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Abstract. We consider the parallel solution of elliptic boundary value problems 
discretized by domain decomposition methods on nonmatching grids involving mortar 
finite elements. We start from an initial nonoverlapping decomposition of the com
putational domain and independent triangulations of the sub domains realizing weak 
continuity conditions on the internal subdomain boundaries by means of appropriately 
chosen Lagrangian multipliers. The solution process features a preconditioned Lanczos 
iteration for the resulting saddle point problem using a block diagonal preconditioner 
and an adaptive local mesh refinement on the basis of efficient and reliable residual based 
or hierarchical a posteriori error estimators. In the parallel implementation of the code, 
the data related to the subdomains are appropriately distributed among the available 
processors. The efficiency of the parallel implementation and the benefits of the adap
tive grid refinement process are illustrated by numerical simulation results obtained on 
a IBM SP2 for some selected test problems including fully potential flow around profiles. 

                                                                            
                                                                                      
            

                                                              

1. Introduction. Domain decomposition methods on nonmatching 
grids based on the mortar finite element approach have attracted a lot of 
attention during the last couple of years. Beginning with the very first 
papers on this subject by Bernardi, Maday and Patera in the late eighties 
[13, 14J there have been many important contributions by various authors 
mainly focusing on such issues as a priori error estimates, the analysis of 
preconditioned iterative solvers and the efficient parallel implementation on 
parallel architectures (cf., e.g., [2-4, 10-12, 16, 18, 24-27]). On the other 
hand, as far as the realization of adaptivity concepts based on efficient and 
reliable a posteriori error estimators is concerned, much less work has been 
done so far. Indeed, to the authors' knowledge the papers [32J and [38J are 
the only ones that have addressed this equally important subject. 

In this paper, we will consider mortar finite element approximations 
of elliptic boundary value problems both under the aspect of the multilevel 
preconditioned iterative solution of the discretized problems and with re
gard to a posteriori error estimators as a fundamental tool for local adaptive 
mesh refinement. 
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The paper is organized as follows: 
In section 2, we will give a brief introduction into the idea of domain decom
position on nonmatching grids by mortar finite element techniques. Then, 
in section 3 we will focus on the iterative solution process featuring a mul
tilevel preconditioned generalized Lanczos iteration with a blockdiagonal 
preconditioner involving appropriate subdomain preconditioners and a pre
conditioner for the Schur complement that arises from static condensation 
of the unknowns associated with the individual subdomains. In section 4, 
we will study a residual based error estimator that does provide local lower 
bounds and a global upper bound for the total error measured in the en
ergy norm. We will further investigate a hierarchical type estimator that 
can be derived by a localization of the error equation on the sub domains , 
level leading to individual Neumann type problems that can be solved by 
the principle of defect correction in higher order ansatz spaces combined 
with a suitable localization by a hierarchical two-level splitting. Finally, in 
section 5 we will document the benefits of the adaptive approach by some 
illustrative numerical examples and also present numerical simulation re
sults for the application of the techniques to fully potential flow problems 
with emphasis on the parallel performance of the algorithms. 

2. The mortar finite element method. We consider a boundary 
value problem for a linear second order elliptic differential operator on a 
bounded polygonal domain 0 C R 

(2.1) 
(2.2) 

Lu := -V· (a V u) + b u 
n·aV'u 

f in 0 , 
o on r = () n 

where for simplicity we have chosen homogeneous Neumann boundary con
ditions. We assume f E L2(0) and a, b to be a symmetric, matrix-valued 
function a = ( a i j ) ~ , j = l  with ai,j E Loo(O), 1 ~  i,j ~  2, and a scalar func
tion b E Loo(O) satisfying 

2 

(2.3) g 1 { 12 ~  I: aij(X) {i {j ~  a 1 {12 , {E R2 , 0 < g ~  a , 
i,j=l 

(2.4) 

for almost all x E O. We note that (2.1), (2.2) admits a unique weak solu
tion u E Hl(O) if f3 > O. Otherwise we have to impose another condition 
on the data of the problem as, for instance, In f dx = O. 

For discretization, we start from a nonoverlapping decomposition 

N 

(2.5) 0 = U Oi , Oi n OJ = 0 , 1 ~  i =1= j ~  N , 
i=l 

of the computational domain 0 into N mutually disjoint, polygonal sub
domains Oi, 1 ~  i ~  N, and we assume that the partition is geometrically 
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conforming in the sense that any edge of aOi either is part of the boundary 
r of the entire domain 0 or coincides with the edge of an adjacent sub do
main (cf. Figures 1, 2). 
We set r = U ~ l  Ti and denote by ND and [D the sets of vertices and 
edges of r in D ~  O. 
On the sub domains Oi we consider individual, simplicial triangulations Ti 
regardless the situation on the interfaces between the sub domains so that 
typically nonconforming nodal points will occur on the boundary between 
two adjacent sub domains (cf. Figure 1). 
On the sub domains we choose the standard conforming PI approximation, 
i.e., we use continuous, piecewise linear finite elements with respect to the 
triangulation Ti and we denote by 

the associated finite element space. 
The individual PI approximations on the sub domains give rise to the 

bilinearform a : n;:l 81 (Oi; Ti) x n;:l 81 (Oi; Ti) -+ R 

N N 

(2.6) a{v,w) := L ai{v,w) , v,w E II 81 {Oi;Ti) 

where 

i=l i=l 

ai{v,w) := r [a V'u· V'w + b v w] dx . in; 
Obviously, the product space n;:l 81 (Oi; Ti) is not a subspace of H1 (O) 
due to the nonconformity on the internal sub domain boundaries and there
fore, we have to impose proper matching conditions on the interfaces in 
order to achieve consistency. For that purpose we consider the so-called 
skeleton of the decomposition 

N 

(2.7) 8 = U (aO i \ an) = U {rij I Oi n OJ ;i 0 , 1 ~  i ;i j ~  N } 
i=l 

consisting of all sub domain boundaries that are not part of the boundary 
of the entire domain or, in other words, that is the union of all common 
boundaries r ij of two adjacent subdomains. 
We decompose the skeleton 8 according to 

L 

(2.8) 8 = U 11 , 11 n 1m = 0 , 1 ~  £ ;i m ~  L 
l=l 

into the so-called mortars where each mortar 11 , 1 ~  £ ~  L, is the 
entire edge of a sub domain nM(l) , M(£) E {I, ... N}. We denote by 
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l1M (i) , M(£) E {I, ... N} \ {M(£)}, the adjacent subdomain and refer to 
its common boundary r i with l1M (l) as the nonmortar. This formal dis
tinction between mortars and nonmortars is essential, since due to the 
nonconformity on the interfaces the trace W M(i) be) of Sl (l1M(i); TM(i)) 
on Ii does not coincide with the trace WM(l)(re) of Sl(l1M(i);TM(l)) on 
rt. We assume that Ii and r i are chosen in such a way that the nonmortar 
r l inherits its trace from the finer triangulation, i.e., card Nr l 2: card N"Yl' 

We impose weak continuity constraints on the skeleton S by Lagrangian 
multipliers from the multiplier space 

L 

(2.9) M1(S) := II WM(l)(re) 
i=l 

where 

Note that WM(i)(ri) is a subset of WM(i)(re) of co dimension 2. 

We introduce the bilinear form b M1 (S) X I 1 ~ 1  Sl (l1i; 'li) -+ R 
according to 

L N 

(2.11) b(J.L,v) := - L J. J.L [vlJ du , J.L E M1(S), v E II Sl(ni;'li) 
i=l rl i=l 

where [vlJ denotes the jump of v across the common boundary r i of the 
two adjacent sub domains nM(i) and nM(l) as given by [v]J := v 10M(l) -

v 10M(l)' 
Setting 

N 

{vEII S1(l1i ;'li) I b(J.L,v) =0, J.LEM1(S)}, 
i=l 

the mortar finite element approximation of (2.1), (2.2) amounts to the 
computation of UX1 E Xl (11; T) such that 

Here, (., ')0;0 stands for the standard L2-inner product. In general, for 
D <; 11 and kENo we refer to I . Ik;D and 11.llk;D as the Sobolev seminorm 
and norm on Hk(D), respectively. We further denote by III . III the broken 
energy norm associated with the bilinear form a(.,.) as given by III . 111= 
a(., .)1/2. 
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Note that a(.,.) is X1(n; T)-elliptic and hence, (2.13) admits a unique 
solution. 

The variational equation (2.13) can be equivalently stated as a saddle 
point problem: 
Find (uM,AM) E r r ~ l  8dni j7i) x M1(8) such that 

N 

(2.14) a(uM'v) + b(AM'v) = (j,v)o;n , v E II 81 (n i j7i) , 
i=l 

(2.15) 

We remark that the Babuska-Brezzi condition is satisfied (cf., e.g., [13, 14]). 
As has been shown, for instance in [13, 14], if U E r r ~ l  H2 (n i ), then 

the following a priori error estimate holds true 

N 

(2.16) III U - UM "' ~  C h (L: I I u I I ~ ; n y / 2  
i=l 

where C > 0 is independent of h := max {hi , 1 ~  i ~  N}, hi := 
max {diam T, T E 7i}. 
As far as the Lagrangian multiplier AM E M1 (8) is concerned, it can be 
interpreted as an approximation of the flux n . a V'u on the skeleton 8. 
Denoting by II.IIo;s the weighted L2-norm 

(2.17) IIvllo;s := (L hE I I v l l ~ ; E ) 1 / 2  
ECS 

where hE denotes the length of the edge E, under the same regularity 
assumption as above we have (cf., e.g., [10]) 

IIAM - n . a V'ullo;s < C inf IIJ.L - n . a V'ullo;s 
/LEMdS) 

(2.18) 
( 

N ) 1/2 

< C h3/ 2 ~  I l u l l ~ ; n i  

again with C > 0 being independent of h. 

3. Multilevel preconditioned iterative solvers. In its algebraic 
form the saddle point problem (2.14), (2.15) takes the form 

(3.1) A XM = ( ~  ~ T )  ( ~ : )  = ( ~ )  = b 

Here, the first diagonal block A of the stiffness matrix A is a blockdiagonal 
matrix 
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where Ai are the ni x ni sub domain stiffness matrices of dimension ni .
diam 81 (n i ; ']i) ,1 ~  i ~  N. The off-diagonal blocks Band BT represent 
the continuity constraints on the skeleton 8. 

Throughout the rest of this section we assume the coefficient functions 
a and b to be constant on the sub domains ni , i.e. 

(3.2) ai:= a 10; = const. , bi := b 10; = const. , 1 ~  i ~  N 

Setting d:= max { diam ni I 1 ~  i ~  N }, we further assume 

(3.3) 

where the constant C > 0 is independent of d, h and ai, bi , 1 ~  i ~  N. 
Moreover, the spectrum of a matrix A will be denoted by a(A). In par
ticular, for two stiffness matrices A and B we will use the notation A '" B 
if A and B are spectrally equivalent, i.e., if there exist constants A ~  A 
independent of the grid size such that a(B-1 A) C [A, A]. 

For the iterative solution of (3.1) we will use a blockdiagonal precon
ditioner 

(3.4) 

featuring a preconditioner 

for the sub domain stiffness matrices and a preconditioner 

(3.6) 

for the Schur complement 8>. arising from static condensation of the un
knowns associated with the individual subdomains. 

Using a preconditioner n as in (3.4), the linear system (3.1) will be 
solved by the preconditioned generalized Lanczos method of minimal iter
ations: 

Given some startiterate xO = ( u ~ , A ~ f ,  we compute XII , II 2: 1, 
according to 

(3.7) 

with PII , II 2: 1, obtained by the recurrence formulae 

(3.8) 
if II = 1 
if II = 2 
if 112:3 
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where rV:= A XV - b, v ~  0, and the coefficients O!v, {3v, and "Iv are 
given by 

O!v := [(APv_d T(1?--l APv_dt1[(R.- 1 APv-1f (AR.- 1 APv-dJ, v ~  2, 

(3.9) {3v := [(APv_2)T(R.- 1 APv_2)t1[(APv_1f(R.-1 APv-d], v ~  3, 

"Iv:= [(Apvf(R.-1Apv)t1[(Apv)T(R.-1rV-1)],v ~  1. 

The choice of the iterative solver and the preconditioner is motivated by 
the following result: 

LEMMA 3.1. Let A and R. be given by (3.1) and (3.4) with Ru = 
A and R),. = S),.. Then there exist constants 71 :S 72 < 0 < 73 :S 74 

independent of the grid size such that 

(3.10) 

Moreover, denoting by K, the quantity K, := max {I 71 I, 74}/min {I 72 1,73}, 

for the preconditioned generalized Lanczos method (3.7)-(3.9) there holds 

where Iivlln-1 := vT R.-1v. 
Proof. The spectral equivalence (3.10) of A and R. can be easily es

tablished by considering the generalized eigenvalue problem A x = J.l R. x 
(cf., e.g., [24]) whereas (3.11) is a well known result from the convergence 
analysis of the Lanczos method (cf., e.g., [28]). 0 

We will now focus on appropriate sub domain preconditioners Ri , 1 :S 
i :S N, and a suitable preconditioner R),. for the Schur complement S),.. 
In particular, we will construct such pre conditioners that are independent 
of the refinement level, the quantities d, h, and the values ai, bi of the 
coefficient functions. We begin with the sub domain preconditioners and 
denote by Li and Mi the stiffness matrix for the Laplacian -b. and the 
mass matrix with respect to the PI approximation on the sub domains 
ni , i.e., we take ai == 1 , bi == 0 in case of Li and ai == 0, Ci == 1 for 
Mi , 1 :S i :S N. Moreover, we refer to Ii as the ni x ni identity matrix 
and to Pi := nil [pii) I ... 1 p ~ ] ]  ,pY) := (1, ... , If , 1 :S i,j :S ni as the 
orthogonal projection onto Ker L i . 

We have the following result (cf., e.g., [24]): 
THEOREM 3.1. Under the assumptions (3.2), (3.3) let Hi = Ri 1 be 

given by 

where Hf = (Rf)-l with 

(3.13) 
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Then there exist constants 0 < 'Yi :S r i independent of d, h and ai, bi 
such that 

(3.14) 

Proof. In view of assumption (3.3) we have a(Li) \ {O} C [ C ~ l )  d- 2 h2 , 

C ~ 2 ) ]  with constants c ~ v )  > 0, 1 :S v :S 2, independent of d and h. Since 
Mi '" h2 Ii, we infer 

(3.15) 

and thus 

where 

It remains to be shown that 

is spectrally equivalent to Hi as given by (3.12). This follows by considering 
the Rayleigh quotient 

associated with the generalized eigenvalue problem J.L Hi v = k;lV and 
taking into account the spectral equivalences (3.13) and (3.15). 0 

REMARK 3.1. There are several possible approaches for the con
struction of a preconditioner Rf satisfying (3.13) (cf., e.g., [24]). In the 
present paper, we may consider Ti as the finest grid Ti = Til. of an adap
tively generated nested hierarchy (Tij ) ~ = o  of triangulations of Oi. Then 
Hf = (Rf)-l can be easily realized by means of the BPX-preconditioner 
(cf., e.g., [15, 39]). In terms of Hi = Ri1 as given by (3.12) we thus ob
tain a sub domain preconditioner that is independent of d, h, i, ai, bi and of 
optimal arithmetical complexity O(ni). 

We will now deal with the construction of an appropriate precondi
tioner RA for the Schur complement SA = B A-1 BT. For this purpose, we 
decompose the matrices Ai and BT according to 

(3.16) 
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where the subindices I and r refer to the unknowns associated with nodal 
points in the interior of ni and on the boundary a ni , respectively. 
Then, the Schur complement S>. admits the corresponding partition 

N 

(3.17) S>. = L B ~ ~  ( S ~ ~ ) - l  ( B ~ i f ) T  
i=l 

where 

denote the sub domain Schur complements arising from block elimination 
of the unknowns associated with the nodal points in the interior of ni . 

Consequently, if we construct appropriate preconditioners R ~ f  for the sub

domain Schur complements S ~ ~  , 1 ~  i ~  N, in view of (3.17) we obtain a 
preconditioner R>. for S>.. 

As in the construction of the sub domain preconditioners, we refer to 
S;li) as the sub domain Schur complements for the Laplacian -/l. and to 

P ~ ~  as the orthogonal projections onto Ker S;.;.(i) , 1 ~  i ~  N. We further 

denote by I ~ i )  the nri x nri identity matrix, where nri is the number of 

nodes on a ni , and by M ~ ~  , 1 ~  i ~  N the second diagonal block in the 
decomposition of the mass matrix Mi as in (3.16). 
Then, we have the following result (cf., e.g., [24]). 

THEOREM 3.2. Under the assumptions (3.2), (3.3) let H>. = il-;.l be 
given by 

(3.19) 

N 

H>. = L B i - ~  [ail ( I ~ i )  - p i ~ )  H;.;.(i) ( I ~ i )  - p i ~ )  
i=l 

+ b-ld-lh-l p,(i)] (B(i»)T 
i rr rr 

where HL,(i) - (RL,(i»)-l with rr - rr 

(3.20) R L,(i) SL,(i) + d M(i) 1 < . < N rr '" rr rr' _ z _ . 

Then there exist constants 0 < "f>. ~  r>. independent of d, h, and ai, bi such 
that 

(3.21) 

Proof. The assertions can be shown by following the lines of proof of 
Theorem 3.1: 
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Due to assumption (3.3) we find a(S;r,(i)) \ {O} c [cR)d-lh,cr,] with con

stants c ~ )  > 0, 1 ~  v ~  2, independent of d and h. Moreover, we have 
M(i) I'V h l(i) which gives rr r 

(3.22) S;li) + d- l h P ~ ~  ,..., S;li) + d M ~ ~  . 

It follows that 

S (i) a' SL,(i) + b. M(i) RA(i) 
rr 'rr 'rr I'V rr 

where 

A (i) (i) (i) 
Rrr ai Srr bi d h Prr 

ai ( I ~ i )  - P ~ ~ )  ( S f ~  + d - l h P ~ ~ )  ( I ~ i )  - P ~ ~ )  + b i d h P f ~  

Observing 

( 1 W ~ ) - l  = ail (Ifi) - P ~ ~ )  (S;li) + d - l h P ~ ~ ) - l  ( I ~ i )  - P ~ ~ )  

+ b i l d - l h - l p ~ ~  , 

we conclude in view of the spectral equivalences (3.20) and (3.22). 0 
In practice, we use a Schur complement preconditioner R>. by means 

of inner Chebyshev iterations 

Lc 
(3.23) R;:l = [f>. - II (1). - i3i it;:l S>. ) 1 S;:l 

i=l 

where 

N 

11>. .- L B f ~  [ail (Ifi) - P ~ ~ )  H;li) (Ifi) - P f ~ )  
i=l 

+ bid-lh-l P f ~ ]  ( B f ~ f  , 

h is the n>. x n>. identity matrix with n>. denoting the number of nodal 
points on S, and i3l , 1 ~  i ~  La, are the Chebyshev parameters with La 
being of order 0 ((h- l d)1/2) (cf., e.g., [35]). 

Since S>. I'V Ih, we obtain: 
COROLLARY 3.1. Under the assumptions of Theorem 3.2 the spec

tral equivalence {3.21} remains valid, if we replace if;.l by R").l as given 
by {3.23}. 

REMARK 3.2. Again, if we consider Ti as the finest grid Ti = Til of 
a nested hierarchy (Tij)j=o, a suitable realization of H;r,(i) = (R;r(i))-l 
is given by means of the corresponding boundary blocks of the BPX
preconditioner with respect to that hierarchy. This results in an overall 
preconditioner R>. of optimal arithmetical complexity. 
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An alternative construction can be achieved in view of a result due to 
Nepomnyashikh [29]: If A ~ l )  and A ~ 2 )  are two stiffness matrices with re-

spect to triangulations ~ ( 1 )  i- ~ ( 2 )  having the same trace on the boundary 

ani , then the associated Schur complements S i ~ i )  and S ~ ~ i )  are spec

trally equivalent. Hence, for the construction of R ~ f  we may use a grid 1i 
that has the same trace on a ni as 'Ti but is much coarser in the interior of 
ni . 

REMARK 3.3. The practical implementation of the inner Chebyshev 
iterations (3.23) requires the solution of a linear algebraic system of the 
form R>. w = z that can be interpreted as a coarse grid system of dimension 
n>. (for details see, e.g., [24]). 

4. A posteriori error estimators. In this section, we consider two 
efficient and reliable a posteriori error estimators that are cheaply com
putable by means of their elementwise contributions and do provide local 
lower bounds and a global upper bound for the discretization error mea
sured in the III . III-norm. 

The first estimator relies on a proper evaluation of the residual with 
respect to the mortar finite element approximation. We note that the con
cept of residual based error estimation can be traced back to the early work 
by Babuska and Rheinboldt [5, 6] and has been subsequently further devel
oped and analyzed by various authors [9, 21, 36]. In case of nonconforming 
finite element methods, such estimators have been recently considered in 
[17]. For a comprehensive treatment and additional references we refer 
to [37]. 

We assume that ( ~ ( k ) h E N o  are regular, locally quasiuniform, nested 
sequences of simplicial triangulations of ni , 1 ::; i ::; N. 
Throughout the following we will refer to c, C > 0 as generic constants that 
only depend on the shape regularity of (0,(O)) , i :::; i :::; N, and possibly on 
the constants Q,ii,{3,i] from (2.3), (2,4). 
We remind that Nf and £f/ stand for the sets of vertices and edges of 

Tk = U ~ l  0,(k) in D ~  n and we further denote by hT' hE the diameter 
of T E Tk and the length of an edge E E £k(n}. The regularity of the 
sequence implies 

(4.1) C hE ::; hT ::; C hE , E E £[ , T E ~ ( k )  , 1::; i ::; N 

whereas the local quasiuniformity infers that for T E ~ ( k )  , 1 ::; i ::; N 

card {E E £r i lEn aT i- 0} < C , 

card {T' E ~ ( k )  I aT' n aT i- 0} < C 
(4.2) 

We note that any adaptively generated nested sequence (0,(k)hENo , 1 ::; 
i ::; N, obtained by bisection following the refinement rules of [7] and [33] 
satisfies the properties of regularity and local quasi uniformity. 
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We remind that U E H1(n) and (UM' AM) E IT::1 81(ni ; ~ ( k ) ) x M 1 ( 8 )  
denote the weak solution of (2.1), (2.2) and the mortar finite element ap
proximation (2.14), (2.15), respectively. Then, if U E IT::1 H2(n i ) and 
[n·aV'u]J = 0 on 8, it is easy to see that the discretization error e := U-UM 
satisfies the variational equation 

N 

(4.3) a(e, v) = r(v) , v E II H1(n i ) 

i=l 

where the residual r(·) is given by 

(4.4) r(v) := (f,v)o;o - b(n·aV'u,v) - a(uM'v) . 

We note that in case of the standard conforming PI approximation a global 
upper bound for the discretization error can be derived by evaluating the 
residual in the dual norm of H1 (n) using Clement's interpolation operator 
and taking into account Galerkin orthogonality (cf., e.g., [37]). 

Here, the nonconformity of the approach requires the use of a partic
ular interpolation operator 

N 

(4.5) Ps := L PS;Oi , PS;Oi : H1 (ni ) -+ 81 (n i ; ~ ( k ) )  , 1 :S i :S N 
i=l 

where the operators PS;Oi , 1 :S i :S N are given as follows: 
For p E N ~ i  we set 

(4.6) Dp:= U {T E T;,(k) I p E Nk(T)} , np := card Dp 

and refer to ,¢J ' p E ni , T E Dp , and '¢: ' p E ani, E E £ ~ D p ,  as the 
functions being dual to the nodal basis functions rpf ' q E N[ in the sense 
that (rpf, '¢J)O;T = Opq and (rpf, '¢:)O;E = Opq. 

We define PS;Oi E 81 (ni ; Ti) by means of 

(4.7) { 
n;l L.TEDp (v, '¢J)O;T , p E ni , 

(PS;OiV)(P).- ~  L (v, '¢:)O;E ,p E ani. 
EE£ZDp 

The operators PS;Oi that have been used in [38] and represent a modi
fication of an operator from [34] (cf. also [30]) admit the following local 
properties: 

LEMMA 4.1. Let PS;Oi : H1(nd -+ 81 (n i ; ~ ( k ) )  , 1 :S i :S N, be as 
in (4.7) and consider the sets DT and DE given by 

(4.8) 

(4.9) 
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Then, for v E Hl{Oi) , 1:::; i :::; N, there holds 

(4.10) 

(4.11) 

IlPs;l1.vlkT :::; c IlvlkDT , 

Ilv - PS;I1.vllo;T :::; C hT Ilvlll;DT , 

T E T.:(k) 
~  , 

T E ~ ( k )  , 

69 

Proof. The estimates can be established using the affine equivalence 
of the elements and Bramble-Hilbert type arguments. 0 

Now, using the interpolation operator Ps , we split the residual accord
ing to 

N 

(4.13) r{v) = r{Psv) + r{v - Psv) , v E II Hl{Oi) 
i=l 

Note that we do not have Galerkin orthogonality. Instead, in view of (2.15) 
we obtain 

(4.14) r{Psv) = a{e, Psv) = b{)..M - n· a'Vu, Psv) 

On the other hand, from (4.4) it follows that 

r{v-Psv) = (j-LUM,V-PSV)o;l1- b{n·a'Vu,v-Psv) 

(4.15) - L{n.a'VuM,v-PSV)0;8T 
TETk 

Using (4.14) and (4.15) in (4.13), we get 

r(v) = (j-LUM,V-PSV)o;o - L (n'a'VuM,v- PSV)0;8T 
(4.16) TETk 

+b(AM'PSV) - b(n·a'Vu,v). 

We note that 

where [.JJ stands for the jump and [.JA for the average across the edges 
of 'h,. 

We further refer to ITo! and IT'YlAM as the L2-projections 

( 4.18) {ITo!, v)o;11 = (j, v)o;11 , v E Wo{Oj 'h,) , 
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where Wo(nj1k) := {v E L2(n) J v ITE Po(T) , T E 1k} and WM(l) be) is 
defined as in (2.10) with fl and M(£) replaced by 'Yl and M(£), respectively. 
Then, setting v = e in (4.16) and observing (4.17) as well as [e - PselJ = 0 
on E E E ~ \ S  and [e]J = [UM]J on E E Ert , for arbitrarily chosen f.L E 
M1 (8) we obtain 

III e 1112 r(e) 

( 4.20) 

(ITo! - LUM, e - Pse)o;!1 + (f - ITo!, e - Pse)o;!1 

+ L ([n· aV'uMlJ, [e - Pse]A)O;E 
E E E ~ \ S  

+ L (n·aV'uM,e-Pse)O;E 
EEEen 

L 

+ L L {(IT'YlAM-n.aV'UM,e-Pse)O;E 
l=1 E E E ~ t  

+ (AM - IT'YtAM,e - Pse)O;E } 
L 

+ L L (AM-n·aV'uM,e-Pse)O;E 
l=1 E E E ~ t  

L 

+ L L (f.L-n·aV'u,[UM]J)O;E . 
l=1 E E E ~ l  

The last term on the right-hand side in (4.20) involves the approximation 
of the flux n· aV'u on the skeleton 8 by the multipliers from M1 (8) and 
can be handled under the saturation assumption 

(4.21) inf 11f.L - n· aV'ullo;s ::; C III U - UM III . 
Jl.EMdS) 

We remark that (4.21) is supported by the a priori estimates (2.16) and 
(2.18). 

Taking into account the properties (4.10), (4.11), and (4.12) of the in
terpolation operator Ps and the saturation assumption (4.21), (4.20) gives 
rise to the following element-oriented a posteriori error estimator 

The elementwise error terms 1 ' ) ~ ; ; T  , 1 ::; v ::; 6, are given by 
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( )
1/2 

' T J ~ ! i T  := L hE lin· a V u M I I ~ i E  , 
EEerner 

L 

' T J ~ ! i T  := (L L hE IIII'YtAM - n· a V u M I I ~ i E  ) 1/2 , 

l=1 EEeZtner 
L 

' T J ~ ! i T  := ( L L hE IIAM - n· a V u M I I ~ i E  ) 1/2 , 

l=1 E E E ~ L n q  

L 
(6) ( ""' ""' -1 2) 1/2 'TJRliT:= L..J L..J hE lI[uMJ;lloiE 

L=1 E E e ~ t n q  

We further define the "higher-order" terms 

(4.23) ( ~  ( (v) )2 )1/2 
.- L..J 'TJR2iT 

v=1 

where 

hT Ilf - IIoflloiT , (1) 
'TJR2iT .-

( )
1/2 

Lt:l LEEEztner hE IIAM - I I ' Y t A M I I ~ i E  (2) 
'TJR2iT .-

71 

PROPOSITION 4.1. Let'TJRl and'TJR2 be given by (4.22), (4.23) and 
assume that the saturation assumption (4.21) is satisfied. Then there exist 
constants rRll rR2 > 0, depending only on the shape regularity of 70 and 
ong,a,f!..,jj in (2.3), (2.4) such that 

(4.24) 

Proof. The assertion is an immediate consequence of the representa
tion (4.20) of the discretization error e and the local estimates (4.10)-(4.12) 
from Lemma 3.1 as well as the saturation assumption (4.21) taking further 
into account the implications (4.1), (4.2) of the regularity and local quasi
uniformity of the sequences (T!k))kENo . 0 

We will now show that the local contributions of the error estimator 
'TJRl do provide lower bounds for the associated local parts of the discretiza
tion errors in u and the flux n· aVu. 

LEMMA 4.2. For E E £r let DE := {T E Tk lEE £[}. Then there 
exist constants C v > 0, 1 ~  v ~  6, such that 
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h ~ 2 1 I [ n .  aV'uM]JIIOjE::; C2(III e IIIDE + hEII I1o! - LUMllojDE 

+ hEII I1o! - !IIOjDE)' E Eel, 
(4.26) 

h ~ 2 I 1 n .  aV'uM"O;E::; C3 (II' e "'DE + hEII I1o! - LUMllo;DE 

+ hEII I1o! - !IIO;DE)' E E ef, 
(4.27) 

h ~ 2 1 1 I 1 " " l A M - n .  aV'uMllo·E ::; C4 (II' e "'DE+hEIII1o!-LuMllo.DE (4.28) , , 
+ hEIII1o!-!IIo;DE + h ~ 2 1 1 A M - I 1 " " l A M l l o ; E ) '  E E eZl , 

(4.29) 

(4.30) 

h ~ 2 I 1 A M - n .  aV'uMllojE::; C5(II' e IIIDE+hEIII1o!-LuMllo jDE 

+ hEIII1o!- !IIO;DE)' E E eft, 

h"El/2 II[UM]JllOjE ::; C6 III e IIIDE ' E E efl . 

Proof The local estimates (4.25)-(4.29) can be proved by using the 
local element bubble functions <PT:= 27 AfArAf ,_T E Tk, and edge bub
ble functions <PE:= 4 AfAr, Pl,P2 E Nt, E E er where Ar , 1::; v::; 3, 
are the barycentric coordinates of T. 
In particular, the proofs of (4.25), (4.26), and (4.27) follow along the lines 
of the standard conforming case (cf., e.g., [37]). _ 
For the proof of (4.28) we set q := I1""lAM - n· aV'uM and denote by qDE 
its extension to DE as, e.g., in [37]. Then, by Green's formula we obtain 

11I1""lAM-n· a V ' u M I I ~ ; E  

(4.31) 

::; c l(IT..,.lAM-n.aV'UM)q<PEdU 

= C[a(e,qDE<pE) - (f - LUM,qDE<pE)O;E 

+ b(n· aV'uM - AM,q<PE) + (IT""lAM - AM,q<PE)O;E] 

::; C[h"El/2 "' e " ' D E + h ~ 2 1 1 ! - L u M l l o ; D E +  IIIT""lAM-AMllo;E 

+ IIAM-n· aV'uMllo;E] 11I1""lAM - n· aV'uMllo;E. 

The estimate (4.29) can be verified similarly. Finally, for the proof of (4.30) 
we refer to [38]. 0 

The preceding local lower bounds result in the following global lower 
bound: 

PROPOSITION 4.2. Let 1JRl and 1JR2 be given by (4.22) and (4.23). 
Then, under the saturation assumption (4.21) there exist constants 'YRl' 

'YR2 > 0 depending only on the shape regularity of 70 and on g, Ct., f3, i3 in 
(2.3), (2.4) such that -

(4.32) 'YRl 1JRl - 'YR2 1JR2 ~  '" e '" . 
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Proof. The saturation assumption (4.21) implies IIAM-n·a'VuMllo;s ~  
C III e III and hence, (4.32) follows from (4.25)-(4.30) observing again 
(4.1), (4.2). 0 

Finally, combining the bounds given by (4.24) and (4.32) results in the 
following two-sided estimate: 

THEOREM 4.1. Under the saturation assumption (4.21) and with the 
notations of Propositions 4.1 and 4.2 there holds 

REMARK 4.1. The quantities h ~ 2  IIII'YlAM-AMllo;E , E E Ell, in 'fJR2 

can be considered as "higher-order" terms provided the ratios h'Yl/hrl , 1 ~  
f ~  L, remain bounded where h'Yl := min {hE lEE Ell}, hrl := 

min {hE lEE Efl}. Otherwise, these quantities will obscure the lower 
bound in (4.32) and thus effect the efficiency of the estimator. Therefore, 
in practice it is advisable to monitor these quantities carefully in order to 
guarantee the boundedness of h'Yl / hr l , 1 ~  f ~  L. 

The concept of hierarchical type a posteriori error estimation relies on 
a discretization of the defect problem satisfied by the error with respect 
to a higher order finite element approximation combined with a suitable 
localization of that problem by a hierarchical two-level splitting. 

In case of the standard conforming PI approximation there are two 
different approaches: 
The first one due to Bank and Weiser [8] starts from a localization of the 
defect problem on the elements' level resulting in local Neumann problems 
which are then solved by using continuous, piecewise quadratic elements 
and their standard hierarchical decomposition. 
The second technique which can be attributed to Deuflhard, Leinen, and 
Y serentant [19] does it the other way around. It uses a conforming P2 
approximation of the global defect problem followed by a localization of the 
discretized problem by means of the hierarchical two-level splitting. Note 
that hierarchical type error estimators for nonconforming finite element 
discretizations have been considered in [22, 23]. 

Here, in case of the mortar finite element approximation we suggest 
a somewhat hybrid approach in so far as we begin with a localization of 
the defect problem (4.3) on the subdomains' level and then consider a 
conforming P2 approximation of the resulting Neumann problems on the 
individual sub domains. 
In particular, setting ei := (u - UM) Ini , 1 ~  i ~  N, from (4.3) we get the 
Neumann problems 

(4.34) ai(ei, v) = (I, V)o;ni - ai(uM, v) + J n· a'Vuvda, v E Hl(n i ) 

eni\r 



74 B. ENGELMANN ET AL. 

involving the unknown Neumann boundary data n· aV'u on ani \ r. On 
the other hand, we know that the multiplier AM E Ml (8) does provide 
an approximation of the flux and hence, the idea is to replace n· a V'u on 
ani \ r by the available multiplier AM and to approximate the resulting 
local Neumann problems in terms of the conforming P2 approximation. 
Denoting by 82(ni ; 7i(k)) , 1 ::; i ::; N, the space of continuous, piecewise 
quadratic finite element with respect to the triangulations 7i(k) , we thus 
end up with the following discrete defect problems on the sub domains: 
Find ei E 82(ni; 7i(k)) such that 

(4.35) 

where 

ri(v) .- (f, v)o;n i - ai(uM, v) + ! AM V dO' . 

ani\r 

We localize (4.35) by means of the hierarchical two-level splitting 

where 82 (ni ; 7i(k)) stands for the hierarchical surplus 82 (n i ; 7i(k)) 

span {tpE lEE £ ~ i \ r }  spanned by the quadratic bubble functions tpE 
associated with the midpoints of the edges. It is well-known that the stiff
ness matrices associated with (4.35) are 2 x 2-block matrices with respect 
to the decomposition (4.36) which are spectrally equivalent to their block
diagonals (cf., e.g., [19)). Moreover, the second diagonal block is spectrally 
equivalent to its diagonal so that 

(4.37) c L a ~  III CPE IW ::; III ei 1112 ::; C L a ~  III CPE IW 

where aE:= ri(tpE)/ai(tpE,tpE). 
This means that we only have to solve scalar equations associated with the 
edges E E £r i • 

On the other hand, in view of 

N L 

(4.38) III e 1112 = L ri(e In.} + L ! (n· aV'u - AM) [UM]J dO' 
~ = 1  l=1 r l 

we additionally have to take into account the jumps [UM]J across the in
terfaces. 
Altogether, this gives rise to the following hierarchical a posteriori error 
estimator 
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In addition to (4.21) we need a further saturation assumption that is known 
from the hierarchical approach in a posteriori error estimation and adopted 
here to the macro-hybrid finite element method under consideration. De
noting by U2,i E 82 (n i i r;k») , 1 ~  i ~  N, the solution of 

ai(U2,i,V) = (f,v)OjO; + ! n·aVuvda, VE82(n i ir;k) , 

80i\r 

we require the existence of constants 0 ~  {3i < {3 < 1, 1 < < N, 
independent of the refinement level such that 

(4.40) III U2,i - U 1110; ~  {3i III e 10i1110; , 1 ~  i ~  N . 

THEOREM 4.2. Let 'f/H be the hierarchical error estimator as given by 
(4.39). Then, under the saturation assumptions (4.21) and (4.40) there 
exist constants 0 < 'YH ~  fH depending only on the shape regularity of To 
and ong,ii,§..,i] in (2.3), (2.4) such that 

(4.41) 

Proof The first inequality follows from (4.30) and (4.37). On the other 
hand, the second one can be deduced from (4.37), (4.38) and IIAM - n . 
aVullojs ~  C III e III which is a consequence of the saturation assumption 
(4.21). 0 

REMARK 4.2. In practice, we do not compute (UM' AM) E II!1 81 (nii 
7i(k») x M1(8) exactly but only some approximation ( U M ' ~ M )  by means 
of an iterative solution process as, e.g., that one described in the previous 
section. In this case, the iteration errors III UM - UM III and IIAM - ~ M l l o j s  
additionally enter the bounds in (4.33) and (4.41). However, if the chosen 
iterative scheme is optimal, the iteration errors can be controlled during 
the iterative solution, for instance, by monitoring the residuals with respect 
to the computed iterates. 

REMARK 4.3. If we are dealing with differential operators of type (2.1) 
featuring rapidly varying or even discontinuous coefficients, it is advisable 
to use error estimators 'f/R and 'f/H whose local contributions 'f/RjT and 
T/HjT , T E 'Tic, incorporate local bounds for the coefficient functions a and 
b (cf., e.g., [38]). 
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5. Numerical results. In this section, we will give numerical results 
illustrating both the benefits of the adaptive approach and the parallel 
efficiency of the iterative solution process. 

First, we consider an example for testing the effectivity of the residual 
based and the hierarchical type a posteriori error estimators TJRl and TJH 

as given by (4.22) and (4.39), respectively. In particular, we have chosen 
the diffusion equation -div (a grad u) + b u = f in n = (0,1)2 with 
a discontinuous diffusion coefficient a varying from 1 to 100 as indicated 
in Figure 1a. The right-hand side f and the (inhomogeneous) Neumann 
boundary data have been selected such that u(x, y) = a-I (y - x)(l - x -
y) , (x, y) En, is the solution of the problem. The sub domain partitioning 
corresponds to the four regions of the varying diffusion coefficient and the 
initial triangulation To is given as shown in Figure lb. 

100 

1 

100 

(a) (b) 

FIG.!' (a) Diffusion coefficient a. (b) Initial triangulation. 

Figures 2a and 2b display the adaptively generated final triangulation 
in case of the residual based error estimator (Fig. 2a) and the hierarchical 
type error estimator (Fig. 2b). In both cases, the refinement process has 
been terminated when the estimated error was less than 10-2. 

Tables 1a and 1 b contain the history of the refinement process display
ing the number of unknowns, the estimated and the true error, as well as 
the effectivity index per level of refinement. Note that the effectivity index 
is the ratio of the estimated and the true error. 

We see that in both cases the adaptively generated triangulations are 
similar with a slightly larger number of unknowns generated by the hier
archical type estimator. The effectivity index approaches its optimal value 
1 rapidly. 
If we have a closer look at Figures 2a and 2b, we see that we have a 
pronounced refinement in the two subdomains with the smaller diffusion 
coefficient along with a sharp resolution of the interfaces. This is obviously 
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in contrast to the use of standard conforming meshes where, due to the 
c o ~ t i n u i t y  requirements, we also encounter strong refinement in the other 
regions close to the interfaces. 

(a) (b) 

FIG. 2. (a) Residual based error estimator. (b) Hierarchical error estimator. 

TABLE 1 

(a) Residual based error estimator. 

I Level I # Nodes I Est. Error I Error I Eff. Index I 
0 24 0.983.10 -1 0.408 0.240 
1 60 0.140 0.147 0.954 
2 116 0.734.10-1 0.759.10- 1 0.966 
3 312 0.389.10 -1 0.401.10 ·1 0.974 
4 1122 0.201.10 -1 0.203.10 ·1 0.991 
5 4132 0.102.10 -1 0.103.10 ·1 0.989 
6 15804 0.514·10 - ~  0.520·10 - ~  0.989 

(b) Hierarchical error estimator. 

I Level I # Nodes I Est. Error I Error I Eff. Index I 
0 24 0.241 0.408 0.592 
1 60 0.150 0.147 1.02 
2 116 0.764.10 -1 0.759.10 ·1 1.01 
3 320 0.392.10 -1 0.393.10 ·1 0.997 
4 1150 0.196.10 -1 0.197.10 ·1 0.998 
5 4372 0.100.10 -1 0.991·10 - ~  1.01 
6 17044 0.497.10 -2 0.495.10 ·2 1.00 
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We think that mortar finite element methods are especially well suited for 
problems with highly varying or even discontinuous coefficients and can re
sult in a considerable savings of nodal points and thus computational time, 
an effect that is expected to be even more pronounced for 3D problems. 

The performance of the multilevel preconditioned iterative solver and 
its parallel efficiency have been tested for incompressible and compressible 
fully potential flows around airfoils. In particular, the benchmark problems 
NACA0012 and BiNACA0012 have been chosen as test examples (cf. Fig
ures 3a,b). All numerical results reported below have been obtained by the 
implementation of the algorithm on the IBM SP 2 of the Leibniz Comput
ing Laboratory, Munich. 

(a) (b) 

FIG. 3. (aJ NACA0012. (bJ BiNACA0012. 

The governing equation for incompressible flow is the Laplace equation 

(5.1) Acp = ~ i n ! !  

whereas that one for compressible flow is given by 

(5.2) 

Here, cp stands for the potential of the velocity field u = (Ul' U2)T and p(.) 
in (4.2) is the density function 

where Co, Po, and 'Y refer to the speed of sound and the density in motionless 
gas and to the gas constant, respectively. 
In case of the NACA0012, the computational domain!! is simply connected 
with boundary r = roo U SuI; where roo is the outer boundary, S is the 
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TABLE 2 

(a) Dependence of nit and t.", on the level p. 

LA = 1 LA =5 
P N L incompress. compress. L incompress. compress. 

nit tez nit tez nit tez nit tez 

5 8568 4 247 9.2 1034 37.5 16 77 4.7 323 19.6 
6 31416 5 258 15.2 1186 70.1 24 71 9.6 314 41.7 
7 120120 7 254 31.2 1232 163.3 34 70 29.4 336 142.5 
8 469560 10 259 102.9 1316 521.5 48 66 104.6 385 635.7 

(b) Dependence of nit and t.", on npr and p (incompressible flow). 

LA = 1 LA = 5 
p N , npr 7 14 28 56 

~  
7 14 28 56 

nit nit 

6 31416 258 41.3 24.3 15.8 15.3 71 46.1 26.5 18.3 9.6 
7 120120 254 148.9 80.7 46.0 31.2 70 182.4 95.3 52.5 29.4 
8 469560 259 619.9 332.1 185.6 102.9 66 747.3 379.4 212.6 104.6 

(c) Dependence of nit and t.", on npr and p (compressible flow). 

LA = 1 LA = 5 
p N , npr 7 14 28 56 ,npr 7 14 28 56 

nit nit 

6 31416 1188 211.9 121.0 71.3 70.1 314 230.1 118.0 67.5 41.7 
7 120120 1232 741.5 397.9 230.9 163.3 336 852.9 474.0 247.4 142.5 
8 469560 1316 3335 1720 905.7 521.5 385 4361 2214 1170 635.7 

boundary of the airfoil and E the slit connecting the trailing edge with the 
outer boundary. For the BiNACA0012 we have r = roo u 81 U 82 U E1 U E2 
with the corresponding meanings of 8i and Ei , 1 ::; i ::; 2. Note that the 
introduction of the slits is done to ensure the existence of a unique global 
potential cp on fl. The equations (5.1) and (5.2) have to be completed by 
appropriate boundary conditions. We refer to [20] for a detailed discussion. 
For compressible flow problems, the nonlinear equation (5.2) is solved by 
means of the iterative scheme cpv+1 = cpv + wv+1 , v ~  0, where the cor
rection wv+1 is computed as the solution of the linear problem 

V'. (p(1 V'cpv 12)V'wV+1) = -V'. (p(1 cpv 12)V'cpv) . 

(cf., e.g., [31]). 
In particular, we have chosen a symmetric, nonlifting flow around the 

NACA0012 with 1 U oo 1= 160 mjsec where U oo = u Iroo' The computa-
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FIG. 4. (a) Asymptotical optimality (incompressible flow). (b) Asymptotical opti
mality (compressible flow). 

tional domain n is decomposed into 56 geometrical conforming, nonoverlap
ping sub domains as shown in Figure 3a. The sub domains are distributed to 
a certain number of processors where the distribution is done in a prepro
cessing step taking into account the information provided by the Chebyshev 
iterative parameters to guarantee a proper load balancing (see [20] for de
tails). 

Table 2a contains the number N of unknowns, the number L of inner 
Chebyshev iterations, the total number nit of outer Lanczos iterations, and 
the execution times tez for different levels p of the refinement process. Note 
that in this case 56 processors have been used. The results underpin the 
optimal order of arithmetical complexity of the method. 

The same data are given in Tables 2b and 2c for incompressible and 
compressible flow in case of a different number npr of processors. These 
data are visualized in Figures 4a,b which reflect the asymptotic optimality 
of the algorithm by displaying the execution times per unknown in depen
dence of the total number of unknowns. 

Finally, Figures 5a,b show the dependence of the parallel efficiencies 
on the number of processors for different levels of the refinement process 
(p = 6,7, and 8). We see that both for incompressible flow (Figure 5a) 
and compressible flow (Figure 5b), on level p = 8 (469560 unknowns) the 
parallel efficiencies slightly decrease to 0.8 in case of 56 processors indicating 
a reasonably well parallel performance of the algorithm. 

For the BiNACA0012 we have tested the dependence of the total num
ber nit of Lanczos iterations and of the execution times tez on the number 
m of sub domains used in the decomposition of the computational domain. 
The corresponding results are listed in Table 3. 
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(a) (b) 

FIG. 5. (a) Parallel efficiencies (incompressible flow). (b) Parallel efficiencies 
(compressible flow). 

TABLE 3 

Dependence of nit and te., on the number of subdomains. 

LA = 1 LA = 5 
m = 111 m= 168 m = 111 m = 168 

p=7 p=6 p=7 p=6 
nit I tez nit I tez nit I tez nit I tez 

295 59.2 247 24.4 74 58.8 69 23.1 

We have further run various experiments concerning lifting flows 
around the NACA0012 and the BiNACA0012 for different angles of attack 
which gave similar results as in case of the test problem reported above. 
For a comprehensive documentation we refer to [20]. 
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