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Abstract. The new generation of electrorheological fluids (ERFs) offers a wide 
range of applicability in fluid mechatronics with automotive ERF devices such as 
ERF shock absorbers mentioned at first place. The optimal design of such tools 
requires the proper modelling and simulation both of the operational behaviour 
of the device itself as well as its impact on the dynamics of the complete vehicle. 
This paper addresses these issues featuring an extended Bingham fluid model and 
its numerical solution as well as substitutive models of viscoeleastic-plastic system 
behaviour. Also control issues for optimal semi-active suspension of vehicles with 
controllable ERF shock absorbers are discussed. 

1 Introduction 

Electrorheological fluids (ERFs) are microstructured fluids consisting of a 
dispersion of electrically polarizable particles in a nonconducting liquid. The 
characteristic feature is that, under the influence of an outer electric field, 
the initially unordered particles get oriented and stick together to form par­
ticle chains in the fluid. On the macroscopic scale this process results in a 
significant increase of the dynamic viscosity of the ERF yielding a consider­
able increase of the shear stress (cf., e.g., [9,10,32,38]). Therefore, ERFs are 
highly amenable to an efficient control of the transmission of forces. They 
are thus potentially useful for applications in hydraulic systems and automo­
tive devices such as clutches, engine bearings, and shock absorbers (cf., e.g., 
[15-17,20,21,39]). The new generation of ERFs which has been developed in 
recent years features high ER effects by direct activation through electrical 
signals with an adaptation of the forces in the range of milliseconds that goes 
along with low abrasive wear, good redispersibility, and high shear stress and 
sedimentation stability (see [5,3,37]). Despite this progress, ERFs are not yet 
used in mass production due to still existing problems, as for instance a stable 
operational behaviour over a wide range of temperatures or their interaction 
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with other components of the devices such as the power supply. Nevertheless, 
it can be foreseen that the rapid development of ongoing research will put 
them into the marketplace within only a few years. The optimal design and 
layout of individual ERF devices is one important aspect. Another equally 
important one is to study their behaviour, in particular their controllability, 
as an integral part of a complete system. 

It is the purpose of this paper to provide mathematical tools for modelling 
and simulation of both the fluid flow in specific ERF devices within a con­
tinuum mechanical framework and the dynamical behaviour of such devices 
as integral parts in mechatronical vehicle systems based on the description 
of the vehicle as a multi body system. The issue of an efficient control of ERF 
dampers for active suspension of vehicles is also addressed. 

The paper is organized as follows: After these introductory remarks, in 
Sect. 2.1, we will begin with a brief overview on the basic modes of fluid flows 
in ERF devices. As far as the modelling aspect is concerned, in Sect. 2.2, we 
present an extension of the classical Bingham fluid model that goes beyond 
pure shear or flow modes and is thus able to describe the flow pattern in 
complete devices. In Sect. 2.3, we elaborate in some detail on the method of 
augmented Lagrangians combined with operator splitting techniques that is 
based on a primal-dual formulation of the problem and that can efficiently 
handle the inherent nonlinearities. This is followed by a documentation of 
numerical simulation results for shear and flow modes in ERF devices given 
in Sect. 2.4. Geometric design aspects of ERF shock absorbers are mentioned 
in Sect. 3.1 and followed in Sect. 3.2 by a discussion of substitutive models 
for the viscoelastic-plastic system behaviour. Optimal and robust optimal 
feedback controllers for optimal active suspension of a quarter car model 
based on LQR and H oo techniques are investigated in Sect. 3.3. Numerical 
results are presented in Sect. 3.4. 

2 Modelling and Simulation of ERF flows 

2.1 Modes of Fluid Flows in ERF devices 

In applications of ERFs in automotive devices there are basically three dif­
ferent types of fluid modes: the shear mode, the flow mode, and the squeeze 
mode. 

The shear mode occurs when the electrodes are sheared against each other, 
as for instance in clutches. A simple model of an ER clutch is shown in 
Fig. 1. The ERF is located in a housing consisting of two coaxial cylinders 
with the inner one being driven at some constant angular speed. The inner 
cylinder hosts a high voltage lead supplying the lateral s u r f ~ e  serving as the 
electrode whereas the lateral surface of the outer cylinder acts as the output. 
If voltage is applied to the electrodes, an electric field builds up which in 
the gap between the cylinders is perpendicular to the Couette type flow. The 
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viscosity of the ERF increases with increasing electric field strength as does 
the torque exerted on the outer cylinder. 
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Fig.!. Schematical representation of an ERF clutch (left) and ERF shock absorber 
(right) (cf. [7]) 

The flow mode is predominant in devices where the ERF passes through 
ducts with fixed electrodes such as shock absorbers or engine mounts. Fig. 1 
displays the longitudinal section of a cylindrical shock absorber featuring two 
ERF -filled chambers with a piston in between that contains two tranfer ducts. 
There is a third gas-filled chamber separated from the others by a floating 
piston. The inner walls of the ducts serve as electrodes that are supplied by 
a voltage lead within the piston rod. In the ducts the generated electric field 
is perpendicular to the Poiseuille type flow of the ERF. 

A third type of mode, the so-called squeeze mode, prevails in ERF actu­
ators used, for instance, as vibration dampers. In this case the electrodes are 
subjected to vibrations so that the ERF is either pressed out of the gap be­
tween the electrodes or sucked into it (cf. Fig. 3 for a schematic representation 
of an industrially produced ERF actuator). 



254 Hoppe, Mazurkevitch, Rettig, von Stryk 

Fig. 2. ERF actuator (cf. (6)) 

2.2 The Extended Bingham Fluid Model 

The flow of an ERF can be modelled by a coupled system of PDEs consisting 
of a second order elliptic equation for the potential of the electric field and 
an extension of the classical Bingham fluid model that goes beyond pure 
shear mode or flow mode and thus allows to determine the fluid flow in the 
complete device (cf., e.g., [14]). 

Denoting by il C Rd, dEN the physical domain, i.e., the region filled 
with the ERF, we have 

au 
p(Ft + (u·V')u)=V'·a-(u,E) in il, (2.1) 

where the stress tensor a­
functional 

V'·u=O in il, (2.2) 

aV is the subgradient of the (local) energy 

V(u,E) .- -V'p + 1'1 E II D(u)E I + iIID(u)lI} (2.3) 

Here, u := (UI, ... , Ud)T stands for the velocity field, D(u) := ~  (V'u + (V'u)T) 
is the rate of deformation tensor, E := (EI , E2 , E3)T is the electric field, -pI 
denotes the spherical part of the stress tensor so that p can be interpreted as 
the pressure and II . IIF refers to the Frobenius norm of a matrix. Moreover, 
P, 'f/ and l' are material parameters with p and 'f/ being the density and zero 
field viscosity of the ERF, respectively, whereas l' is the proportionality factor 
in the quadratic dependence (a-E := l' I E 12) of the yield limit on the electric 
field. 

The stress tensor is not well defined if I D(u)E 1= 0 which indicates the 
rigid zone. For an increasing electric field E, the rigid zones grow and can 
completely block the flow for I E I sufficiently large. 

Note that (2.1), (2.2) have to be interpreted in a weak sense. For instance, 
if we prescribe the tangential component t . u of the velocity on some part 
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Ft C F:= aD and impose no-slip boundary conditions n· u = 0 on all of F, 
an appropriate variational setting is provided by the function spaces 

v:= {VEHI(D)dlt.vlrt=ut,n.vlr=O}, 

V O := {vEVIV·v=O}, vg := {VEHJ(D) IV·v=O}. 

In particular, the variational formulation of the flow problem amounts to the 
solution of the parabolic variational inequality: 

Find u E L2(0, T; vg)nLOO(O, T; Vo), au/at E L2(0, T; (vg)*) such that for 
all v E vg and almost all t E (0, T] 

! au 
p(- + (u· V)u)· (v - u)dx 

at 
{} 

+ ! V(v, E)dx - ! V(u, E)dx > o. 
{} {} 

(2.4) 

We remark that (2.4) admits a unique solution if d = 2 (cf., e.g., [12,19]). 
The electric field E is generated by some voltage U applied to an electrode 

Fe that is part of the boundary whereas the opposite counterelectrode Fe is 
voltage free. Observing E = -15 V cp where cp is the electric potential and 15 

refers to the permeability of the ERF, the potential can be obtained as the 
solution of the elliptic boundary value problem 

-V·cVcp = 0 in D, 

cp = 'u on Fe , cp = 0 on Fe , 

n·cVcp = 0 onF\(FeUFe) . 

(2.5) 

(2.6) 

Setting V := {.,p E HI (D) I .,p Ir.ure = O}, the variational formulation of 
(2.4,2.5) is to find cp E HI (D) , cp Ir. = U, cp Ire = 0 such that 

! uVcp·V.,pdx = 0 , .,pEV. 
a 

2.3 The Method of Augmented Lagrangians 

(2.7) 

The difficulty associated with the inherent nonlinearity in (2.4) can be cir­
cumvented by applying the method of augmented Lagrangians. Combined 
with an appropriate operator splitting technique this confines the nonlinear­
ity to local, low-dimensional problems (cf., e.g., [18,19]). 

We discretize (2.4) implicitly in time by the backward Euler scheme with 
respect to a partition 0 =: to < tl < ... < tM := T of the time interval 
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[0, T] resulting in elliptic type variational inequalities that have to be solved 
at each time level tm := tm-1 + (Llt)m , 1 :::; m :::; M: 

Find u m E VO such that for all v E vg 

p J u m . (v - um) dx + p(Llt)m J (um . V')um . (v - um) dx 
[} [} 

+ (Llt)m' (j D(v,E) dx - [ D(um,E) ax) (2.8) 

~  p J u m- 1 . (v - um) dx . 

[} 

The method of augmented Lagrangians is applied to (2.8) based on a primal­
dual formulation by introducing Pi := V'ui, 1 :::; i :::; d, as additional vari­
ables and by coupling the constraints Pi - V' ui = 0, 1 :::; i :::; d, as well as 
the incompressibility constraint V' . u m = 0 both by Lagrangian multipliers 
and penalty terms. 

Setting f:= pum- 1 - (Llt)m V'p, introducing the matrix-valued functions 
P := (PI I ... I Pd), A := (>'1 I ... I Ad), where Pi, Ai E L 2 (fl)d, 1 :::; i :::; d, and 
given penalization parameters K, := ( ~ 1 '  ~ 2 ) T  with ~ v  > 0, 1 :::; v :::; 2, we are 
thus led to the saddle point problem 

Find (Um,P,A,O) E V X L2(fl)dXd X L2(fl)dXd x L2(fl) such that 

L",(Um,P,A,O) = inf supL",(v,Q,IL,'T) . 
v,Q P.,T 

(2.9) 

The Lagrangian L", is given by 

L",(v,Q,IL,'T) := 

p(Llt)m J(Q - ~ d i a g Q ) v .  vdx + ,(Llt)m J I E II QsE I dx 
[) [} 

d 

+ ~ ( L l t ) m  J I I Q s l l ~ d X +  ~  J I V 12 dx- J f·vdx+ ~  J l-£i·(qi-V'Vi)dx 
[) [} [} .=1 [} 

J ~ 1  ~ J  2 ~ 2  J 2 + 'TV'. vdx + 2 ~  I qi - V'Vi I dx + 2 I V'. v I dx , 
[} .=1[} [} 

where Qs := ~ ( Q  + QT). 
As far as the discretization in space is concerned, we assume a simplicial 

triangulation Th of fl and approximate the velocities Ui, 1 :::; i :::; d, by con­
tinuous, piecewise linear finite elements augmented by cubic bubble functions 
associated with each element of Th. We denote by 81 (fl; Th) the conforming 
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P1 finite element space and by B3(D; Th) := s p a n { I 1 t ~ ;  AT I T E Th} the 
linear space of cubic bubbles where AT, 1 :S i :S d + 1, are the barycentric 
coordinates associated with T E Th. We set 

V h := vI! (2.10) 

The components Pij, Aij , 1 ::; i, j :S d, of the variables Pi, 1 ::; i ::; d, and the 
multipliers Ai, 1 :S i ::; d, as well as the multiplier 0 will be approximated by 
elementwise constants, i.e., we define 

(2.11) 

Then, the discretized saddle point problem reads as follows: 

Find (Uh,Ph,Ah,Oh) E V h x W ~  X W ~  X W h such that 

(2.12) 

Note that (2.12) satisfies the Ladyzhenskaja-Babuska-Brezzi (LBB-) condi­
tion and is thus well-defined. 

We will solve (2.12) by an iterative procedure that is based on operator 
splitting techniques. Each iteration consists of two steps. The first one re­
quires the subsequent solution of global linear problems whereas the second 
one involves the solution of local, low-dimensional nonlinear problems. 

We assume that we are given initial values u? E Vh, 2 ::; i ::; d, p? E W h, 
At E W h,1 ::; i ::; d,Ol E Wh and sequences ( I \ ; ~ ) N '  ( p ~ ) N '  1 ::; v ::; 2, 
of penalization parameters I \ ; ~  > 0 and update parameters p ~  > 0, 1 :S 
v :S 2, n E N. For notational convenience we have dropped the super- resp. 
subscripts hand m for the independent variables. Then, for n E N we perform 
the following iteration steps: 

Step 1: For i = 1, .. , d compute u7 E Vh as the solution of the minimization 
problem 

L ( n n n n-l n-l p n - 1 ,n on) 
K.U1 ,,,,,Ui-l,Ui,Ui+1 ,,,,,Ud , ,A, 

. f L ( n n n-l n-l pn-l ,n on) In K. Ul, .. ·,Ui-l,Vi'Ui+1 , ... ,Ud , ,A , 
viEVh 

(2.13) 

and update the multiplier Ai according to 

(2.14) 

Finally, update the multiplier 0 

(2.15) 
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Step 2: For i = 1, .. , d compute pi E W h by solving the elementwise non­
linear minimization problems 

LT( n n n n n-l n-l ,n+! ()n+l) _ 
... U ,Pl"",Pi-l,Pi,PH1"",Pd ,A, -
. f LT( n n n . n-l n-l ,n+! ()n+l) In ... u ,Pl"",Pi-l,Q"Pi+l "",Pd ,A, , 

qiEWh 

T E 1h, where L;' denotes the Lagrangian L ... restricted to T E 1h . 
Update the multiplier Ai according to 

(2.16) 

(2.17) 

Remarks: The computation of ui E Vh, 1 ~  i ~  d, in the first step requires 
the solution of the following variational equations 

~  Ie n aui n aui ~  ) av din d A I n-l n d L...J "'1 -a ' +"'2 -a ,Uij -a ' x + P Ui V X + .wtp Pii Ui V X = 
'-I XJ XJ XJ 
J- [J [J [J 

= I fi Vdx - Lltp I ( ~ ( p i j - l  + PJi-1)uj + ,t (pij-l + PJi-1)ur;-l) dx 
[J [J 3=1 J=,+1 

+ I Ai· V'vdx + "'1 I pi-I. V'vdx - I ()n ::i dx-
[J [J [J 

I (i-l a u ~  a d a u ~ - l  a ) n 3 V J V -"'2 ---- + --- dx L ax' ax' L ax' ax' ' 
[J j=l 3 , j=i+l 3 • 

For the computation of pi ITE Po (T)d , 1 ~  i ~  d, T E 1h, in the second 
step we have to solve d-dimensional minimization problems in the unknowns 
pij ITE poeT), 1 ~  j ~  d, which can be done by Newton's method applied to 
the first order optimality conditions. 

2.4 Simulation Results 

Based on the extended Bingham fluid model and its numerical solution by 
the method of augmented Lagrangians as described in the previous sections 
we have performed simulations of an ERF clutch and an ERF shock absorber 
(d. Fig. 1). 

In particular, for a clutch with the radii ri = 3.5cm , re = 7.0cm and 
lengths li = 25.0cm, le = 30.0cm of the inner resp. outer cylinder, an 
angular velocity of 125rads-1 of the inner cylinder, and an ERF with 11 = 
O.9·1O- 1 kgm- 1s-1 , 'Y= l.O·1O-9 PaV-2 the Figs. 3 and 4 display the adap­
tively generated computational grids and velocity distributions (see Fig. 4) 
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and the angular velocity profiles between the inner and outer cylinder (see 
Fig. 3) for different applied voltages. For a detailed discussion and more re­
sults as e.g. the torque on the outer cylinder as a function of the · applied 
voltage we refer to [14]. 

On the other hand, for an ERF shock absorber with a geometry of the 
fluid chamber as shown in Fig. 1 and an ERF with the same characteris­
tics as for the ERF clutch, Fig. 5 (left) shows the equipotential lines of the 
electrostatic potential in case of an applied voltage of U = 1000 V, whereas 
Fig. 5 (right) represents the velocity distribution in the chamber for a velocity 
Ut = 0.001 ms-1 of the piston and a pressure difference of Llp = 0.0 Nm-2 

between the inflow and outflow boundaries. 

10 
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Fig. 3. Torque as a function of applied voltage (left) , angular velocity profiles for 
different values of potential (right) 

3 Modelling, Simulation, and Control of ERF Dampers 
for Semi-Active Vehicle Suspension 

Models of ERF shock absorbers suitable for control purposes are investigated 
in this section. However, due to their qualitatively similar behaviour phe­
nomenological models of electro- and magnetorheological (MR) fluid devices 
can mostly be applied to either material [23]. 

3.1 Design Aspects of Electrorheological Fluid Dampers 

Typical geometric designs of dampers with controllable electrorheological or 
magnetorheological fluids for use as automotive shock absorbers are displayed 
in Fig. 6. The piston rod which moves up and down in a chamber filled with 
the ERF may be one- or double-sided (Figs.6(b), 6(a)). The cylinder may 
be equipped with a bypass to enable fluid flow between the separated upper 
and the lower parts of the chamber (Fig. 6(c)). However, ERF dampers with 
double sided piston rod are longer and require more space than dampers 
equipped with one sided piston rods and equivalent performance. Thus, they 
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Fig. 4. Computational grids and velocity distribution for U = OV (left), U = 1·1Q4 V 
(middle) , and U = 4 . 104V (right) 

Fig. 5. Potential and z-component of velocity 
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2 

Fig. 6. ERF damper geometries (1: field generator, 2: accumulator, 3: bypass) 

are less suited for automotive applications. Dampers designed with a bypass 
also require more space than without one. 

The accumulator (Figs. 6(b), 6(c)) compensates the change in volume of 
the fluid caused by movements of the piston rod and by thermal expansion. 
It prevents cavitation while the pressure amounts about 20 bar. Hence, the 
accumulator affects the dynamical behaviour of the ERF damper - from a 
phenomenological point of view - like a spring. 

For the optimal design and application of ERF dampers for active sus­
pension of vehicles mathematical models are needed taking into account the 
nonlinear dynamic behaviour of the damper and the vehicle. The purpose 
of numerical simulation is to reproduce and to predict the behaviour of the 
damper to investigate the performance of various damper designs and to de­
sign the best possible control for a specific application. The characteristic 
damper properties include the force-velocity (Fig. 7) as well as the force-dis­
placement relations. 

Numerical fluid simulation in complex three-dimensional geometries is 
computationally too expensive for control purposes where hundreds or thou­
sands of situations must be investigated quickly during the simulated or ex­
perimentally conducted ride of a vehicle. However, the accurate simulation of 
the ERF flow inside the chambers is needed for investigating the performance 
of various ERF damper designs and for providing reference data to calibrate 
the parameters of a phenomenological model of the ERF damper dynamics. 

The performance of an ERF damper depends on the geometric design as 
well as on the properties of the used ERF. The spectrum of the yield point of 
the fluid depends on the electric field strength and is of significant importance 
for shock absorbing and control properties. Figure 7 shows typical force­
velocity relations for a conventional and an ERF shock absorber. The force-· 



262 Hoppe, Mazurkevitch, Rettig, von Stryk 

2 

4 

1 

- - - - - - - - = : : : : : ; : : : " " ' 7 ' ~ : : : : : : : : : = - - - - - v  

Fig. 7. Typical force-velocity relation of an ERF shock absorber at constant mini­
mum (1) and constant maximum (2) field strengths and for varying field strengths 
(3) compared to a conventional, passive shock absorber (4) 

velocity relation of the ERF damper depends on the shear stress versus shear 
strain rate relation of the ERF. The design of an adaptively controllable ERF 
damper must take into account that the curves for constant minimum and 
maximum field strengths must span the region of all desired damping rates 
(Fig. 7). The larger the enclosed region of possible damping curves the higher 
the ERF requirements. While the ERF properties are mainly responsible for 
the width of the area of possible force-velocity curves and for the slopes of the 
envelopes, the geometric design determines the relation between bandwidth 
and slope. 

3.2 Phenomenological Models of ERF Dampers 

The geometry to be considered for the computation of the fluid flow within 
an ERF shock absorber without bypass and with a one-sided piston rod 
(Fig.6(b)) is less complicated than in a damper with bypass (cf. Sect. 2.1). 
The fluid flow in the region between the inner piston head and the main 
cylinder can be computed almost analytically if a Poiseuille type flow excited 
by a pressure difference between the lower and upper chambers is assumed. 
For a radial symmetric design, a constant electric field strength, perpendicular 
directions of the both fields, a constant flow velocity u within the gap and 
using radial symmetric coordinates, the PDEs investigated in Sect. 2.2 reduce 
to a steady state, one dimensional ordinary differential equation (ODE) 

dr r ,dp 
-+-=-
dr r L 

(3.1) 
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with a simple Bingham model 

( dU) du 
T = TO sgn dr + 'T/ dr if T> TO, 

du = 0 
dr 

if T < TO. 

Here T denotes the shear stress, TO the yield point corresponding to the applied 
electric field strength, 'T/ the plastic viscosity as the slope of shear stress versus 
shear strain rate, r the radius with origin at the center of the cylinder. A linear 
pressure gradient along the piston head is denoted by L1P / L. 

r 

Vo 
-+--

T < -TO 

T=O 

Ri .................. ,. 
T > TO 

region 3 

region 2 

region 1 

Fig. 8. Velocity field within the gap, U(Rl) = -Vo, U(R2) = 0 

The analytic solution of the ODE requires a separate treatment of the 
three regions of evolution ofthe shear stress (Fig. 8). Inside the inner region 2, 
i. e., Ri :S r :S R o , the velocity gradient vanishes and we obtain a plug flow 
region. If Ri and Ro would reach the boundary of the interval [R1 , R2J the 
gap would operate as a locked valve. If we consider the boundary conditions 
at r = R 1 , R2 and the transition conditions at r = Ri, Ro we obtain (cf. 
[2,22]) 

L1P [ 2 2 2 (r) ] u3(r) = 4'T/L r - R2 - 2Ro In R2 
(3.2) 

- ~  [r - R2 - Ro In (;J] , 
u2(r) =ul(Ri) (= u3(Ro)) . 
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The variables ~ ,  Ro and the piston head velocity Vo define the velocity field 
u(r). Thus, the volume flow through the electrode gap is 

l R2 

Q ( ~ , R o , v o )  = 211'ru(r)dr. 
Rl 

(3.3) 

On the other hand, the volume replacement of the piston head determines the 
volume flow according to Q = Avo, where A denotes the area of the piston 
head. This relation and the two transient conditions at r = ~ , R o  lead to 
a system of three nonlinear equalities that define F, ~ ,  and Ro for a given 
velocity Vo. Considering the relation F = -t1P/L we obtain 

0= Q(Ri, Ro, t1P) - (A + l I ' ( R ~  - R ~ ) ) v o  , 
0= ul(Ri) - u3(Ro), 

o = t1P(Ro - Ri) - 2LTo , 

(3.4) 

where Q denotes a rather lengthy term calculated by analytical evaluation 
of (3.3). Equation (3.4) can be solved numerically for Vo applying Newton's 
method for given F. In numerical experiments convergence was obtained from 
feasible initial values within a few iterations. However, the iterates must be 
prevented from leaving the valid reagion, as a singularity occurs at Vo = 0 
corresponding to the "locking" of the valve. 

The approach described so far relies on several strong assumptions. Inertia 
terms have been neglected, i. e., an oscillating excitation leads to a transient 
PDE. Furthermore, viscoelasticity of the ERF occurs at small shear strain 
rates, resp. small velocities of the piston rod. Model equations considering 
this kind of fluid flow are currently not available and difficult to derive. Vis­
coelasticity causes hysteresis not only in the force-displacement relation, but 
also in the force-velocity relation. This effect is related to elastic properties 
at small shear strain rates, which are kept in "memory" during the elastic 
phase. Complex considerations assume a "fading memory" effect [8]. In ad­
dition, the presence of the accumulator and other mechanical details of the 
shock absorber lead to further mutation of the input-output behaviour. 

A substitutive model of viscoelastic fluids which may be combined with 
the Bingham model is investigated next. Maxwell recognized that the equa­
tion 

1] aT . 
T+--=fJ!'Y 

Gat 
(3.5) 

where l' specifies the shear strain rate, 1] and G denote the viscosity resp. 
the modulus of elasticity, contains both the ideas of Newtonian liquids and 
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k c 

(a) (b) (c) (d) 

Fig. 9. Substitutive models for viscoelastic behaviour: (a) conventional Maxwell 
model, (b) 3-parametric fluid model, (c) 3-parametric solid model, (d) general Max­
well model 

Hookian solids [8]. More general types of the Maxwell model are 

T= LTk, 
k 

(3.6) 

(3.7) 

with appropriate constants. Equation (3.7) represents a linear combination 
of several Maxwell models. A special case of (3.6) follows with 

(3.8) 

If we compare with the substitutive models depicted in Figs. 9(b) and 9(c) 
we obtain for 

case (b) 
CI + C2 CIC2 

PI = --k-' ql=C2, q2 = --, 
k 

resp. case (c) 
C ki + k2 C 

PI =-, q l = ~ '  q2 = kIk2' ki 

The constants Ci, ki or Pi cannot directly be derived from material constants. 
They must be fitted to reference data, e. g., from experiments or ERF flow 
simulations. Both the 3-parametric fluid and the 3-parametric solid models 
are popular substitutive models for viscoelastic materials such as polymers. 

These models may represent the behaviour of the ERF at small shear 
strain rates, i. e., for shear stresses less than the yield point. When combined 
with suitable models representing the phase of large shear stresses, e. g., the 
Bingham model, we expect a substitutive model of the damping behaviour of 
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Fo k{:z:) 

(a) (b) (c) (d) 

Fig. 10. Substitutive models of viscoelastic-plastic system behaviour: (a) Peel, 
Stanway, Bulloughj (b) Powellj (c) Ehrgott, Masri resp. Kamath, Wereleyj 
(d) Spencer et al. 

an ERF shock absorber over the whole range of operation. Stanway et al. [35] 
(Fig. 1O( a)) use a simple spring according to elastic properties of the fluid and 
the accumulator. The damping characteristics are calculated by the simplified 
flow model mentioned earlier in this section. However, this approach obviously 
neglects the so-called viscous damping at the viscoelastic phase. 

As depicted in Fig. lO(b) this problem is tackled straightforward with 
the model of Ehrgott and Masri [13,24]. Both the Bingham model and the 
3-parametric fluid model have been arranged serially with satisfying results 
comparing simulation and measurement data. Another phenomenological mod­
el has been described by Powell [31] with a model containing a nonlinear 
spring and with parameters fitted to measurement data. 

The approach of Spencer et al. [33] is a completely phenomenological 
model. It takes into account the hysteresis within the force-velocity rela­
tion and is called the augmented Bouc- Wen model (Fig.lO(d)). It includes 
the largest number of parameters. The augmented Bouc-Wen model and the 
model of Ehrgott and Masri have been most well accepted. Transcribing the 
mechanical system into mathematical terms we obtain 

(eo + cds = CIX - O:Z - kos, 

i = (A - .8(1 + sgn(sz))z2)s, 
(3.9) 

which is a hysteresis operator with the inner variables s, z and constants eo, 
CI, ko, 0:, .8, and A. The acting force is 

F = CI (x - s) + kl (x - xo) (3.10) 

with further constants kl and Xo. 
The augmented Bouc-Wen Model has been tested in the context of field 

dependence [34]. The characteristic parameters Co, Cl and 0: are modelled as 
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linearly depending on the field strength including a time delay, i. e., 

P = Pa + VPb 

V = 1J(u - v) 
(3.11) 

where P is either one of Co, Cl or Q. Furthermore, u denotes the actual field 
strength, while v stands for a virtual time delayed field strength depending 
on a constant 1/ according to the known time delay of acting ERF devices. 

In summary, all the described models include a priori unknown parame­
ters which account for the uncertainty of unknown behaviour of ERFs. Con­
sequently some authors applied general functional approximation techniques, 
e. g., Chebyshev polynomials [16,27] or neural nets [29], to fit measurement 
data. However, it seems to be advantageous to use a priori knowledge about 
the system behaviour for deriving model equations whose solutions behave 
similar to the fluid properties, i. e., taking the main properties of the physi­
cal system into account within the describing equations. One property is the 
stiff behaviour of the dynamic equations [36] caused by the phase changes 
between viscoelastic and plastic mode. These phase changes occur very of­
ten at typical frequencies of operating automotive shock absorbers (about 
50Hz [25]). 

However, to some extent ERF devices exhibit even more properties which 
are not included in the models described so far as a temperature dependence 
of the fluid's yield point and a dropping of the yield point with an increase 
in the frequency acting on the ERF device. Furthermore, some authors [29] 
believe that elastic properties of the ER fluids do not significantly affect the 
system behaviour of an ERF shock absorber contrary to the results of other 
authors for magnetorheological fluids [33]. 

3.3 Control of ERF Dampers for Active Vehicle Suspension 

An active suspension can be defined as a suspension layout which controls 
the forces acting in the shock absorber by control of energy dissipation, or, if 
required by the control law, by generating additional force [25]. A suspension 
based on control of the previously described ERF shock absorbers cannot 
input energy into the system and is thus called "semi-active". 

The regulator problem for an ERF damper as part of a semi-active vehicle 
suspension is to control the electric field in such a way that comfort and 
safety are maximized during the vehicle ride. For this purpose, optimal control 
methods must be investigated that take into account the nonlinear dynamical 
behaviour of the ERF damper as well as of the vehicle itself. 

Conventional regulator techniques for active suspension of vehicles are 
based on controlling the pressure of gas inside a cylinder or the flow of a vis­
cous fluid by a regulator valve. Commonly used control algorithms are only 
semi-active: The driver or a control unit selects the actual damper charac­
teristic from several force-velocity relations of fixed damper settings corre­
sponding to various ride levels of comfort or safety. 
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The technology of ER (or MR) fluids offers new control strategies. As 
already mentioned the electric field regulates the viscosity of the fluid within 
milliseconds. Hence, the flow through a gap acts as the flow through a contin­
uously adjustable valve which can be opened or closed very fast and with al­
most no wear. It is possible in principle to adapt the damping rate within one 
cycle of a damper movement thus enabling fully active vehicle suspensions. 
In the sequel, an optimal damping force is investigated for active suspension 
of a quarter vehicle. The resulting ideal damping rate serves as a setpoint 
trajectory for the ERF damper. 

The essential gains in shock absorber regulation are comfort and safety of 
the vehicle ride which are, to some extent, antagonistic gains. If, as usual, the 
objective is modeled as a weighted sum of both objectives then the proper 
selection of the weights is an ambiguous problem that must be addressed. 

Technically speaking the regulation is concerned with eliminating or de­
creasing the effect of street disturbances. Especially the excitations close to 
eigenfrequencies of the vehicle body have to be avoided as well as frequencies 
which lead to unhealthy vibrations of the vehicle passengers. These effects 
are observed by the history of the sprung mass acceleration xa if a quarter 
car model is considered for the vehicle dynamics (Fig. 11). Furthermore the 
priority and, thus, the weights of comfort and safety depend on the current 
driving situation. E. g., driving safety has absolute priority in dangerous sit­
uations. This comes along with ensuring large values of the vertical wheel 
load forces which is necessary for a good maneuverability of a vehicle [1]. 

h 

h 

(a) (b) 

Fig. 11. Quarter car model with (a) a controllable damping force F and (b) the 
sky-hook assumption 

Fig.U(b) depicts a possibility to avoid sprung mass oscillations with 
eigenfrequencies of a quarter car model (cf. [30]). The damping rate C2 is 
adjusted as if a virtual damper Csky would act with a constant proper damp­
ing rate. The resulting damping law is technically not realizable, but ap-
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proximately included in common damping strategies. The outcome of this 
approach are different compression and decompression damping rates. 

Since the sky-hook regulator is based on a heuristic approach, a better per­
formance can be expected if optimal control techniques are applied based on 
a general problem formulation: A linear system behaviour of the differential 
equations for the state variables x of the vehicle is considered: 

x = Ax + Bu, x(to) = Xo (3.12) 

with x E lRnz , u E lRnu , A E lRnz xn z , B E lRnz xnu. For the linear quadratic 
Bolza type objective 

(3.13) 

with x f = x( t f), a solution of the problem can be calculated straightforward 
solving the corresponding Riccati differential equation for P E lRnz xn z 

p + ATp + PA + Q - (PB + S)R-l(BTp + ST) = 0, 

P(tf) = Qf, 
(3.14) 

if no inequality constrains are active. A steady state problem, i. e., P = 0, 
Qf = 0 and tf -+ 00 in (3.14), leads to an algebraic Riccati equation. Thus, 
the optimal feedback control u*(x) is determined by 

where x· denotes the solution of 

:tx* = (A - BR-l(BTp + ST))x* , 

x*(to) = Xo. 

(3.15) 

(3.16) 

However, it must be assumed that the system is stabilizable, R is positive 
definite, Q - SR-1ST is positive semidefinite, and there are no limitations 
on the observability of x. This method is well known as the linear quadratic 
regulator (LQR) and is popular in many fields of applications (cf. [26,28]). 

A drawback of the previous approach is that the solution is only optimal 
with regard to a step disturbance at initial time. Although the LQR can be 
extended to a linear, time varying road disturbance w acting in the following 
way with D E lRnz xnw 

x=Ax+Bu+Dw (3.17) 

a desirable property of the regulator is to compensate all possible distur-: 
bances w, particularly those which lead to unstable total systems. 
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With the state, control and disturbance variables x, u and w as elements 
of suitable Hilbert spaces Hz, H"" resp. Hw we now consider a given feedback 
control u = p,(x, t). The control law p, determines an operator 

(3.18) 

which maps disturbances w onto solutions x of the state equations. With 
appropriate norms of the according Hilbert spaces a maximum norm of the 
operator T,.. is defined [4] 

11 '1" II liT,.. liz 
.1.,.. oc = sup -11-11-

wEH", w w 
(3.19) 

which is related to the values of disturbances (1I.lIz and 1I.lIw are defined 
according to (3.22) and (3.23)). Decreasing the maximum value means to 
attenuate disturbance influence on the total system, so we have to find the 
control law p,*, which yields an infimum for the worst case disturbance 

inf IIT,..lIoc = ¢* , ,.. (3.20) 

i. e., the worst case is bounded simultaneously. Here the feasible controls p, are 
restricted implicitly, as a stable system is required. If there exists a solution 
p,* of (3.20) we obtain the inequality 

(3.21) 

as well as the uniqueness of p,* (cf. [4]). Using the definition of the objective 

(3.22) 

and replacing J[p" w] by the objective from (3.13) leads to a zero-sum differ­
ential game with the expanded linear quadratic objective 

J<{>[u, w] = xf TQfxf + 

+ lot! xTQx + 2uTSx + uTRu - ¢2wTwdt. 
(3.23) 

The first player chooses the control u to minimize the objective while the 
second player chooses the road disturbances w to maximize it. The solution 
defines the best worst case, i. e., what can be obtained at least with optimal 
control under the worst possible circumstances. 

The solution of the HOC problem again reduces to the solution of the 
corresponding lliccati equation for P <{> E lRnz xnz 

(3.24) 
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with a chosen ¢J > ¢J*, and a zero matrix 0 of proper dimensions. The resulting 
control laws are 

u* = fJ.*(t,xo) = _R-1(BTp", + ST)x*, 

w* = v*(t,xo) = ¢ J ~ D T p " , x *  

with the corresponding optimal state trajectory 

x*(to) = Xo. 

(3.25) 

(3.26) 

(3.27) 

However, the existence of a solution to the lliccati equation is not guar­
anteed for the infimum ¢J* if P = 0 [4]. Then only a suboptimal solution can 
be obtained for a ¢J > ¢J*. Suboptimal solutions exist for sufficiently large ¢J 
because the solution of the LQR problem is obtained as ¢J ~  00. 

The numerical solution is obtained iteratively by solving a sequence of 
problems with decreased values of ¢J while all iterates must satisfy that the 
algebraic lliccati equation (3.24) is solvable and the controlled and disturbed 
systems are stable. 

The Hoo approach ensures robust optimality and is suitable for linear 
dynamical vehicle models such as quarter car models. However, severallimi­
tations exist: The calculation of the optimal damping force is unconstrained, 
although it is limited by the shock absorber properties in practice. For prob­
lems with a nonlinear objective or nonlinear dynamics or active state and 
control constraints, the numerical computation of the optimal feedback con­
troller u*(x) is only possible in very special cases. However, a nonlinear op­
timization technique may be applied to compute an approximation of the 
optimal open loop control u*(t) of a nonlinear dynamical system subject to 
constraints in case of a given road disturbance [26]. 

3.4 Numerical Results 

Optimal active suspension of the quarter car model depicted in Fig. 11 (a) 
with x = (xr,xa,xr,Xa)T, n z = 4, and u = F, nu = 1, is investigated 
using a controllable rheological fluid damper and comparing LQR- and HOO_ 
regulators. 

The vehicle data consists of the spring constants kl = 190kN/m, k2 = 
16.812kN/m, the masses ml = 59kg, m2 = 290 kg. An uncontrolled con­
ventional damper with the constant damping rate C2 = 3.0kNs/m is used 
for comparison (cf. [1]). The controllable rheological fluid damper is de­
scribed by the Bouc-Wen model of Fig.lO(d) and (3.9,3.11) with constants 
CIa = 1.0kNs/m, Clb = 20.0kNs/m, C2a = 1.2kNs/m, C2b = 21.5kNs/m, 
aa = 1.0kN/m, ab = 200kN/m, ko = 50kN/m, ki = 100kN/m, A = 47.2, 
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(3 = 3.93 .106 cm-2 and'fJ = 100s-1 . The constants have been chosen ac­
cording to the results of Spencer et al. [34] and adapted to damping rates of 
common automotive shock absorbers. 
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Fig. 12. State histories for the actively, LQR- and HOC-controlled systems and for 
the passive suspension during the simulated ride with an initial falloff a step of 
5cm 

The objective to be minimized by the optimal damping force F* = u* is 
a weighted quadratic sum of the scaled sprung mass acceleration xa/ 9 (cf. 
Fig. Il{a)), the scaled wheel load force klXr/g(ml +m2), the force F/gm2 and 
the state variables Xi/Xi,max, Xi/Xi,max, i = a,r (cf. [26]). Uniform weights 
(I' = f.ta = 1) are chosen except for the states of the wheel, which are weighted 
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by JLr = 1/10 of the sprung mass states resulting in 

The histories of sprung mass displacement Xa and velocity xa (Fig. 11 (a» 
for the uncontrolled system with a conventional passive damper and the ac­
tively, LQR- and HOO-controlled systems for an initial step disturbance of 
5 cm are depicted in Fig. 12. The numerical solutions have been obtained us­
ing MATLAB. A comparison of the wheel load forces is also given which 
are indicators for driving safety. If the wheel load becomes less or equal to 
zero then the vehicle is not maneuverable. On the other hand, the sprung 
mass acceleration xa is a measure of driving comfort. Obviously, an increase 
in safety, i. e., of the wheel load forces, comes for the price of an increased 
sprung mass acceleration, i. e., a decrease in comfort. 

--- active - - - - passive - - - - - envelope 
3 

F[kN] 

o 

-3 
-1.5 o 1.5 [m] . . S Xa - Xr 

Fig. 13. Force-velocity graph of the actively LQR-controlled rheological fluid 
damper and the conventional passive damper during the simulated ride 

Actually, we are interested in the strength of the electric field u of (3.11) 1 , 

which affects the viscosity of the damper. For this purpose, an extension of 
the approach of [33] to adjust the current damping force F to the computed 

1 Please note the difference between u and u. 
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optimal damping force F* is applied 

U={ min (umax , I F ; s : ~  II F ~ a l  I) , 
Umin, otherwise. 

if IFI < IF*I, FF* > 0, 

(3.29) 

with a proper scaling force (here Fscal = 102N) and the scaled values Umax = 1 

and Umin = O. 
The force-velocity relation of the LQR-controlled rheological fluid damper 

model during the simulated ride is depicted in Fig. 13 in comparison with 
the passive damper demonstrating the innovative potential of optimally con­
trolled electrorheological fluid dampers for semi-active suspension of vehicles. 
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