UNIVERSITAT AUGSBURG

Further Studies on
Timed Testing of Concurrent Systems

Lars Jenner

Report 1998-4 Dezember 1998
|nst|tut ;
informatik

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright (© Institut fir Informatik,
Universitat Augsburg
— all rights reserved —

Further Studies on
Timed Testing of Concurrent Systems

Lars Jenner *
Institut fiir Informatik, Universitat Augsburg, D-86135 Augsburg, Germany
jenner@informatik.uni-augsburg.de

Abstract

The setting of [Vog95] is extended in three aspects: i) semantic equivalences are
replaced by preorders, yielding implementation-specification-relations, ii) discrete
time is generalized to continuous time and iii) the three variants of timed behaviour
(liberal, mixed and strict) are completed by the ‘dual’ of mixed behaviour. As main
results we derive: i) if a strictly timed system performs in both best- and worst-case
as well as another strictly timed one, then both systems must be equivalent; ii)
considering the basic-semantics, continuous time is in general more discriminating
than discrete time, but never in tests; iii) the ‘dual’ of mixed behaviour cannot be
related to some classical notion of concurrent behaviour in an equivalent way as it
is possible for the original three variants.

Contents

Introduction
Concurrent Behaviour of Labelled Petri Nets

Timed Nets and their Behaviour in Time

3.1 Behaviour in Continuous and Discrete Time
3.2 Comparing Discrete and Concurrent Behaviour
3.3 Comparing Discrete and Continuous Behaviour

3.4 Comparing the Four Timed Variants of Behaviour

Timed Testing in Discrete and Continuous Time

4.1 Comparing Continuous and Discrete Testing
4.2 Characterizing Discrete May-Testing
4.3 Comparing the Four Variants of Discrete May-Testing
4.4 Comparing Strict May- and Must-Testing

*This work was supported by the DFG-project ‘Halbordnungstesten’.

12
16
17
21

1 Introduction

In [Vog95], the classical testing scenario of [DNH84| was modified to timed testing: not
only the functional behaviour of concurrent systems was considered, but also the capability
or necessity to perform some activity within a certain amount of time. Three different
timing disciplines have been considered: liberal timing allows activity to be delayed and
prolongated arbitrarily, whereas strict timing requires immediate start of possible actions
and prohibits to exceed a fixed duration; this is also the case for mixed timing, where
only the start but not the end of some action may be delayed arbitrarily. For liberal and
mixed timing, only a best-case (may-) testing is appropriate, whereas for strict timing
also worst-case (must-) testing is reasonable. In all variants, passage of time was modelled
by discrete one-time-steps and the durations of actions were natural numbers. Finally,
when comparing two systems w.r.t. their temporal and functional behaviour, semantic
equivalences were considered. Here we address essentially three new topics:

Firstly, we consider semantic preorders rather than equivalences when comparing systems;
this way, an implementation-relation is established: if T'(S) is the set of timed tests that
are satisfied by some system S and we have T'(I) O T'(S) for some system I, then I can
be seen as a faster implementation of specification S, since I not only performs successful
in an environment whenever S does, but also earlier in general. As a main result, it will
turn out that a strictly timed system performs in both best- and worst-case as well as
another strictly timed one, then both systems must be equivalent, i.e. satisfy exactly the
same timed tests.

Secondly, passage of time is modelled by real-number steps. In principle, this gives much
more liberty in temporal behaviour; we investigate in detail, whether and when this more
detailed behaviour is actually observable. As a second main result, it will turn out that
the discrete and continuous testing preorders coincide.

Thirdly, we complete the three timing variants by somewhat like the ‘dual’ of mixed
behaviour: possible actions must start immediately, but may be prolongated arbitrarily.
For the original three variants, a coincidence with classical time-free notions of concurrent
behaviour could be established in [Vog95] (ST-sequences, step-sequences and maximal-
step-sequences). As a third main result, it will turn out that this is not possible for the
new variant.

The paper is structured as follows: Section 2 introduces labelled Petri nets as our system
model and four variants of concurrent behaviour of such nets; the relationship between
these variants is examined comprehensively. Basic knowledge of Petri nets and their
behaviour is assumed; for further details see e.g. [Rei85]. Section 3 extends the setting by
an explicit notion of time and introduces four variants of timed behaviour; the relationship
between concurrent, discrete and continuous behaviour as well as the relationship between
the four timed variants is studied. In Section 4 timed testing is explained, defined and
applied as may-testing in all four timed variants and additionally as must-testing in the
strict variant; the relationship between discrete and continuous testing is clarified, the
discrete variants are characterized and — finally — the above mentioned result concerning
the equivalence of strictly timed systems is derived.

2 Concurrent Behaviour of Labelled Petri Nets

We restrict attention to labelled safe Petri nets without isolated transitions and with arc-
weights of at most 1; as a consequence, markings are sets of places. We also assume an
(infinite) set % of transition-labels or actions, which is understood to be common to all
considered nets; later on, ¥ will be extended by special actions reserved for test nets.

Definition 2.1

A labelled Petri net N = (S,T,F, My,l) (net for short) consists of disjoint sets of
places S and transitions T, the flow relation F' C (S x T)U(T x S), an initial marking
My C S and alabelling [: T — X, where ¥ = {a, b, ¢, ...} is an infinite set of actions.

For a transition t € T'let *t = {s € S|(s,t) € F} and t* = {s € S|(¢t,s) € F'}. We
write M[t) if *t C M for some M C S and say that ¢ is activated (or enabled) under
M. We define M[T) = {t € T | M]t)}.

Let T+ = {t*,t~ |t € T} be the transition parts, i.e. transition-starts t* and transition-
ends t~. Analogously, let ¥* = {a*,a~ | a € X} be the respective action parts. m2.1

Two — not necessarily distinct — transitions ¢; and ¢, are concurrently enabled under some
marking M, if (M \ °t;)[ts) and (M \ °t2)[t1); some transition ¢ is self-concurrent if t is
concurrently enabled with itself. Note that due to the above restrictions there are no
self-concurrent transitions in the considered nets.

Since we are interested in the concurrent behaviour of nets, we consider transitions (and,
hence, actions) to be non-atomic; rather, we distinguish between transition-starts and
-ends, such that there is a chance to observe an overlapping of actions. Consequently,
a state of a net will not only be described by the current marking M, but additionally
by the set of currently firing transitions C'. Note that in each state the set of possible
transition-starts is completely determined by M, whereas the set of possible transition-
ends is completely determined by C; however, the situation is not quite symmetric: starts
may be in conflict (i.e. *t; N *ty # O for some ¢1,¢, € M[T')), whereas ends never are in
conflict; furthermore, since initially no transition is current, each transition-end must be
preceded by the corresponding transition-start in a sequence, but not vice versa.

When comparing the behaviour of two nets, we will abstract from the identity of their
transitions and will rather consider the actions they represent; since the labelling of tran-
sitions is not necessarily injective, the lack of self-concurrent transitions does not preclude
auto-concurrent actions: an action a is auto-concurrent under a marking M if M enables
two (here: different) a-labelled transitions ¢; and ¢, concurrently. In order to connect
each actions start with its end, we attach an ‘event-tag’ e to both a transitions start and
its end, and then lift this tag to the level of actions.

Definition 2.2
Let N = (S,T,F, My,l) be a net and let E be an infinite set of events, which is

understood to be common to all considered nets.

An instantaneous description ID (state for short) of a net N is a pair (M, C), where
M C § i1s a marking and C' C T x E is the set of current transitions. The nitial state
of a net N is IDy = (My,0). We write (M, C)[e)(M',C") if either

1. ¢
2. €

(t*,e) where (t,e) € M[T) x E and M' = M\ *t and C' = C U {(¢,¢€)}, or
(t~, e) where (t,e) € C and M'= M Ut* and C' = C\{(¢,€)}.

If IDo[e1)ID; ... [en)ID,, for some n € Ny and v = €1 ...¢€,, then we write IDg[v)ID,
or IDy[v). We define [(v) € (£* x E)* inductively via {(A) = X (the empty sequence),
l(v(tt,e)) = U(v)(I(t)T,e) and l(v(t™,e)) = (v)(I(t)",€), and we write ID[l(v))) if
ID[v). For A C % we define M[A)) = AN{l(t) |t € M[T)}. m22

Now the concurrent behaviour of a net can as usual be defined to be the set of all sequences
of action (or transition) parts that are operationally derivable from the initial state; when
doing so below, we will take into account two further aspects:

Firstly, we want do distinguish several kinds of concurrent behaviour; more precisely, we
also want to consider restricted variants where the behaviour is maximal w.r.t. possible
starts and/or ends of actions (or transitions) in each state. Without any such restriction,
we gain the usual ST-sequences (cf. [Gla90]); if we require all possible ends to occur
before the next start, then we gain the usual step sequences; if we require an end to
occur only after no more start is possible and — additionally — all possible ends to occur
before the next start, then we gain the usual maximum-step sequences (note that in this
formulation the above mentioned asymmetry between starts and ends is reflected). If we
give up the condition on ends in the definition of maximum-step sequences, then we gain
a new variant, which does not seem to be expressible in conventional step-based terms.

Secondly, we want to ensure the uniqueness of each event-tag e in a sequence; this reflects
the presumed distinguishability of each occurrence of an action and will ease the deduction
of the behaviour of a synchronized net from the behaviours of its components later on.

Definition 2.3

Let N = (S,T,F, My,l) be a net. A sequence v = ¢;,...¢, € (T x E)* is event-
unique, if each e € E occurs at most twice in v, and if e occurs twice, then v =
v1(tT, €)va(t™, €)vs for some t € T and vy,vq,v3 € (T x E)*. For a sequence w €
(X* x E)*, event-uniqueness is defined analogously, and obviously w = I(v) is event-
unique if and only if v is event-unique. Now we define:

IFS(N) = {v|IDy|v) and v is event-unique},
containing the ST-firing-sequences.

DFS(N) ={e1...en € IFS(N) | if g; = (t7,e1) and €;11 = (t5, €2), then C; = 0},
containing the (down-) step firing sequences of N.

UFS(N) = {e1...e, € IFS(N)| if &; = (t],e1) and ;11 = (¢;, €2), then M;[T) = 0},
containing the up-step firing sequences of N.

MFS(N) = DFS(N) N UFS(N),

containing the mazimum-step firing sequences of N.

For X € {I,D,U,M}, we let XL(N) = {l(w)|w € XFS(N)}, be the ST-language,

(down-) step language, up-step language and mazimum-step languageresp. of N. m 2.3

In [Vog95], event-uniqueness is partly already guaranteed by the operational behaviour:
a tT may only be attached with an e that is not yet used in C; however, the complete
condition is established by the same (w.r.t. to the sequence) global predicate as here; in
the end, both definitions coincide. It should be mentioned that event-uniqueness could
as well established by purely operational (i.e. ‘local’) restrictions: extend the states of
a net by a set H (‘history’) of already used events and adjust rule 1. in Definition 2.2
accordingly. We have not chosen this way in order to keep the operational rules as simple
as possible.

Note that — as for event-uniqueness — also the conditions which distinguish the four
variants in Definition 2.3 could already have been realized by refining the operational
rules of Definition 2.2: extend the states of a net by a boolean flag with values in e.g.
{+, —} indicating, whether the last event was a start or an end resp. and adjust rules
1. and 2. in Definition 2.2 according to the conditions on the four different variants.
However, this would be technically considerably more involved and it would complicate
the refinement to timed behaviour as carried out in the next section.

The four variants of concurrent behaviour have been introduced, since each of them will
be closely related to a variant of timed behaviour for a special class of nets considered later
on; hence, we are yet interested in the relationship between these timed-free concurrent
variants. We have chosen a rather unconventional presentation of the usual step-based
notions, since this will allow i) a facile comparison of the variants, ii) a clarification of the
technical relation between concurrent and timed behaviour and iii) a neat integration of
the new UL-variant.

The four variants can be related w.r.t. their ‘degree of concurrency’ as follows:

Proposition 2.4

Let N be a net and let — denote (set-) inclusion; then

IFS(N) IL(N)
/‘ N /‘ N
DFS(N) UFS(N) and DL(N) UL(N)
N /‘ N /‘
MFS(N) ML(N)
Proof: Directly from Definition 2.3. m24

Consider the net N depicted in Figure 1. From the IL-view, it is observable that ¢ can
be performed without a preceding a (choosing the lower b and the lower ¢); this is not
possible from the UL-view, where a and the lower b have to start immediately, and ¢ can
thus only occur after the end of a. Furthermore, from the IL-view, it is observable that
b can overlap both a and ¢ (choosing the lower b and the upper c); this is not possible
from the DL-view, where b can only occur either with a or ¢. Finally, from the ML-view

it is not observable, whether ¢ must be preceded by both a and b, or not. Intuitively,
information on concurrency is decreased when moving in opposite direction of the arrows
in Proposition 2.4.

T
®

®
®—o]—O—c]

Figure 1: Different views yield different degrees of concurrency.

A further outcome of the above mentioned asymmetry between possible starts and possible
ends of actions is the following result: DL(/N) can be constructed from IL(N), and ML(N)
can be constructed from UL(N), but neither can UL(N) be constructed from IL(N), nor
can ML(NN) be constructed from DL(NN) in general. Informally, the reason is the following:
action-ends must be preceded by the corresponding starts and, thus, maximality w.r.t.
(never conflicting) possible ends is checkable syntactically for a sequence in IL(N) or
UL(N), deciding whether this sequence is also in DL(N) or ML(N) resp. In contrast,
maximality w.r.t. possible action-starts is not checkable for a given sequence. In order
to state this result formally for sequences, we first define syntactic criteria which have a
close connection to the semantic condition on step-sequences:

Definition 2.5
Let N be a net and let v € IFS(N). We say that v is terminated, if v = vi(t7, €)v,
implies v, = vj(t~,e)vy. We say that v is step-partitioned, if v = v,(t], e1)(t5, ea)va
implies that v;(¢7, e1) is terminated.
Termination and step-partition are defined analogously for w € (X% x E)*, and w = I(v)
is terminated (step-partitioned) if and only if v is terminated (step-partitioned). m2.5

Here, termination is an auxiliary notion in the definition of step-partition, which dis-
tinguishes the sequences in DL(N) and ML(N) from sequences in IL(N)\ DL(N) and
UL(N)\ ML(N) resp. in the following proposition. Later on, termination will also be
helpful in other contexts.

Proposition 2.6

Let N be a net and w € (%* x E)*; then

1. w € DL(N) if and only if w is step-partitioned and w € IL(N).
2. w € ML(N) if and only if w is step-partitioned and w € UL(N).

Proof:
Let IDy[v)(M,C) for some v € IFS(N). We first see that C = 0 if and only if v is

terminated: e ¢ projs(C) iff e does not occur in v or — by the event-uniqueness of v

— it occurs twice in v and we have v = v (¢t7, €)va(t™, €)vs, hence iff v is terminated.

Now:

1. w € DL(N) iff w = I(v) for some v € IFS(N), such that v = v,(¢], e1)(t5, e2)vs and
IDn[v1(t7,e1))(M,C) implies C = 0, hence iff w = I(v) for some v € IFS(N), such
that v = vy(¢;, e1)(t5, e2)vs implies vy (¢7, e1) terminated, thus iff w = I(v) for some
step-partitioned v € IFS(N) iff w is step-partitioned and w € IL(N).

2. w € ML(N) iff w = [(v) for some v € DFS(N) N UFS(N) iff w = I(v) for some v €
IFS(N) NUFS(N), such that v = v; (¢, e1)(t5, €2)va and IDy[vi(t], e1))(M, C) implies
C = 0, hence iff w = I(v) for some v € UFS(N), such that v = vy(¢],e1)(ts, e2)vs
implies v1(t7, e1) terminated, thus iff w = I(v) for some step-partitioned v € UFS(N)
iff w is step-partitioned and w € UL(N). m26

In the following section, we will extend our setting by explicit introduction of time in
states and behaviour of nets. We will study several different timing disciplines which are
technically related to the four variants of concurrent behaviour considered in this section.
Since we are going to compare these timing variants and to characterize the corresponding
testing preorders via inclusion of some language later on, as a preparation we finish this
section by checking for implications between XL-inclusion and YL-inclusion of two nets for
X,Y € {I,D,U, M}; the results will significantly back up the above mentioned comparisons
in the timed setting.

Proposition 2.7
Let N; and N, be nets and X,Y € {I,D,U,M} with X #£Y.

3. If (X,Y) ¢ {(I,D), (U,M)}, then there are nets N; and N, such that
Proof:
1. Follows from Proposition 2.6.1.
2. Follows from Proposition 2.6.2.
3. We distinguish several cases:

X e {l,D}, Y € {U,M}:
We have (a't,e)(a™,e) € (UL(Ny) N ML(Ny)) \(UL(N2) U ML(N3)):

M [af~—©®—=[a]~—=® =] N2 [al~—©® ©—=[o]

Xe{U,M}, Y €{l,D}:
We have (a't,€)(a™,€)(a™,€’) € (IL(N1) N DL(N7)) \(IL(N2) U DL(N3)):

NL (@—a]—=O—{a]==©®—]] N2 [a]=—@® (©—]
N1 @—a]—=O—a] @—b] N @O—b]—0O—] @]

X=M,Y=U:
We have We have (a',€)(b",€’)(a™,€)(a™, ") € UL(N7) \ UL(N,):

X =D, Y =1I: consider

N1 @4@4@4@4@4 N2 (@—=[a]——O—b]

N N

©— @%OAI @—=p]=O—+c]

We first argue that DL(N;) C DL(N,): it suffices to consider a behaviour of Nj in
which the additional ¢ is enabled; this is possible if and only if a and the upper
b have fired in N;, and additionally the lower b either i) has not occurred yet
or ii) occurred with a or iii) occurred with the upper b. This can be simulated
in N, by firing a either i) followed by the lower b or ii) together with the lower
b and followed by the upper b or iii) followed by both the upper and lower b
simultaneously.

But (a%t,e,)(b%, ep)(a™,e.) (b, €,) (b7, ep)(ct, ec) € IL(N1)\ IL(N3). m2.7

3 Timed Nets and their Behaviour in Time

In the previous section, we have studied the concurrent behaviour of nets without using an
explicit notion of time. We rather made qualitative distinctions essentially by checking
whether actions can overlap each other, i.e. can occur independently. We now add a
quantitative notion of time to the operational behaviour and, therefore, first extend the
nets defined in the previous section by introducing durations for transitions.

Definition 3.1

A timed labelled Petri net N = (S, T, F, My,1,§) (timed net for short) consists of a
labelled net (S, T, F, My,l) and a transition duration§ : T — IN. N is called untimed,
ifé(t)=1forallteT. m3.1

Note that this definition allows equally labelled transitions to have different durations;
this is not only in order to enhance flexibility or generality, but actually allows to model
systems, where the duration of the same action varies with the systems internal situation;
in particular, when testing systems via synchronization on equal actions with a test net

9

in section 4, we can keep the tested net untimed and, hence, let all transition durations
be determined by the test net.

We have chosen durations to be natural numbers although we will allow real-valued pas-
sage of time. This is a generalization (towards reality) of the setting in [Vog95|, where
time is modelled to pass in discrete unit-time-steps; consequently, a fair amount of this
section will be devoted to answer the question, whether and when the refinement of dis-
crete to continuous time allows to distinguish timed nets that where formerly considered
to be equal.

The operational behaviour given in Definition 2.2 is now extended to timed nets and
passage of (real) time, where we also distinguish four different disciplines: L-behaviour
(called ‘liberal’ in [Vog95]) allows arbitrary passage of time in any state and only requires
that a transition fires at least for its duration. E-behaviour (called ‘mixed’ in [Vog95])
allows an enabled transition to delay its start for an arbitrary amount of time, but its
firing time must be exactly its duration. A-behaviour requires an enabled transition to
be started or deactivated immediately, but allows its firing time to exceed its duration;
this is a new variant not yet considered in [Vog95]. Finally, S-behaviour (called ‘strict’
in [Vog95]) requires an enabled transition to be started or deactivated immediately, and
its firing time must be exactly its duration. In order to keep track of the firing time of a
transition, the states of a net are extended by function p, which yields the residual (firing)
time of all current transitions.

Definition 3.2

A timed instantaneous description TD = (M, C, p) (timed state for short) of a timed
net N consists of a state (M, C) of N and the residual time of the current transitions
p: C— RRY. The initial timed state of a timed net N is TDy = (My,0,0).

For X € {L,E,A,S} we write (M, C,p)le)x(M',C',p') if one of the following cases
applies:
1. e=(tt,e) and (M, C)[(¢tT,e))(M',C") and p'(t,e) = é(t) and p'|c = p.
2. e=(t",e) and (M,C)[(t,e))(M’',C') and p(t,e) = 0 and p’' = p|c.
3. e = (r) for r € (0;1], such that (M',C') = (M,C) and p' = p -~ r, and
o if X =E, then » < p(¢,¢€) for all (¢,e) € C.
o if X =A, then M[T) = 0.
o if X =15, then M[T) =0 and » < p(t,€) for all (¢,e) € C.
If TDole1)xTD; ... [en)x TDy for n € Ng and v = €7 €,, then we write TDy[v)x TD,,
or TDolv)x. We define I(v) € ((¥* x E) U {(r)|r € (0;1]})* analogously as in Def-

inition 2.2, where we additionally let I(v(r)) = I(v)(r), and we write TD[l(v))x if
TD[’U>X.

For a sequence w € ((T* x E)U{(r) |7 € (0;1]})* or w € ((Z* x E)U{(r) |7 € (0;1]})*
let seg(w) denote the sequence of transition or action parts in w and let dur(w) be the
sum of time steps in w. If w =€;...€, and 1 <17 < j < n, then ¢; occurs after ¢; in
w; if additionally dur(e;y1...€5-1) > 0, then €; occurs later than ¢; in w. m3.2

10

In Definition 3.2, rules 1. and 2. are refinements of the corresponding rules from Defi-
nition 2.2: by rule 1., a started transition ¢ has residual time §(¢) (its duration) and it
must fire at least for its duration by rule 2 and rule 3. The latter allows passage of time,
where marking and current transitions do not change, but the residual time of the current
transitions is updated according to the time step; here, in the liberal case (X = L), passage
of time is always possible in any timed state, and transition durations may be exceeded
due to p' = p =7 := min(p — r,0). The additional conditions restrict this behaviour for
the other three variants: in the mixed case (X = E), time may only pass if the duration of
any current transition will not be exceeded; if X = A, then time may pass only if no more
transition can start in the current state, i.e. an activated transition starts or is deactivated
as soon as possible; in the strict case (X = §), both restrictions apply together.

Note that Definition 3.2 allows to distinguish the four variants already by local operational
restrictions, whereas Definition 2.3 applies global restrictions to operationally derivable
sequences for this purpose.

Quite obviously, if a transition ¢ is current during performance of a sequence v, leading
from timed state TD to TD), then the residual time of ¢ in T'I) coincides with the difference
between its residual time in 7D and the duration dur(v) of the sequence v — unless §(¢)
has been exceeded already before TI) is reached. Furthermore, if a transition start ¢ is
followed immediately (in particular: not later) by a transition end ¢, then ¢; and ¢ must
be different (since 6(¢;) > 0), and ¢; may as well start after (but not necessarily later than!)
ts ends (since t; can only increase the marking which already enables ¢;); additionally,
this permutation leads to the same timed state as before. These two properties are of
rather technical nature but important in many future developments and are therefore
stated formally:

Lemma 3.3

Let N be a timed net with timed states 7D, TD' and let X € {L,E, A, S}.

1. If TD[v)xTD and (t,e) € CNC’', then p'(t,e) = p(t, e) — dur(v).
2. If TD[(t],e1)(t5,e2))x TD, then also TD|(t;,es)(t],e1))x TD'.

Proof:
1. We perform induction on |v|, where for v = X we have p'(t,e) = p(t,e) and
dur(v) = 0; hence assume the claim to hold for some v and consider v’ = ve where

TD[v)x TD"[e) TD.

If e = (t7,e1), then dur(v') = dur(v) and p'(t,e) = p"(t,e) = p(t,e) ~ dur(v) =
p(t,e) — dur(v') by induction. If e = (¢7,e1), then we have e; # e (otherwise (¢,¢e) ¢ C’
and as above dur(v') = dur(v) and p'(t,e) = p"(t,e) = p(t,e) — dur(v) = p(t,e) ~
dur(v') by induction. If € = (r), then dur(v') = dur(v) + r and p'(t,e) = p"(t,e) ~r =
(p(t,e) = dur(v)) = r = p(t,e) = (dur(v) + r) = p(t,) — dur(v’) by induction.

2. Let (M7 C: p)[(til—, 61)>X(M17 Cl7p1)[(t2_7 62)>X(M17 Clapl); then ¢ 7£ ta by pl(th 61) =
§(t1) > 0 and M' = (M*t;))Uty, C' = (CU{(t1,e1)}) \{(¢2,€2)} and p'(t,e) =
p(t,e) for all (t,e) € C\{(t2,e2)} and p'(t1,e1) = 8(t). Now ¢; # t, implies also
(t2,e2) € C and p(ta,e2) = p'(t2,e2) = 0, hence (M, C, p)[(t5,e2))x(M;,C1, p}) with

11

M] = MUt C; = C\{(tz,e2)} and p} = plc;. Now Mi[t;) by M O M, hence
(ML, CL,) (T, e1))x(M",C", p") with M" = M]*t; = (M Ut5)*t, = M’ since
M[t;) and C" = C{ U {(t1,e1)} = (C\{(t2,€e2)}) U {(t1,e1)} = C’ since (ts,e2) € C,
and finally p"(t,e) = p(t,e) = p'(t,e) for all (t,e) € C\{(¢t2,€2)} and p"(t1,€e1) =
p'(t1,e1) = 8(¢), thus (M",C",p") = (M',C", p'). m3.3

3.1 Behaviour in Continuous and Discrete Time

Up to now, we have defined four timed operational variants, and — analogously to Defi-
nition 2.3 — we could define the according variants of timed behaviour to be the sets of
all event-unique operationally derivable sequences. But by anticipating phenomena that
play an important role when testing nets in Section 4, we will impose further conditions
on the considered sequences.

In [Vog95], timed behaviour of a timed net is essentially characterized by considering only
operationally derivable sequences that are event-unique, maz-caused and terminated:

Definition 3.4
Let N be a timed net and let v € ((T* x E) U {(r)|r € (0;1]})*. We say that

e v is maz-caused if whenever v = v, (], e1)va(t5, €2)vs, then dur(vy) > 0.
o v is wellformed if v is event-unique and max-caused.
e v is time-complete if v = v'(r) for some r € (0;1].

e v is terminated if whenever v = vy (t7, €)vq, then vy = vy(t7, €)vy.

For a sequence w € ((£* x E) U {(r)|r € (0;1]})*, max-causedness, wellformedness,
time-completeness and termination are defined analogously, and obviously w = I(v)
shares exactly the properties of v. m3.4

The notion of max-causedness is motivated as follows: assume TDy[vi(t1,e1)(t5, e2)v2)x
for some timed net N and X € {L,E,A,S}); then v,(¢], es)(t], €1)vs might or might not
be an operationally derivable sequence, too; in the latter case, we can conclude that the
start of ¢, requires the tokens provided by the end of ¢;; however, this information could
not be gained from a purely ‘observational’ point of view (which abstracts causal depen-
dencies), since both events — start of ¢ and end of ¢; — happen at the same time. Hence,
we will restrict attention to max-caused timed sequences: exactly those sequences with-
out subsequences of the form (¢, es)(t], e1); this way, a (potential) causal independence
of the start of ¢, from the end of ¢; is left invisible. The important point is that by
Lemma 3.3.2 the restriction to max-caused sequences does not change the observable be-
haviour: if vi(t5,es)(t], e1)vs is operationally derivable, then also vi(t7,e1)(t5, e2)va is
(but not necessarily vice versa).

It must be pointed out that max-causedness has been enforced operationally for mixed (E-)
and strict (S-) behaviour in [Vog95], where rule 1. in the definition according to our Defini-
tion 3.2 allows to start a transition only after all current transitions with elapsed residual

12

time have finished (‘if X € {E,S}, then p(¢t,e) > 0 for all (¢,e) € C’). Actually, this
requirement is even stricter than max-causedness: by the additional operational restric-
tion, any max-caused sequence can be extended to a time-complete sequence. Somewhat
astonishingly, this does not work in general with our Definition 3.2 and Definition 3.4; as
an example consider the timed net N depicted in Figure 2 below (all transition durations
are 1 and omitted). We can derive max-caused w = (a%t,e,)(b", es)(1)(a™, eq)(c™, e.) op-
erationally in both our E- and S-variant, but w cannot be extended to a time-complete
sequence: ¢ has started although b with elapsed residual time has not finished yet; now
b~ immediately after ¢c™ would violate max-causedness, and a time step immediately after
¢t is impossible by Definition 3.2.3, since b has no residual time left. With the additional
restriction in [Vog95], ¢ could not have started before b has finished.

N ©—fa]—~O—] @ —b]

Figure 2: Some max-caused sequences cannot be time-completed.

Since we strongly intend to reuse the existing results from [Vog95] and, hence, aim at the
coincidence of both definitions of behaviour in discrete time, we could simply adopt the
operational restriction for rule 1. in Definition 3.2 in case X € {E,S}. We desist from this
solution for the following reason: when comparing continuous and discrete behaviour later
on, we will sometimes construct discrete traces from continuous ones by induction on their
length, where in intermediate states we cannot guarantee wellformedness; however, such
intermediate sequences can be transformed to wellformed ones by iterated application
of Lemma 3.3.2, but the operational restriction would already inhibit to construct even
such intermediate sequences. In order to reconcile our operational Definition 3.2 with
the corresponding one in [Vog95], we consider as timed behaviour all prefixes of some
wellformed and time-complete operationally derivable sequence:

Definition 3.5
Let N be a timed net. For X € {L,E, A S} we define
XFS¢(N) = {v]| v is a prefix of some wellformed time-complete v’ with TDy[v")x}
XFS(N) = {v € XFS°(N) |if (r) is a time step in v, then » = 1}
XL¢(N) = {w=1I(v)|v € XFS*(N)}
XL(N) ={w=I(v)|veXFS(N)}

The set XFS®(N) (XL°(N)) contains the continuous X-firing-sequences (X-traces); the
set XFS(N) (XL(N)) contains the discrete X-firing-sequences (X-traces). m 3.5

In order to show the coincidence of Definition 3.5 of XFS(N) and XL(N) with the corre-
sponding one in [Vog95] for X € {L,E,S}, we first develop some tools of general usability:

Definition 3.6
For a timed state TD = (M, C, p) of a timed net N define inductively the sets

13

end(C) = Upeecnpipe=o ({(t7,€)}oend(C\{(t,¢€)}))
start(M) = Ue)emimixe ({(t*,e)} o start(M \ *t))

where o denotes language concatenation and U e)ep := {A}- m3.6

Informally, a sequence from end(C) finishes all current transitions with elapsed residual
time. Analogously, performing a sequence from start(M) yields a timed state, where no
more transition is activated. Formally:

Lemma 3.7

Let N be a timed net with timed state 7D = (M, C, p) and let X € {L,E, A, S}.
1. v € end(C) implies TD[v)x(M',C", p') for some (M',C’, p),
such that C' C C and p/(¢t,e) > 0 for all (¢,e) € C".
2. v € start(M) implies TD[v)x(M',C', p') for some (M',C', p'),
such that M'[T) =0, C' O C and p'(t,e) > 1 for all (¢,e) € C'\ C.

Proof: Straightforward induction on |v|, where in the base cases v = A by Definition 3.6
we must have p(t,e) > 0 for all (¢,€) € C considering end(C) and M[T) = 0 considering
start(M). m 3.7

We now compare the original definition of discrete behaviour in [Vog95] described by the
more restricted operational rule [)} with the one given in Definition 3.5:

Proposition 3.8

For a timed net N with timed states 7D, TD', X € {L,E,S} and ¢ € ((T*x E)u{(1)})*
write TD[e)\ TD if

e TD[e)xTD and
e ¢ =(tT,e) and X € {E, S} implies p(t',€') > 0 for all (¢',€') € C.

Extend [)% to sequences v as usual. Then XFS(N) = {wellformed v | TDy[v)%}.

Proof:

‘C": Take some v € XFS(N); then v is wellformed and TDy[v)x TD for some TD;
hence it suffices to show TDy[v)4 TD by induction on |v|, where the base case v = A
is clear. Thus, assume the claim to hold for some v and consider v/ = ve. If € #
(t*t,e) or X = L, then we immediately have TDy[v)} TD[e)} TD' by induction and
the definition of [)%. If e = (¢*,e) and X € {E,S}, then by ve € XFS(N) we have
TDn[v)x TD[(t, €))x TD'[vt)x TD[(1))x for some v € (Tt x E)*, since ve must be a
prefix of some wellformed time-complete sequence from XFS(N). Now C C C'*, hence
TD*[(1))x implies p(t',€e') > 1 > 0 for all (¢',e') € C C C* by Definition 3.2.3.

‘D’: Take some wellformed v € ((T* x E) U {(1)})* with TDy[v)% TD; then also
TDn[v)x TD by the first condition on |)y, and if v is time-complete, we are done. Oth-
erwise, we have to show TD[u)x TD'[(1))x for some u(1) € ((T* x E)U{(1)})* such that
vu(l) is wellformed. If X = L, we can choose u(1) = (1). Now let X € {E,S}; if v ends
(t7,€), then we choose u = u~u™, where u~ € end(C) (yielding TD[u™)x(M~,C~,p")

14

with p~(t',¢e') > 0, hence p=(t',e') > 1 by p(t',e’) € Ny for all (¢t',e') € C~ by
Lemma 3.7.1) and ut € start(M ™), such that (M~,C~,p7)[ut)x(M',C",p") = TD
with p'(t',€') > 1 for all (¢/,€') € C' and M'[T) = 0 by Lemma 3.7.2 (since p'(t',€') > 1
for (t',e') € C~ and p'(t',€') > 1 for (¢',€') € C'\ C7); thus, TD'[(1))x and we can
assume vu(1l) to be wellformed, since u™ can be chosen event-unique w.r.t. vu~. If v
ends (t%,€), then already p(t’,€’) > 1 for all (¢',€e') € C by the second condition on [)%
and the above, hence it suffices to let u € start(M), such that again p'(t',e’') > 1 for
all (¢',€') € C' and M'[T) = 0, thus TD'[(1))x and vu(1l) can be assumed wellformed.

m3.8

By this, we can actually carry over all results concerning discrete L-, E- or S-behaviour
from [Vog95], in particular the characterization techniques for test-equivalences. In par-
ticular, for discrete L-behaviour we can as well restrict attention to all those sequences,
which are terminated and both begin and end with a time step:

Proposition 3.9

For a timed net N and w € ((X* x E)U{(1)})* the following items are equivalent:
1. w € LL(N).
2. ()w € LL(N).

3. w is the prefix of some terminated and time-complete w’ € LL(N).

Proof:
‘1. & 2.: Since TDy[(1))), TD if and only if TD = TDy.

‘1. = 3.: Let w = I(v) for some v € LFS(N), let TDy[v).(M,C,p) and let n =
max.)ec p(t, e); then n € Ny and (M, C, p)[(1)*)(M',C’, p'), such that p'(t,e) = 0
for all (t,e) € C' = C by Lemma 3.3.1. Hence, we have (M',C’, p)[v").(M", 0, p") for
any v’ € end(C’) by Lemma 3.7.1, thus v(1)"v’ is terminated. Finally, (M",0, p")[(1))
by Definition 3.2.3, hence we can choose wellformed, terminated and time-complete

w' = [l(v(1)™'(1)) € LL(N).
‘3. = 1.”: Directly from Definition 3.5. m3.9

Proposition 3.10

Let N be a timed net and let — denote (set-) inclusion; then

LFS*(N)
T
LFS(N)
e N
EFSS(N) <« EFS(N) AFS(N) — AFS(N)
N e
SFS(N)

!
SFSe(NV)

and

15

LL°(N)

LL(N)

f N

EL°(N) « EL(N) AL(N) — AL°(N)

N f

SL(N)
{
SL%(N)
Proof: Directly from Definition 3.5. m3.10

3.2 Comparing Discrete and Concurrent Behaviour

The variants of concurrent behaviour introduced in Section 2 are closely related to the
variants of discrete behaviour of untimed nets. The following results have been established
in [Vog95] and — due to Proposition 3.8 — apply in our setting as well:

Proposition 3.11

Let N; and N, be untimed nets and let (X,Y) € {(L, 1), (E,D), (S, M)}.
Then XL(N;) € XL(N) if and only if YL(N;) C YL(N,).

Proof:
By Proposition 3.8, LL-, EL- and SL-semantics coincide with liberal-, mixed- and strict-
behaviour resp. defined in [Vog95]. From the developments there, we can directly
conclude that liberal-, mixed- and strict-behaviour inclusion of untimed nets coincide
with ST-language-, step-language and maximal-step-language inclusion resp., which in
turn are IL-, DL- and ML-inclusion resp. by Definition 2.3. m3.11

The discrete A-variant was not yet treated in [Vog95] and is related to the concurrent
U-variant. Somewhat unexpectedly, this relationship is not an equivalence (as in all three
other cases) but only an implication from A- to U-behaviour inclusion:

Proposition 3.12
1. For untimed nets Ny, Ny, if AL(N;) C AL(N,) then UL(N;) C UL(N»).
2. There are untimed nets Ny, Ny with UL(N;) € UL(N»), but AL(Ny) € AL(N,).

Proof:
1. Assume AL(N;) C AL(N;) and take some w € UL(N;); then w = [(v) for some
v € UFS(N;) of the form v = vfvyvf ...v vl for some n € Ny, such that v €
(Tft x E)* fori=10,...,n—1and v; € (T} x E)* fori=1,...,n and v} € (T; x
E)*. Furthermore, if (M;, C;) is reached after v, then M;[T) = @ for i = 0,...,n —
1; hence we have TDy[vg)a TDo[(1)vy vi)a TD:[(1)vy v .. [(D)v v)a TDu[vT (1))a,
where TD; = (M;, C;, p;) with p;(¢t,e) < 1 for all (¢t,e) € C; (since N; untimed) and

vt € start(M,) can be chosen event-unique w.r.t. v.

16

Now v' = v (1)vyvf (1) ... (1)v v v (1) is wellformed and time-complete, hence v’ €

v

AFS(N;) and w' = l1(v') € AL(N;) C AL(N:) by assumption. Then w' = Iy(u) for
some u € AFS(N3) of the form u = ug (1)uyuf(1)...(1)u,u}(1) for some n € Wy,
such that v € (T,f x E)* fori =0,...,n—1land u; € (T, x E)* fori=1,...,n
and ul € (T," x E)*; furthermore, if (M;, C;, p;) is reached after u;, then M;[T) = 0
for i = 0,...,n, hence we have seq(u) = uduyuf ... u ul € UL(Ny), thus ly(seq(u)) =
seq(la(u)) = seq(li(v')) = seg(w') € UL(N3), and since w is a prefix of seg(w’), we
finally get w € UL(Ny).

2. Comnsider N; and N, below.

NG (®—={a]—=0O—c] N2 @—=[a]—=O—{c]
n— ot

We have (a™,e,)(b", ep)(1)(a™, eq)(1) € AL(N1) \ AL(N3). m3.12

3.3 Comparing Discrete and Continuous Behaviour

This subsection is devoted to the comparison of discrete and continuous behaviour; more
precisely, we answer the following question for all X € {L,E, A;S}: given two timed nets N;
and Ny, such that each discrete (continuous) X-trace of N; is also a discrete (continuous)
X-trace of Ny; is then each continuous (discrete) X-trace of N; also a continuous (discrete)
X-trace of N,y?

It will turn out that inclusion of continuous traces implies inclusion of discrete traces in all
four variants for all timed nets; this is quite immediate from Definition 3.5: the discrete
traces of a timed net form a syntactically decidable subset of its continuous traces. The
reverse implication does not hold true in general. Altogether, we will show that continuous
time can at most distinguish finer than discrete time.

In this respect, discrete time is exactly as distinctive as continuous time for all timed nets
in the S-variant:

Proposition 3.13
For timed nets N, N3, we have SL(N;) C SL(N,) if and only if SL°(N;) C SL°(N,).

Proof:
It suffices to show that SFS(N) can be constructed from SFS°(N) and vice versa for
any timed net N:

In SFS°(N), an activated transition starts immediately or is deactivated before any
time passes. If a transition is started at a discrete time, it ends at a discrete time by
§(t) € IN; hence, by induction, all starts and ends occur at discrete time which can be
reached by (1)-steps in SFS(N) as well; note that a (time-complete) continuous trace

17

w need not have discrete duration, but can be extended to some w’ by time-steps only,

such that dur(w’) = [dur(w)] € INy.

Vice versa, replacing sequences of (1)-steps in SFS(N) by sequences of (r)-steps with
the same duration (or a lesser duration, when considering the last coherent (1)-steps
in a time-complete sequence) yields SFS®(N). m3.13

The situation is different for the A- and the L-variant: if we replace all time-steps by
(1)-steps in a continuous L-trace of a timed net N, then the result obviously is a discrete
L-trace of N, since the firing time of the underlying transitions can only increase; the
same applies for A-behaviour, where we additionally observe that a sequence of time-
steps occurs in a continuous A-trace only if no more start is possible, and that passage
of time never activates new transitions or requires current transitions to finish. On the
other hand, from a given discrete L- or A-trace of a timed net N, we can construct all
‘corresponding’ continuous L- or A-traces in general only if N is untimed: this ensures
that we can allow passage of only one time unit between an actions start and its end:

Lemma 3.14
For w € ((%* x E)U {(r) |7 € (0;1]})* let 1 be w with all (r) replaced by (1).
Let N be an untimed net and let X € {L,A}. Then w € XL¢(N) if and only if
1. w € XL(N) and
2. whenever w = w;(a%, e)ws(a™, €)ws, then dur(wy) > 1.
Proof:
By Definition 3.5, we may w.l.o.g. assume w to be wellformed and time-complete, and
then w must be wellformed and time-complete, too.
‘only-if
Let w € XL¢(N); then w = I(v) for some wellformed and time-complete v € XFS®(N);
for this v let © be v with all (r) replaced by (1), such that @ = I(?).
1. Now 7 is wellformed and time-complete, too, and it suffices to show © € XFS(N).
We show that TDy[v)x(M, C, p) implies TDy[0)x(M,C,p) with p < p even for non-
time-complete v and ¢ by induction on |v|. The base case v = A is clear, hence assume
the claim to hold for some v and consider v’ = ve.

e=(tt,e): then TDy[v)x(M,C,p)tT,e)x(M',C',p") for some (M',C’, p'), hence by
ind. also TDn[0)x(M, C,p)[tt,e)x(M",C", p), such that (M",C") = (M',C") by
Definition 3.2.1 and p'(t',€') = p(t', ') < p(t',€') = p'(t',€') for (t',e') € C = o
by induction and p'(¢,e) = p'(t,e) = 1 since N is untimed.

e =(t",e): then TDy[v)x(M,C,p)[t~,e)x(M',C', p') and p(t,e) = 0 by Definition
3.2.2, hence also TDy[0)x(M,C,p)[t,e)x(M',C’,p) by induction and Defini-
tion 3.2.2, since p < p by induction implies p(t,e) = 0; furthermore, p'(t',€') =
p(t' e < p(t'e)=p'(te)for (t'e) el = C' by induction again.

e = (r) : then TDy[v)x(M,C,p)it~,e)x(M,C,p') by Definition 3.2.3, hence by induc-
tion also TDy[0)x(M,C,p)[t",e)x(M,C,p) and p = p ~» > p =1 = p' by
induction and since » < 1.

18

2. If w = wi(a™, e)wa(a™, e)ws, then v = v, (tF, €)va(t™, €)vs for some ¢ with I(t) =
such that TDy[vi(tT, €))x(Mi, C1, p1)[ve)x(Ma, Ca, pa) with (t,e) € Cy and pi(t,€)
§(t) = 1 since N untimed and ps(t,e) = p1(t,e) — dur(vs) = 0 by Lemma 3.3.1 and
Definition 3.2.2, hence dur(ve) > 1, thus dur(wz) > 1, since dur(ws) = dur(vs) by
w = I(v).

qf’:

Let 1. and 2. hold; then by 1. and the observation at the beginning of this proof, there
is a wellformed and time-complete w € XFS(N) with @ = [(u); for this u, we show
by induction on |u| that there is a v € XFS(N) with ¢ = u and w = I(v), such that
w € XL¢(N). Again, we show the claim even for non-time-complete u: then in the base

I8

case © = A we can clearly choose v = A, hence assume that for u we have constructed
v as desired and consider u' = ue; we denote the TD’s reached after v and v by TD,
and TD,, which obviously coincide in their M- and C-component. Now:

= (t*,€) : we can choose v' = v(t*,e) by M, = M, and C, = C,,.

e=(t",e): then u = u;(t*,e)uy for some u;,us by Definition 3.2.1 and .2, hence
v = v1(t", e)v, for some vy, v by induction and ¢ = u and also w = w; ({(¢)*, e)w,
by induction and w = I(v), such that dur(ve) = dur(wz) > 1 by assumption 2.,
hence p,(t,e) = 1 =~ dur(wz) = 0 by Lemma 3.3.1 and since N untimed, thus we
can choose v/ = v(t™,e).

€ = (1) : we can choose v' = v(r) for any » € (0;1], since in the case X = A we also

have M, [T) = M,[T) = 0. m3.14

As a result, for L- and A-behaviour, continuous time is as distinctive as discrete time if
untimed nets are compared only. In general, in the class of all timed nets, continuous
time distinguishes finer than discrete time:

Proposition 3.15
Let X € {L,A}.

1. For timed nets Ny, Ny, if XL¢(N;) C XL¢(N,), then XL(N;) € XL(N3).
2. For untimed nets Ny, Ny, if XL(N7) € XL(N;), then XL¢(N;) C XL¢(Ny).
3. There are timed nets Ni, N3, such that XL(N;) € XL(N;), but XL(N;) ¢
XL¢(Ny).
Proof:
1. Follows from Definition 3.5.

2. Assume XL(N;) C XL(N;) and take some w € XL¢(N;); then by Lemma 3.14, we
have w € XL(N;) C XL(N,) and whenever w = w;(a', e)wz(a™, €)ws, then dur('wg) >
1, hence w € XL*(N;) by Lemma 3.14 again.

3. Comnsider N; and N, below.
We first argue that LL(N;) C LL(N;) and AL(N;) € AL(N3): if in arun of Ny d~ occurs

not later than a~, then N, can simulate this by choosing the upper a-transition, the

19

N1 (®—=[a]—=O—[c¢] N2 ®<@7©4
2] O
© 51 —O—d] @4@ ﬁg e

2
—[b] ©<@ 2

O—[d] 3

upper b-transition and ¢; for d. If d~ occurs later than a~, but also a~ occurs later
than d*, then d lasts at least 2 time units, hence N, can simulate this by choosing the
lower a-transition, the lower b-transition and ¢, for d. If a~ occurs not later than d*
(in which case d~ occurs later than a~), then N, can simulate this by choosing the
lower a-transition, the lower b-transition and ¢3 for d.

Now w = (a™,e,) (b, e)(1)(b7, e)(dT, €.)(0.5)(a, €.)(ct, e.)(0.5)(d™, eq) € AL(Ny)
and w € LL°(N7) by AL°(N;) C LL°(Ny), but neither w € AL°(Ny), nor w € LL(N,).
Note that d in this sequence lasts only time 1 and starts before the end of a; hence it
could only correspond to ¢; in N, but this is would imply that ¢ could only start with
or later than the end of d, which is not the case. m3.15

Finally, in the E-variant, continuous time can be more distinctive than discrete time even
for untimed nets:

Proposition 3.16
1. For timed nets Ny, Ny, if EL°(N;) C EL?(N;), then EL(N;) C EL(N,).
2. There are untimed nets Ny, Ny, such that EL(N;) C EL(N3), but EL®(N;) € EL®(N,).

Proof:
1. Follows from Definition 3.5.
2. Comnsider N; and N, below.

We first argue that EL(N;) C EL(N,): if b" occurs not later than at in N, then b~
occurs not later than ™ and N; can simulate this by choosing the upper a-transition.
If b* occurs later than a™, then it does not occur before a= and N, can simulate this
by choosing the lower a-transition.

Now (a*,€,)(0.5)(b", €)(0.5)(a™, eqa)(c™, €.)(0.5)(b7, eq) € EL°(N1) \ EL°(N;). m3.16

20

NL (@O—[a]—=O—{c] N2 @O —[af—=

\

a0’

\f

®©—=1p] @—h]———0

The results of this subsection show that the discriminative power of continuous time
vs. discrete time crucially depends on the chosen variant and/or the class of timed nets
considered. As a —rather surprising — main result of the next section, testing in continuous
time will never be more distinctive than testing in discrete time.

3.4 Comparing the Four Timed Variants of Behaviour

We finish this section by a comparison of the four timed variants of behaviour; more
precisely, we answer the following question for all X,Y € {L,E,A S} with X # Y: given
two timed nets N; and Nj, such that each discrete (continuous) X-trace of N; is also a
discrete (continuous) X-trace of Ny; is then each discrete (continuous) Y-trace of N; also
a discrete (continuous) Y-trace of Ny? The results are gathered in a corollary at the end
of this section.

Let us first restrict attention to the discrete variants of behaviour and untimed nets. In
this matter, we are well supported by the relationship between discretely timed behaviour
of untimed nets and their concurrent behaviour (established in Proposition 3.11) and the
relationship between the four concurrent variants (stated in Proposition 2.7):

E.g. for untimed nets, LL-, EL- and SL-inclusion coincide with IL-, DL- and ML-inclusion
resp. by Proposition 3.11. Hence, by Proposition 2.7.1 and .3, LL-inclusion implies EL-
inclusion and not other implication holds in general between these three discrete timed
variants for untimed nets. Since AL-inclusion implies UL-inclusion by Proposition 3.12.1,
Al-inclusion also implies SL-inclusion by the above coincidence of SL- and ML-inclusion
and Proposition 2.7.2. Furthermore, we can carry over the negative results of Propo-
sition 2.7.3 for Y = U, i.e. for no X € {L,E,S} we have that XL-inclusion implies AL-
inclusion in general; however, since AL-inclusion does not coincide with UL-inclusion in
general (Proposition 3.12.2), we can not simply carry over the negative results of Propo-

sition 2.7.3 for X = U and Y € {l,D}; but it suffices to show:

Proposition 3.17
There are untimed nets Ny, Ny, such that AL(N;) C AL(Ny), but EL(N;) € ELLN§)17
Proof: Consider '

Now also ALl-inclusion does not imply LL-inclusion in general, since LL-inclusion always
implies EL-inclusion for untimed nets as shown above.

21

N1 @—[a]—=O—a]==©®—[p] N2 [a]=—©® (©—=[b]

Hence, we have clarified the relationships between all discrete variants in the class of
untimed nets. Furthermore, the negative results carry over to continuous behaviour as
well by Proposition 3.13, Proposition 3.15.1 and Proposition 3.16.1; they also hold for the
class of all timed nets, since untimed nets are timed nets.

Additionally, since SL°- and AL®-inclusion coincide for untimed nets with SL- and AL-
inclusion, we immediately have that SL®-inclusion implies and AL®-inclusion for untimed
nets but in general not vice versa (hence for all timed nets) by the above.

Since even for untimed nets EL-inclusion does not coincide with EL®-inclusion in general
(Proposition 3.16.2), we cannot carry over Proposition 2.7.1 to continuous E- and L-
behaviour of untimed nets. However, LL -inclusion can at most imply EL°-inclusion for
untimed — and, thus, for all timed — nets in general. In order to verify this implication
for untimed nets, we first observe that EL°(N) for untimed N can be gained from LL°(N)
by taking all sequences with ‘correctly’ finishing actions:

Lemma 3.18

Let N be an untimed net and let w € ((¥* x E) U {(r)|r € (0;1]})*. Then w(r) €
EL°(N) if and only if w(r) € LL°(N) and whenever w(r) = wy(a™, e)ws(a™, e)ws, then
dur(wy) = 1.

Proof:
We have v(r) € EFS®(N) iff v(r) € LFS® and whenever v(r) = v (¢, €)va(t ™, €)vz and
TD[v1(t", €))L (IDy, p1)[va)L(IDa, p2)[(t~, €))L, then pi(¢,e) = 1 (since N untimed) and
pi(t,e) > dur(vy) (by Definition 3.2.3, case E) and ps(t,e) = pi(t,e) ~ dur(vy) = 0
(by Definition 3.2.2 and Lemma 3.3.1), hence iff v(r) € LFS® and whenever v(r) =
v1(tT, e)va(t™, €)vs, then dur(vy) = 1. Now w(r) € ELY(N) iff w(r) = l(v(r)) for some
v(r) € LFS® and v(r) = v1(¢T, €)va(¢™, €)vs implies dur(vy) = 1, hence iff w(r) € LL°(N)
and whenever w = w;(a%, e)wa(a™, e)ws, then dur(w,) = 1. m3.18

et

It remains to check that EL-inclusion does not imply XL°-inclusion for any X € {L, A, S}
and untimed — hence, all timed — nets in general.

Proposition 3.19
1. For untimed nets Ny, Ny, if LL°(N;) C LL°(N,), then EL°(N;) C EL°(Ny).

2. Let X € {L,A,S}. Then there are untimed nets Ny, Ny,
such that EL°(N;) C EL°(Nz), but XL*(N;) € XL¢(N3).
Proof:
1. Assume LL°(N;) C LL°(N,) and take some w € EL°(N;); then w is a prefix of
some w'(r) € EL*(Ny) C LL°(N;) C LL%(Ny) by Definition 3.5, Proposition 3.10 and
t

assumption, such that whenever w'(r) = w;(a™, e)ws(a™, €)ws, then dur(w,) = 1 by

22

Lemma 3.18, hence w'(r) € EL°(N;) by Lemma 3.18 again and w € EL°(N;) by Defi-
nition 3.5.

2. For X = L consider
N1 @4@404@404 N2 (@©—=[a]—~O—b]

N N

@404. b]—=O—[c]

The reasoning for EL°(N;) C EL°(N,) is a refinement of the one given in the proof
of Proposition 2.7.3 case (X,Y) = (D,l), where we additionally note that the lower b

cannot overlap both a and the upper b in EL®.
We have (a*, e0) (5*, e)(1)(a", ea)(b%, eh)(1)(b™ ef)(c*, ec) € LLE(Ny) | LLE(NV,).
For X € {A,S} consider

M [af~—©®—=[a]~—=® =] N2 [al~—©® ©—=[o]

Here, an analogous reasoning as in the proof of Proposition 2.7.3 case X = D and

Y € {U, M} applies. m3.19

Up to now, we have checked the relationship between all discrete and continuous variants
for untimed nets; the negative results carry over to the class of all timed nets and it
remains to check:

Proposition 3.20

There are timed nets Ny, Ny, such that LL°(N;) C LL°(N;) and AL°(N;) C AL°(N,),

Proof: Consider

2
N1 (®—=[a] N2 (®—=[a]
m3.20
Altogether, we end up with the following map of implications between inclusion of (con-

current,) discrete and continuous behaviour in all four variants for the classes of untimed
and all timed nets:

Corollary 3.21

The following and no other implications hold in general between inclusion of (concur-
rent,) discrete and continuous behaviour of two untimed nets:

23

LL° « LL (& IL) AL° « AL (= UL)
! ! !] !]
EL° — EL (+ DL) SL° & SL (& ML)

The following and no other implications hold in general between inclusion of discrete
and continuous behaviour of two timed nets:

LL® — LL AL® — AL

EL° — EL SL® « SL
m3.21

24

4 Timed Testing in Discrete and Continuous Time

Timed testing ([Vog95, JV95]) is a modification of classical testing ([DNH84]): the quali-
tative problem ‘may/must some behaviour occur 7’ is quantitatively refined to ‘may/must
some behaviour occur in time?’.

Technically, the timed testing scenario is set-up as follows. A timed test consists of an
observer O and a time bound r € IR}. The observer is a timed net which is generally
equipped with additional special actions, w and wait; we let ¥y = ¥ U {w, wait} and note
that all developments and results in the previous sections did not require to exclude w
and wait from the considered alphabet; hence, they hold as well if ¥ is replaced by .

When testing a given timed net N with observer O, we consider the traces of the parallel
composition N||xO with synchronization on all actions from ¥ (i.e. except for w and wait)
as defined below. Whenever a trace of the composition contains the start of some w, then
success 1s signaled by 0. The observer may also delay its activity explicitly by firing a
wazit-labelled transition, which is not synchronized with the activity of the tested net N.

Definition 4.1

Let Ni, Ny be nets and A C 3. The parallel composition N = Ni||a Ny with synchro-
nization on A is defined as

S = Sy x{x}U{x} x5,
— {(tl,tz) |t1 - Tl,tz € Tg,ll(tl) — lg(tg) € A} U

51752), (tl,tg)) | (Sl,tl) € Fl or (Sg,tg) € Fz} U
t17t2)7 (51752)) | (tla‘sl) € Fl or (t2752) € FZ}

{
{
{
[((t1,t2)) = {il(tl) ift, €Ty

o(ta) ifty €Ty
8((t1,t2)) = max(d1(t1),82(t2)), where é;(x) = d2(x) = 0.

MNl(Sl) if 81 € Sl
MNZ(SZ) if 89 € Sg

Here * is a dummy-element with * ¢ (S; U Sy U T7 U T3). m4.l

MN = MNIUMNZ, 1e MN(Sl,Sg)) :{

Note that due to §((¢1,t2)) = max(d1(¢1), d2(t2)) the slower transition determines the du-
ration of the synchronized transition; by this, when testing an untimed net, the durations
of all transitions can entirely be determined by the observer.

Now a timed net N may satisfy the timed test (O, r), if there is a trace of N|[zO with a
duration at most r which contains the start of a w. N must satisfy (O, r), if all traces of
N||sO with a duration greater than r contain the start of a w. Obviously, must-testing is
only reasonable for the strict (S-) variant, since all three other variants allow actions to be

25

delayed and/or to last arbitrarily long, hence no timed test must be satisfied in general;
for may-testing, we distinguish all four timed variants.

Based on test satisfaction, a preorder on timed nets can be naturally defined: for X €
{L,E, A, S}, timed nets N; and N, are in relation N; >x (J)N, if whenever a timed test
(O,r) may (must) be satisfied by N,, then it may (must) be satisfied by N; as well. In
general, N; not only performs successful with more observers O than N,, but also with
lower time bounds for the same O; this justifies to see >x and 1 as efficiency preorders,
where >x compares the best-case efficiency and _1 compares the worst-case efficiency.

In [Vog95], the discrete sub-setting has already been treated for test-equivalences (rather
than preorders) and X € {L,E,S}: time bounds are natural numbers and only discrete
traces are considered. Of course, we also investigate the relation between the discrete and
continuous preorders. The following definition gathers the ideas formally:

Definition 4.2

A timed net is testable, if the special actions w and wait do not occur as transition
labels. A continuous(ly timed) test (O, r) consists of

e a timed net O (called observer) labelled with actions from ¥, and
e a time bound r € RY.

(O,r) is a discrete(ly timed) test, if » € INy.

Let N be a testable timed net, let O be an observer, let » ¢ IR§, let d € INy and let
X e{L,E,A,S}. We write

N may$ (O, r) if there is some w € XL°(N||gO) containing (w™,€) and dur(w) <,
N mayy (0, d) if there is some w € XL(N||sO) containing (wt,e) and dur(w) < d.

For testable timed nets N;, N, and X € {L,E, A,S} we write

N1 =% N, if Ny mayg (O, r) implies Ny mayy (O, r) for all continuous tests (O, r),
Ni =x N, if Ny mayy (O, d) implies N; mayy (O, d) for all discrete tests (O, d).

Finally, we write for a testable timed net N, observer O, r € R} and d € INy:

N must® (O,r) if all w € SL°(N||50) with dur(w) > 7 contain (w™,e€),
N must (0,d) if all w € SL(N||zO) with dur(w) > d contain (w™,e€).

and

N; 3¢ Ny if Ny must® (O, r) implies N; must® (O, r) for all continuous tests (O, r),
N1 O N, if Ny must (O, d) implies N; must (O, d) for all discrete tests (O, d).

m4.2

The usefulness of this definition of timed testing depends (even crucially in the must-case)
on the following property of all four timed variants:

26

Proposition 4.3

Let N be a timed net, let X € {L,E,A,S} and let v € XFS(N). Then v is the prefix
of some v' € XFS°(N) with dur(v’) > dur(v) + 1.

Proof:

Let v be the prefix of wellformed and time-complete v € XFS°(N) with TDy[u)x TD
and dur(u) > dur(v). If ming.)ec p(t,e) > 1, then TD[u(1))x, since u time-complete
implies M[T) = 0 for X € {A,S}, and we have wellformed and time-complete v’ =
u(1) € XFS®(N) with dur(v') = dur(u) + 1 > dur(v) + 1.

Now let ming ec p(t,e) < 1 and let {r1,...,7a} = {p(t,e) < 1|(t,e) € C} be the
finite set of residual times lesser than 1 of transitions in C, such that r; < r;1; for
alli=1,...,n — 1. Then TD[(r1))x TD;y[ui)x TD; [ui)x TD{ [(r2 — 1))x TDa .. . [(rn —
"“n—1)>x 7D,

where u; € end(C;) and uf € start(M;): if p;(t,e) > 1 for some i and (¢,e) € C;,
then p;(t,e) > 1 — (r; —7;) > 0 for all i < 5 < n, since p;(t,e) = pi(t,e) ~ (rj — ;)
by Lemma 3.3.1 and 0 < r; < r; < 1. In particular, p,(t,e) > 1 — (r, —71) > 0 for
all (t,e) € Cpn, v' = u(r)urui (ra —7r1) ... (*n — Pn_1)(1 — (rn — 1)) € XFS°(N), since
v’ is time-complete and can be assumed event-unique, hence wellformed, and we have

dur(v') = dur(u) + 7 + (1 — (rn — r1)) = dur(u) + 1 + 71 > dur(v) + 1.

This property ensures, that in none of the variants N||sO can reach a ‘time-stop’. Oth-
erwise, all traces of N||xO might have a duration less than r, but none of them contains
w; hence N must® (O, r) although success is never reached. In other words, by Proposi-
tion 4.3 a system can always be oberseved up to an arbitrary time.

4.1 Comparing Continuous and Discrete Testing

In the end of section 3 we have seen that continuous time distinguishes finer than discrete
time in general; only for the class of untimed nets in three of the four variants continuous
time 1s as discriminating as discrete time. We now examine this topic for the testing
preorders.

By Proposition 3.13, the coincidence of discrete and continuous testing preorders is quite
straightforward for the S-variant:

Proposition 4.4
On testable timed nets, >§ coincides with =g and ¢ coincides with .

Proof:
Let N be a timed net and (O, r) be a continuously timed test. We first show that that
N may§ (O,r) iff N mays (O, |r|) and that N must® (O,r) iff N must (O, |r]):

If N may§ (O,r), then there is wlo.g. a w(w't,e) € SL°(N||z0) with dur(w) < r;
now by the proof of Proposition 3.13, we have dur(w) € INo, hence dur(w) < |r],
and we can construct a w'(wt,e) € SL(N||z0) with dur(w’) = dur(w) < |r], thus

N mayg (O, |r]). If N mayg (O, |r]), then there is w.l.o.g. a w(w™,e) € SL(N||z0) C
SL*(N||zO) with dur(w) < |r| < r by Proposition 3.10, hence also N mayg (O,).

27

Let N must® (O,r) and take some w € SL(N||x0) C SL*(N||20) with dur(w) > |r[;
then also dur(w) > r by dur(w) € Ny, thus w contains some (w™,€e) by assumption,
hence N must (O, |r]). Finally, let N must (O, |r]|) and take some w € SL°(N||zO)
with dur(w) > »; then by the proof of Proposition 3.13, there is a w’ € SL(N||zO) with
dur(w') > dur(w) > r > |r] and seg(w') = seg(w), hence w’ contains some (w*,e) by
assumption, thus w does and we conclude N must® (O, r).

Now assume N; =g N, for some testable nets Ny, Ny; then Ny mayg (O, |r]) for some
observer O and 7 € R{, implies Ny may$ (O,r) by the above, hence also N; mayg (O, r)
by assumption and N; mayg (O, |r]) by the above again, and we conclude N; =g N,.
The reverse direction and the must-case is analogous. mi4

For the other three variants, we first show how to construct from a successful continuous
trace a ‘faster’ successful discrete trace:

Proposition 4.5
Let N be a net and let X € {L,E,A}. For each w € XFS?(N) there is a u € XFS(N)

with dur(u) < dur(w) and all € in seg(w) are also in seg(u).

Proof:
We first construct for each w € XFS°(N) a v with only (1)-time-steps, such that
seq(v) = seq(w) and TDy[v)x; note that seq(v) = seg(w) and w € XFS?(N) implies that
v 1s event-unique, but v will in general neither be max-caused nor be time-complete,
hence we will transform v to the desired v € XFS(N) at the end of this proof, such
that dur(u) = dur(v) and and all € in seg(w) are also in seq(u).

We denote the TD’s reached after w and v by TD, and TD,; note that, as a con-
sequence of seq(v) = seq(w), TD, and TD, coincide in their M- and C-component,
hence we will denote both M, and M, by M and both C,, and C, by C. Furthermore,
we have p,(t,e) € INg for all (¢,e) € C by Lemma 3.3.1, since v has only (1)-time-steps
and 6(t) € INg. We let A = dur(w) — dur(v) and show that A — 1 < p, — p, <A and
0 < A <1, which in particular implies dur(v) < dur(w).

The proof is by induction on |w|, where for w = A we can choose v = A, yielding
A =0 and p, = p, = 0. Hence, assume that for w € XFS°(N) we have constructed
v as desired and consider w' = we. We denote the TD’s reached after w’ and the
corresponding v’ T'D,,» and TD,s with common marking M’ and current transitions C'.
If e = (t*,€e), we choose v’ = ve; then seq(v’') = seq(w’) and TD,[(tT,e))x by Def-
inition 3.2.1 and by induction, since w' = w(t*,e) € XFS°(N) by assumption. Fur-
thermore, dur(w') = dur(w) and dur(v') = dur(v) implies A’ = A, hence 0 < A’ < 1
by induction, and the residual times p,» and p,s coincide with p, and p, on C and
are both equal §(¢) for (t,e), such that by the above also in this case A’ —1 < 0 =
5(t)—4(t) =0< A"

If e = (t7,e), then we must have p,(t,e) = 0 by Definition 3.2.2, hence by induction
pu(t,e) = pu(t,e) — 0 < A < 1, thus p,(t,e) = 0 since p,(t,e) € Np; then by Defini-
tion 3.2.2, we can choose v’ = ve, yielding seq(v') = seq(w’) by induction. Furthermore,

28

A=A, py = puw|cr and pyr = pyler, hence A’ — 1 < py — pyy < A’and 0 < A’ < 1
follow directly by induction, too.

Now let ¢ = (r) with » € (0;1]. If A +» < 1, then we choose v' = v; obviously,
seq(v') = seq(w’) and 0 < A < A+r = A’ < 1 by induction and assumption.
Furthermore, py — puw = po — (Pw =7) < po — (pw —7) = po —pw +7 < A+r = A’
by induction. Now if r > p, (meaning r > p,(t,e) for some (t,e) € C, by abuse
of notation), then p,, = 0 (meaning p,(t,e) = 0 for the same (t,e) € C), hence
A'—1 <0< py = pyr—pur,and if r < py,, then pyr = ppy—rand A—147r < p, — pu+7r
by induction, thus A’ — 1 < pyr — pyr.

If, on the other hand, A +r > 1, we choose v = v(1); then seq(v') = seg(w') and
0 <A+r—1=A"Dby assumption and A’ = A +r -1 < A < 1 by induction
since 7 < 1. Furthermore, if p, = 0 (with the same abuse of notation as above), then
por —Pw = —(pw —~7) <0< A+r—1= A’ by assumption, and if p, > 0, then p, =1 =
po—1 (by p, € Ng) and py, ~ 7 > py—7 yield py —puw < pp—1—puw+r < A—=1+7r = A’
by induction. Finally, if r < p,,, then py —pw = (po ~ 1) —puw+7 > py — 1 — pp +7 >
A —1—-1+47r=A"—1 by induction, and if r > p,, then p, — pypr = pyy >0 > A’ — 1
by A’ < 1.

Now TD,[(1)). by Definition 3.2.3, and it remains to check the other two cases:

X =E: w' = w(r) € EFS*(N) implies » < p,, and we have p,, < p, + 1 — A by the
additional property and 1 — A < r by assumption, thus r < p, + 1 — A < p, + 7,
yielding p, > 0, hence p, > 1 since p, € Ny, and we conclude TD,[(1))e.

X =A: w' =w(r) € AFS*(N) implies M,[T) = M,[T) = 0, hence TD,[(1))a.

For w € XFS?(N), we have constructed an event-unique v with only (1)-time-steps, such
that seq(v) = seq(w) and dur(v) < dur(w) and TDy[v)x(M,C, p,); now let & = vv v,
where v~ € end(C), such that (M,C,p,)[v)x(M~,C~,p;) and v* € start(M™),
such that (M=, C~, p;) v)x(M*,CT, pH)[(1))x with MT[T) = 0 and pf(¢,e) > 1
for all (t,e,€ C*) by Lemma 3.7. We infer TDy[@(1))x and may assume (1) to
be event-unique. Now by Lemma 3.3.2, moving transition ends in front of transition
starts that happen at the same time in @(1) (i.e. are between the same two successive
(1)-time-steps) yields a max-caused (hence wellformed) and time-complete u(1) with
dur(u) = dur(v) < dur(w) and all € in seg(w) are also in seq(u) and T'Dy[u(1))x, thus
u € XFS(N), and we are done. m45

The coincidence of discrete and continuous may-testing now follows directly:

Theorem 4.6
For all X € {L,E, A}, the relations »§ and >x coincide on timed nets.

Proof:
Let N be a testable net, let (O, r) be a continuously timed test and let X € {L,E, A}.
By the proof of Proposition 4.4, it suffices to show that N may% (O, r) if and only if

N mayy (O, |7]):

29

If N may% (O,r), then there is a w € XL°(N) with dur(w) < », that contains an
(wt,e) and w = [(v) for some v € XFS?(N) with dur(v) < r, that contains an (w',€);
now by Proposition 4.5, there is a u € XFS(N), with dur(u) < dur(v) < r and
seq(u) is a permutation of seg(v), hence dur(u) < |r| (since dur(u) € INg) and u
contains an (w',e), thus w' = [(u) € XL(N) with dur(w’) < |r] contains an (w™,e€)
and we conclude N mayy (O, |r|). If, on the other hand, N mayy (O,|r]), then
there is w € XL(N) with dur(w) < |r], that contains an (w™,e€), and for this w also
w € XL¥(N), since XL(N) C XL*(N), such that N may% (O,), too. m4.6

As a result of this subsection, we can restrict attention to the discrete testing preorders
in the remainder of this section, since checking N; J° N, or N; > N, now reduces to
checking N; J Ny or Ny >x N, resp.

4.2 Characterizing Discrete May-Testing

At this point, it is by no means clear how to check Ny O N, or N; >x N, for given
testable N; and N,. Obviously, it is impossible even in the discrete variants to apply the
definition of timed testing directly, since there are infinitely many timed tests to apply.

Hence, in this subsection we look for the just necessary refinements of the four basic
semantics that are precongruences for parallel composition. The corresponding testing
preorders are then characterized by inclusion of these refined languages. Most the de-
velopments are already carried out in [Vog95], but are presented also here for convenient
reading.

We first decompose the timed states of a composition into timed states of the components:

Definition 4.7

Let N; and N, be timed nets, let A C ¥ and N = Ny|[aN,. Let TD, TD; and TD, be
reachable timed states of N, N;, N, resp. We say that TD is the combination of TD,
and TD,, if

M, = {s1](s1,%) € M}
M, = {s2](x,s2) € M}
C1 = {(t1,€)[((t1,t2),€) € C,t1 € Th}
Cy = {(t2,€)|((t1,t2),€) € C,ts € T}
p((t1,t2),e) = max(pi(ti,e),p2(ts, e)), where p;(x,e) =0 for i = 1, 2. m4.7

Now the operational behaviour of a parallel composition can be decomposed into opera-
tional behaviour of the components:

Lemma 4.8

Let Ny and N; be timed nets, let A C ¥ and N = Ni||[aN,. Let TD = (M, C,p),
TD, = (My,C1,p1) and TDy = (M, Cy, p2) be corresponding TD’s, such that TD is
the combination von TD; and TD,. Let X € {L,E,A,S}. Then TD[e)x in N if and
only if TDi[e1) in Ny, TDsles)L in Ny and one of the following cases applies:

30

a) € = ((t1,t2)",€e), &1 = (t7,€), €2 = (t5,¢€) and [1(¢1) = Lo(t2) € A.
b) e = ((t1,*)",e), e1 = (tf,e) and 3 = A, l1(t1) ¢ A.

c) analogously to b) for e = ((*,2)", €).
d) € = ((t1,t2)",¢€), &1 = (t1,€), €2 = (t5,¢e) and l1(¢1) = lx(t2) € A.
) e=((t,%)7,€), e1=(t1,€), €2 = A, Lu(ta) ¢ A
f) analogously to e) for € = ((*,t2) 7, €).

)

l¢]
™

g) e =€ =€y = (1) and
e If X = E, then additionally () below.

o If X = A, then additionally (*x) below.
e If X =S, then additionally (*) and (*x) below.

The conditions () and (#x) are as follows:

(%) for all ((¢1,t2),€) € C we have pi(t1,€) + pa(ta, €) > 0 (where p;(*,e) = 0).
(xx) Mi[A) N My[A) = 0 and M[X — A) U My[X — A)) = 0.
In all cases, if TD[e)x TD, TDi[e). TD;, and TD,le). TD,, then TD is the combination
of TD| and TD,.
Proof: Easy but tedious (cf. [Vog95]) m4.8

Furthermore, for the L-variant the traces of the parallel composition can be calculated
from the traces of the components without further refinement via the shuffle || 4:

Definition 4.9
Let u,v € ((¥ x E) U {(1)})* be wellformed and let A C ¥. Define

ullav={ we ((¥x E)U{(1)})*|w is wellformed, und and we can write:
U=UL .. Uy, U =V]...Up, W= W] ... W,
with n > 0, such that forall: =1,...,n
either w; = u; = v; € A* x EU{(1)}
orw; =u; € (X — A)F x Fand v; = A
orw; =v; € (X — A)* x E and u; = A } m4.9

Proposition 4.10

Let N; and N, be timed nets and A C X.
Then LL(Ny||aN2) = U{ul||av|w € LL(Ny), v € LL(N3)}.

Proof: Using Lemma 4.8 and Definition 4.9 (cf. [Vog95]). m4.10

In words: inclusion of LL-semantics is a precongruence for parallel composition. This is
enough for the characterization of »:

Theorem 4.11
Let N; and N, be timed testable nets. Then Ny > N, if and only if LL(N;) D LL(N,).

31

Proof:

‘if’: Let (O,d) be a discrete test and assume LL(N;) O LL(N3); then LL(N;||z0) 2
LL(N:||sO) by Proposition 4.10, hence if Ny may, (O,d) by some w € LL(N,||50),
then also N; may, (O, d) by w € LL(N;||50), thus Ny > No.

‘only-if: Let N be any testable timed net; then by [Vog95], for each w € (X% x E) U
{(1)})* there exists a discrete test (O, d),, such that N may, (O,d), if and only if
w € LL(N). Now let N; > Nj; then w € LL(N;) implies Ny may, (O, d),, hence
N; may, (0,d),, by assumption and w € LL(N;) by the above, too. m4.11

For the characterization of > we did not have to refine LL, since it is already a precon-
gruence for parallel composition. This is not the case in the three other variants, where
a refinement is necessary:

Definition 4.12
Let N be a timed net and let w = wi(1)ws...(1)w,(l) € LL(N) for some n with
w; € (%% x E)*, such that TDy w1), TDi[(1)ws)), TDs ... [(1)wn)), TDy[(1))), for some
TD; for all : =1,...,n. Then w = wi Xjws X5 ... w, X, with X; C (XU (X™ x E)) is
a timed refusal trace of N if for all 2 = 1,...,n the following conditions hold:
o M[X;NnXE) =10
o If (a7, €) € X;, then ~TD;[(a™,€))), and:
— either (a™,e) occurs in w;, or 2 > 1 and (a™,€) € X;_4
— i1 < n implies: (a”,e) occurs in w;y; or (a”,e) € X;1g

The set of timed refusal traces of N is denoted SRT(N). We additionally define

ERT(N) = {w € SRT(N)| X C (¥~ x E) for all X in w}
ART(N) ={w € SRT(N) | X C ¥ for all X in w}

The sets X in a timed refusal trace are called refusal sets and are sometimes referred
to as time steps. Termination is defined accordingly for refusal-traces, too. m4.12

Refusal traces refine the corresponding traces ...

Proposition 4.13

Let N; and N, be timed nets and X € {E, A, S}.
Then XRT(N;) € XRT(Nz) implies XL(N;) C XL(Ny).

Proof:
Let w = w1 X ... wp X, € SRT(N) for some timed net N; then we say (only for this
proof) that w is E-maximal, if for all 4 = 1,...,n each occurrence of some (a*,e€) in

w; implies (a”,e) € X;; we say that w is A-maximal if ¥ C X, for all s = 1,...,n;
finally, w is S-maximal if it is both E-maximal and A-maximal. Now for X € {E, A, S}
we have XL(N) = {w | w is a X-maximal v € XRT(N) with all refusal sets replaced by
(1)}. From this, the claimed implication follows quite directly. m4.13

32

.. and their inclusion is a precongruence for parallel composition:

Definition 4.14

Let v = w1 Xqus Xy ... u,X,, and v = v1 Xjv3 X5 ...v,X,, be timed refusal traces with
n € INg and A C ¥. Define

||y ={ w=w1Z1wsZs ... w2y |
wi(L)wy(1) ... wn(l) € (u||av) and for all 2 = 1,...,n we have:
ZiﬂAg(XiUYi)ﬂAand
ZNE-A4)C(XinY)Nn (¥ — A) and
Z;N(E"xE)y=(X;uY)Nn(% x E). } m4.14

Proposition 4.15

Let N; and N, be timed nets, A C ¥ and X € {E,A,S}.
Then XRT(Ni||aN2) = U{u|lav|uw € XRT(N1), v € XRT(N,)}.

Proof:
In [Vog95], the result is shown for X € {E,S}, and applies for X = A by similar
arguments. m4.15

For the A- and the S-variant, they also characterize the may-testing preorders:

Theorem 4.16

Let N; and N, be timed testable nets. Then N; >g N, if and only if SRT(N;) D
SRT(N,).

Proof:
Analogously to the proof of Theorem 4.11, where for the ‘if’-direction additionally
Proposition 4.13 is applied. m4.16

Theorem 4.17

Let N; and N, be timed testable nets. Then N; >a N if and only if ART(N;) 2
ART(N).

Proof:
“f7:
Analogously to the ‘if’-direction in the proof of Theorem 4.11, where additionally
Proposition 4.13 is applied.

‘only-if
Let N; =a N, and take some w = w1Z; ... w,Z, € ART(N,). We may assume that
1. w is terminated by Proposition 3.9.1 and .3 and

2. wy 1s the empty sequence by Proposition 3.9.1 and .2 and

3. Z; C A = l1(Th) U l5(T3) for all 7, since we may assume the alphabet ¥ to be
restricted to A.

33

We have to show that w € ART(N;) and will therefore construct a discrete test (O, n),
such that N may, (O,n) for some testable timed net N if and only if w € ART(N);
then Ny may, (O,n), hence N; may, (O,n) and w € ART(N,).

We construct (O, n) as follows: O consists of two parts. The first part contains the
places s; and s,; and the transitions ¢; and ¢,;. The s; and ¢; model something like
a clock, while the s,; and ¢,; test for refusal of Z; N ¥. The second part consists of
(e,1),...,(e,7) for each e in w, which test for the correctly timed occurrence of the
action attached by e.

So = {si|t=1,...,n+1}U{se;|2=1,...,nand a € Z;}
U{(e,?) |2=1,3,5,7 and (a™, e) occurs in w for some a € X}

To = {success}U{t;|i=1,...,n}U {ta;|2=1,...,nand a € Z;}
U{(e,?) |2 =2,4,6 and (a%,e) occurs in w for some a € T}

Fo contains exactly the following pairs:

(siyti), (tiy Siv1), 1=1,...,n
(Snt1, success)

(Sairtai), 1=1,...,n, a € Z;
(S0, H_l) 1=1,...,n—1, a€ Z
(San, Success), a € Z,

(i) Sait1), t=1,...,n—1,a€ Z
((e,7),(e,24+ 1)), i=1,...,6
(

((e, 7), success)
The labelling (), t € To, is wait except for the following cases:

lo(success) = w
lo(taﬂ') =a
lo(e,4) = a if (a*, €) occurs in w

The duration do(t), t € To, is 1 except for the following cases: if (a™,€e) occurs in w
then

80((e,2)) is the number of time steps in w before (a*,e) and
80((e,4)) is the number of time steps in w between (a*,€) and (a™, €) and
] 6 ,E).

(

o((e,
The marking Mo(s), s € So, is 0 except for: Mo(s1) = Mo((e,1)) = Mo(s4,1) = 1.

)) is the number of time steps in w after (a™, e

Assume N may, (O,n) due to some w'(1l) = wy(1)... wp(l)wny1(1) € AL(N||£O)
for any testable timed net N (i.e. some (w™,e) occurs in w' and dur(w') = n). We
can regard w'(1) as a timed refusal trace w” in replacing (1)-steps by X’s. Then by
Proposition 4.15 we have w” € ul||%v for some u € ART(N) and v € ART(O). We
consider the different parts of O and draw conclusions for u = w1 X . . . up Xptni1 Xni1
and v = v1Y] .. . v Youni1 Yoa1.

34

Let us first have a look at the part of O containing s;, ¢;, S4;, to; and success. In order
to reach success in time it is necessary to fire the sequence ¢; .. .t,; more precisely, t;
has to start immediately before and has to end immediately after the i-th time step.
Thus, s, ; is marked before the 7-th time step and ¢,; might empty s, ;; to prevent this
in A-behaviour, N must refuse a at this moment, i.e. we must have a € X;. If this is
the case, s,; can be emptied after the i-th time step by t;41 (or by success if 1 = n).
Hence, t; ..., is fired in N||sO ifand only if Z,NX C X;NX fori=1,...,n. These
inclusions hold if w1 X7 ... u, X, = w.

Secondly, let us consider some (a%,e) appearing in w; let 7; be the number of time
steps in w before (a™,e), 72 be the number of those between (a™,€e) and (a7, €), and
73 be the number of those after (a™,e); observe that 71 > 1 since w; = A. In order
to mark (e, 7) in time, (e,4) must start after 7; time steps and end after 7, + 7 time
steps. This is possible if and only if u, 4; contains the start of some a that ends in
Up +ry+1- Without loss of generality, we may assume that u,, 1 contains (a*,€) just as
Wr, 1 does and that u,, .,+1 contains (a™,e) just as wy, 4,41 does.

We conclude that N may, (O, n) by the above w'(1) only if u; is essentially w; (i.e. up
to permutations within some u;’s) and Z; C X; for allt =1,...,n. On the other hand,
our considerations also show that N may, (O,n) if there is some v = u1 X1 ... u, X, €
ART(N) of this form. We conclude N may, (O,n) if and only if w € ART(N) and are
done. m4.17

4.3 Comparing the Four Variants of Discrete May-Testing

That ERT-inclusion is actually finer than >g is shown by the following results:

Theorem 4.18

For testable timed nets, the relations >g and > coincide.

Proof:

By Proposition 3.8, LL- and EL-semantics coincide with liberal- and mixed-behaviour
resp. defined in [Vog95]; there it is shown that for any testable timed net N and any
discrete test (O, d) we have N may, (O, d) if and only if N mayg (O, d); the coincidence
of >g and > follows directly. m4.18

Proposition 4.19

Let N; and N, be timed nets. Then

1. SRT(N) C SRT(N,) implies ERT(N;) C ERT(IV2) and ART(N;) C ART(NV).
2. ERT(N,) € ERT(N,) or ART(N,) € ART(IV) implies LL(N;) C LL(N).

Proof:

1. Straightforward with Definition 4.12, since ERT(N) and ART(N) are syntactically
decidable subsets of SRT(N) for any timed net N.

35

2. Straightforward with Definition 4.12: take some w € LL(N;) and replace all (1)-
steps in w by 0; this yields a refusal trace w’ in ERT(N;) and ART(N3), hence w' €
ERT(N,) or w' € ART(N,), thus w € LL(N,). m4.19

Hence, it turns out that there are much more relations between the four variants of may-
testing than between their corresponding basic semantics; on the class of untimed nets
even g coincides with >4, thus there are only two preorders and one of them refines the
other one:

Proposition 4.20
Let N; and N, be untimed nets. Then
1. LL(N;) € LL(N,) implies ERT(N;) C ERT(Ns).
2. ART(N;) C ART(N,) implies SRT(N;) C SRT(N,).
Proof: Let N be an untimed net.
1. Then ERT(N) = {wi1 X1 ... wo Xy |w1(1) ... wn(1l) € LL(N) and

foralli=1,...,n—1: (a%,e) occurs in w; only if (a7, €) occurs in w;;; and
foralli=1,...,n: (a7,€e) € X; only if (a,€) occurs in w;}.

2. Then SRT(N) = {w1 X:1 .. . wo Xy |w1Y1 ... w,Y, € ART(N) for some Y;, such that
foralli=1,...,n—1: (a%,e) occurs in w; only if (a7, €) occurs in w;;; and

foralli=1,...,n: Y; C X; and (a7, €e) € X; only if (a*,€) occurs in w;}.

From this, the claimed implications follows quite directly. m4.20

Corollary 4.21

The following implications and no other hold in general between the discrete may-
testing preorders for untimed (left) and all timed (right) nets.

~L ~L

Proof:
For all timed nets, and hence for untimed nets, too, the positive results follow from
Theorem 4.18 (> <> =), Proposition 4.19.1 (> < »s — >a) and Proposition 4.19.2
(=L < =a), and for untimed nets additionally >g < >=a by Proposition 4.20.2. We
cannot have | — >s (and hence not »| — >4) for untimed (and hence all timed)
nets in general, since this would imply that LL-inclusion yields SL-inclusion for untimed
nets in general, a contradiction to Proposition 3.20 with Proposition 3.15.1 and .2.

36

For the additional negative result concerning timed nets consider:

2
N1 (®—=[a] N2 (®—=[a]

We have ART(N;) C ART(Nz), but (a™,e,){(a",e.)}{(a™,€eq)} € SRT(N;)\ SRT(Ny).
m4.21

4.4 Comparing Strict May- and Must-Testing

Finally, must-testing is also characterized by SRT-inclusion, but in reverse direction:
whereas for may-testing the chance to perform successful in a test was increased with
the number of refusal traces, for must-testing the number of failable tests increases with
the number of refusal traces:

Theorem 4.22

Let N; and N, be timed testable nets. Then N; 1 N, if and only if SRT(N;) C
SRT(N,).

Proof:

‘if’: Assume SRT(N;) C SRT(N,) and let (O, d) be a timed test. Then SRT(N;) C
SRT(N,) implies SL(N;||zO) C SL(N:||sO) by Proposition 4.15 and Proposition 4.13.
Thus, if N; fails the test due to some w € SL(N;||50), then so does Ns.

‘only-if: Let N be any testable timed net; then by [Vog95], for each w € (X% x E) U
{(1)})* there exists a discrete test (O, d),, such that N rhust (O,d), if and only if
w € SRT(N). Now let Ny J Ny; then w € SRT(N;) implies Ny yust (O, d),,, hence
N, must (O, d),, by assumption and w € SRT(N;) by the above, too. m4.22

Corollary 4.23
Let N; and N, be timed testable nets. Then N; 1 N, if and only if N, =g Nj.
Proof: Follows from Theorem 4.22 and Theorem 4.16. m4.23

37

References

[DNH84] R. De Nicola and M.C.B. Hennessy. Testing equivalence for processes. TCS,
34:83-133, 1984.

[Gla90] R.J. v. Glabbeek. The refinement theorem for ST-bisimulation semantics. In
M. Broy and C.B. Jones, editors, Programmang Concepts and Methods, Proc.
IFIP Working Conference, 27-52. Elsevier Science Publisher(North-Holland),
1990.

[JV95] L. Jenner and W. Vogler. Fast asynchronous systems in dense time. Technical
Report Nr. 344, Inst. f. Mathematik, Univ. Augsburg, 1995. Available at
http://wwwl.Informatik.Uni-Augsburg.DE/~jenner/.

Extended abstract appeared in Proc. ICALP 96.

[Rei85] W. Reisig. Petri Nets. EATCS Monographs on Theoretical Computer Science
4. Springer, 1985.

[Vog95] W. Vogler. Timed testing of concurrent systems. Information and Computation,
121:149-171, 1995.

38

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

