curve between the eigenvalues may

(or may not) go as low as 1/
√
q [here they do not]. Compare with a similar diagram in

Draper (1963).

Figures 2 and 3 about here.

Figure 3 shows how λ1 varies as a function of λ2; as λ2 increases, λ1 basically decreases

but there are three sections in the plot (q− 1 in general) with divisions at the eigenvalues

of T3BT′
3. At each eigenvalue, the curve passes instantaneously from −∞ to ∞. [We note

again that the eigenvalues of B itself are not relevant to these calculations.]

Example 2. [Draper et al., 1993; Draper and Smith, 1998, pp. 419–422.] The data

consist of the 36 observations in four blocks. A second order model with three added

blocking variables was used.

Fitting the surface in K-model form, we get

ŷ = −14.89B1 − 21.78B2 − 20.11B3

+ 400.40x2
1 + 449.32x2

2 + 398.90x2
3 + 403.49x2

4

+ 946.17x1x2 + 988.86x1x3 + 954.56x1x4

+ 811.33x2x3 + 823.69x2x4 + 746.39x3x4.

The first three terms do not depend on the x’s and do not contribute to the ridge

analysis except for the fitted value calculations. For the purposes of this example, we

simply choose to omit them, i.e., set B1 = B2 = B3 = 0, because the ridge calculations

are not thus affected [beyond ŷ levels]. Now

B =


400.403 473.083 494.431 477.278

473.083 449.319 405.667 411.847

494.431 405.667 398.903 373.194

477.278 411.847 373.194 403.486


with eigenvalues (−128.9, 16.62, 30.81, 1733.6). These eigenvalues are not needed. The

eigenvalues of T4BT′
4 where T4 is given by (17), are (−126.3, 16.78, 30.81). Figure 4,

parallel to Figure 2 but for Example 2, shows that R goes to ∞ at these eigenvalues. For

the path of maximum predicted response, we need λ2 values for which 30.81 ≤ λ2 ≤ ∞.

Table 2 shows some selected calculations for this path, moving out from the centroid

( 14 ,
1
4 ,

1
4 ,

1
4 ), until the path goes outside the mixture space [on the last line].

Figures 4 and 5 about here.
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Table 2. Ridge path of maximum ŷ as R increases. Bread data.

λ2 x1 x2 x3 x4 R ŷ

∞ 0.250 0.250 0.250 0.250 0.500 433

600 0.289 0.255 0.230 0.226 0.503 436

200 0.335 0.272 0.205 0.187 0.514 440

100 0.369 0.308 0.187 0.136 0.533 442

50 0.389 0.414 0.182 0.016 0.596 447

48 0.389 0.425 0.184 0.003 0.605 448

46 0.389 0.437 0.186 0.013∗ 0.614 448

∗ Point lies outside the mixture region.

For both Examples 1 and 2, diagrams of the response contours appear in Draper and

Smith (1998, pp. 419 and 421). In the case of the second of these diagrams, the effects of

three non-significant terms have been omitted in the equation used, but this does not have

a material effect on the contours drawn. [The ridge analysis could be redone in terms of

the reduced model with very similar results.] In both Examples 1 and 2, the ridge paths

obtained are consistent with the diagrams.
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Figure captions

Figure 1. Ridge analysis geometry in the mixtures case for (a) q = 2, (b) q = 3.

Figure 2. How R varies with λ2. Kurotori data.

Figure 3. How λ1 varies with λ2. Kurotori data.

Figure 4. How R varies with λ2. Bread data.


