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Introduction

Inspired by the work of Nair, Evans, Mareels and Moran [25] about entropy-
like notions for measuring the complexity of certain control tasks, and the
characterizations of Bowen-Dinaburg of the topological entropy in metric
spaces, Colonius and Kawan introduced in [10] the invariance entropy and
outer invariance entropy concepts for continuous-time control systems as a
measure of how often open-loop control functions have to be updated in order
to achieve invariance of a given compact and controlled invariant subset @) of
the state space for a fixed set of initial states K C (). In subsequent works
[19], [18], [20] and [21], Kawan obtained lower and upper bounds for the
invariance entropy and in some particular cases an expression was obtained
(see for instance Corollary 5.3, Theorem 7.2 and 7.8 of [21]). In [20] is shown
that if there is subbundle of constant rank of the tangent space over points in
(@ where the system is expanding, then the lower bound obtained depends on
the infimum sum of the positive Lyapunov exponents of the system and on
a quantity that measures how much the solutions of our system starting in
K tends to escape the compact controlled invariant set (). For control-affine
system, with assumptions, the upper bound depends also on the sum of the
positive Lyapunov exponents but it differs from the lower bound in which set
the infimum is considered. Although such bounds goes in the direction of an
expression it is hard to say whether the escape entropy vanishes or not.

In order to analyze those bounds and see if one could improve them, at
least for some particular cases, we consider a right invariant control-affine
system over a semi-simple Lie group G. Associated with it there is a con-
tinuous flow, denominated control flow of the system, that acts as a flow of
automorphisms on a trivial principal bundle with fiber GG. For such settings,
the theory developed in [28], [26], [30] and [1]| allow us to say explicitly who
are the chain control sets and control sets of the induced systems on the
flag manifolds of G. It is shown that on every chain control set of every



flag manifold the induced control-affine systems are partially hyperbolic sets
and there are chain control sets on certain flag manifolds where we actually
have hyperbolicity. For such hyperbolic chain control sets it is shown that
we can get rid of the escape entropy and we can slightly improve the upper
bound showing that lower and upper bounds are almost the same. When
hyperbolicity happens in the maximal flag the result is true for all control
sets.

Still concerning control-affine system we have a special class of such sys-
tems that are the system whose drift generates a flow of automorphisms as
introduced in [4] and [5]. For such systems we work with the concept of outer
invariance entropy (that is a natural lower bound for the invariance entropy).
Its is shown that for some class of groups we have that the outer invariance
entropy is given by the sum of the real parts of the eigenvalues of an associ-
ated linear derivation what is a natural generalization of the result for linear
control systems obtained in [10] for Euclidean spaces. For the semi-simple
case what we get is that the outer invariance entropy is bounded below by
the same sum of the real parts of the eigenvalues as above and by a negative
quantity that depends just on the exponential growth rate of the associated
right invariant control-affine system without drift.

At the end a new concept of entropy is defined for continuous-time ran-
dom control systems and random pairs as a measure for the amount of infor-
mation necessary to achieve invariance of random weakly invariant compact
subsets of the state space. For linear random control systems with compact
control range, this entropy is given, in a set of full measure for some in-
variant measure, by the sum of the real parts of the unstable eigenvalues of
the uncontrolled system and if we assume ergodicity such quantity is almost
everywhere constant.

Now we briefly sketch the contents of the Thesis:

The first Chapter is divided in two Sections. The first serves as an intro-
duction of the basic control-theoretic notions. We will just consider system
given by differential equations, more specifically control-affine systems. Such
systems have special properties and one of them is that we can associate to
it a continuous flow whose dynamical properties are intrinsically connected
with the properties of the solutions of this system. The notion of uniformly
hyperbolic sets for control-affine systems is also introduced and it will be
central in Chapter 3 and in subsequent chapters.

In the second Section the central notion of invariance entropy for control
systems is established and its basic properties are stated, such as the impor-



tant result about invariance under conjugacy. A related notion, named outer
invariance entropy, is also introduced. Such notion is a natural lower bound
for the invariance entropy and is, in some respect, better behaved. The last
subsection state the bounds obtained for general systems and the concept of
escape entropy.

In Chapter 2 the semi-simple theory is considered. The first Section serves
to introduce the general notations and results about semi-simple theory. In
Section 2.2 is introduced the concept of flag type of a semigroup and the
relation between it and the control sets of the semigroup considered. In
Section 2.3 a flow on a principal bundle is considered and the flag type of
such flow is defined. It is shown that the flag type of a flow is closely related to
its finest Morse decomposition on the induced flag bundles. The notion of a
vectorial cocycle associated with the flow is also defined and some properties
are derived.

In Chapter 3 we consider a right invariant control-affine system on a semi-
simple Lie group. The associated control flow acts as a flow of automorphisms
on a trivial principal bundle what allow us to apply all the results stated in
Chapter 2 to this special case. Such results allow us to characterize all
the chain control sets for the induced systems on the flag manifolds and
to show that they are partially hyperbolic sets. For some flag manifolds is
shown that the maximal control set has escape entropy equals to zero and
for some hyperbolic chain control sets that is also true. In particular, when
hyperbolicity happens on the maximal flag manifold it is shown that all the
control sets on every flag manifolds have escape entropy equals to zero. In
the last Section we improve the upper bound over some hyperbolic chain
control sets, using the ideas from [21] for projective systems.

In Chapter 4 we consider an admissible pair for a linear system on a Lie
group (not necessarily semi-simple) and analyze the outer invariance entropy.
It is shown that in many cases a generalization of the result for linear system
in R? is possible and that is closely related with the geometry of the Lie
group considered.

In Chapter 5 we introduce a new concept of invariance entropy by adding
a new random component to our system. The addition of such component
gives rise to a concept of a family of entropies parametrized by the random
component. For the linear case we are able to show that such invariance
entropy is given a.e. by the sum of the real part of the unstable eigenvalues
of the uncontrolled system and assuming ergodicity is possible to show that
this entropy is a.e. constant.
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Chapter 1

Control Systems and Invariance
Entropy

The aim of this chapter is to introduce the notion of control systems on
smooth manifolds given by differential equations and define its invariance
entropy.

1.1 Control Systems

Let € be a compact convex set of R™. The set of admissible control
functions is defined by

U :={u:R — R™ u measurable with u(t) € Q a.e.}.

The set 2 is denominated the control range of the system.
The shift flow on U is defined by

0:-RxU—U, 0(t,u) = 0u with (Qyu)(s) :=u(t+s) for all t,s € R.

Let M be a d-dimensional smooth manifold and F': M x R™ — T'M be a
continuously differentiable function such that for each u € R™ we have that
F, := F(-,u) is a C'-vector field on M.

By a control system we understand a family of ordinary differential
equations

(t) = F(z(t),u(t)), ueld (1.1)
on M parametrized by the set of admissible functions U4. We call the map F'
the right-hand side of the system.



The assumptions on F' implies that there exists, for every initial value
x € M and every control function u € U, a unique solution ¢(-, z,u) such
that ¢(0,z,u) = z and for t > 0, (¢, z,u) does not depend on the values of
u outside of [0,¢), that is, if uy,us € U and uy(s) = us(s) for all s € [0,1),
then o(t, z,u1) = p(t, x,uz) (see [21]).

We will usually use the notation ¢, ,(z) instead of (¢, z,u). Since the
concept of invariance entropy consider only solutions which stay inside a
compact set (or an e-neighborhood of it) we may assume, without loss of
generality, that all solutions are defined on R. Hence, the solutions give rise
to a global map

e:RxUXxM— M, (t,u,z)— p(t, z, u). (1.2)
For the control system (1.1) and a state z € M, the sets
Ol (z) :={ye M;Juecl, t€[0,7]; y =p(t,z,u)}

and
Ot () := U Ot _(z).
>0
are called, respectively, the set of points reachable from x up to time
7 and the positive orbit of x. In the same way, the sets

O, (z) ={ye X;Juel, t€[0,7]; v =9(t,y,u)}

and
O~ (z) = | J O, (x)
>0
are called the set of points controllable to x within time 7 and the
negative orbit of x. Moreover, for every 7 > 0, the set of points reach-
able at time 7 is given by

O,(z) ={ye X;Juel; z=o(r,y,u)}.

The next Definition is necessary when we are interested in the notion of
controllability of control systems.

Definition 1.1.1 The control system (1.1) is called local accessible from
x € X if the interior of the sets Of_(x) and OZ_(x) are nonempty for every
7 > 0. It is called locally accessible if it is locally accessible from every
point x € X.



The following Proposition give us a Lie-algebraic criterion in order to have
local accessibility. Such result is known as Krener’s criterion and is usually
called the Lie rank condition.

Proposition 1.1.2 Consider a control system with right-hand side F and
control range € and assume that F, is a C*®-vector field for every u € R™.
Define

F ={F, uveQ}CX®M).
Let L(F) C X®(M) be the smallest Lie algebra containing the set F and
Apry(x) = {f(x); feL(F)} forallx € M. Then if Apry(x) =T, M for

all x € M, the system is locally accessible.

We introduce now a very special class of control systems, the so-called
control-affine systems. For such systems we have associated a continuous flow
whose properties have intrinsic relations with the solutions of the system.
The proofs of the results stated here can be found in [12].

Definition 1.1.3 Let M be a connected C"-manifold (n > 3). A control
system given by differential equations is called control-affine if the right-
hand side F' has the form

Fa(t), ut)) = fo(z(t)) + Zui(t)f@-(x(t)) uel (1.3)

with vector fields fo, ..., frn € XY (M) and control range 0 compact and con-
vex. The vector field fo is called the drift vector field and fi,..., f,, the
control vector fields of the system.

The set U of admissible control functions in the case of control-affine
systems becomes a compact metrizable space with the weak*-topology of
L>*(R,R™) = L'(R,R™)*. A metric compatible with the topology is given

by
_ - 1 ‘ fR<u1<t> - U2(t),$k(t)>dt|
du(m,w) - ; ok 1+ | fR<u1(t) - uQ(t>7$k(t)>dt’ (1.4>

where {z} is an arbitrary countable dense subset of L'(R, R™). Also, in the
control-affine case, the control flow

¢ RX(UXM)=UXM, ¢(u,z) = (O, ot z,u)),
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defines a continuous dynamical system on U x M (see Lemma 4.3.2 of [12]).
The next Definitions introduce the notions of control sets and chain con-
trol sets of a control system.

Definition 1.1.4 A nonempty set D C M 1is called a control set of the
control system (1.1) if

(i) D is controlled invariant, that is, for every x € D there is u € U with
o(Ry,z,u) C D;

(i1) For every x € D one has D C c1 O™ (x);

(iii) D is mazimal with properties (i) and (ii), that is, if D' O D satisfies
(i) and (ii), then D" = D.

We say that a control set D is an invariant control set if cl D = c1 O (x)
for all x € D.

Let x,y € M and ¢,7 > 0. A controlled (g, 7)-chain from z to y
is given by n € N, xg,..., 2, € M, ug,...,u,_1 and 7g,...,7,_1 > 7 with
ro =, T, =y and

o(p(ti, xi,u;), ri01) <e foralli=0,1,...,n—1,
where p is any metric in M compatible with the given topology.

Definition 1.1.5 A set E C M is called a chain control set of the system
(1.1) if it satisfies the following properties:

(i) For every x € E there is u € U with (R, z,u) € E;

(i) For all x,y € E and e,7 > 0, there is a controlled (¢,T)-chain from x
to y (the points in this chain are not necessarily elements of E);

(11i) E is maximal with properties (i) and (ii).

The following properties of chain control sets, whose proofs can be found
in [12], Section 4.3, establish a relation between the control-theoretic pro-
perties of the control-affine system and the dynamical properties of the as-
sociated control flow.



Proposition 1.1.6 The following assertions hold:
(i) Every chain control set E of the control system (1.3) is closed;

(ii) Assume that the (1.3) is locally accessible. Then every control set D
with nonempty interior is contained in a chain control set E;

(i1i) Different chain control sets of (1.3) are disjoint;

(i) If M is compact and E is a chain control set of the control system

(1.3), then
E={(u,x) el x M; @R, z,u) C E}

is a mazimal invariant chain transitive set' for the control flow of the
control-affine system (1.8). On the other hand, if € C U x M 1is a
maximal chain transitive set for the control flow, then the projection of
E to M is a chain control set.

Next we introduce the notion of hyperbolicity for control-affine systems,
notion that we will find when working with induced systems on flag manifolds.

Definition 1.1.7 Assume that () C M is a compact set which is controlled
invariant in forward and in backward time for the control-affine system (1.3),
that is, for any x € Q there exists u € U with (R, z,u) C Q. Define the
full time lift of Q) by

Q:={(u,z) eU x M; @R, z,u) CQ}.

Further assume that for each (u,z) € Q the tangent space T, M can be written
as a direct sum
.M=E, ®E;,

of subspaces such that the following statements hold:

1. For allt € R and (u,x) € Q we have

(Aot u)aE,, = E,, and  (dpru). B, = E;;(u’x);

(u,z)

!See Definition on page 32 ahead



2. There are constants c, u > 0 such that
[(dpru)ov|| < cre ™ |[v]|  forallt >0, (u,z) € Qv e E,,
and

||(dpsu)av]| > ce||v||  for allt >0, (u,x) € Q,v € E,Iz;

Then @) is called uniformly hyperbolic.

From Lemma 6.4 of [21] the decomposition of the tangent space above
vary continuously on (u,z) and when the state space M is compact, the
dimension of Ej, are constant on Q.

1.2 Invariance Entropy

This Section gives an introduction to the concepts of invariance entropy for
the control system (1.1) and its properties. The proofs can be found mainly
in [21].

1.2.1 Definitions and Basic Properties

Invariance entropy is a nonnegative (possibly infinite) quantity which is as-
signed to a pair (K, Q) of subsets of M, which satisfies the properties de-
scribed in the following definition.

Definition 1.2.1 A pair (K, Q) of nonempty subsets of M is called admis-
sible for the control system (1.1) if it satisfies the following properties:

(i) K is a compact set;

(i) For each x € K there exists u € U such that ¢(Ry,z,u) € Q (in
particular, K C Q).

Given an admissible pair (K, Q) and 7 > 0, a set S C U is called (7, K, Q)-
spanning if

Vee K; JueS; ¢(0,7],z,u) C Q.

By i (7, K, Q) we denote the minimal number of elements that such a set
can have. If there is no finite set we say that 7, (7, K, Q) = co. If K = @),

10



we omit the argument K, that is, we write 7, (7, Q) and we speak of (1, Q)-
spanning sets.

Note that the existence of (7, K, Q))-spanning sets is guaranteed by prop-
erty (ii); indeed, U is a (7, K, Q)-spanning set for every 7 > 0. A pair of
the form (@, Q) is admissible if and only if @) is a compact and controlled
invariant set.

Definition 1.2.2 Given an admissible pair (K,Q), we define the invari-
ance entropy of (K, Q) by

1
hiny (K, Q) := lim sup — log iy (7, K, Q).
T

T—00

Here, we use the convention that log = log, = In. If K = Q, again we omit
the argument K and write hiy (Q). Moreover, we let log oo := co.

The following Proposition put together the main basic properties of the
invariance entropy. Their proofs can be found in [21], Proposition 2.1 to 2.3.

Proposition 1.2.3 Let (K, Q) be an admissible pair. It holds:
(i) If 11 < 7o then riny (11, K, Q) < riny (72, K, Q);

(i) If @ C P, then also (K,P) is admissible and ry (7, K,Q) >
Tinw (T, K, P) for all T > 0; hence hin (K, Q) > hin (K, P);

(i) If L C K s closed in M, then also (L,Q) is admissible and
T (7, L, Q) < riny (7, K,Q) for all 7 > 0; hence hp(L,Q) <
hinV(K7 Q);

() If Q is open, then rin (7, K, Q) is finite for all T > 0.
If Q) is compact and controlled invariant we have also:
(v) The number rin (T, Q) is either finite for all T > 0 or for none;

(vi) The function T +— log rin (7, Q), Ry — Ry U {oo}, is subadditive and
therefore

1 1
hinv(Q) = lim — lOg Tinv (T7 Q) = lng - lOg Tinv (T7 Q)
>0 T

T—00 T

11



Remark 1.2.4 The preceding proposition implies the equivalence of the fol-
lowing statements:

i hinv(Q) is ﬁm’te;
o iy (T, Q) is finite for some T;
o 7in(T, Q) is finite for all T.

A trivial example where we have zero entropy is when @ is an invariant
set, that is, the solutions starting in () do not leave (). Nontrivial examples
can be found in [21] page 47.

Another notion of entropy associated with an admissible pair is given by
the following Definition.

Definition 1.2.5 Given an admissible pair (K, Q) such that Q is closed in
M, and a metric o on M, we define the outer invariance entropy of
(K, Q) by
hinv,out<K7 Q; Q) = lime\o hinv<K7 Na(Q))
= SUP.»o hiny (K, Ne(Q)),

where N.(Q) denotes the e-neighborhood of Q.

The above Definition is independent of uniformly equivalent metrics
(Proposition 2.5 of [21]) and when it is the case, we denote the outer in-
variance entropy just by Ainy out (£, Q). This quantity is better behaved than
the invariance entropy and they are related by

0 S hinv,out(Ka Q) S hinv(K7 Q) S 6.9

(Proposition 2.4 of [21]). A question that arises is under which conditions
we have the equality between them.

The following result (Proposition 3.1 of [10]) shows that in order to cal-
culate the (outer) invariance entropy it is enough to consider steps that are
integer multiples.

Proposition 1.2.6 Let (K, Q) be an admissible pair for the control system
(1.1). Then for all T € Ry we have

1
hiny (K, Q) = lim sup — log riny (7, K, Q) (1.5)
Non—oo NT

and the same holds for the outer invariance entropy.

12



An appropriate notion of topological conjugacy for control systems, which
preserves the invariance entropy, is given in the next Definition.

Definition 1.2.7 Consider two control systems &;(t) = Fi(z;(t),u;(t)) on
M; with solutions ;(t;, x;,u;) and set of admissible functions given by U;
corresponding to control ranges Q;, i = 1,2. Let m : Ry x My — My (t,x) —
(), be a continuous map and h : Uy — Uz a map such that

7T?5(901(757'73’7“6)) = @Q(t,ﬂo(l'),h(u)) (16)
holds for allt € Ry, x € My and uw € U,. Then:

e The pair (m, h) is called a time-variant semi-conjugacy from i1 (t) =
Fi(z1(t), ui(t)) to da(t) = Fa(wa(t), ua(t));

o [f m is independent of T € Ry, we can regard ™ as a map from M,
to My and we say that (7, h) is a (time-invariant) semi-conjugacy
fmm .Tl(t) = Fl(xl(t),ul(t)) to .QIQ(t) = Fg(l’g(t), Ug(t)),

o [f the maps m : My — My are homeomorphisms and h : Uy — Us
is invertible, we call (w,h) a time-variant conjugacy from i(t) =
Fl(xl(t),ul(t)) to Ig(t) = FQ(ZEQ(t),Ug(t))

The next result (Proposition 2.13 of [21]) give us a relation between the
(outer) invariance entropy of conjugated systems.

Proposition 1.2.8 Let @;(t) = F;(x;(t),u;(t)), i = 1,2 be two control
systems and let (m,h) be a time-variant semi-conjugacy from z1(t) =
Fi(z1(t),ui(t)) to io(t) = Fa(xa(t),us(t)). Further assume that (K, Q1)
is an admissible pair for ©1(t) = Fi(x1(t),ui(t)) and

+(Q1) C m(Q1) for allt > 0. (1

m :
Then (Ks, Q2) = (mo(K), m0(Q)) is an admissible pair for the system &o(t) =
Fy(xa(t),us(t)) and

\]
~—

)
(
Piny (K1, Q1) > hiny (K2, Q2).

Moreover, if Q1 is compact and the family {m }er, is pointwise equiconti-
nuous, then

hinv,out(Kh Ql) Z hinv,out<K2> QZ)
A sufficient condition for the existence of a topological conjugacy can also
be formulated in terms of the right-hand sides of the systems (see Proposition

2.14 of [21]).

13



1.2.2 Upper and Lower Bounds for Control-Affine Sys-
tems
In this section we will show the known bounds for the invariance entropy,

due to Kawan. As before we will be considering control-affine systems over
a Riemannian manifold M.

Upper bound

Let M be a d-dimensional Riemannian manifold and let

m

() = F(x(t), u(t)) = fole(t)) + Y wit) filx(t))

=1

be a control-affine system with control range (2.

Definition 1.2.9 We say that the system @(t) = F(x(t),u(t)) on M is
strongly accessible if for each x € M there s some 7 > 0 such that

int O, (x) # 0

If we denote by Ly the ideal in L£(F) generated by the vector fields
fi,-.., fm we have that the system is strongly accessible if dim £y = d (see
Proposition 5.6 (vi) in [21]).

For a given ¢t € R and (u,z) € U x M, the derivative
(d@t,u)az T M — T¢t7u(x)M

is a linear isomorphism between d-dimensional Euclidean spaces, and hence
has well-defined (positive) singular values, which we denote by

o1(t,x,u) > og(t,x,u) > ... > o4(t,z,u) > 0.

For 0 < k < d, the singular value function of order k of (dy;.). is denoted
by

| otz u)oa(t, x,u) - op(t,yu)  for k>0
oty @, u) = { 1 for k = 0.

We have that for every k € {0,1,...,d}, the function a* : R x U x M defined
by

a¥(u, ) := log oy (t, , 1)

14



is a subadditive cocycle over the control flow.
When k = d, we have the absolute determinant of (dy; )., that is,

’det(dgotyu)x| = oy (t,x,u)oo(t, z,u) - - oq(t, x,u).

For the control function u € U, the Lyapunov exponent at x in the
direction v € T, M, v # 0, is given by

1
A(u, z;v) = limsup — log |(dpr4,).v| € RU{—00, +00}.

T—=o0 T

We have then the following upper bound for the invariance entropy.

Proposition 1.2.10 Let D be a control set with nonempty interior of the
above system and assume that strongly accessibility holds. Let (u,x) € int U x
intD such that p(t,z,u) is contained in a compact set of intD for all t > 0.
Furthermore, assume that there exists k € {0, 1,...,d} such that the following
are satisfied:

(i) Every periodic trajectory corresponding to some (v,y) € intU X intD
has ezactly k positive Lyapunov exponents (counted with multiplicity);

(i) There exists to > 0 such that a¥(u,z) >0 for all t > t,.

Then for every compact set K C D it holds that

1
hinv(K7 Q) < lim sup _af(u7 [IZ’)
T

T—00

The proof of the above Proposition can be found in [19] page 147. Al-
though the condition about strongly accessibility seems to be a little restric-
tive, for the systems that we will consider it will be equivalent to the rank
condition.

Lower Bound and Escape entropy

Consider the control system (1.1) and let (K, Q) be an admissible pair for
this system such that () is compact and controlled invariant. Furthermore,
assume that hi,, (Q) < oo.
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Following [19] we can associate with the set @) a vector bundle of rank d,
called the extended tangent bundle over Q, given by:

mo: |J {u} x oM — Q, mo(u,v) = (u, mrar(v)), (1.8)
(u,z)EQ

where 7y 0 TTM — M is the map sending a tangent vector v € T, M to
its base point x. The topology considered on U is the relative topology of
L>®(R,R™), which turns @ C U x M into a metrizable topological space.
By my : U x M — U we denote the projection onto the first factor,
Ty (U, x) = u.
We define the lift of K inside () as

K:={(uzx)eQ; zeK}
Moreover, for each u € m,/KC we define the nonempty compact sets
K(u,7):={z € K; ¢u(x)€eQforaltel0,r]}, 7>0.
For each u € U and 7 > 0 the Bowen-metric is defined by

QT,u(xa y) ‘= max Q((pt,u(x)a Spt,u(y»
t€[0,7]
For each (u,x) € U x M and 7,¢ > 0, the Bowen-ball of order T and radius
e centered at x € M, is denoted by

Bl (u,z) ={y € M; o,u(z,y) <e}.

A set S C M is called (u,T,e)-separated if for all z1,xo € S with x; #
x9 one has o, ,(1,22) > €. By replu, 7,6, K, Q) we denote the maximal
cardinality of an (u,7,e)-separated subset of K(u,7). We say that a set
D C M (u,7,e)-spans another set £ C M if for every © € E there is
y € D such that o, ,(z,y) < e. By repan(u, 7, ¢, K, Q) we denote the minimal
cardinality of a set which (u,7,¢)-spans K(u,7). It is easy to see that a
maximal (u,7,e)-separated subset S of K(u,7) also (u,T,¢)-spans K (u, )
and hence

K(u,7) C U BI(u,x).

zeSsS
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Definition 1.2.11 The escape entropy of (K, Q) is defined as follows:

Toep(T,6, K, Q) := sup 7sep(u, 7,2, K, Q),

uEmy K

1
hese (e, K, Q) := lim sup — log 7sep (7, €, K, Q),

700 T

hesc(Ka Q) = ll\r‘% hesc(gv K7 Q)

The next Proposition state the main properties of the escape entropy. It
is a collection of the principal results about the escape entropy and the proofs
can be found in the Chapter 6 of [21].

Proposition 1.2.12 The following assertions hold:
(i) For all 7, >0 and u € U it holds that

Tspan (U, T, €, K, Q) < reep(u, 7,6, K, Q) < repan(u, T, %,K, Q) < o0;
(i) It holds that

1
hesc(Ka Q) = h\IJH lim sup — 10g fspan(Ta g, K7 Q)a

=00 T
where Topan(T, €, K, Q) 1= SUD,cr ik Tspan (U, T, €, K, Q);
(ZZZ) heSC(K, Q) € [O,oo);

(iv) hese(K, Q) is invariant under C°-state equivalence, and hence metric-
independent.

Remark 1.2.13 In [21] we found two definitions for the escape entropy. The
above 1is just used for uniformly hyperbolic sets. Since we are interested in
calculate lower bounds for the invariance entropy on induced flag manifolds
where we do have that the chain control sets are uniformly hyperbolic sets,
the definition above is the best choice.

Let us assume that () is uniformly hyperbolic and consider the subbundle
E* — Qwhose fibers are I . The following result (Theorem 6.2 of [21]) give
us a lower bound for the invariance entropy in the case where hyperbolicity

holds.
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Theorem 1.2.14 Assume that the vector fields fo, fi,. .., fm are of class C
and let @ be a uniformly hyperbolic set that satisfies hiny(Q) < oo. Then for
each compact set K C Q) of positive volume we have

1
hiny(K, Q) > inf limsup —log|det(dpru) pr | — hesc(K, Q).
T u,T

T (u@)EQ 1o

The main goal is try to get rid of the escape entropy, in order to get
a lower bound just in terms of the positive eigenvalues of (dy;,),. In this
direction we have the following results.

Definition 1.2.15 Fiz a metric o of the state space M of the system (1.1)
and let K C QQ C M be nonemtpy sets. Let x1,29 € K, u € U and 7 > 0
with g (z;) € Q for allt € [0,7] and i = 1,2. We say that (1.1) restricted
to K 1s:

(i) uniformly expanding inside @ if there are constants ¢, > 0 such
that

0(0ru(T1), Prul(x2)) > " o(z1, 12);

(77) uniformly contracting inside Q) if there are constants ¢,y > 0 such
that

0(0ra(1), Prul(r2)) < ¢ le ™ oy, 23).

Remark 1.2.16 If K = @ in the above Definition, we say that the system
is uniformly contracting or expanding on Q.

Proposition 1.2.17 Consider the control system (1.1) on M and let (K, Q)
be an admissible pair for it with () compact and controlled invariant. If
the system is uniformly contracting or uniformly expanding on @, then

hesc(K7 Q) = 0'

Proof. The proof for uniformly expanding systems is due to Kawan and can
be found in [19] Proposition 7.4.

Let us then assume that the system is uniformly contracting. For x € )
and 7, > 0, if y € B..(x) and t € [0, 7] we have

Q(@t,u(z)7 @t,u(y)) S C_le_utg(zvy) <e
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what show us that B..(x) C BI(u,x). If we denote by N = N(¢) the minimal
number of ce-balls necessary to cover K we have that

K(u,7) C UBCE(%) C UBg(u,xz)

=1

for some z1,... 2y € K. Theset S = {z1,...,xy} is in particular a (u, 7, €)-
spanning set for K (u, 7) which give us

fspan(Ta &, Kv Q) S N(E)

and consequently

h'esc(K7 Q) S 0.

]

Since we do not always have uniformly expanding or contracting on the
whole set () we will look at the projection between manifolds in order to
compare their escape entropy. Such idea will be central when we specialize
our calculations to the flag manifolds.

Theorem 1.2.18 Let &;(t) = Fi(z;(t),u(t)), i = 1,2 be two control systems
with the same set of admissible functions U and 7 be a continuous map from
M, onto My such that (7,idy) is a semi-conjugacy between them.

Let (K1, Q1) be an admissible pair for &1(t) = Fi(x1(t),u(t)), with Q1 be-
ing compact and controlled invariant and consider (Ko, (Q)2) be the admissible
pair for io(t) = Fo(xo(t), u(t)) given by the projection of (Ki,Q1). We have
then:

(i) If for any (u,x) € Ky there exists z € m'(x) such that (u,z) € K; then

hesc(Klv Ql) Z hesc(K27 QQ)a

(i1) If for every u € my/Ky and T > 0 we have that @, restricted to the
subset of the fibers Q, := Q1N (y) fory € Ky is uniformly expanding
or contracting inside QQ, then

hesc(Kb Ql) g hesc<K27 Q2)
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Proof. By the semiconjugation property above, we have that
Tl C Ko
and property (i) implies that m,K; = m Ky and
m(Ky(u, 7)) = Ky(u,7), for uw € myky, 7> 0.

Let then 7,6 > 0 and v € 7K. Since 7 is uniformly continuous on Kj,
there exists § = d(g) such that

o2(m(x), m(y)) <e it oifz,y) <o

Using the above and the semiconjugation property, we have that if S is a
(u, T,d)-spanning set for K;(u,7), its projection 7(S), is a (u, 7, €)-spanning
set for m(Kq(u, 7)) = Ky(u, ) and then

Tspan (U, T, 0, K1, Q1) > Tspan (U, T, €, Ko, Q2).
Since K1 = 1 e we have

Fspan(Tu (57 K17 Ql) Z Fspan(Ta g, KZ; QQ)

which implies
hesc(Kb Ql) 2 hesc(K2> QQ)
and it shows (1).
For item (i7) denote by K, the intersection 7—!(y)NK;. Consider 7, > 0

and v € m/K; and for each y € Ky let S, be an (u, 7,¢)-spanning set for
Ky(u,7) ={z € Ky;01u(2) € Q1, t € [0, 7]} with the minimum number of

members. Then
U, = U BI(u, z)

2ESy

is an open neighborhood of K,(u, 7). Now

Ki(u,7)\ U, N (77} (B,(y)) = 0.

>0

By the finite intersection property for compact sets, there is W, = B, (y) for
which U, D 7= 4(W,). Let W,,,... W, cover K, and let § > 0 be a Lebesgue

20



number for K, for this open cover. Let then S be an (u, 7,0)-spanning set
for Ky(u,7) with minimal number of elements. For z € S let us denote by
y(x) the element in gy, ...y, such that

Bj(u, 1) C Wy

that always exist, since ¢ is the Lebesgue number of {Wyi }::1 and Bj (u,z) C
Bs(x). We claim that

Kiwncl) U Bu2).

TES 2ESy(2)

In fact, since w(K;(u,7)) C Ks(u,7) for every u € m Ky, we have for
y € Ki(u,7) that 7(y) € B (u,z) for some z € S and then y € 7 !(7(y)) C
Uy(z) what give us y € BI(u, z) for some z € Sy().

Then the set UyesSy(z) is a (u, 7, €)-spanning set for K (u,7) what give
us

Tspan(uv T, €&, K17 Ql) S Tspan(ua T, 57 K27 QQ) : rileag'( Tspan<u7 T, €&, Ky(m)v Ql)

For the uniformly contracting case, an analogous analysis as the one
made in Proposition 1.2.17 above allow us to conclude that the number
Tspan (U, T, €, Ky, (1) is bounded above by a constant that depends just on
e for any y € Ky, what give us

Tspan(ua T,€, Kla Ql) S CVl (5) : TSpan(u7 T, 57 K27 QQ)

For the uniformly expanding case we have also the same and the proof is
analogous of the proof of Proposition 7.4 of [21] as follows: Let S, C K, be
an (u, 7, ¢)-separated set for K,(u, 7). Let x1,29 € S, with 21 # xo and let
s = s(x1,22) € [0, 7] such that o(ps.u(1), SOS,U(:EQ)) = Qu,r(xth)- Using the
cocycle property of ¢, we find that

Q(SOﬂu(:Ul)a 907'7u<x2))
= o((T — s, 0(s,21,u),0:u), o(T — s, (s, T2, 1), Osu))
Z Ceu(‘ris)g(@s,u(lﬁl)a st,u(x2))

> ceMT75) > e,
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Hence, the set ¢, ,(S,) is a ce-separated subset of ()1 with the same cardina-
lity as S,. By compactness we can cover (); with finitely many balls B, (z;),
1 =1,...n of a fixed radius n > 0 such that

exp” ! (By (i) = By(0s,)
and
o(exp,. (v),exp, (w)) < 2lv —w|, for all v,w € B,(0;,,) (1.9)
that is possible since (dexp,)o, = idr, s for all z € M. Then

#QDT,u(Sy) < Z #(@T,u(sy) N B.(z;))

n max #exp, ! (¢r.u(Sy) N Bs(:)).

Set N; = # exp, ! (¢r.u(Sy)NB:(z;)). By (1.9) the set exp, ! (¢r.u(Sy)NBy(2:))
is a ce/2-separated subset of B, (0,,) and so, B(z;,n + (ce)/4) contains N;
disjoint balls of radii (ce)/4. Letting d = dim M, this implies

d d d
4 4 ce

which give us

ce

d
#5, = #0ru(5,) < n<4” - CE)
and therefore we obtain for the expanding case, using Proposition 1.2.12,
Tspan (U, T, €, K1, Q1) < Ca(€) * Topan(u, 7,6/2, K3, Q2)
for Cy(e) = n(%)d. Then, in both cases we have
Tspan (T, €, K1, Q1) < C(€) - Tspan(T,0/2, Kz, Q2).
Applying log, dividing by 7 and taking the lim sup give us

hesc(ga Kla Ql) S hesc(6/27 K2> QZ) S hesc(K27 Q?)

and consequently
hesc(Kh Ql) S hesc(K27 QQ)

as desired. =
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Chapter 2

Control Sets and Morse Sets and
their Flag type

The aim of this chapter is give some notions of the semigroup theory for
semi-simple Lie groups applied to control theory. The notion of flag type of
a semigroup and flag type of a flow are introduced and is shown that they are
closely connected with the control and Morse sets on the flag manifolds and
flag bundles. At the end of the section a vectorial cocycle associated with
the Iwasawa decomposition of the group is defined. Such cocycle normally
measures exponential growth of the associated flow and it will be important
in order to estimate the entropy.

2.1 Semi-simple Theory

We refer to Duistermat-Kolk-Varadarajan [15], Helgason [17], Knapp [22]| and
Warner [34] for the theory of semi-simple Lie groups and their flag manifolds.
In order to set notation let G be a connected noncompact semi-simple Lie
group with finite center and Lie algebra g. Fix a Cartan involution 6 of g
with Cartan decomposition g = €@ s. Associated with the Cartan involution
we have the inner product By(X,Y) = —(X,0Y), where (-,-) is the Cartan-
Killing form of g.

For a maximal abelian subspace a C s and a Weyl chamber at C a fixed,
we denote by II the set of roots of a, II™ the positive roots corresponding to
a, X the set of simple roots in II"™ and II- = —II" the negative roots. For a
given root a € IT we denote by H, € a its coroot so that By(H,, H) = a(H)
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for all H € a. The standard Iwasawa decompositions of the Lie algebra g
associated with this choice of maximal abelian and the Weyl chamber are
given by g = £ ® a @ n* where n* = Y acnt 8o and g, is the root space
associated to «. As for the global decomposition of the group we write
G = KS and G = KAN® where K, A and N* are the connected subgroups
whose Lie algebras are £ a and n*, respectively.

Let W be the Weyl group of G. It is constructed either as the subgroup
of reflections generated by the roots of (g, a) or as the quotient M*/M where
M* and M are respectively the normalizer and the centralizer of a in K.
There is an unique element wy € VW which take the positive roots II* to II~.
Such element is called the principal involution of W.

Associated with © C 3 there are several Lie algebras and groups (cf.
[34], Section 1.2.4). We will denote by g(©) the semi-simple Lie subalgebra
generated by g., @ € O, and put ¢(0©) = g(©) N ¢, a(O©) = g(6) Na, and
n*(0) = g(0)Nn*. The simple roots of g(O) are given by O, more precisely,
by the restriction of the functionals of © to a(©). The coroots H,,a € O,
form a basis for a(©). Let G(©) and K(©) be the connected Lie groups
with Lie algebras g(©) and £(©), respectively. Then G(©) is a connected
semi-simple Lie group with finite center. Let A(©) = expa(0), N*(©) =
expn®(0). We have the Iwasawa decomposition G(0) = K(©)A(O)N=(0).
Let ag = {H € a; a(H) =0 for all & € ©} be the orthogonal complement of
a(0) in a with respect to By and put Ag = exp ag. The subset © singles out
the subgroup We of the Weyl group which acts trivially on ag. Alternatively
We can be given as the subgroup generated by the reflections with respect to
the roots o € ©. The restriction of w € We to a(©) furnishes an isomorphism
between We and the Weyl group W(O) of G(O).

The standard parabolic subalgebra of type ©® C ¥ with respect to the
chamber a* is defined by

po=n (O)dmdadnt

where m is the Lie algebra of M. The corresponding standard parabolic
subgroup Peg is the normalizer of pg in G. It has the Langlands decomposition
Po = KgAN™. The empty set © = () gives the minimal parabolic subalgebra
p=m®adnt whose minimal parabolic subgroup P = Pj decompose as
P=MANT.

We let Zg be the centralizer of ag in G and Kg = Zg N K. We have that
Ko decomposes as Kg = MK (O) and Zg decomposes as Zg = MG(O)Ag
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which implies that Zg = KgAN(O) is an Iwasawa decomposition of Zg
(which is a reductive Lie group). Let ©1,0, C X, then ag,ne, = to, + ao,.
Thus it follows that 291092 = 291 ﬂZ@Q, K@1ﬂ®2 = K@1 ﬂK@2 and P@lﬂ 0y —
Po, N Po,.

For H € a we denote by Zy, Wy, etc. The centralizer of H, respectively,
in G, W, etc., except when explicitly noted. When H € cla®™ we put

O(H) ={a € %; a(H) = 0},

and we have Zy = Zowm), Ku = Koy, NT(H) = NT(O(H)) and Wy =
We )

Let ng = > acti+\ (o) Ja and Ng = expng where (0) is given by all root
in II that is linear combmatlon of the roots in ©. Then N* decomposes as
N* = N*(0)N& where N*(0) normalizes N, N*(O) centralizes N& and
NE©O)n Né)c = 1. We have that g = ng @ pe, Ng N Po = 1 and Py is the
normalizer of nd, in G. The subgroup Pe decomposes as Pg = ZgNg , where
Ze normalizes Ng and Zg N NS = 1. We write pg = O(pe) for the parabolic
subalgebra opposed to pe. It is conjugated to the parabolic subalgebra peo-
where ©* = —(w(0) is the dual to © and wy is the principal involution of
W. More precisely pg = kpe- where k € M™ is a representative of wy in M™*.
If P is the parabolic subgroup associated to pg then Zg = Po N Py and
Py = ZogNg, where Zg normalizes Ng and Zg N Ng = 1.

The flag manifold of type © is the orbit Fg = Ad(G)pe on the Grassmann
manifolds of subspaces of the Lie algebra g, with base point bg = pe, which
identifies with the homogeneous space G/Pg. Since the center of G normal-
izes po, the flag manifolds depends only on the Lie algebra g of G. The empty
set © = () gives the maximal flag manifold F = Fy With base point by = by.
For ©; C ©, C ¥ there is a G-equivariant projection 7'('@ :Fo, — Fg, given
by gbe, — gbe,,g € G. When ©; = () we denote this fibration just by 7e,.

The above subalgebras of g, which are defined by the choice of the Weyl
chamber of a and a subset of the associated simple roots, can be defined
alternatively by the choice of an element H € a as follows. First note that
the eigenspaces of ad(H) in g are the weight spaces g,, and the centralizer
of H € gis given by 34 = > {ga; «(H) = 0} where the sum is taken over
a € a*. Now define the negative and positive nilpotent subalgebras of type
H given by

11H - Z{gon > 0} nH - Z{gav < O}
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and the parabolic subalgebra of type H which is given by

b= {ga: alH) > 0}.

Denote by Nﬁ = exp nﬁ and by Py the normalizer in G of py. Note that
nﬁ, P, N§ and Py are not centralizers of H: These are the only exceptions
for the centralizer notation introduced above. We have clearly that

g=ny OsnOny and Py =3 ®ny.

Define the flag manifold of type H as the orbit on the Grassmann manifolds
of subspaces of the Lie algebra g given by

Fy = Ad(G)py.

Now choose a chamber a® of a which contains H in its closure, consider the
simple roots 3 associated to a® and take ©(H) C . Since a € ©O(H) if, and
only if, Xagyy = 0, We have that

3o(H) = 3H, ﬂg(H) = n[j;h Po) = PH.
So it follows that
Fa =Fem,

and that the isotropy of G in py is
Py = Po(ny = KonyANT = KyAN™,

since Koy = K. We note that we can proceed reciprocaly, that is, if a®
and © are given, we can choose H € cla® such that ©(H) = © and describe
the objects that depend on at and © by H (clearly such an H is not unique).
We remark that the map

Fyg — s, kpy — Ad(k)H, fork € K,

gives an embedding of Fy in s (see Proposition 2.1 of [15]). In fact, the
isotropy of K at H is Ky = Keg(g) which is, by the above comments, the
isotropy of K at pg. Define the negative parabolic subalgebra of type H by

P = {8 a(H) <0}
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and denote by P its normalizer in G. Then we have that P, = P@( -

An element Y = Ad(g)H, H € cla’ is said to be a split element. In
the same way we call an element of the form ghg~! split if h € cl A*, where
At =expa™.

An split element H € clat induces a vector field H on a flag manifold
Feo with flow exptH. This is a gradient vector field with respect to a given
Riemannian metric on Fg (see [15], Section 3). The connected sets of fixed
point of this flow are given by

ﬁX@(H, w) = ZHwb@ = KHwb@,

so that they are in bijection with the cosets in Wy \ W / Weg. In particular,
if H € a* is regular then there are |[W|/|We| isolated singularities. Each
w-fixed point connected set has stable manifold given by

St@(H,’lU) = N}_IﬁX@(H,w) = Pgwb@),

whose union gives the Bruhat decomposition of Fg:

F@ = H St@(H, w) = H Pgwb@

Wu\W /We Wu\W /We
The unstable manifold is
une (H,w) = Njfixe(H,w) = Pywbe.

Remark 2.1.1 For h € cl AT we will write fixg(h,w) to denote the set of
fized points of fixg(H,w) where h =exp H, H € cla™.

For each element w € W there exist simple roots a;; € 3, =1,...,n such
that w = s1---s, where s; are the simple reflection associated to «a;. The
length [(w) of w is the number of simple roots in a minimal decomposition
of w as above. Let II,, = II"™ N wIl~ be the set of positive roots that are
taken to negative ones by w™!. It is a fact that /(w) is equal the cardinality
of I1,,.

Also, if w € W and a € ¥ is a simple root, holds

l(wsy) = l(w)+1 ifand only if , w(a) € IIT
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and
l(wse) =1l(w)—1 ifand only if , w(«a) € II™

For a fixed simple system ¥ of the roots, the Bruhat-Chevalley order
of the Weyl group W is given as follows. For w € W take a minimal de-
composition w = sy --- s, as product of simple roots. Then w; < w if and
only if there are integers 1 <i; < ... <1, < nsuch that wy =s;,---5;, is a
minimal decomposition of wy.

In general the order of YW depends on the choice of the simple system
of roots X, that is, on the set of generators of WW. Note however that the
order obtained from —> coincides with the order coming from 3 because
both simple systems of roots define the same set of generators.

The Bruhat-Chevalley order are associated with the order of control sets
on the flag manifolds (see [29]).

k

2.2 Control Sets for Semigroups Actions

In this section we will introduce the notion of control set via semigroup theory
that is the best approach to work in flag manifolds. The notion of control
sets, as defined in Chapter 1, for control systems on flag manifolds coincide
with the one here stated and so we will use both approaches.

Let S be a semigroup of diffeomorphisms acting on a Riemannian mani-
fold X. We say that S is accessible in 2 € X if int(Sxz) # (0. If the semigroup
S is accessible for every z € X we say that S is accessible.

Definition 2.2.1 A subset D C X is said to be a control set for the action
of S provided it satisfies

1. D C cl(Sx) for every x € D;
2. intD # ();
3. D is maximal with these properties.

The control sets for S are ordered by putting D, < D, if there are x € D,
and g € S such that gz € Dy. Equivalently, D; < Dy if Dy C cl(Sz) for
some, and then for all, x € D;.

For a given control set D the set Dy = {x € D;x € int(Sx) Nint(S'x)}.
is called the set of transitivity of D or core of D. Such set can be empty
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but when it is not the control set D is said to be effective. The invariant
control sets are effective, that is, Dy # () if SD € D or S™'D C D.

We consider now G to be a semi-simple Lie group and S C G a semigroup
with int S # (). The concept of flag type of a semigroup come from the
characterization of the effective control sets in Fg. The demonstration of the
results in this section can be found in [31].

Let us consider an Iwasawa decomposition G = KAN™ and let W the
Weyl group of G. In order to describe the effective control sets and define
the flag type of S, let us consider the set of the split-regular elements of G
that are in the interior of S, that is

R(S) = {h € intS;h = ghg™*, for g € G,h € AT},

where AT is a fixed Weyl chamber.

The core of the effective control sets for the action of S on Fg are given by
the fixed points for elements in R(S) as state the following theorem, whose
proof can be found in Section 3 of [31].

Theorem 2.2.2 For every w € W there is a control set Dg(w) C Fg whose
core 18 given by

De(w)y = | J{fixe(h,w); h € R(S)}.

Moreover, D¢ = Dg(1) is the only control set S-invariant and Dg = De(wy)
the only S~'-invariant. Also, every effective control set is Dg(w) for some

w e W.

The next theorem allow us to define flag type of a semigroup S. For the
proof see [31].

Theorem 2.2.3 Let S C G be a semigroup with nonempty interior. There
exists a subset of the simple roots ©(S) C X such that the following are
equivalents:

(1) ©(S) is the smallest subset © C X, or the largest flag manifold Fe,
such that D¢ is contained in the open cell of a Bruhat decomposition
of Fe, that is, D& C Ng - be for some Iwasawa decomposition;

(11) ©(S) is the largest subset © C 3, or the smaller flag manifold Fg such
that wg' (D) is the S-invariant control set in F;
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(i1i) O(S) is the only subset © C X, or the only flag manifold Fe such
that D is contained in the open cell in the Bruhat decomposition and
7o (DJ) is the S-invariant control set in F.

With this we can define the flag type of the semigroup S.

Definition 2.2.4 The flag type of the semigroup S C G with nonempty
interior is the subset ©(S) C X, or the flag manifold Fg, satisfying one of
the equivalent conditions of the above theorem.

This notion of stability allow us to look, structurally, at the flag type of S
through its elements. For any g € G there is an Iwasawa decomposition G =
KANT such that g = ehu with e € K, h € cl A* and v € N7 is unipotent,
that is, Ad(u) is an unipotent linear map. Furthermore, the elements e, h
and v commutes. Such decomposition is called Jordan decomposition of
g (see Helgason [17], Chapter IX, Lemma 3.1). The flag type of g is given by

O(g) = {a € X; a(logh) = 0}.

The flag type of g says what is the regularity of the vectorial component h
in terms of the roots of G. The following theorem relate the flag type of an
element in int S and O(S).

Theorem 2.2.5 For every g € int S we have that ©(g) C ©(S). Moreover,
there is g € int S with minimal reqularity, that is, ©(g) = O(S). In other
words, the flag type of the semigroup S is the smallest reqularity for the
elements in int S

The fact that ©(g) C ©(5), for g € intS implies that on the flags Fg,
with ©(S) C O, g has at most one fixed point in each control set. We still
do not now what happens with the elements in S that are not in the interior.
As we will see ahead, for control sets of affine control system we can give a
minimal regularity for such elements.

Example 2.2.6 Let G = Sl(n, R). A canonical setting is given by taking a
as the algebra of diagonal matrices with zero trace. The roots are c;; = X\i— A,
where \;(H) = a; if H = diag{ay,...,a,}. A simple system is given by
Y ={aii+1;0=1,...,n—1} and associated to this simple roots we have the
positive Weyl chamber a™ C a given by the matrices H = diag{ay,...,a,}
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with a; > as > ... > a,. Then, for h € cla®™ we have that ©(h) tell us the
multiplicity of the eigenvalues of h. The extreme cases are ©(h) = 0, that is,
all the eigenvalues of h are distinct and O(h) = X which implies that h has
Just one eigenvalue.

Example 2.2.7 Let

m

(1) = folg(8)) + > us(t) fi(g(t)

i=1

be a right invariant control-affine system on a semi-simple Lie group G, that
18, fo, fi,-- ., fm are right invariant vector fields. The right invariance allows
us to induce, on every flag manifold Fg, for © C X, control-affine systems

o(t) = fo(wa(t) + 3 wlt) flwo(t)

where f; = (10).(fi), i = 0,1,...,m and 7o : G — Fg is the canonical
projection.

If we assume that the orbit of the control-affine system at 1 € G has
nonempty interior, that is int O1 (1) # 0, all the effective control sets of the
semigroup S = O (1) on Fg are of the form Dg(w), for some w € W. By
definition of control sets for a semigroup we have that such control sets are
also control sets for the induced control-affine system on Fg with nonempty
mnterior.

Reciprocally, if local accessibility holds for the system on G, all the control
sets with nonempty interior for all the induced systems are effective and so
they are of the form Dg(w), for some w € W. In fact, by Proposition 1.23
of [21] we have that intD C OF(x) = Sx because we are assuming local
accessibility for the system in G. Also by local accessibility we have that intS
is dense in S and consequently we have that (intS)D N D # () and the result
follows from Proposition 1.10 of [31].

Remark 2.2.8 In passing note that we denote both the canonical projections

G — Fg and F — Fg by mg. The point is that the use of both are normally
clear by the context and allow us to avoid extra notation.
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2.3 Morse Decomposition and Flag type of
flows

The description of the flag type of semigroups help us to understand the
dynamics of flows of automorphisms on G-principal bundles, with G semi-
simple. More specifically, let ) — X be a fiber bundle and G be a semi-
simple Lie group such that G acts continuously on the right of () and its
action preserves the fiber of (). This implies that the fiber of the bundle is
homeomorphic to the group G itself.

If ¢, : Q@ — @ is a flow of automorphisms on the G-principal bundle @),
with G semi-simple, we can characterize the Morse components of induced
flows on the flag bundles.

Consider ¢; : X — X be a flow on a topological space X. For x € X the
w-set of x is given by

w(r) = {y € X;3t, — +00; ¢y, () — y}.
In the same way, the w*-set of z is defined as
w(z) == {y € X;3t, = —00; ¢y, (v) = y}.

Definition 2.3.1 Let ¢, : X — X be a flow on a topological space
X. A Morse decomposition of ¢; is a finite collection of disjoint subsets

{My, ..., M.} of X such that:
(1) each M; is compact, isolated * and ¢s-invariant;
(ii) for all x € X we have w(x),w*(z) C J, M;;

(iii) suppose there are M., M, ..., M;, and xq,. ..,z € X\U;_, M; with
w*(x;) C My, , and w(x;) C M, fori=1,...,1; then M;, # M,,.

In order to describe the Morse components using the flag type of semi-
groups, what is done is a description of the chain recurrent components of
the flow, that we will define now.

'A set K C X is isolated if there is a neighborhood N of K such that K C int N and
¢1(xz) € N, for all t € R implies z € K
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Let ¢, : X — X be a flow on a metric space (X,d). For z,y € X and
e, 7 > 0, a (g,7)-chain from z to y is given by =g = z,21,...,2, = y and
Toy - -+, Tn => T such that

d(pr, (7:), iy1) < €.

A subset Y C X is said chain transitive if for each z,y € Y and ¢,7 > 0
there is an (e, 7)-chain from x to y. A point x € X is chain recurrent if
{z} is chain transitive, that is, if for all £,7 > 0, there is a (¢, 7)-chain from
x to z. We denote by R(¢) the set of the chain recurrent points in X. The
relation between the Morse components and chain recurrence is given by the
next result.

Proposition 2.3.2 The flow ¢; admits a finest Morse decomposition if, and
only if, the chain recurrent set R(¢) has finite many connected components.
In this case the connected components of R(¢) are exactly the Morse compo-
nents of the finest Morse decomposition.

Proof. Theorem B.2.26 of [12| =

Due to this Proposition we can describe the Morse components of the
induced flows.

2.3.1 Flag Type of Semigroups of Automophisms

Let Q — X be a G-principal bundle with G semi-simple and X a compact
metric space. Consider the flag bundle associated given by Eg = Q) x¢ Fe,
that is given by the classes of (Q x Fg)/ ~ where (q1,b1) ~ (gq,b2) if and
only if, there exists ¢ € G such that ¢ = ¢» - g and by = g~ ! - by. As before,
[E denote the associated bundle @) x4 F.

Let Sg be a semigroup of local endomorphisms in (). Such semigroup
acts in a standard way in @), in X and in Eg. Assume that S is accessible
and that the action on X is transitive. With this hypothesis we can study
the control sets of the action of Sg in Eg only by looking its action on the
fibers, that is basically just the study of the control sets for the action of a
nonempty semigroup of G on the flag manifold Fg.

The general idea is to consider for each ¢ € @ the semigroup of G given
by

S1={g€G; ¢Y(q) =q-g, for some ¢ € Sg}.
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Since S is accessible we have that S? is open for all ¢ € (). Moreover, if we
denote by D?(w) the control sets given by the action of S? in the maximal
flag IF, we have the following theorem, whose proof can be found in [9].

Theorem 2.3.3 The control sets for the action of Sg in E are given by the
sets D(w), w € W, which are projected onto X and whose core are given
fiberwise by

(D(w)o)g =g - D*(w)o, q € Q.
Moreover, the flag type of each S? does not depend on q € Q.

Definition 2.3.4 The flag type of the semigroup Sq is the flag type of S9
forq e Q.

2.3.2 Flag Type for the Morse decomposition of flows

The idea now is to use the above to characterize the chain recurrent com-

ponents of induced flows on the flag bundles. Let ¢; : Q — @Q be a flow of

automorphisms and consider the local automorphisms of () that are e-close

to the identity, that is, let V. = {¢ € End(Q); 0(¢)(§),€) < ¢, for all £ € F},

where the metric in [F is the standard K-invariant Riemann metric on F.
For each e,7 > 0 we define the (g, 7)-shadowing semigroup as

SE,T = {1/150@50“‘0%0@1; T ZTawiEVE}'

From this construction it follows that the (e, 7)-chains in E coincides with the
orbits of the semigroup S; . Also, the semigroups S; . are accessible so their
control sets are characterized by Theorem 2.3.3. If we denote such control
sets in Eg by g™ (w), we have that the Morse components of the induced
flow in Eg are given by the intersection of these control sets, as stated in the
next theorem.

Theorem 2.3.5 The finest Morse decomposition of the induced flow ¢, :
Eo — Eg are given by

Meo(w) = [\Dg (w).

Moreover, M§ = Meo(1) is the only attractor and Mg = Me(wy) the only
repeller.

34



The proof can also be found in [9], Section 9. We note that for e; < &
and 7 > 7 we have S;, ,, C S, ., what give us (S, ,) C ©(S.,-,) and
then makes sense the following definition.

Definition 2.3.6 The flag type of the flow of automorphisms ¢, : Q — Q) is
the subset of simple roots given by

O(¢) =[)O(S-).

We can also, using ©(¢) and its dual ©(¢)*, give an algebraic description
of the Morse components.

Theorem 2.3.7 Let O(¢) the flag type of the flow ¢y and ©(¢)* its dual. It
holds

(i) The flow admits only one attractor component in Egy and it inter-
sects every fiber in exactly one point. This component is image of a
continuous section oy : X — Kg(4). That is,

<MJ(5(¢)>$ = 04(2).

In the same way there is only one repeller component in the dual flag
bundle Eg(g)« and it is given as image of a continuous section oy : X —

Eg(g)+;

(i) If we consider the equivariant functions® f: Q — Fo and f*: Q —
Fo(g)« associated to o4 and o7, respectively, we have that for each qo €
Q, f(q) and f*(qo) are opposed subalgebras and the orbit

{(f(a), f(@); ¢ € @} = Ad(G)(f(q0), [ (q0)) C Fog) x Foy):-

1s open and dense and it is identified with the homogeneous space
Ad(G)Hy = G/Zy, where Zy = Zy, and Hy is a characteristic ele-
ment for ©(¢), that is, O(¢) = {a € £; a(Hy) = 0};

2That is, for any g € G and ¢ € Q we have that f(q-g) = g~ !f(q) and the same for
I
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(11i) The equivariant function hy : Q — Ad(G)Hy, obtained from item (ii)
above (hy(q) =~ (f(q), f*(q))), give us an algebraic description of the
Morse components of the flow ¢; on every flag bundle Eg. The compo-
nents are given fiberwise by

M@(w)x =q- ﬁx@(hd)(q)v ’LU)
where q € Q is any element such that w(q) = x.

The above theorem says that, fiberwise, the finest Morse decomposition
of ¢; in Eg is given by the finest Morse decomposition of the action of some
conjugated of H, on the flag manifold Fg.

By Proposition 5.4 of [30] the Morse components have also the represen-
tation

Me(w) = {q-wbe; q € Qp} = {r-wbe; r € Ry},

where bg is the origin of Fg, )4 is a ¢-invariant subbundle of ) with struc-
tural group Zy and Ry a Ky, = Ky-reduction of Q)y. The subbundle Qy is

given by Q4 = h;l(Hd,).

Example 2.3.8 Consider the control-affine system given in example (2.2.7).
If we consider the trivial principal bundle QQ = U x G — U, with right action
giwen by the right translation on G we have that the control flow ¢, : Q — Q
15 a flow of automorphisms. By the above, we have that the Morse sets of the
induced control flow on Eg = (U X G) xgFg =U X Fg is of the form

Mo (w) = {q-wbe; q € Qp} = {r-wbe; r € Ry},

where Qy CU x G is a ¢i-invariant subbundle with structural group Z, and
Ry C U x K a Ky-reduction of Qy. These subbundles are not necessarily
trivial, however when it happens we can assume that V., == ¢(1,1,u) € Zy
for every >0, u € U (see [30]).

For every g € S = O%(1), and e,7 > 0 there is ¢ € Q and some potency
g" of g such that g" € SZ_. Since SI_ is an open semigroup we have that

O(g") € O(SZ,)-

But the flag type of g" and of g are the same and the flag type of S, does
not depend on q € Q) which give us ©(g) C ©(S.,) for every e,7 > 0 and
consequently ©(g) C O(¢). That give us a minimal reqularity for all the
elements in S (closure included). In particular, we have O(S) C ©(¢).
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2.4 Iwasawa decomposition and a-cocycle

As above let ) — X be a G-principal bundle with G semi-simple. Let
G = KANT be an Iwasawa decomposition. Since G/K is diffeomorphic
to the Euclidian space AN™, the principal bundle ) admits a K-reduction
R C @ (see |23]). Then we can write an Iwasawa decomposition for @) as
Q = R-ANT and then, every element ¢ € Q can be written uniquely as
g=r-an,withr € R, a € A and n € N*. Take the canonical projections

R:Q— R and A:Q — A
The above maps satisfy:
1. If r € R then R(r) =7 and A(r) = 1;

2. If g € Q and g = man € P = MANT then R(¢q-g) = R(¢)m and
Alg - 9) = Alg)a.

Taking the logarithm of A we have the map a: () — a given by
a(q) = log A(q). (2.1)

We will use the same notation for the map of GG to a that associates for every
g = kan € KANT the element loga € a. With these notations, the above
property 2. implies that

a(g-g) =alg) +a(g) forany ¢€ @, g€ P.

Consider a flow of automorphisms ¢; : Q — ). By above we have that
o' . R — R defined as ¢*(r) = R(¢4(r)) is a flow on R. Moreover, the map

a® Rx R—a, a%(t,r)=a(¢p:(r)),
is an additive cocycle over ¢, that is,
a®(t+s,7) = a’(t, o (r)) +a%(s, 7).

In fact, consider the Iwasawa decomposition ¢,(r) = ¢f(r)asn, € R -
ANT. Using (2.1) we have that

a%(t+ 5,1) = a(drrs(r)) = a(Ar(s(1)))
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= a(¢t(¢f(r) : asns)) = a(¢t(¢f(r)) ) asns)
= a(¢i(¢L (1)) + loga, = a®(t, ¢ (r)) +a(s, 7).

We will usually denote the cocycle a® just by a. The cocycle a factors to
a well defined cocycle on the maximal flag bundle E = Q xgF = R xx F if
we write

a(t,&) = a(t,r)

where £ = r - by. In fact, if £ = " - by, there exist m € M such that ' =r-m
and then

a(t,r’) = a(t,r-m) = a(¢(r) - m) = a(¢:(r)) + a(m) = a(t,r)

since a(m) = 0. We refers to it as the a-cocycle of the flow ¢,. For the
reverse flow, if we consider

a’(t,r) =log A(g—(r))

we also have a well defined cocycle over E and they are related by (see [1])

a"(t, &) = —a(t, o-+(¢)).

In general, the a-cocycle does not factor to the partial flag bundles Fg.
However, if we compose a with some specific § € a* we still have a cocycle
and it factors to the parcial bundle Eg. Such cocycle usually appears when
we want to measure the exponential growth rate of the flows.

Example 2.4.1 The main classical example of cocycles over a partial flag
bundle is the one yielding Lyapunov exponents of linear flows on vector bun-
dles. Let V — X be a real vector bundle of dimension n, and denote by BV
the bundle of frames of V, which is a principal bundle with structure group
Gl(n, R). The elements of BY are linear isomorphisms p : R* — V,, and
the right action of Gl(n, R) is (p,g) — pog. Endow V with a Riemannian
metric (-, ), and let OV = {p : R" = V,; p is isometry } be the orthonormal
frame bundle, which is a O(n)-reduction of BV .

An Twasawa decomposition of Gl(n, R) reads Gl(n, R) = O(n)AN, where
A is the subgroup of diagonal matrices with positive entries an N the sub-
group of upper triangular matrices with 1’s in the diagonal. The subbundle
of orthonormal frames together with the Twasawa decomposition of Gl(n, R)
gives rise to the Iwasawa decomposition BY = OV - AN of BY. Hence our
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vector valued cocycle a(t, &) assume values in the space a = log A, of diagonal
matrices. Now a linear flow ®; on'V defines a flow on BY by ¢(p) = $rop,
which is right invariant. Then the Lyapunov exponents of ®; are given by
the asymptotics of the additive cocycle log |||, v € V. We can read off
this cocycle from the a-valued cocycle as follows: Let ey be the first basic
element of R™. Take v € V, and let v € OV, be such that v = r(ey).
Since ¢i(r) = Dy or it follows that P (v) = Py or(er) = ¢(r)(er). Now,
oi(r) =1 - amy € OV - AN, hence ®(v) = ri(agnier). But nge; = eq. Also,
ry € OV is an isometry. Therefore

@ (0)]] = [laseal]-

That is, ||®(v)|| is the first eigenvalue of a;. Hence if we let Ay € a* be given
by A\i(diag{ay,...,a,}) = a; then

log ||®(v)[| = M (a(t, 7). (2.2)

We can write this equality with the cocycle a(t,&) with & in the flag bundle
instead of r € OV. For this we note that the flag bundle E = BY Xginr) F
18 the bundle

FVY = {rby; re€ OV} bo = ((e1) C (e1,e2) C ... C)

of complete flags of vector subspaces of V. By formula (2.2) the Lyapunov
ex- ponents of ®; at v have the form

1 1
lim —log ||®¢(v)|| = lim —\;(a(t, &)
T—00 T T—00 T

where £ € FV is any flag whose one dimensional subspace is spanned by v.
In other words the Lyapunov exponents of ®; are determined by the cocycle

)\1(3(2&, 5)

To formalize this factorization we have the following lemma (Lemma 7.1
of [1]).

Lemma 2.4.2 Let © C X and let V be an arbitrary vector space. If 5 :

a — V is a linear map that annihilates on a(©), then the cocycle ag := foa
satisfies ag(t,r) = ag(t,r - k) for k € Ke.
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Using the Lemma above we will show that restricted to the Morse sets
we can factor the a-cocycle. Let mg : E — Eg the canonical projection given
by r - by + r - bg. Since the Morse sets of the induced flow are given by

Mo (w) = Ry - wbe

we have that mg (M (w)) = Me(w) and if r-wbg = 1’-wbe, there exist k € K,
such that " = r - k and kwbe = wbe which implies that k € Kg)nwe-

Consider then the subsets of the roots given by
e, ={a € I\ (0(0)); wa eI\ (O)} =TI"\ (6(¢)) Nw (Il \ (©))
and
I 6., = {a € T\ (O(¢)); w™la € I7\(O)} =TI \(B(¢)) Nw(II™\ (©)).

and define the functional linear Xg’w, Xow : @ — R by

+ -
Xow = E Na & Xow = E Na &

+ —
a€lly o aclly o .,

where n, = dim g,. We have then
Lemma 2.4.3 ngw annihilates a(©, N wO).

Proof. We will show just for Xg,w since for xg,, is analogous. Consider then
B € O(¢p) NwO and let

(o, B)
(8, 6)

the S-reflection of . We affirm that rg(Ilj g ) = I ¢ . In fact, consider
H € a such that © = ©(H) . Then for each o € [ ¢,

ra(a) (Hy) = a(Hy) - 2%%@ >0

rg(a) =a—2 g

since a(Hy) > 0 and S(H,) = 0. Also

<Oé, B> wfl
(8,8)

8

wlrg(a) =w e — 2
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and then

wlrg(a)(H) = w a(H) — QMw_lﬁ(H) <0

(8, 6)

since w™'a(H) < 0 and w™'A(H) = 0. Then rg(Il} 4 ) C 11 g, and since
rg is bijective we have the equality. Also, for any w € W we have that
WPa = Puw(a) What give us that n, = n,() and consequently

Tﬁ(Xaw) = Z Nrg(a) Ta(Q) = Z Ny 7y = Z Ny = Xg,w'

O‘EH;@),w 'Yerﬁ(n:g,@,w) ’yEH;&@’w

But that is true if, and only if, Xg,w(Hﬁ) = (Xaw,@ = 0. Since 8 was
arbitrary and

a(0(¢p) NwO) = span{Hpg, § € O(¢) NwO}

we have the desired. =
By Lemma 2.4.2 above we have

Corollary 2.4.4 Let us assume that (O(¢)) C w(©). The maps aéw tR %
Mo (w) = R given by

a5t 7 - whe) = Xg ., (a(t, 7)) (2.3)
are well defined cocycles.

Proof. By the above Lemma, we just need to show that for any w' €
Wes) \ W / We we have that

ang(t, r-wbe) = ag ,(t,r - w'be).

Let then w; € Weg and w' € Weg such that w' = wjywws,. Since
w1a(O(¢)) = a(O(¢)) and wya(O) = a(O) we have that

a(0(¢) Nw'(0)) = wia(O(¢) Nw(O))

and
Ao (¢)nw’(0) = W1ae(¢)nw(e)-
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Also, since Xaw(u(@(qb) Nw(0))) = 0 and Xaw,(a(@(qb) Nw'(0))) =0 we
have that
ag,w(t, r-wbg) = Xaw(al(t, r))
and
aaw(t, r-whe) = ngw(a'l(t, r))
where a;(¢,7)) and aj(t,r)) are the part of a(f,7)) in ae)nwe) and

de(¢)nw (@), respectively. By the above and the unicity of the decomposi-
tions we have that wsa;(t,7)) = aj(¢,r)). Then

ag,u/(tﬂ’ -w'bg) 1= Xg,w/(aﬁ(tar)) = Z N a(wiay(t, 7))

+
ozEH(j)’(_)’w,

= > ngBaltr).

Bew (I} o /)

But we have also that w1\ (0(¢)) = II*\ (O(¢)) and w,I1*\ (0) = I1*\ (O)
which implies that wl(Hj&w/) = (H§@7w) and consequently

Y mgBatr)= Y ngBlai(t,r) =:ag,,(t,r - whe)

+ +
/Bewl(nqb’@’wl) ﬁen(lgyeyw

showing the result. m

Such cocycles will be important in the next Chapter in order to estimate
the invariance entropy of control-affine systems on flag manifolds.

To conclude the Chapter we will give the description of a construction
of a linearization around the attractor component given by the Morse de-
composition of the induced flow on Eg(g as given in Section 5 of [30]. The
tangent space at the origin of Fg4) identifies with the nilpotent Lie algebra
n, = Mg and the group Z, normalizes n, which implies that it acts linearly

on ny by the adjoint representation. We have then the associated bundle
Vo =Qp Xz,n5 — X.

Since the Zy-action is linear we have that the associated bundle Vy — X
is a vector bundle and that the flow ¢, induces a linear flow ®, on V.
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Let bg() be the origin of Fg(4) and define the subset
By = Qg - Ny bes)
and the mapping ¥ : V4 — B,
V(g-X)=q-(expX)beg), q€ Qg X Eny.
We have then the following Proposition from [30] (Proposition 5.5).

Proposition 2.4.5 The following statements are true:

(i) By is an open and dense ¢-invariant subset of Eey) which contains
the attractor component Mg(¢) = \Il(Vg), where Vg is the zero section

Of V¢ ;

(ii) ¢ and O, are conjugated under V, that is,
G (V(v) = U(Py(v)), vE Vs
There is also a natural metric (-,-) in V, — X given by
(r-X,r-Y)=By(X,Y), r€RyX,Yen;

where By is the inner product in the Lie algebra defined by the Cartan
involution #. That this in fact a metric in the whole V; follows from the
Iwasawa decomposition @, = Ry - ANT(¢), since ANT(¢) normalizes n.
We have then the following Proposition, that is a slightly modification of
Theorem 7.2 of [30].

Proposition 2.4.6 There exist u, B € R with p > 0 such that
a(a(r,§)) = pr + B
for £ e Mt a eI\ (©(¢)) and T > 0.
As a consequence of this Proposition we have that the cocycles on the
Morse components can be linearly estimated, that is,
ag,(t,7-wbe) > s (ut + B) and ag,,(t,r-wbe) < —s (ut + B)

+
where s* = £ Mg
Zaen(b,@’w (¢
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Chapter 3

The Flag Case

In this chapter we will use the control and semigroup theory presented in the
previous Chapters in order to get lower and upper bounds for the invariance
entropy of an admissible pair (K,Q) of a control-affine system on a flag
manifold, induced by a right invariant control-affine system on a semi-simple
Lie group G. We will be interested in the case where ) is a chain control set
that coincides with the closure of a control set of the induced system, what
happens if we have that @) is a hyperbolic chain control set (see [11]).

3.1 Hyperbolic Affine Systems on flag mani-
folds

From now on we will consider a right-invariant affine control system

9(t) = folg(t)) + Z ui(t) fi(g(t)) (3.1)

where the state space G is a semi-simple Lie group. The right invariance
allows us to induce control-affine systems on the partial flag manifold Fg

to(t) = folze(t)) + Z wi(t) fi(ze(t)) (3.2)

where f; = (7g).f; with T : G — Fe the canonical projection. Note that
we have also the canonical fibration between the flags 7'('8; : Fo, — Fo, if
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©, C Oq. If Fo,(ze,(t), u(t)) denotes the right hand-side of (3.2) induced on
Fe,, © = 1,2 we have

(men) (Fo. (ze, (1), u(t))) = Feo,(we,(t), u(t))

and by Definition 1.2.7, the pair (Wg;,idu) is a semi-conjugacy from
Fo,(ze,(t),u(t)) to Fo,(re,(t),u(t)). When ©; = () and O, = O we will
denote the projection also by mg.

If we consider the usual right action on G, we have that the control flow

o UXG—=UXG Pi(u, g) = (et%%,u(g))

is a right invariant flow on the trivial principal bundle &/ x G — U. Since
(U x G) xgFg = U x Fg we have the induced control flow (that we still
denotes by ¢)

¢ U xFog — U X Fg Pi(x,u) = (Gpu, (t, x,u)).

If we denote by 1, the solution of the control-affine (3.1) at 1 € G we
have that the solutions of the induced system (3.2) at x € Fg are given by
o(t,x,u) = 1, - x, that is, the translation of = by .

By Theorem 2.3.7 we have a equivariant continuous map hg : U x G —
Ad(G)Hy, that is ¢s-invariant. Associated with h, we have the block reduc-

tion @, given by h;l(H¢) = Q.
Consider then the map

h:U — Ad(G)H,, h(u) := he(u, 1).

Proposition 3.1.1 The function h defined above has the following proper-
ties:

(1) For every (u,g) € Qp we have h(u) = Ad(g)Hy;
(i1) Foruel, t € R we have h(6;u) = Ad(¢r,)h(u)

Proof. The equivariance of hy, give us that hy(u,g) = Ad(g ') he(u, 1) =
Ad(g " )hy(u) for g € G, u € U. Since Qy = h;l(Hd,), we have for (u, g) € Qg
that

Hy = hy(u, 9) = Ad(g~")h(u)
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and consequently

h(u) = Ad(g)H,

showing (i).
For (ii), let w € U and t € R, then

h(Bw) = ho(Oru, 1) = ho(Oru, Youty,) = Ad(Cru)hs(én(u, 1)

but since hy is ¢, invariant, we have

he(¢e(u, 1)) = hy(u, 1) = h(u)
and then
h(Oyu) = Ad(1¢.0)h(u).

[ |
The above properties give us that

Q¢ = {(u,g) €U X G> h(u) = Ad(g)H¢}
and
Ry = {(u,k) €U x K, h(u) = Ad(k)H,).

Also, the Morse components of ¢, are given fiberwise by

Me(w), = (u, g) - fixe(hy(u, g), ).

Sinc}:le he(u,g) = Ad(g)h(u) and fixe(Ad(g ')h(uw), w) = g~ Hixe(h(u), w)

Meo(w), = {u} x fixg(h(u), w). (3.3)

By Proposition 1.1.6 we have that the chain control sets of induced control
system on Fg are given by

Eo = m(Me(w)) = |  fixe(h(u), w)

where my : U X Fg — Fg is the projection on the second component. As
before, we will denote the chain control sets in [F, simple by E,,.

Note also that, since ©(S) C ©(¢) we have that the effective control sets
Deg(w) of the induced system (3.2) on Fg are contained in the chain control
sets Fg,, C Fo.
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We will show that for points (u, x) € Me(w) we have a decomposition of
the tangent space of Fg that is invariant by the control flow.
For X € g we still denote by X the vector field induced on Fg given by

X(x d e

= — -z, x € lFg.
dt [t=0 ©

For a subset [ C g we put
[-x={X(x) e T,Fe, X €}

and we have that Ty Feg = ng - bo. We have also that g € G acts as a
diffeomorphism on Fg and its differential at a point x € Fg satisfies

dg-(X (x)) = (Ad(g)(X))(g)- (3.4)

Consider then the subspaces of the tangent space to x € fixg(h(u), w)
given by

Sow(u,x) == N

u)

and

Uo w(u,x) == n:(u) -

where nhi(u) = ng(h(u)). Since

8= My D 3hw) S My

we have
T,Fo = So.uw(u,x) @ Tpiixe(h(u), w) & Ue (u, x)

for all (u,z) € Mg(w).

Proposition 3.1.2 The decomposition
T.Fo = Sow(u,x) ® T,fixe(h(u), w) & Ue »(u, )

holds for every (u,x) € Meg(w) and the subspaces Seg ., and Ug,, have con-
stant dimensions and are invariant by ¢.

48



Proof. For given (u,z) € Mg(w) we have that + = k - wbe with h(u) =
Ad(k)H, and so, the translation formula (3.4) give us that

Sow(t, ) =gy @ = (dk)upe (11; - wbhe)

and consequently that dim Sg ,,(u, x) = dim <n; ~wb@> showing that dim Sg 4,
is constant. Analogously for Ueg ..

Let us show the invariance of Sg ., (u, z) since for Ug ., (u, z) is analogous.
The map ¢, acts in Fg as the translation by ¢, € G. By the translation
formula we have then

(dta)oSo,(t: 7) = (e (g - 7) = (Ad(ra)ngg, ) - @ral@)

= M ad b * PralT).

By property (ii) of the Proposition 3.1.1 we have h(6;u) = Ad(¢,)h(u) and
consequently

(dptu)2Sew(u, ) = So.w(dr(u, T)).

We call the spaces Seg ., and Ue ., respectively, by stable and unstable
tangent bundles. Such names will become clear ahead.

Consider as before the a-cocycle in U x F over ¢ given by
a:RxUXF—a (tux)—a(t,uz):=logA(pi.(z))

for x =k - by.
We have then the following Theorem.

Theorem 3.1.3 There exist constants ¢, > 0 such that for all (u,x) €
Me(w)

[(dpi)evl] < e te ™ |v]|  for allt >0, v € S u(u, )

and
|(dptu)v]| > ce’||v||  for allt >0, v € Uo w(u, ).
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Proof. Let k € K such that x = k- wbe and h(u) = Ad(k)H,, that is,
(u, k) € Ry. The ¢p-invariance of @y, for £ > 0, give us that

SOt,u(k> - kt,uat,unt,u

with a;yni., € ANT(¢) and k;,, € K. Consider in Fg a K-invariant Riemann
metric. By the relations between &£ and u we have that

M @ = (k) use (n; : wb@>
Let v € Sgw(u, ) and v € n, - wbe such that v = (dk)wbov. Then

[|(dipru)av]] = [[(dbru)av]] = [|(dhr.u)a(dR)wbe DI = [[(depr.u(k))uwpe V]

= [|(dt,u)wbe (A u)wbe (A1) wbe V1] (3.5)

Since N*(¢) centralizes n; and the inner product is K-invariant, we have
that

[(dpr.u)av]] = [[(daru)uwbe 0l

Being (dk)uwpe a isometry we conclude that

||(d90t,U)|Se,w(u,:c)|| = ||(dat7u)\n;~wb@|| = |[Ad(at,u)

\n;yw | |

where n; == @aeH;@w go- Now Ad(at,u)‘n;!w is positive definite so that

Ad(az,),.— || is e ual to its greatest eigenvalue. Since the eigenvalues are
s |n¢ w q g g

eo‘(a(t’“ﬁ‘bo)),’a €Il ¢, we have by Proposition 2.4.6 that

[1(dpt)zv]| < el o]
showing the first inequality.

Consider now v € Ug 4, (u, z). We have also that

i+ 7 = (AR)upe (1] - who)

and if we define in a similar way as before the vector space

= D o

+
aquﬁ,@’w
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since for the ¢ > 0 we have
ptu(k) = ki ai niy,
with a; ,n;, € AN~ (¢), kf, € K and loga;, = a*(t,u, k - by), we get
101t = 10050 ] = A7)

Now Ad(a;u)lni,w is positive definite so that ||Ad(a;u)|n$’w|| is equal to

its greatest eigenvalue. Since its eigenvalues are given by e*(@"(tukbo))

NS H;;@,w we have, by Proposition 2.4.6 and the fact that a*(¢,u, k - by) =
—a(t, ¢—t(u7 k - bO))7 that

1(dp—ta)av]] < e lul|
for all ¢ > 0 and (u,z) € Mg(w) and consequently
1(dpru)av]| = ce[[v]]

as desired. m

Remark 3.1.4 Consider u € U, 7 > 0 and © € Eg,, such that ¢, ,(z) €
Eo. forallt € [0, 7]. Since Eg ., is a chain control set, there exists uy, us € U
such that the function u € U defined as

uy(s) if s <0
u(s) =< u(s) ifse]|0,7]
us(s) ifs>T1

satisfies pra(x) € Eg, or, equivalently, (u,x) € Meg(w). By Theorem 3.1.3
above, we have for any v € Sg (4, x) and t > 0 that

[1(depra)ev]] < c e [ol.
Since vy 4 just depends on u restricted to [0,t) we have that
[1(depru)ev]] < e [o|

for any t € [0,7]. The same is true for the second inequality in Theorem
3.1.3 and vectors in Ug ., (4, x).

o1



Theorem 3.1.3 shows that every chain control set Fg, C Fg are par-
tially hyperbolic. Also, for points (u,z) € Meg(w) we have at least

dim Se 4 (u, ) = dim <n¢7 . wb@> negative Lyapunov exponents and at least

dimUg »(u, ) = dim (n;f . wb9> positive Lyapunov exponents, that is, for

each point in Mg(w) we have a minimal number of positive and negative
Lyapunov exponents. A direct consequence of such result is:

Corollary 3.1.5 Let © C ¥ a subset of the roots and w € W such that
(O(¢)) C w(O). Then the chain control sets Eg ,, of the control-affine system
(3.2) on Fg are uniformly hyperbolic.

Proof. Follows directly from the fact that the above condition implies that
ﬁX@<H¢, w) = wb@. |

Remark 3.1.6 We note also that by [11] if the condition (O(¢)) C w(O)
is satisfied, as in the above Corollary, we have that clDg(w) = Eg.,, that

is, the closure of the control set Dg(w) coincides with the chain control set
Eg .

Remark 3.1.7 Note that the hyperbolicity condition is independent of the
representativew € W. Indeed, if w' = wijww, with wy, € Weg), wa € We and
(©(0)) C w(©), then (B(¢)) = wi1(O(¢)) C wrw(O) = wiwwz(0) = w'(O).

Let aaw be the cocycles over the Morse component Mg(w) as defined in
Chapter 2. The next Theorem relates this cocycles with the map .

Theorem 3.1.8 Assume that (©(¢)) C w(O). Then, for each (u,x) €
M@(w)

(t,u,x)

+
|det((dpe) e (wa))| = €70

and 7
‘det((d%,u)w@’w(u’m))‘ — o?0,u(tu)
fort > 0.

Proof. Let k£ € K such that x = k- wbg. Then
(d@t,u>|b{@,w(u,x) = (dgpt,u(k»hl-wb@

92



and the Iwasawa decomposition give us ¢; (k) = kiyarunew, With az, =
expa(t,u,k - by) and az,ne, € ANT($). We have that Nt (¢) centralizes
n, and then (dnt,u)n;.wb@ = idn;.wb@- Also, the fact that K acts on Fg by
isometries give us

|det((dk) )| =1.

\ng-wb@

and consequently

‘det (dotu) |t (uz)) |— !det ((dagy)+ n whe }— det( Ad(atu) )

But since a;,, = exp(a(t,u, k- b)) we have that Ad<at,u>|nqt is a diagonal
matrix with a(a(t,u, k - by)) in the diagonal. Moreover, nj = @ae% 5. 90
and using Corollary 2.4.4, we have

det(Ad(a/tyu)mi ) == eag w(t u J?)

and consequently

& u,xr
|det((d80t,u)|u@’w(u7$))} e ea@,w(t, s )

In the same way we show that

‘det((d%,u)| s@,w(u,z))‘ N e

Remark 3.1.9 We notice that in the proof of the above results we used that
n - wbg = wbg for NE(¢). It follows from the fact that we can choose the
representative of w in Weg) \ W / We. Since such choice does not change
the set Mg(w) and the cocycles aaw(t, u, x) we will just assume that we have
the adequate representative.

3.2 Escape Entropy and Lower bounds on Flag
manifolds

In this section we will look at the induced control-affine systems on the flag
manifolds where we have hyperbolicity on some chain control sets and see
the cases where we can get rid of the escape entropy.

By the results in the last section and Theorem 1.2.14 we have the following
Corollary for the induced control-affine system (3.2) on Fe.
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Corollary 3.2.1 Consider the induced control-affine system on Fg and let
w € W such that Eg,, ts uniformly hyperbolic. Then, for any compact set
K C Dg(w) with volume positive it holds that

1
hiny (K, Eg ) > inf lim sup —agw(T, U, ) — hese (K, Eo ).
T )

T (uwa)eMe(w) 1o

The idea is then look at the hyperbolic chain control sets and see which
conditions we need in order to get rid of the escape entropy.
A first step in this direction is the following Theorem.

Theorem 3.2.2 Let © C X and assume that ©(¢) C O. Then, for any
compact set K C intD§ we have

hese (K, D&) =0
where D¢ is the invariant control set in Fg.

Proof. The conditions ©(¢) C © implies that for any (u,z) € M™ we have
TxF@ = S@J(U, $)

For given u € U and = € EJ we have by invariance in positive time of
EJ that ¢, (x) € EJ for any ¢ > 0. Then, for z1, x5 € EJ it holds that

el 9rla2) < max [[(dgallo(er, 72

where v : [0,1] — Fg a geodesic connecting z; to zy. For any x € K
there is a convex neighborhood W, of x contained in intDg, that is, for
any two points in W, there is a geodesic connecting them such that its
image is still contained in W,. Consider then the cover {W,},.cx of K.
Since the set K is compact we have a finite cover Wy, ..., W, € {W, }.ex
of K. Let 6 > 0 be the Lebesgue number of this finite cover. Then, for
any x1,r2 € K such that o(x1,75) < § there is a geodesic connecting x;
and z, whose image is contained, in particular, in Eg, which implies by
Remark 3.1.4, that ||(dgs).|] < ¢ e for any ¢ > 0 and x € Im(y) and
consequently
o(@ru(®1), pru(a2)) < ¢ e M o(ay, 29).

Then, for any u € U, 7, > 0 such that € < § we have that

B.(z) C Bl-1(u, )
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and then, if {B.(z;)}x is a minimal cover of K, {B™_,_(u, )Y s also a
cover of K, which implies that

Tspan (U, T, €, K, D&) < N(e)

and consequently
hese(K, D) =0

showing the desired. m

We note that although the invariance entropy in Dy is trivially zero, the
fact that hes.(K, DE) = 0 will help us to estimate the escape entropy on
the other control sets and consequently improve the lower bounds for the
invariance entropy on them. Also, we do not know if the escape entropy of
D{ id zero without the condition ©(¢) C ©.

The case without multiplicity

Let us assume now that ©(¢) = (), that is, the induced control-affine systems
(3.2) are hyperbolic over all chain control set on all flag manifolds. We will
show that in this case the escape entropy is always zero what give us a good
lower bound for the invariance entropy on every control set. Since all the
chain control sets are hyperbolic, we have that all control set Dg(w) satisfies
clDg(w) = Ey o for every w € W and © C X.

Let o € ¥ and consider the fibration m, : F — F,. It is well known that
the set N; = exp{g_o ® g 24} is dense on the fiber w7, (by), where by is
the origin in F.

Since O(S) C O(¢) = 0 we have that

D(wl) S D(Wz) iff w1 2 W2

and consequently the only control sets in [F that project on D,(w) C F, are
D(w) and D(ws,) (see Theorem 4.1 of [29]). The following theorem give us
a way to compare the escape entropy of the control sets D(w) and D(ws,,).

Theorem 3.2.3 Letw € W and a € ¥. For a given compact set K C D(w)
there exists K' C D(ws,) such that

1. If w(a) <0, then

hesc(Ka Ew) S hesc(Kla Ewsa)~
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2. If w(a) > 0, then

hesc(Ku Ew) 2 hesc(K,a Ewsa)~

Proof. We will just show 1. since 2. is analogous. Then w(a) < 0 and we
have that ws, < w and consequently D(w) < D(ws,). By the above, such
control sets are the only control sets that project onto D, (w).

Let K" = mo(K) and E, ., = clDy(w) = m4(Eys, ), and consider K’ C
D(ws,) such that m,(K') = K”. Let (u,z) € K", where K" is the lift of
K". The fact that (u,z) € K” implies, by the G-invariance of 7, that for
every z € m,'(z) we have p;,(2) € 7, (E,,) for t > 0. Since 7, (Fq.)
is compact, ¢;,(2) has to converge to a chain control set. Then, if z €
7 (x) N By, we have, by Theorem 6.3 of [29] and the no-return property!,
that ¢, (2) € Eys, for t > 0. By Theorem 1.2.18 item (i) we have then that

hesc(K/a Ewsa) Z hesc(Kﬂa Ea,w)
where K’ C D(ws,) is a compact set that satisfies m,(K') = K".

Let (u,z) € M(w) with x = k- wby. Since w(a) < 0 we have that
wN; - by C Nt - wby and then ¢, restricted to kwN] - by is uniformly
expanding because the tangent space to kwN] - by is contained in U, (u, x).
But kwN] - by is dense in the fiber (£, ), which implies, by the continuity of
¢r,, and Remark 3.1.4, that uniformly expanding holds in (E,), inside E,,
what give us

hese K, Bu) < hese (K", Eo)

by item (ii) of Theorem 1.2.18 and consequently
hesc<K/7 Ewsa> 2 hesc(K; Ew)
concluding the proof. m

Remark 3.2.4 We note that in order to obtain the compact K' we just used
that the projection m, restricted to D(ws,,) is proper and open and the flags
are locally compact, that is, we can lift compact sets.

As a direct corollary we have.

'A set @ has the no-return property if given x € @, v € Y and 7 > 0 such that
vru(z) € Q it implies that ¢y () € @ for all ¢t € [0, 7].
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Corollary 3.2.5 For any control set D(w) C F and any compact set K C
intD(w) we have that
hese (K, Ey) = 0.

Proof. Let us proceed by induction in the length of w. If I(w) = 1 we have
that w = s, and since s,(a) = —a, the above Theorem implies that, for any
compact set K C int D(s,) there is K’ C int DT = ET such that

hesc<K7 E8a> S hesc(Klu E+)

and Theorem 3.2.2 implies then that hi, (K, Es,) = 0. Let us assume that
hiny (K, Ey) = 0 for every w € W, K € int D(w) such that I(w) < k and let
w such that [(w) = k. Since k > 1, there exist @ € 3 such that w(«a) < 0
and Theorem 3.2.3 give us that

hesc(Ka Ew) S hesc(Kla Ewsa)

for any K C D(w) and some compact set K’ C D(ws,). Since w(a) < 0
we have that [(ws,) = [(w) — 1 < k and the inductive hypothesis implies
hese (K, Eys,, ) = 0 showing the result. m

That give us also that the control sets on the other flag manifolds have
also zero escape entropy.

Corollary 3.2.6 Let © C ¥ and w € W. If K C intDe(w) is a compact
set with nonempty interior, then

hesc(Ka E@,w) = 0.

Proof. As in the demonstration above, we have that the greatest control
set of the induced system on F that projects onto Dg(w) satisfies condition
(i) of Theorem 1.2.18. Using the above Corollary, we have that the escape
entropy of all control sets on F is zero which implies hes. (K, Fo,) = 0 for
any compact set K C Dg(w). m

Corollary 3.2.7 Let © C ¥ and w € W. If K C Deg(w) is a compact set
with positive volume, then

1
hiny (K, Ey) > inf  limsup —ag (7, u,z).
T )

(u,x)eEMe (W) 700
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Proof. Its a consequence of the above Corollaries and Proposition 5.1 of
[21]. =

The above Theorems and Corollaries give us a really nice lower bound
in the case that the flag type of the control flow has no multiplicity, that is,

O(¢) = 0.

The case with multiplicities

The method used above require us to have a fibration between flag manifolds.
In this subsection we will try to generalize this in order to show that the
escape entropy of the hyperbolic control sets in the flag Fg(4) vanishes. In
order to do that we will have to assume that there are simple roots in X\ O(¢)
that are orthogonal to ©(¢).

Denote O(¢) simple by © and consider as before the set N, =
exp{g-a ®g_2o}). Assume that « € ¥\ © and (a,5) = 0 for any
g € O, where (-,-) is the inner product in a* induced by the Cartan-
Killing form. Since a has no connection with © we have for the projection
To = 7o, : Fo — Fo, that N - bg is dense on the fiber 7 'm,(bo). We
will say that w € W is orthogonal to © if there is a minimal decomposition
w=81...8, witha; € X\ © and (;,5) =0foranyi=1,...,nand § € O.

With that we have a similar result for hyperbolic chain control sets in Fg,
as stated in the next Theorem.

Theorem 3.2.8 Let w € W and assume that w is orthogonal to ©. Then
for any compact set K C intDg(w) we have that

hesc(Ka E@,w) =0.

Proof. Let w € W to be orthogonal to © and assume that w(a) < 0
for a € ¥\ © and (o,8) = 0, 8 € ©. The fact that (o, ) = 0 for any
£ € O implies that s, commutes with any element of Wg which implies that
Dg(ws,) and Dg(w) are the only control sets that project onto Dg_ (w), for
©, = O U{a} (see Proposition 7.1 of [29]). The proof follows then in the
exactly same way as in Theorem 3.2.3. m

We note that what plays a central role here is that there are just two
control sets that projects onto Dg_(w). As in the case without multiplicities
we have the same results for hyperbolic chain control sets on smaller flags.
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Corollary 3.2.9 Let © € ¥ and w € W such that ©(¢) C O, w is ortho-
gonal to © and w(©) C IIT. Then for any compact set K C intDg(w) we
have

hesc<K7 E@,UJ) =0

Remark 3.2.10 Let us comment the conditions on the above Corollary. The
first one, that ©(¢) C O, is just to assure that we have the fibration Feg(s) —
Fo; The second one assure hyperbolicity of the chain control sets Egg4) . and
Eo.w on Fes) and Fe, respectively. The extra condition, that w(©) C IIT,
is to assure that the control set Doy (w) on Fey) is the greatest control set
of the system that projects onto Dg(w) on Fg what gives us that condition
(1) in Theorem 3.2 is satisfied.

Concerning the invariance entropy we have then:

Corollary 3.2.11 Let © € ¥ and w € W such that ©(¢) C O, w is or-
thogonal to © and w(©) C IIT. Then for any compact set K C Dg(w) we
have

1
hinv K7 E, w > inf lim su _a+ T u, ).
( O, ) (u,z)EMe (w) T—>oop - @,w( )

The above results show that the geometry of the flag manifolds allows us
to get rid of the escape entropy in many cases.

3.3 Upper bound on Hyperbolic Chain Control
sets

In this section we will assume that we have w(©) D (O(¢)), that is, the chain
control set Eg, is uniformly hyperbolic. With that we can generalize the
results of [21] for induced systems on projective spaces. First of all note that
since we are considering the semi-simple case, if we assume local accessibility
of the system 3.1 on G we have strongly accessibility. In fact, since the
system is right invariant, we just have to assume that Az (1) = g. By [33]
we have that the ideal generated by fi,..., f,, has dimension d or d—1 where
d = dim G. Since the orthogonal complementary of an ideal is also an ideal
we must have that this dimension in d, otherwise g would have an abelian
ideal, what cannot happen in a semi-simple Lie algebra.
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Consider the function h : i/ — Ad(G)H, defined in the last section. Since
we are assuming that w(©) D (O(¢)) we have that the set fixg(h(u), w)
reduces to a point and then we have a well defined function og, : U —
Mo (w) given by

U 0gw(u) = (u,fixg(h(u),w)).

Lemma 3.3.1 The function og,, : U — Me(w) is a homeomorphism that
congugates the control flow and the shift, that is,

o0.w(fiu) = dr(o6w(u)).

Proof. The conjugation follows directly from the properties of h. If we
denote by mg,, the restriction to Mg(w) of the projection on U, we have
that mg ., © 0e.w = idy and 0e . © Tew = idagw). Then, the continuity
of 0, follows from the continuity of mg, and the fact that Mg(w) is a
compact set. ®

We can now slightly improve the upper bound for the invariance entropy
of hyperbolic sets as above. The next result was first shown in [21] for
projective spaces.

Theorem 3.3.2 Consider the induced system on Fg and assume that
w(O) D (B(¢)). Let Do(w) be the only control set contained in the hy-
perbolic chain control set Eg,. Then, for every compact K C Dg(w) we
have

1
hiny (K, Eo ) < inf limsup —ag (7, u, )
T )

(u,2)EME™ (w) 700

where the MET(w) denotes the subset of Me(w) of the periodic points.

Proof. Proposition 1.2.10 assures that

1
hiny (K, B ) < inf limsup —agw(r,u,x)
—9e,

(w,x) =00

for periodic points (u,z) € Mg(w) such that (u,x) € intU x intDg(w).
As in the Proposition 7.10 of [21], the change of intY X intDg(w) to
U x intDg(w) is straightforward.
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Consider then an arbitrary periodic point (u,x) with period 7 > 0. By
Proposition 1.6 in [21] we have a sequence of piecewise constant control func-
tions w, € U such that ¢, — ¢, for n — oo uniformly in ¢ € [0, 7].

Let us denote by g = v, and similarly ¢,, = ¢,,,. We have g,g, € S
and being intS dense in S we can actually assume that g, € intS. Since
we can assume that wu, is periodic, we have that ¢,x, = z,, where z, =
fixg(h(uy,),w)). Also, as in Lemma 5.2 of [27] we can assume that there
is a potency [, such that g is a regular element and consequently z, €
Deo(w)o C intDg(w). The continuity of og,, implies then that z,, — .

Since ag, ,, is continuous we have then

1 1 1 1
“ak ) = = log A(gnan) — = log A(gz) = —ag,
Ta®,w(7-7u y L ) T 0g (g Z ) = 0g (gl’) Ta@,M)(Tvuax)

and the result follows. m
The Theorem above together with Theorem 3.2.8 give us the following.

Theorem 3.3.3 Let (3.2) be the induce control-affine system on Fg(g. Let
w € W orthogonal to ©(¢) and let K C int Dg(w) be any compact set with
nonempty interior. It holds that

1
hinv K,E w > 1 f 1 —3+ y Wy
o Bow) 2 (Bt P 20T 0
and

1
hinw (K, Fg,) < inf limsup —ag, (7, u, x).
( ow) (u,2) EMEET () i oul )

In particular, if ©(p) = 0 the above is true for any control set of the induced
system on any flag manifold.

Remark 3.3.4 We do not know if just under the hypothesis (©(¢)) C w(O)
we have that the Theorem 3.2.8 is still valid. If we had a decomposition of
w of the form w = wywy with wy orthogonal to O(¢) and wy € We, then the
result would also be true.

Remark 3.3.5 We note, by Lemma 5.5 of [21] and comments before it, that
for every periodic point (u,z) € Meg(w) with period ™ and for w € W as
above that

) 1
lim sup ;aaw(T,u, x) = Z na(A(u, k - b))

T—00 n
a€lly 6w
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where

1 1
AMu, k- bo) = lim —a(r,u,k-by) = —a(r",u, k- by)
T

T—00 T

and x = k-wbe. In particular the numbers a(Au, x)) for o € I} g, coincides
with the positive Lyapunov exponents of the system in (u, x) and consequently
we have, in the conditions of Theorem 3.3.3, that the invariance entropy
hiny (K, Eo ) is bounded above by the infimum over the sum of all the positive
Lyapunov exponents (counted with multiplicities) for periodic points of the
system.
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Chapter 4

Linear Systems on Lie Groups

Our aim in this Chapter is to apply some general results about the outer
invariance entropy to a linear system on Lie groups as introduced in [4] and
[5]. A linear control system on a Lie group G is defined by

m

g(t) = X(g(t) + Y us(t) f5(9(0)),

j=1

where the drift vector field & is an infinitesimal automorphism, f; are right
invariant vector fields and u = (uy, - - - , u,,) belongs to the class of admissible
controls functions U.

4.1 Linear Systems

Consider the system

m

g(t) = X(g(t) + Y us(t) f(9(1)), (4.1)

Jj=1

with the conditions above. Let (1;);cr denote the one parameter group of
automorphisms of G' generated by A and by e € G the identity element of
G. For all right invariant vector fields Y, we have

d d

[X,Y](e) = E|t:o(d¢_t>wt(e)}/(¢t(e)) - dtji=o

(dip—¢)cY (e) (4.2)
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since 1;(e) = e for all ¢ € R. Considering that 1_; o Ry, () = Ry 01—, for all
g € G, we have that

d d

(X, Y](g) = %tzo(diﬂ—t)wt(g)}/(%(g)) - aIt:O(d%b—t)wt(g)(det(g))eY(e) =
= G (R0 (0) = (AR, V)

Then for a given linear vector field, one can associate the derivation D of
g defined by
DY = —[X,Y], forall Y € g,

that is, D = —ad(X). The minus sign in this definition comes from the
formula [Az,b] = —Ab in R™. It also enable us to avoid a minus sign in the
equality

YlexpY) = exp(e’PY), forallt € R,Y € g.

stated in the forthcoming proposition.
Proposition 4.1.1 Forallt € R
(dwt)e =e'P
and consequently
YilexpY) = exp(ePY), forallt € RY € g.

Proof. Let us first show the equality

d
% (dwt)ey(e) = ’D(dwt)ey<e)'

This equality has already been shown for ¢ = 0 (see equality (4.2) above).
In general,

d
% (dwt)ey(e)
D (). (di).Y (€) = D(diy).Y (o).

ds|s=0

(dwtﬁ-s)ey(e) =

ds|s=0

From the formula above, the first formula of the proposition is immediate.
For the second one, note that ¢, is a Lie group morphism. Therefore

Gu(expY) = exp(din).Y = exp(ePY). (4.3)

[ |
We have also the following proposition about the solutions of (4.1).

64



Proposition 4.1.2 For a given uw € U, let us denote by (., the solution of
(4.1) starting at the origin e € G. Then the solutions of (4.1) are given by

ot g,u) = Gui(g) = Le,., (Vi(9)),

for each g € G.

Proof. Let us consider the curve a(t) given by

alt) = Guti(9)-
We have that «(0) = ¢g and

(1) = (AL Dt 0(9) + (Rt e =

= (dLCt,u)wt(g)X(¢t(g)) + (dRT/Jt(Q))Ct,u{ Ctu ZUJ f] Ctu } =

= {(dLCt,u)wt(g)X<¢t(9)> + (dR¢t(g)>Ctu (Gtu) } Zu] )fila

Since 1 is a flow of automorphism we have that

X (kh) = d%szows(kh) = (dLi)aX (h) + (dRy)X (k)

what give us, taking k = (;,, and h = 9,(g),

(dLCtu)wt (wt( )) + (dRﬂ)t(g))Ct,uX(Ct,u) = X(Ct,uwt(g)) = X(a(t))

and consequently
a(t) = X(a(t) + Y fila(t))
j=1
By the unicity of the solution, we have the desired. m

Remark 4.1.3 The formula for the solution of the linear system (4.1) in
the above Proposition corresponds to the wvariation-of-constants formula in
the Fuclidean case.
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Remark 4.1.4 The solution of the system without the drift

= > flal), (4.4)

at e € G coincides with (. Since the vector f; are right invariant its
solutions at any g € G are giwen by ((t,g,u) = G.u(9) = Ctug-

The idea is to show that the outer invariant entropy for the system (4.1)
is given in terms of the positive real parts of the eigenvalues of the derivation
D, that generalizes the result for linear control systems in R? (Theorem 5.1
of [10]). Before that we will introduce the notion of topological entropy. Let
(X, d) be a metric space and ¢ : R x X — X be a flow over X. For a given
compact set K C X and ¢, 7 > 0 we say that a set Syop, C X is (7, €)-spanning
set for K if, for every y € K there exist € Siop, such that

d(gy(x), Pi(y)) <e forall tel0,7].

If we denote by r.(e, K) the minimal cardinallity of a spanning set, the
topological entropy of ¢ over K is defined by

1
hiop (@, K) := lim lim sup -7, (e, K)

ENO 7500 T

and the topological entropy of ¢ as

hiop(@) == sup  hiop(, K).

Kcompact

We should note that the topological entropy does not change for uniformly
equivalent metrics. We have then the following Theorems.

Theorem 4.1.5 Let (K, Q) be an admissible pair for the linear system (4.1)
on G and assume that () is compact. Then, the outer invariant entropy
satisfies

hmv out K Q Z AD

Ap>0

where Ap are the real parts of the eigenvalues of the derivation D.
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Proof. As shown in [21] Proposition 2.5, the invariance entropy does not
depends on the metric that we choose. Let then p be a left invariant metric
on G. By proposition 4.1.2 we have that two solutions ¢;,(g) and ¢;.(g),
satisfies

Q(()Ot,u(g/)7 @t,u(g)) = Q(Ct,uwt(g,% Ct,u¢t<g)) - Q<wt(g/)7 ¢t(9))

Using such equality consider Sy, be a minimal (7, €)-spanning set for K
of the flow vy, that is, for all ¢’ € K there exists g € Siop such that

o(Vi(9),%(g')) <e forallt e|0,7].

Since (K, @) is admissible and we can assume w.l.o.g. that Si,, C K, there
exists for each g € Siop, uy € U such that ¢y, (g) € Q for all t € R. Then
for all ¢’ € K, there exists u, such that

0(Ptug (9, Pty (9)) = 0(Cray V() Gy ¥i(9)) = 0(e(9), ¥i(g)) < €

for all ¢ € [0, 7], that is, ., (9") € N.(Q) showing that {ug; g € Siop} is a
(1, €)-spanning set for (K, Q) and we conclude that

hinv,out(K7 Q) < htop(w) = htop(dﬁ)

and by [8] we have that

htop(¢1): Z log |«

o; |a|>1

where « are the eigenvalues of (dv).. Since by Proposition (4.1.1) we have
that

<d1/)1>e = eD7

the eigenvalues of (di;). are given by the exponential of the eigenvalues of
D and consequently |a| = e*?, where \p is the real part of some eigenvalue

of D. Then
hop(p1) = > loglal = Y Ap

o |la|>1 Ap>0

as desired. m
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Remark 4.1.6 The result proved in Bowen [8] is actually for a right in-
variant metric on G. But since on a Lie group we always have right and
left invariant metrics and right and left Haar measures, Proposition 10 of
[8] gives us that the topological entropy of 1y for the left and right invariant
metrics are the same.

As proved in [10], we would also like to show that for linear systems as
(4.1), we have actually that the entropy coincides with the positive eigenval-
ues of D. The next theorem give us then a lower bound in this direction.

Theorem 4.1.7 Consider the system (4.1) and let (K, Q) be an admissible
pair with Q compact. Let dg be a left invariant Haar measure and assume
that dg(K) > 0. Then the estimate

hinv,out(K7 Q) Z Z )\D
holds, where \p are the real parts of the eigenvalues of the derivation D.

Proof. By Proposition 1.2.6 we can consider just spanning sets for natural

numbers. Then let n,e > 0 and consider S = {uy,---,ux} be a (n,e)-
spanning set for (K, Q). Define the sets
KJZ{QGK,@([O,TLLg,U]) CNE(Q)}: jzlak

Then by definition of (n, €)-spanning sets, K is a Borel set for each j and also
K = U;K;. Also, since the solution map ¢, ,, : G — G is a diffeomorphism,
©nu; (K;) is also a Borel set and satisfies

dG(‘Pn,u]' (KJ)) < dG(Ns(Q))-
Because of the left invariance, we have that
dG(SOn,uj (Kj>> = dG(Cn,uﬂ/’n(Kj)) = dG(¢n<Kj>>'

Using that ¢, 0 Ly = Ly, (g 0%, and that det(dLy), = 1 for each g, h € G,
we have that

| det(diby )| = |det(dLy, g))el|det(dib,)||det(dLy-1 )| = e =7

and then

ot = [ dot) = [ ldettavi)ldoto)

J
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— e”z/\D/ da(g) = "2 dg(K;),
K;
by left invariance of the Haar measure.

Taking jo such that max; dg(K;) = de(Kj,) we have

k
de(Ne
Z ) < k- da(Kj,) =k - GG(T(A?))
and consequently
. da(K)
Tinv,out(n75’ K’ Q) Z ¢ = m

which implies
hinv,out(Kv Q) Z Z /\D

as desired.
n

We would like to show that as for the linear case in R™, we have that the
entropy coincides with the sum of the positive real part of the eigenvalues of
D. As we will see that is closely connected with the geometry of the space
that we consider.

4.1.1 Quasi-Invariant Measures

Let G be a locally compact topological group and denote by dg its left Haar
measure. The right modular function for G (or more briefly the modular
function for G) d¢ is defined by the relations

/fgh (g /f Jdei(g

/f Nda(g 5G( )d a(9)

for all f € C.(G). We remind that d¢ is a continuous homomorphism of G
into the multiplicative group R of strictly positive real numbers. When G
is a Lie group, we have

dc(g) = |det(Ad(g™)I.
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Let H be a closed subgroup of GG. The canonical projection of G onto
G/H will be denoted by g — m(g) or g — g = g- H. Let u a Radon measure
on G/H. The transform pf of p by an element g € G is the measure

f o u(fo)
where f € C.(G/H) and

@)= flg " q 9.9€G; g-G=gq-H.

Definition 4.1.8 A positive Radon measure i on G/H is said to be quasi-
invariant if p and p? are equivalent for all g € G (i.e. p and p9 have the
sets of measure zero).

Although in general positive G-invariant Radon measures do not exist on
G /H, nevertheless quasi-invariant measures are always present [13]. In fact
if v is a non-trivial positive Radon measure on G whose null sets are those
of the Haar measure, then, putting

p(f) =v(fom)  feC(G/H)

one easily checks that p is quasi-invariant. In turn, the existence of v follows
from the fact that G is countable at infinity.

We shall now give a brief description of the main results on quasi-invariant
measures without proofs (for more details see Bourbaki [7]). Let dy denote
the modular function for H.

In the first place quasi-invariant measures on G/H always exists and any
two quasi-invariant measures are equivalent. A way to manufacture quasi-
invariant measures is as follows: Let p be a strictly positive Borel function
on G bounded above and below on compact subsets and verifying for every

he H 5ol
p(gh) = 5Z§h§

A function with these properties is called a rho-function. Fix now a rho-
function p. Associated with this p is a quasi-invariant measure j, defined

r(9) ge G

fgﬂgdgg = a p(] f(]h;dHh, IECCG.
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Let us recall that the map
frofo flo) = [ flah)du(h)
H

is a continuous map of C.(G) onto C.(G/H).
For each f € C.(G/H) one has the relation

f@@MMQZ/ 5o(g™, D) F @y @) (4.5)

G/H G/H

The function s, is obtained in the following way. Let

$p(9,q) = %, q€eq.
Then s, passes to a function on G x G/H, which again will be denoted
by s,, such that:
(1) sp(9p,q) = 5,(p: @)s,(9:0- @), 9:0:P € G;
(i) sp(h,1) = dm(h)/dc(h), h € H;
(iii) s,(z,1) is bounded on compact sets as a function of z.

The function s, will be called a multiplier (see Warner [34]).

Remark 4.1.9 Since Xk (g) > 0 if, and only if, Xr(x)(g) = 1 we have that
for each compact set K C G, there is ¢ > 0 such that

CMWMDZ/MWMQ (4.6)

K

what show us that p,(7(K)) > 0 if de(K) > 0.

On the other hand every quasi-invariant measure u gives rise in a canoni-
cal manner to a rho-function so that all quasi-invariant measures are obtained
in this way.

Remark 4.1.10 In passing, note that if G is a Lie group, then every positive
Radon measure on G/H which, on every local chart of G/H, is equivalent to
the Lebesgue measure is, in fact, quasi-invariant.
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The following Theorem assures the existence of rho-functions, and con-
sequently quasi-invariant measures, on Lie groups. Its proof can be found in
[34] page 476.

Lemma 4.1.11 (Bruhat) If G is a Lie group, then there exist C* rho-
functions.

Suppose that GG is a Lie group - then, unless specified to the contrary, we
shall assume p = py chosen so that py € C*°(G) and normalized so that
pu(1) =1 and hence
_ 0n(h)

dc(h)

for all h € H. The quasi-invariant measure associated with pg will be de-
noted by py. Observe that now the multiplier s,,, = sy is in C*°(G x G/H).

Let H be a closed subgroup of G' and dupy(G) a quasi-invariant measure
on G/H . Then we shall often write more briefly dug(q) (similarly in other
cases t00).

For reference, we shall list here a number of technical lemmas concerning
rho-functions and the like.

Let H; and H, be closed subgroups of our locally compact group G and
assume that H; C Hs. Let d; = dy, denote the left Haar measure on H; and
9; de corresponding modular function (i = 1, 2).

pr(h)

Lemma 4.1.12 Let us suppose that the homogeneous space Hy/Hy admits
a positive Ho-invariant measure vo. Let py be a rho function on G for the
subgroup Hy (and hence also for the subgroup Hy, 01 being equal to oo on
Hy). Let also py and ps be the quasi-invariant measures on G/Hy and G/ Hy
corresponding to py and ps, respectively. Then, for a suitable normalization
of the Haar measures, we have

o(9)di(g) = /

G/Hy

dpis(g) /H o Olana), 9 € CG/)

G/H,

Lemma 4.1.13 Let us suppose that the homogeneous space G/Hsy admits
a positive G-invariant measure vo and let py be a rho-function on G for
the subgroup Hy - then pi|y, is a rho-function on Hs relative to Hy (since
dy = dg on Hy). Let py and py be quasi-invariant measures on G/H; and
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Hy/H, corresponding, respectively, to py and pi|p,. Then, for a suitable
normalization of the Haar measure, we have

_ y p1(99)
/G . dlan(y) = /G o) /H o e dadnala). o € G/ )

Let us drop the assumption that H; is contained in Hy. We shall, however,
agree to keep the other conventions which were laid down above. The group
H, x Hy operates to the left on GG via the prescription

T (g2, q1) - 9 = q29q7 g€G,q € Hyi=1,2.

Fix an element g € G and let ) be the Hy x Hy-orbit of g, that is, the Hy, H;
double coset HogH,. The stability subgroup (Hy x Hy), of (Hy x Hy) for the
element g € () is

(Hy x Hy)g =A{(g9a9™ ", q);q € Hy}

where H, = Hy N (g7 'Hag). Thus there is a natural identification

(q1,92)((Hz x Hy)g) ¢ G947 "

between (Hy x Hi)/(Hy x Hy), and (). We can assume that () has the
topology which renders this identification a homeomorphism.

Let us now suppose that the homogeneous space Hy/gHig~' carries a
positive Ho-positive invariant measure v5. This assumption implies that o =

Sy g-1 o0 gH1g™ " and, consequently, if we put

1

p(QQan) = 51(Q1_1)7 q; € H“Z = 1727

then p is a rho-function on Hy x H; relative to (Hy x H;),. Consider the
group gH,g~' x Hy. Then

Hsy/gH19~' ~ Hy x Hy/(gH.19™") x H,

and the image of 1, under this identification is an Hy x Hi-invariant measure
on Hy x Hy/(gH1g™") x H; (in particular plym, 415z, is a rho-function for
(Hy x Hy),). We may identify gH1g~! x Hy/(Hy x Hy), with Hi:

(1,q1)(Hy x Hy)g <> q1, q1 € Hy.
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The image, under this identification, of the quasi-invariant measure on
gHyg™" x Hy/(Hy x Hy),

corresponding to pyp, 415, 18 a right Haar measure on H;. Let p denote
the quasi invariant measure on Hy x Hy/(Hy x Hy), ~ @ corresponding
to p. Substituting Hy x Hy, gH,g~' X Hy, (Hy x Hy), for G, Hy and Hy,
respectively, in Lemma 4.1.13 gives us the following result.

Lemma 4.1.14 Under the above hypothesis, we have, for a suitable normal-
ization of the Haar measures,

/ o(q)diu(q) = / don2) | dlgrga)ds(w). & € C(Q)
Q Hy/gHgg~! Hy

4.1.2 Stable and Unstable Lie algebras

Consider now the generalized eigenspaces associated to the derivation D,
0o ={X €g;(D—a)"X =0 for some n > 1}

for a an eigenvalue of D. Let as before denote by Ap the real part of the
eigenvalues of D. We can decompose g by

g=g"®g°®g”
with g+ = ®)\’D>O 9ps g’ = 69)\73:0 Ixp and g~ = ®>\’D<0 Op-

The next Proposition show us that the vector spaces g* and g° are Lie
algebras and that g* are actually nilpotent. The proof can be found in [29]

Proposition 4.1.15 Let D : g — g a deriwation of the Lie algebra g of finite
dimension over a closed field. Consider the decomposition

g= @ 9o
where g, is the generalized eigenspace associated to the eigenvalue cv. Then

(90> 98] C Gatss

with gayp = 0 in case a + B is not an eigenvalue of D.
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Remark 4.1.16 The Proposition 4.1.15 assumes that the Lie algebra is over
a closed field but since a algebra g is nilpotent if, and only if, gc s nilpotent
we have that g= and g° are Lie algebras with g= nilpotent.

Consider for the linear system (4.1), and the associated derivation D, the
decomposition of the Lie algebra g = g @ g @ g~. We call the g* and
g, respectively, the unstable and stable Lie algebras associated to the
derivation D.

Let Sp C G defined by

Sp:={g € G; exist a compact set K C G with ¢,(g) € K fort € R, }.

We have then.

Proposition 4.1.17 The set Sp is a closed subgroup of G such that s O g~
and s Vgt =0, where s is its Lie algebra.

Proof. That Sp is in fact a closed group follows from the fact that 1, is
an automorphism. For the Lie algebra s, the afirmations follow from the
formula (4.3). =

Remark 4.1.18 [t is not hard to show, using the D-invariance of the Lie
algebras above, that s is actually given by the direct sum g~ @ ker D;

Consider now the space u O g* such that g = u @ s. We have that
g/s ~ u. Define the linear application D : u — u by D¥n*(X) := 7*(DX)
for X € g. That D7 is well defined follows from the D-invariance of 5. Also
D satisfies tr D = tr D|;+ since gt Cuand g~ C s.

Proposition 4.1.17 together with Theorem 4.1.5 give us the following re-
sult.

Corollary 4.1.19 Consider the linear system (4.1) over G and assume that
G is compact. Then, for any admissible pair (K, Q) we have that

hinv,out(Ka Q) = 0.
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4.2 Linear Systems on Homogeneous Spaces

Let H be a closed subgroup of G. The homogeneous space G/H is the
manifold of the left cosets of H and we denote by 7 the projection onto
G/H. For any right invariant vector field Y € g the projection .Y of YV
onto G/H is always well defined and will be referred as an invariant vector
field on G/H. It is known that the set 7, := {m.Y;Y € g} is a Lie algebra
and that 7, is a Lie algebra morphism from g onto ,g.

Let X be a linear vector field on G. We want to assure the existence of a
vector field on G/H that is m-related to X. Such a vector field exists if, and
only if,

forall z € G and y € H, m(U(zy)) = m((2)).
But 7(¢:(zy)) = ¥i(x)y(y)H and the preceding condition is equivalent to
forally e Hite R U (y) € H.

Thus X is m-related to a vector field on G/H if, and only if, H is invariant
under the flow of X.

Definition 4.2.1 Let G be a Lie group and H C G a closed subgroup. A
vector field f on G/H is said to be linear if it is w-related to a linear vector
field of G, where 7 is the canonical projection m: G — G/H.

Consider then Sp as above. Its invariance allow us to consider the quo-
tient space G/ Sp. Let X' be the vector field induced in G/Sp by X. )
Considering a geodesic referential we have that divX'(g) = —trad(X);

where ad(X); : Ty(G/Sp) — Ty(G/Sp) is the Lie bracket, that is
ad(X)y(Y(9)) := [X,Y](9).
Also, since X' satisfies
[X,Y](9) = ((dLg)oad(X)o(dLy-1))y(Y(g9)) = —((dLg)coDo(dLy-1)y(Y(g))
we have that X satisfies

(X, Y](9) = =((dLg)e © D" 0 (dLy-1)5(Y (9)),
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where L,(q) = g - q is the translation on G//Sp. Consequently

divX (g) = tr((dLy)e o DT o (dL,1); = tr DT = tr D]+ = Z Ap

Ap>0

Our idea is to project the system (4.1) over the homogeneous space G/Sp
and use that the entropy does not increase by semi-conjugation to get a better
lower bound.

Consider then on the homogeneous space G/Sp the C*, p = pp-function
and consider the associated multiplier sp : G X G/Sp — R,. Let also
Ctu(g) = G - g be the solution of the system on G/Sp induced by (4.4).

Proposition 4.2.2 The map 0 = op : R xU x G/Sp — R defined by
o1 (u, @) = 10g sp(Crur q)- (4.7)
is a continuous cocycle over the control flow for the system (4.4),
¢ U X G/Sp —UxG/Sp (u, 7)) = (O, Gt.u(7))-
Also, in the negative time we have
o_t(u,q) = —ot(d—+(u,q)) fort>0.

Proof. The continuity follows from the fact that sp and log are C*> and
since the system (4.4) is control-affine, the solutions (;,(g) are continuous.
For the cocycle property, we have the property (iii) of sp, that is,

sp(gp; @) = sp(p,@)sp(9,p-q), 9,p,q €G.
Then, for (u,q) €U x G/Sp and t,s € R we have
S'D(Ct—i—s,ua CY) = SD(Ct,@Squ,ua Q)

- SD(CS,U? Q)SD(Q,GSQM CS,u : Q) =
and then, applying log and using that (s, (q) = (s - ¢ We get

Ut-i-s(u? Q) = log SD(CS7U7 CY) + 10g SD(Ct,@sua Cs,u((j))
= O—s(uv Q) + Ut(¢s<u> Q))
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The last assertion follows also from the property above and the fact that
Ct_ul = (_t.o,u- In fact for (u,q) € U x G/Sp we have

$p(C—tur 7) = 5D(Ctus C:tl,uf—t,u@ =
SD(L C—t,uQ) ' [S'D<C:t1,u7 C—t,uqn - = [SD(§t797tua C—t,u(ﬂ} !
since sp(e,q) = 1 for all § € G/Sp. Applying log and using the definition we
get
O',t(U, q_) = _Ut(¢7t(u7 q_))

concluding the proof. m
We have then the main result of this section.

Theorem 4.2.3 Let (K,Q) an admissible pair for the linear system (4.1)
and assume that dg(K) > 0, with dg the left Haar measure. Then the outer
imvariance entropy satisfies

hinv,out(Ka Q) Z Z >\D + gD(Q)
Ap>0

where \p are the real part of the eigenvalues of the derivation D associated
to the drift X and

. 1 _
gp(Q) = sup limsup —o,(u, q).
(u,q)EQ n——oco N

Proof. Consider as before the quotient space G/Sp. Since Sp is invariant by
the flow of X we have a m,-related system to the system (4.1). The solutions
of such system are just the projection of the solution of the system (4.1),
that is,

ot m(g),u) = 7(p(t,g,u))
where ¢ is the solution of (4.1). But then, for § = ¢ - Sp
@(t 9, U,) = Ct,uwt(Q)SD = Ct,ulzt(‘j)

where 1, is the curve associated with X = 7, X. By the conjugation with 7
above, the Theorem 3.5 of [10] assures that

hinv,out (Ka Q) Z hinvput (WKa WQ) .
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Denote by (K, Q) the pair (7K, 7Q) and consider the rho-function pp on
G and pp the associated measure. Remark 4.1.9, assures that pp(mw(K)) > 0.

Let then n,e > 0 and consider S = {uy, -+ ,u;} be a minimal (n,¢)-
spanning set for (K, Q). Define the sets
Kj:{gEK; @([07n]7Q7uj)CNE(Q)}’ j:1,---/{3.

Then by definition of (n,¢)-spanning sets, K; is a Borel set for each j and
also K = U;Kj;. Also, since the solution map @, : Sp — Sp is a diffeo-
morphism, @, (K;) is also a Borel set and satisfies

1o (P, (K5)) < pp(Ne(Q)).

Since pp is quasi-invariant, we have

ND(@n,u]' (KJ)) = / SD(Cn,uj ) Q)dﬂD (‘D

Yn(K;)

| 50 @) et )yl (@)

J

By Liouville’s trace formula and discussion above, we have that

0

|det(dzﬁn)g\ = exp (/ div)((%((j)))ds = " Lap>02D
We obtain

,U/D(@n,uj (K])) = enZ/\D>O A / S'D(Cn,ujﬂzn(q_))dHD(Cj)

K;

and using property of sp we have that

T\ SD(ﬁ@mu;(@) —[s -1 - (=\1—¢
SD(Cn,uj7¢t<Q)) - SD( 7;;]79571(@)) - [ D( n,ujaSOn(Q))] :

Since @y, (7) € cIN(Q), for t € [0,n] and u; € S C myQ the lift of Q,
we have by continuity of sp that

D (Copuy» Ve(9)) > [r(riag so(¢ L a)] > ax $D(Cn0 s Conu(7))

where the maximum is taken over the compact set m,Q x cIN.(Q).
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We have then
[ip (Qon “ (K )) > enEADN))\'D max(y,q) on(d—n(uw,q)) MD(KJ)

Taking jo such that max; pup(K;) = pp(Kj,) we have
k
pp(K) <> pup(K;) < kpp(K,)
j=1

po(Ne(Q))

<k-
ek ZAD >0 AD eMaX(u,q) on(¢—n(u,q))

and consequently

p(K)
pip (Ne (Q))

_ — A B s
Tinv (n7 E; K7 Q) 2 enZAD>O Demax(u’q) an(¢77L(u’q))

Taking log and dividing by n we obtain
- IOg Tinv(na €, Ra Q)
n

1 1
Z Ap + max —o,(¢_p(u,q)) + - cte.

Q) M
A0 (u,q)

Since 0y, (¢—n(u, q)) = —o_n(u, q) we get

llmsupmax —o,(u,q) > su phmsup —on(u, q)

(u,q) € myQ x cIN.(Q) and consequently

_ 1
Riny out (K, Q) > Z Ap + hm max lim sup —o,,(u, 7).

7‘1) n——oo I

Ap>0
But 7,9 x QD Q and
lim max limsup —o,(u,q) = max limsup —o,(u,q)
eNO (u,§) €My OXN(Q) n——00 M (u,q) €Ty 9XQ n—s—oo M
what give us
1
lim sup limsup —o,(u,q) > sup limsup —o,(u,q)
0 (ug)emQxN(Q) nr—oo T (wg)eQ n——oo N
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and implies

1nV0ut K Q Z )\D +gD

Ap>0
for

) 1 _
gp(Q) = sup limsup —o,(u, q)

(u,)€Q M=
showing the theorem. m

Remark 4.2.4 Using the cocycle property and the fact that the lift Q is
inwvariant by the control flow we can show that

. 1 ~
QD(Q) = Ssup lim sup —o‘T(u7 q)
(u,§)€Q T——00 T
for T € R.

We would like very much the quantity gp(Q) to be equal to zero. A first
step in this way, that generalizes the linear case, is the following corollary.

Corollary 4.2.5 Let (K,Q) an admissible pair for the linear system (4.1)
with dg(K) > 0. Let us assume that G is in one of the following categories:

(i) Abelian;
(11) Nilpotent;
(11i) Compact.

Then
hmv out K Q Z /\D

Ap>0

with A\p as above.

Proof. Since for such groups we have dy = ¢ = 1 for all subgroup H C GG
we have that the rho-function associated to the subgroup Sp as above is
constant equal to 1 and consequently ¢gp(Q) = 0 what give us the result. m

Remark 4.2.6 Note that the above Corollary show us that in some groups,
the outer invariance entropy just depends on the geometry of the space.
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4.2.1 The Semi-simple case

We will show that on the semi-simple case we have a relation between gp and
the a-cocycle. Consider then the trivial principal bundle @) = U x G. The
right invariance of the system (4.4) give us that the control flow associated
with this system is a flow of automorphisms and we have then, as before, the
a-cocycle defined on U x F.

The map

P@IZ&

a€ll-\(O)

annihilates a(©), we have by Lemma 2.4.2 a well defined cocycle ag on U xFg
given by ag(t,u, me(q)) = pe(a(t,u,q)) and by the relation between a and a*
we have also the cocycle in the negative time a§(t, u, mo(q)) = po(a*(t,u, q)).

Since G is semi-simple, the derivation D is inner, that is, there is X € g
such that D = ad(X) and we have that the real parts of the eigenvalues
of D coincides with the eigenvalues of the abelian part of ad(X). We will
assume that D = ad(H) with H in the closure a positive Weyl chamber, that
is, H € cla®. If we consider then © = {a € ¥; a(H) = 0}, we have that
the space G/Sp is the flag manifold Fg = G/Ps. Let us denote by Fp this
flag manifold and by ap, a}, the cocycles associated with the abelian part as
above. We have then:

Theorem 4.2.7 Let (4.1) be a linear system on G, with G semi-simple. For
a compact and controlled invariant set () C G we have

. L,
gp(Q) = sup limsup —ap(7, u, me(q)).
(ume(q)€Q 70 T

Proof. Let (u,7o(q)) € Q@ and 7 > 0. Using the property of sp we have

that A
$D(Cr Mo (1)) = - S;Eg 597) -

Consider the Iwasawa decomposition (. (q) = k ,a; ,nx .. Using again the
above property we get

$p(C-rud; be) = (k7 be)sp(ar 7 s bo) = sp(kru, be)on(ar,)
because dy = dg =1 and a*, n* beg = bg. Since

U "T,Uu

op(ar,) = e*p(mume(@)

T,U
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we have

SD(k:,w b9>
S'D((L b@)
But £}, is in the compact K and then,

o_+(u,me(q)) = log + ap(7, u, me(q)).

1
limsup —o-(u, me(q)) = limsup —ap(7, u, me(q))
T——oco T T——c0 T

which implies the Theorem. m

Remark 4.2.8 The above Theorem shows that, in order to obtain a formula
for the outer invariance entropy in the semi-simple case we have, as one could
expect, made assumptions just on the abelian part of the induced control-affine

system (4.4).

Remark 4.2.9 The existence of controlled invariant sets, or control sets, for
linear systems on Lie groups is still an ongoing area. What is expected is the
existence of at least one control set around the identity 1 of G because of the
singularity of the drift X but there is still not any work (of my knowledge)
about it.
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Chapter 5

Invariance Entropy for Random
Control Systems

For continuous-time random control systems, this chapter introduces invari-
ance entropy for random pairs as a measure for the amount of information
necessary to achieve invariance of random weakly invariant compact subsets
of the state space. For linear random control systems with compact control
range, the invariance entropy is given by the sum of the real parts of the
unstable eigenvalues of the uncontrolled system if we assume ergodicity.

5.1 Preliminaries

Let m,d € N, M an open subset of R?, (Q, F, (6;):er) a measurable dynamical
system and U C R™ a compact subset. We define the set of admissible
functions by

U={u:R — R™; u measurable with u(t) € U a.e.}.
The shift flow is defined by
O:RxU—U, O(t,u) := Ouu with Ou(s) :=u(t + s) for all ¢, s € R.

A continuous random control system (RCS) on M C R? over a metric
dynamical system (€2, F, (0;)icr) with time R is a map

P RxMxQxU—M

with the following properties:
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i) For all (w,u) € Q x U the map ¢p(w,u) : R x M — M, given by
o(w,u)(t,z) = p(t,r,w,u), is continuous;

ii) For all z € R? and t € R the map ¢(t,7) : Q x U — M is measurable;

iii) The map ¢(t,w,u) : M — M form a cocycle over § x © i.e. they
satisfies

©(0,w,u) = idy forall w € Q and u e U

o(t + s,w,u) = @(t, 0w, O5u) o p(s,w, u)
where p(t,w, u)z := o(t, z,w,u).

Let F': M xR™x ) — R? be a Carathéodory application, i.e., continuous
on M xR™ and measurable on , satisfying F'(z,u,w) € T, M and continuous

differentiable in the first argument.
The family

(t) = F(z(t),u(t), w) , uel,weQ, (5.1)

of ordinary differential equations generates a RCS.

For each x € M, u € U and w €  the solution of the initial value
problem z(0) = z will be denoted by ¢(t,z,u,w). With some assumptions
on F' we have that the solutions of (5.1) exist. For instance, if we assume
that there is an interval I such that for all z € M, u € U and w €
the functions t € I w— ||DF(z,u(t),bw)|| and t € I — ||F(x,u(t), w)||
are locally integrable, then we have that the solutions exist in some interval
J C I, where J = J(z,u,w).

The solutions are defined in the sense of Carathéodory, that is, ¢(-, z, u, w)
is an absolutely continuous curve which satisfies the corresponding integral
equation. Throughout we assume that solutions are defined globally. This
assumption is justified by the fact that we consider only trajectories which
do not leave a compact subset of the state space M (cf. Sontag [32|, Prop.
C.3.6]). Thus, we obtain the cocycle property for the solutions ¢ of (5.1).
In this Chapter we will work with RCS that are generated by a family of
differential equations.

Definition 5.1.1 (Random Set) Let C(M) be the set of all nonvoid com-
pact subsets of M. The compact set-valued map Q : Q — C(M), w — Q.,
is called a random compact set if for each x € M the map w — d(x, Q) is
measurable, where d is any distance in M.
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Let @ be a compact set. Then we have in a natural way the trivial random
compact set defined by @, = @ for w € €. In this situation, we also denote
the random control set @ only by Q. Also, for two compact set-valued maps
K and Q we say that K is contained in Q (and denote in the usual way
KcQ)if K, CQ, for each w € Q.

For a given random compact set Q, we say that Q is weakly invariant for
the RCS if for each w € Q and each x € @), there exists u € U such that
o(t, z,u,w) € Qg for all t > 0.

We will also need some notion of continuity for the random compact set.
We say that the random compact set is upper semi-continuous over the flow
0 if foreacht € R, w € Q

lim dist(Qg,w, Qo,) = 0,
s—t
where dist denotes the Hausdorff semi-distance given by

dist(A, B) = supd(a, B)

a€cA

for d(a, B) = infye g d(a,b). We have the following lemma that will be needed
in some proofs below.

Lemma 5.1.2 Let O be an upper semi-continuous random compact set. For
gwen w € Q, u € U we have:
(i) The function f, ., : R x M — Ry, defined by

f%w(t’ .2?) = d(gp(ta T, u, W), Qotw),

is lower semi-continuous in the first argument and continuous in the second
one. Also, for every compact interval [0, T] we have that

sup fu,w(t,x) = sup  fuo(t,z);
t€[0,T] te[0,71NQ

(it) The set Qr,. = Usepoq Qoww 15 compact.

Proof. (i) First we need a property of the Hausdorff semi-distance for com-
pact sets: Let B, C be compact sets and a an arbitrary point. Then

d(a,B) < d(a,C) + dist(C, B). (5.2)
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For each ¢ € C we have that d(a, B) < d(a,c)+d(c, B). Since C'is a compact
set there exist ¢y € C such that d(a,cy) = d(a,C) and that implies

d(a, B) < d(a,cy) + d(co, B) < d(a,C) + macyzd(c, B) =d(a,C) + dist(C, B).
ce

For fixed v € M, u € U and w € §2, let £ € R. For a given € > 0, consider
0 > 0 such that

dlp(t, 2, 1,0), (s, 7, u,w) < 5 and dist(Qour Qo) < 5

if |t — s| < 6. That exists because of the continuity of the solution and the
upper semi-continuity of the random compact set. Then

d(@(ta €, U, W)a QOM)

< d(@(ta T,u, (A)), 90(87 T,u, w)) + d(@(s» T, u, CO), Q95w> + diSt(QGSwa Q@tw)
< d(p(s,z,u,w), Qp,w) + ¢ for all [t —s| <,
where we used (5.2). By the definition of the function f we have

fu,w(tax) —&e< fu,w(sax)

showing that f is lower semi-continuous in the first argument.
The continuity in the second argument follows from the continuity of the
solution and of the continuity of the metric.

For the second assertion, we just need to show that sup;cio 7y fu,w(t; ) <
SUPye(o.7)ng fu,w(t, ). Let t € [0,T]. There exists a sequence of rational
numbers ¢, € [0, 7] that converges to t. Then, for each € > 0, there exist ng
such that for all n > ng we have that

fuwt,2) < fuw(tn,2) +e < sup  fuo(t,z) +e.
te[0,7)NQ

Since this relation is valid for all ¢ € [0, 7] we have the desired result.

(ii) Let z, be a sequence in Qr, . Then there is ¢, € [0, 7] such that z, €
Qo,,- Since [0,7] compact we can assume that the sequence t,, converges
to some t € [0,7]. By the upper semi-continuity of the random compact set,
we have that

d(zna Q@ﬁu) S diSt(Qﬁtnwu QGtw) — 0

as n — 00. Since Qy,, is compact there is x,, € Qy,. such that d(z,, Qs,.) =
d(zn, z,) and we can also assume that the sequence x,, — 2z € Qy,,,. Conse-
quently z, — 2z showing that Q)7 is compact. m
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5.2 Definition and Elementary Properties

This section will present several definitions for the invariance entropy with
relation to a measure. Basic properties are derived.

We call (K, Q) a random pairif Q is a weakly invariant random compact
set for (5.1) and K is a compact set-valued map satisfying I C Q.

Consider then a random pair (K, Q). For given T,e > 0 and w € Q we
call S, C U a (T,e,w)-spanning set for (K, Q) if for every z € K, there
exists u € S, with

d(p(t, z,u,w), Qo,w) < &, for all t € [0,T],

where d is the Euclidean distance. By 7y, (T, e,w, K, Q) we denote the min-
imal cardinality of a (7', ¢, w)-spanning set.

Let 0 < T7 < Ty. Since every (T, e,w)-spanning set is also a (77, ¢,w)-
spanning, it follows that

TinV(T1,€,(JJ,IC, Q) S Tinv(T2a€7w7K7 Q) (53)

Also for every 0 < €1 < €3 a (T, &1, w)-spanning set is a (T, 3, w)-spanning
set. Then
TinV<T7 517W7,C7 Q) Z 7“inv(Tya 827W7K7 Q) (54>

Note that a priori the numbers 7y, (T, €, w, K, Q) are not necessarily finite,
but we will show that the assumption that the random compact set Q is
weakly invariant is enough to assure that. For this purpose we define another
notion of spanning sets.

We still consider a pair (K, Q) as above and define the lift over w € Q of
Q by

lift(Q,w) 1= {(x,u) € Qu, X U; p(t,z,u,w) € Qp,, for all t > 0}.

For given w € Q and T,e > 0 we call a set S C 1ift(Q,w) strongly (T,e,w)-
spanning for (IC, Q) if for every x € K, there exists (y,u) € S with

d(p(t,z,u,w), p(t,y,u,w)) < e, for all t € [0,T].

We denote by 7 (T,e,w,K,Q) the minimal cardinality of a strongly
(T, e, w)-spanning set.
As a function of T, ¢, we have that " (T, ¢,w, K, Q) has the same prop-

mv
erties as ri (T, e, w, K, Q).
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Proposition 5.2.1 Let (K, Q) a random pair. Then for all w € Q and
T e>0
Tiny (T, 8,0, K, Q) <1y (T 8,0, K, Q) < 0.

inv

Proof. Let show first that 7 (T,e,w,K, Q) < oco. Consider then w € €,
T,e > 0. Since Q is weakly invariant we have that for each y € K, C Q,,
there exists u, € U such that p(t,y,u,,w) € Qg for all t > 0. Using the
continuity of the solution in (¢, y), there exist neighborhoods I; of t and U, of y
such that if s € I, and x € Uy, we have that d(¢(s,y, uy, w), p(s, z,u,,w)) <
e. By compactness of [0,7] x K, we have that there exists a finite set
{(y1,u1), ..., (Yn,un)} such that, for every x € K, there is i € {1,--- ,n}
with
d((t, yi, us,w), p(t, z,u;,w)) < e for all t € [0,

and hence rit (T, e,w, K, Q) < n < oo as desired.
For the first inequality let w € €, T, e > 0 and consider a minimal strongly
(T, e,w)-spanning set S = {(y1,u1),..., (Yn,un)} for the random compact
set (K0, Q) and define S, = {uy,...,u,}. We need to show that S, is a
(T, e, w)-spanning set for (K, Q).
Since ST is a strongly (T, e, w)-spanning set for (K, Q), we have that for
each x € K, there exists (y;,u;) € S, i € {1,...,n}, such that

d(e(t, z,u;,w), p(t, yi, u;, w)) < e for all t € [0,T].

As S C lift(Q,w), we have that ¢(t,y;,w,u;) € Qg for all t > 0 and
consequently d(p(t, z,u;,w), Qg,w) < € for all ¢ € [0,T]. Hence the set S, is
(T, e,w)-spanning and consequently

rinv(Ta €,w, IC, Q) S T+

inv(

T e,w, K, Q).

We define the invariance entropy hin, (w, KC, Q) of the random pair (K, Q)
at w € Q, by

1
hiny (€, w, K, Q) := lim sup T log riny (T, &,w, K, Q),

T—00

hinv(w7 ]C, Q) = }:1{‘% hinv(€7 w, ’C, Q)
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It follows from (5.4) and Proposition 5.2.1 that the limit

ll\lr‘% hinv(57w7 IC? Q>

is well-defined. When the random pair is given by (Q, Q) we denote the
entropy just by hin (w, Q).

In order to compute bounds for h,,(w, IC, Q) it will be useful to define
another quantity which will be called strong invariance entropy of the random
pair (K, Q) at w € 2. We define

1
hi (g,w,K, Q) := limsup 7 logr! (T, e,w, K, Q),

inv inv
T—o0

hi (w, K, Q) := li\rlr(l) hi (e,w,K, Q).

mv mv

It follows directly from Proposition 5.2.1 that the two notions of en-
tropy above satisfy hin(w,KC,Q) < hi (w,K,Q) for all w € Q. Also,

mv

for two random pairs (K1, Q) and (Ky, Q) such that Iy C Ko we have
hiny (W, K1, Q) < hiny(w, Ky, Q) for all w € Q.

The next theorem shows that under some conditions the invariance en-
tropy for random control systems cannot increase under semiconjugation.

Theorem 5.2.2 Consider two random control systems @ and i over open
sets M C R? and N C R™ with control spaces U and V corresponding to
control ranges U and V', and a measurable dynamical system 0, on a compact
metric space ). Let w:Q x M — N be a Carathéodory map and h : U — V
be any map with the semiconjugation property

Touw (p(t, x,w,u)) = Y(t, T (z), w, h(u)) (5.5)

forallz e REu e, t>0,w €.
Assume also that for each fixed w € €2, the map

(t,x) ERX M — 7(bw,z) € N (5.6)
is continuous. Then for a random pair (IC, Q) we have:
(i) The pair (w(K),7(Q)) is a random pair, where for each w € €,
T(K)w = mu(Ko) and m(Q)w = T (Qu);
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(i1) If Q is upper semi-continuous, then w(Q) is upper semi-continuous;
(11i) Let w € Q and consider the set

My, :={(t,z);t € [0,T] and x € Qg,u}-

If for w € Q and all T > 0 the sets My, are compact, then

Ry (W, T(KC), m(Q)) < hiny(w, K, Q).

Proof. (i) It is clear that 7(Q) and 7(K) are compact set-valued functions
and that 7(K) C 7(Q). We have to show that 7(Q) is weakly invariant.
Let w € Q and z = 7,(x) € m,(Q,), with z € Q,. Since Q is weakly
invariant, there exists u € U such that ¢(t,z,w,u) € Q,, for all t > 0.
Taking h(u) € V and using (5.5) we have

77Z)(ta 7Tw<$), W, h(U)) = ﬂgtw(g&(t, x,w, U)) € 7T9,50J(Q9tw) = W(Q)Gtwa
for all t > 0 showing the weak invariance.

(ii) Let w € Q, ¢ > 0 and t € R. Since the map (t,z) — 7(6w,x) is
continuous and @y, is a compact set, there exist d; = 01(¢,£) > 0 such that

d(mg,w(7), T, (y)) <&, if [t — s| < 61 and d(z,y) < i, (5.7)
for x € Qy,.. Also, since the upper semi-continuity of Q assures that
Lli)r% diSt(Qé‘swu Qﬁzw) =0,
there exists dy = d2(t,e) > 0 such that
diSt(Qgsw, Qﬂtw) < 01 if |t — 8| < 0o.

Then take § = min{d;,d>} and consider for each = € Qy,,, a point y, €
QGtw SatiSfying d(l‘, Qetw) = d(ZL’, ya:)

Then, for |t—s| < 0, we have that d(x,y,) < dist(Qp,w, Qo,w) < 0 implying
by (5.7) that

A(7o0(2), T(Q)ow) < d(To.w(T), Tow(ys)) < €
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and this inequality is valid for all z € Qy,,,. Then, for each z € 7(Q)g..,, We
have that d(z, 7(Q)g,.) < € and consequently

dist(7(fsw, Qo,w), T(Giw, Qp,)) < € when [t —s| < 0
showing that 7(Q) is upper semi-continuous.

(ili) Take w € Q and T',e > 0. Since My, is a compact set and the map
(t,x) — m(Ow, x) is continuous, there exist § > 0 such that for (¢,z) € Mr ,

d(m(Osw,y), (O, x)) <e if |t —s| < and d(z,y) < 0.

Consider a minimal (7', §, w)-spanning set S,, C U for (K, Q). This means
that for each x € K, there exists u € S, such that

d(p(t, z,u,w), Qg,w) < 0, for all t € [0,T].

Then take y = 7, (z) € 7(K), and u € S, that satisfies the above. Since
s, 1s a compact set, there exists for each ¢ € [0,T] an element x; € Qg,.
such that

d(()p(t’ x? u? w)? J;t) = d(@(t7 x? u? w)? Qetw) < 5
and consequently
d((t, y, h(u),w), 7(Q)ow) = d(m (0w, p(t, , u,w)), (0w, Qo,)))

< d(m(Ow, o(t, x,u,w)), (6w, ) < € for all t € [0, 7.
Then h(S,) C Vis a (T,e,w)-spanning set for (7(K),7(Q)) and that
implies iy (T, &, w, 7(K), 7(Q)) < riny (T, 0, w, K, Q). Also

lim sup % 7 (T, e,w, (7(K),7(Q))) < hin (6, w, K, Q) < hiny(w, IC, Q).

T—o00

For £ N\ 0 we obtain A,y (w, 7(K), 7(Q)) < hiny(w, K, Q). =

By Lemma 5.1.2 we notice that the set M, C [0,7] X Qr,, is compact
if the random compact set Q is upper semi-continuous .
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5.3 Lower and Upper bounds

In this section we will give lower and upper bounds for the invariance entropy
of a random control system. Recall the definition of conditional expectation.

Definition 5.3.1 Consider a probability space (0, F, u) and a sub o-algebra
G of F. For each real-valued integrable function g on €1, the conditional
expectation of g is defined a.e. as the real-valued function E(g|G) : @ — R
that satisfies:

1. E(g|G) is G-measurable;

/ngMZ/CE(9|g)dM-

The conditional expectation always exists when the function g is inte-
grable and it is unique outside of a set of zero measure. The following prop-
erties of such functions can be found in [[35] Section 9.7].

2. for each C' € G,

Let (£, F, i) be a probability space and consider sub o-algebras H, G of
F. Then the followings assertions holds:

1. It g € L'(Q,G, p), then E(g|G) = g;
2. If g, f € LY, G, ) and a € R, then E(af + glg) = aE(f|G) + E(g|9);
3. If g€ LY(Q,G, 1) and g > 0, then E(g|G) > 0;

4. (Monotone Convergence): Let g, nonnegative real valued functions
such that g, < g,.1 for all n € N. Then

lim E(gn|G) = E(lim g,[G);
n—oo n—oo
5. (Fatou): Let g, nonnegative real valued functions. Then
E(liminf g,|G) < liminf E(g,|G);
6. (Dominated Convergence): Let g, real-valued functions and f €
LY(Q, F,u) such that for all n € N |g,] < f and g = lim, o0 gn.

Then
Tim E(gn|9) = E(9]9)-
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7. (Jensen inequality): Let ¢ : R — R be a convex function. For a real-
valued function g, if ¢ o g € L*(Q, F, ), then

»(E(9]9)) < E(p o g]9);

8. If H is a subalgebra of G, then
E(g|H) = E(E(g|9)H)

for each real valued function g;

9. If g € LY, F,pu) and f is a bounded real-valued function that is
G-measurable, then

E(f9l9) = fE(9]G).

We will also need the following lemma.

Lemma 5.3.2 Let f : R?x Q — R be a Carathéodory map and Q a compact
set-valued map. Then:

(i) For a given € > 0, the set-valued map Q. : Q — C(M) defined by
w i cl(N(Qy)), is measurable.

(i) The maps mé,Mé : Q) — R defined by

mé(w) = min f(z,w) and Mé(w) := max f(z,w)

TEQ 2EQw

are measurable.

(111) For each w € Q2 we have mge(w) — mé(w) and Még (w) — Mé(w) for

e\ 0.

Proof. The assertions (i) and (ii) are proven in [3]

Let us show (iii). Since Q,, C cl(N.(Q.)) for each & > 0 we have m’,(w) >
mgg (w) and Mé(w) < Més (w) for all w € Q. We will show that for each
d > 0 given, there exists gy > 0 such that mé(w) —més (w) < d and Mé (w)—
Mé(w) <dife< €0-

Since for a fixed w the function z — f(x,w) is uniformly continuous over
Q. we have that for each § > 0 there exists g > 0 such that |f(z,w) —
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fly,w)| < §if ||z —y|| < go for z € @,. Then each point y € N.(Q,)
satisfies

and
fly,w) = fz,w) + fly,w) = fz,w) < Mfw) +4,

where  is a point in Q,, such that ||z —y|| < &9. Consequently 0 < m’(w) —
mgs (w) < 0 and Més (w) — Mé(w) < § as desired. m

Let (2, F, (0:)icr) be a measurable dynamical system. The (Birkhoff-
Khintchin) ergodic theorem states that for any #-invariant measure p on
(2, F) and any f € L*(Q, F, i) the limits

t—o00

¢ 0
lim %/0 f(Osw)ds = tllglo % /tf(st)ds = f(w)

exist for all w in a set ; of full measure and also that the function f (defined
outside Q; by f(w) = 0) is a version of E(f|Z), where Z C F is the sub o-
algebra of the measurable invariant sets of ((6;)icr). If the measure pu is
ergodic the above limit is u-a.e. constant.

With these prerequisites we can now give lower and upper bounds for the
invariance entropy.

Theorem 5.3.3 Consider the RCS (5.1) and let (K, Q) be a random pair
with the additional assumptions that IC has nonempty interior and Q s upper
semi-continuous. Let p be a O-invariant measure over 2 and assume that for
each (x,u) € M x U we have that |5 (z,u,-)|| € L*(Q, F, p). Then for each
w € ) the following estimate holds:

i (@, K, Q) > E(mi|z) (w) — A(w, Q), (5.8)
where f is the Carathéodory function defined as

flz,w) = min dive F(z, u,w)

and A(w, Q) := lim o liminfr o 7 In A4 (N, (Qpyw))-
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Proof. Define the integrable functions mée,mé : 2 — R as in Lemma
5.3.2. Let w € Q and T, e > 0 and consider a minimal (7, ¢, w)-spanning set
S, = {u1,...,u,} for (K, Q). Define the following sets:

K, j={z € Ky d(o(t,z,w,u;), Qo) <e,t€[0,T]}, 7=1,2,...,n.
The set K, ; is a Borel set. In fact, since by Lemma 5.1.2

K, j={r € K,;gi(r) <e} where g;(z) = sup fy, u(t, 2)
te[0,71NQ

for the lower semi-continuous in the first arguments functions f,; . (t, ), we
have that K, ; is a Borel set.

As o(T, K, j,w,u;) C N:(Qp,w) for j =1,...,n, we obtain in particular
)\d(gp(T’ Kw7j>w>uj)) < Ad(NE<Q9Tw))7 for ] = 17 <o N,

where \? is the Lebesgue measure on R¢.
Moreover, by the transformation theorem and Liouville’s trace formula
we get forall j=1,...,n

Oy

— d
ox x

det

ML Koy, =

Ko, j

(T, z,w,u;)

dp
> (K, ) - inf det == (T :
> 2 J) (x7u)1eanxu e 8x< 7x7w7uj>
<p(t,x,w,u)€Ne(Q9tu)
vte([0,T]
T
— )\d(Kw,j) : inf eXp/ diVXF(Qp(s’g’w’ u),u(s), esw)ds
(z,u)eKwxU 0
@(t,x,w,u)ENe(Qo,w)
vte[0,T]
T

> >\d Kw ) . ex / min diVXF $,U,05W ds
- ( ’]) P 0 (w,u)ECl(NE(QOSw))XU ( )

T
= \Y(K, ;) -exp/ més(ﬁsw)ds.
0
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Take jo € {1,...,n} such that M(K, ;) = max;<j<, (K, ;). This
implies

M) < MKy ;) <n- (K, j,)

j=1
AT Ky o) _ o N(Ne(Qopa))
exp fOT még(esw)ds ~exp fOT mgs(esw)ds

Consequently, with n = ry, (T, ¢, w, K, Q) we get that

M(K,) g
Tinv T,g,W,]C, Q 2 —eXp/ mf 08(,{} dS,
| P Z NN Qo)) Py e

and then

1 1
lim sup T Inriy (T, e,w, K, Q) > —liminf T In ()\d(NE(QgTw))> +

T—o0 T—o0

1 (T
—I—limsupf/o mée(ﬁsw)ds.

T—o0

By the assumptions the functions més € LY(Q, F,u), and hence the
Birkhof-Chintchin ergodic theorem implies that the second limit on the right
side of the equation above exists and is equal to

A
] f pu— f
jlgrolo T /0 my_ (Osw)ds = E(mg_|7)(w)

for almost every w € 2. By Lemma 5.3.2 the functions még converges to mé

and consequently the conditional expectation IE‘L(TrLgE |7) converges to E(mé| 7)
as € goes to 0. Therefore, we have

hiny(w, K, Q) > E(mb7)(w) — A(w, Q)
as desired. m

In the case where the Lebesgue measure of the family Q is bounded, it is
easy to see that AM(w, Q) = 0 and then we have the following corollary.
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Corollary 5.3.4 Under the assumptions of Theorem 5.3.3 assume addition-
ally that there is M > 0 such that \(Q,,) < M for all w € Q and that the
measure |4 1S ergodic. Then we have

hinv(walcy Q) Z /Qméd/l

with f(x,w) = min,ey div, F(z, u,w).

The next theorem provides an upper bound for the strong invariance
entropy of a random pair and hence for the invariance entropy of such pair.
For the proof recall the definition of fractal dimension: Let Z C X be a
totally bounded subset of a metric space (X, d) and let b(e, Z) be the minimal
cardinality of a cover of Z by e-balls. Then the fractal dimension of 7 is

defined by
Inb(e, Z
dimp(Z) := limsup %/’5)) € RU{oo}.
The fractal dimension depends on the metric and is not a topological in-
variant. But for a relatively compact open subset of a differentiable manifold

it equals the topological dimension.

Theorem 5.3.5 Consider the control system (5.1) and let (KC,Q) a ran-
dom pair. Suppose that we have a 6-invariant measure p over €2 such that
195 (2, u, )| € LY, F, ). Then the Carathéodory function L : M x Q — R
defined by

oF
—(z,u,w)

ox

L(z,w) := max

uelU ’

satisfies
hiny (w, K, Q) < E(M5|T)(w) - dimp(K,)

u-almost every point.

Proof. Let T,e > 0 be given. Assume that ¢ > 0 is sufficient small such
that Noo(Q,,) C M for all w € Q. Let us fix w € . By [[14], corollary 11.26|
we have assured the existence of a C*-function g., : R? — [0, 1] such that
supp(gew) C No:(Qw) and g., = 1 on cl(N.(Qy)). In fact such function is
defined by
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ga,w(x> = ¢5/3 * 1V“’ / ¢5/3 T — )1\/5‘73( )

where ¢;(x) := t"p(x/t) for a C*°-function ¢ as in the lemma 11.23 of [14],
and

e {x € RY d(z, c(N.(Qu))) < Z}

Since N.(Q) is a random set, the function Ly is measurable and conse-
quently the function g¢.(w,z) := g¢..(z) is a Carathéodory function. We
define F(z,u,w) == g.(w,z)F(z,u,w), F : R* x R™ x Q@ — R% Then F is
continuous and continuously differentiable with respect to the first argument
and is measurable with respect to €2. We consider then the random control

system ~

(t) = F(x(t),u(t), w), uel. (5.9)
We denote its solutions by (¢, y,u,w). Note that for each ¢ € [0, T], we have
that if p(t, z,u,w) C No(Qp,.) then the solutions of (5.1) and (5.9) coincide.

Define the integrable functions Mé2€ as in Lemma 5.3.2. Then we have
that M5, — M§ pointwise and 0 < M§(w) < M, (w).

For each w, we have that MéQE (w) is a global Lipschitz constant for the
first variable, that is,

||F(.T1,U,w) - F(@,UaW)H < Mégs(w)Hxl - xQH

for all 1,2, € R%, w € U and w € Q.

Note that (IC, Q) is also a random pair with respect to the system (5.9)
and the lift 1ift(Q, w) is the same for the systems (5.9) and (5.1). Also the
strongly (T, e, w)-spanning sets of system (5.9) coincides with those of system
(5.1).

Now let S = {(y1,u1), -, (Yn,un)} C lift(Q,w) be a minimal strongly
(T, e,w)-spanning set for Q and define the sets:

N! ={x € RY, dra, (7, y;) < €}
where

dT,Ui,w(‘x yz) - t%?% ’W(t z ’U,“w) - ¢(tayi>ui7w)||'

Notice that it does not matter whether we consider trajectories of system
(5.1) or of system (5.9), since the trajectory o(t, y;, u;, w) is contained in Qy,,
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for each t > 0 and ¢(t, z,u;,w) is e-close to it for all ¢ € [0,7]. By definition
of strongly spanning sets, K, is contained in |J;_; N. Let € R? be a point
such that for some ¢ € {1,...,n} we have

o —yil| <e” Jo M, (Osw)ds

It follows that
||w(taxauiaw) - w(tvyhuiaw)H S
t
<llo—ull+ | MG @165, 150) = 0o, )
0

for all t > 0 and by Gronwall’s Lemma

T
0(t, @, wi,w) — O(E, i, wg, w)]| < ||o — il [ ME: % <o (5.10)

for all t € [0, T].
The equation (5.10) is also true for ¢ instead of . It follows that x € N}
and thus N/, contains the ball Ber)(y;), where ¢(T,e) := e~ Iy M, (s)ds
Suppose now that there exists a cover of K|, consisting of ¢(T',¢)-balls
centered at points xq,...,xny € K, such that N < n. Assign to each z;
as above a control function v; such that (x;,v;) € lift(Q,w). Then the ball
Be(r,5)(x;) is contained in the set

V‘j:{xGRd;dT,U“w(JZ’)yl) <€}, Zzl,,N

Thus the set {(z1,v1),...,(xN,vn)} is also strongly (7, ¢, w)-spanning,
which contradicts the minimality of SJ. It follows that

ri (T, e,w,K, Q) <b(c(T,¢), K,).

inv

We have that

T
Ine(T,2)" = / M5, (9.)ds — In(e)
0

and
/0 M§, (Ow)ds = In(c(T,e)™") +In(e) = Inc(T,e)" (1 + %)
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If the integral fOT Mg, (0,w)ds is bounded, that is, there is M > 0 such
that fOT Mék (O,w)ds < M for all T > 0, we have that

r (T, e,w,K, Q) < b(c(T,¢), K,) < bleMe, K,)

and consequently Al (w,K,Q) = 0. Also, by the (Birkhoff-Khintchin) er-

godic theorem, we have

t—oo t

E(M§IT)(w) = lim - /MQ sw)d

and the fact that the integral above is bounded implies that E(M§|Z)(w) = 0

Hence we can assume then that fOT Mé%(ﬁsw)ds — o0 as T' — oo and
consequently ¢(T,e) — 0 as T' — oo.
Then

T e,w,K,Q) <

mv (

1
hi (e,w,K, Q) = hmsupTlnr

mv
T—o00

1
limsupflnb(c(T, e), K,) = limsup — (/ M§, (6,

T—oo T—o0

ln b(e(T e), Kw))
fOT Mg, (Bsw)ds .
Since for each T',

Inb(ce(T,¢), Ky)

fOT Mg, (Bsw)ds

1 (T
T / M5, (O,w)ds and
0

are nonnegative, we have that

Inb(e(T, ), K.,
hiw (6,0, K, Q) < thUP—/ MQ2 fsw)ds - limsup nb(e(T,e). >’
T—00 T—s00 fO ML esw)ds

and as we are assuming that the measure y is #-invariant, the first lim sup
on the right-hand side of the inequality above is, p-a.e., a limit and since
Mg, € LY, F,p) it is equal to E(M5, |T)(w). For the second limsup, we
note that

Inb(c(T,e), K,) Inb(c(T,¢), Ky)
T L o
Jo M8, 05 (et (14 )
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and consequently

lim sup 2 = dimp(K,).

Then we have that

hi (e, w, K, Q) <E(MS, |T)(w) - dimp(K.,)

mv

and since M5, — M5 and M5, < Mé%, if ¢ < ¢’ we have that for € \, 0

i (@,K, Q) = lim h* (e, K, Q) < Im E(M§, |T)(w) - dimp(K.,) =

mv

= E(li\% M§, |T)(w) - dimp(K,) = E(M§|Z)(w) - dimp(K,).

Notice that since for a compact set K C R? we have dimp K < d, we
also have that hy (w, K, Q) < E(d- M§|Z)(w). As for the lower bound, if we

mv
assume that the measure p is ergodic we have the following result.

Corollary 5.3.6 Assume in addition to the conditions of Theorem 5.3.5 that
the measure v is ergodic. Then

Q

with L defined as above.

Example 5.3.7 With the theorems above we are able to compute the invari-
ance entropy of a random pair (K, Q) for a one-dimensional linear control
system given by

z(t) = a(Ow)x(t) + u(t) == F(z(t), u(t), bw), uel,we,

with a nonnegative integrable function a : @ — R. For this system, if the
random pair (IC, Q) is such that K has nonvoid interior and Q is upper semi-
continuous and has bounded Lebesque measure, Theorems 5.3.3 and 5.53.5
yield
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P, @) € [BRIZI), BRITI).
where the functions fi and fs are given by

a—F(x, U, w)

filw) = min  —(z,u,w) and fo(w)= max o

(z,u)€QuxU O (2,u)EQu XU ’

respectively. Since 2 (z, u,w) = a(w) > 0 we obtain hiny(w, Q) = E(a|T)(w).

Also, if the measure u is ergodic, then

Riny (w, K, Q) = / adg.

Q

5.4 The Linear case

Now we consider a system of the form
i(t) = A(Qw)z(t) + B(Ow)ul(t) (5.11)

with A : Q — R and B : QO — R¥™ integrable. The solutions in such a
case are given by

ot z,w,u) = pr(t,w)r +/0 or(t —s,0sw)B(Osw)u(s)ds, (5.12)

where ¢y, is the solution for the associated random dynamical system deter-
mined by A.

We have the following theorem, called Oseledet’s Multiplicative Theorem,
that helps us in the linear case.

Theorem 5.4.1 Consider a random dynamical system ® = (0,¢1) : R X
QxR = Q xR and assume

sup log" [lpn(t,)*! || € L, F ),
0<t<1
where || -|| is any norm in Gl(d,R) and logt denotes the positive part of log.
Then there exists a 0-invariant set Qo C Q of full p-measure such that
for each w € Qq there exists a splitting R? = @?g Li(w) of R? into linear
subspaces with the following properties:
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(i) The number of subspaces is O-invariant, i.e., l(Qw) = l(w) for all
t € R and the dimensions of the subspaces are 0-invariant, i.e., dimL;(f,w) =
dimL;(w) = d;(w).

(ii) The subspaces are invariant by the flow ®, i.e.,
pr(t,w)Lj(w) = L;(0w).

(iii) There exist finitely many numbers A(w) < -+ < N)(w) in R, such
that for each x € R?\ {0} the Lyapunov exponent \(z,w) ezists as a limit
and

. 1
Aww) = I = Inlloy(t,w)al] = A(w)

if, and only if, v € L;(w).

(iv) The following maps are measurable: | : Q — {1,...,d} with the
discrete o-algebra, and for each j =1,...,l(w) the maps L; : Q@ — Gry, (RY),
with the Borel o-algebra, d; : @ — {1,...,d} with the discrete o-algebra and
Aj : @ — R with the Borel o-algebra.

(v) If the base flow 6 is ergodic, then the maps 1, d; and \; are constant
on Qg and we usually denote them without the variable w.

The linear random equation
= A(Ow)x

gives rises to a RDS given by (6, r). In general the Lyapunov exponents
for such a system are difficult to compute explicitly but the average can
sometimes be computed explicitly. In the ergodic case, the average Lyapunov

exponent A := %37 d;\; is given by HtrE(A|T).

For each w € 2 let us consider the spaces

@{L ) >0} and Lj @{L ) <0}

The above theorem assures then that for each w in a set of full measure,
R? = LT (w) ® Ly (w). Define 7 : @ x R — R as (w,r) — z} € LT(w).
Also, property (ii) assures that

_l’_

Mo © PL(t,w) = @r(t,w) om]
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and consequently (t,z) — 7, (x) = 71 (6w, x) is continuous for each w in a
set of full measure.

Pick measurable unit vectors (in the standard Euclidean norm) in such
a way that the v1(w),...,vq ) (w) are orthogonal and taken from L;(w),
Vg () 41(W), - - -, Vgy(w) (w) are orthogonal and taken from Ly(w) and so on.
The existence of such measurable is guaranteed in [Corollary 4.3.12 [2]]. For
w € Q fixed, consider then map T'(w) : R¥“) — L*(w) that associates the
standard basis {e;} with the basis of L*(w) given by the v;(w) above.

Since d(fw) = d(w) for all t € R we can define the linear random dynam-
ical system ¢} : R x R4 x Q x — R4 by

p1(t, @)z =T (0:@)  pr(t,®)T(@)

where Q, := {fw, t € R}. It is not hard to show that the Lyapunov coeffi-
cients of ™ are just the positive ones associated to (.
Using the expression (5.12), we have that

" (t, PT (@), @,u) = P (6:@)p(t, z,0,u)

is a linear RCS, where P (w) := T71(&) o 7 and we are considering ¢ just
over ), (that is not a problem, because our entropy just depends on €,).
Since the projection 7% together with ¢ and ¢ clearly satisfies the hy-
pothesis of Theorem 5.2.2, we have that for a random dynamical pair (K, Q),
that
Piny (W, K, Q) > hiny(w, 7% (K), 77(Q)).

Corollary 5.4.2 Consider a linear RCS given by (5.11) and let (IC, Q) be
a random pair. Assume that K has nonvoid interior and that Q is upper
semi-continuous and has Lebesque measure bounded. Suppose also that there
is a O-invariant measure over ) such that A € L'(Q, F,u). Then there is a
full measure set 0y such that for each w € €

hine(W, K, Q) > Y di(w)\i(w).

)\i(w)>0

Proof. Since A € L'(Q, F, 1) we have a full measure set Qy such that the
properties in Theorem 5.4.1 are satisfied for the random dynamical (6, )
generated by A. If we define as above the RCS ¢ we have that

Biny (W, K, Q) > hiny (w, 7 (K), 77(Q))
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and we just need to estimate a lower bound for the entropy of ¢. But from
the demonstration of the Theorem 5.3.3 it is not hard to show that in the
linear case we have that

1
Py (w, K, Q) > lim sup 7 log | det oz (t,w)| — AMw, Q)

T—oo

and in particular

1
iy (w, K, Q) > hiy (w, 77 (K), 77 (Q)) > lim sup T log | det ¢} (t,w)]

T—00

because we are assuming that Q has Lebesgue measure bounded. The result
follows then if we use the Theorem of Furstenberg-Kesten, that assures that
for every w € (2, we have that

o1
Jim —log|det g} (t,w)| =} di(w)hi(w).

i (w)>0

For the upper bound we need the notion of topological entropy for a linear
random dynamical system (LRDS). Notions of entropy for random dynamical
systems and nonautonomous dynamical systems have appeared in the papers
of Bogenschiitz [6], Froyland and Stancevic [16] and Kolyada and Snoha [24].

Let Q be a random compact set in R%. For ¢,7 > 0 and w €  we call the
set R C R? a (T, ¢)-spanning set for the compact set @, if for every z € Q,,
there exists y € R such that

d(er(t,z,w), pr(t,y,w)) < e for all t € [0,T].

Denote by r,,(T,¢) the minimal cardinality of a (7, ¢)-spanning set and
define the topological entropy of @, for an LRDS by the number

1
h(Q.) := lim lim sup T Inr,(T,¢).

N0 T

If (K, Q) is a random pair for the LRCS in (5.11) and Q is upper semi-
continuous it is not hard to show that

hify (W, Q) < h(Qu).
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In fact, since the solutions of the LRDS are given by

t
o(t,z,w,u) = pp(t,w)z +/ or(t — s,w)B(Osw)u(s)ds,
0
we have that for given z,y € Q,,

HSO(t,fE,(,U,U) - ga(t,y,w,u)H = HSDL(t,W).’L’ - @L(taw)yH

If we consider a (T, ¢)-spanning set R C R? for ), we just have to associate,
to each = € R a control function u € U such that ¢(t, z,u,w) € Qg,., and we
have r (T, e,w, Q) < r,(T,¢) and consequently h (w, Q) < h(Q,,).

We have two important properties for the topological entropy given by

the following lemmas.

Lemma 5.4.3 Consider a LRCS as above and suppose that for each w €
there is an invariant decomposition R? = Wi @ Wa,, in the sense that
or(t,w)Wiw = Wipw, © = 1,2. Denote the corresponding projections by
Tiw : RY— Wi, C R Then for every random compact set Q the topological
entropy satisfies

h(QW) < h(ﬂ'l,w(Qw)) + h(7T2,w(Qw>>-

Proof. For w € Q and T,e > 0 let R; C R? be minimal (7T, €)-spanning sets
for m;,(Q,,) with cardinalities r’ (T, ¢), i=1, 2, respectively. Then consider
R = Ry ® R,. For a given = € @, we have that v = m ,,(2) + m2, () and for
Tiw(x) there exists y; € R; such that d(¢L(t, m,(x),w), oL(t, yi,w)) < € for
t € [0,T]. Since the distance here is the usual one given by a norm in R¢ we
have that for y = y; + o

d(‘pL(taxaw)a @L(tava)) = HSOL(t;T(Lw(x) + 7T27W(ZL’),UJ) - @L(tayl + y2,W)||

< lor(t, mw(@), w) —@rt, yr, W) + [lor(t, Taw(z),w) — oLt y2, w)||
= d((,DL(t, Wl,w(x)aw)a @L(ta y1>w)) + d(gpL(tﬂTQ,w(x)?w)? @L(ta y27w)) < 267

for all ¢ € [0, T]. This shows that the set R is a (T, 2¢)-spanning set for @,
and so
ro(T,2¢) < rl(T,e)-r2(T,¢).

Also,

1 1 1
lim sup T In7,(T,2¢) < limsup = Inr’ (T, ) + lim sup T Inr2(T,e).

T—oo T—o00 T—o00
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Taking € ™\, 0 we obtain
MQu) < M(m1w(Qu)) + h(T2..(Qu))

as desired. m

By induction we can show that the result above is valid for each finite
sum.

Lemma 5.4.4 Consider a LRDS as before and let p be a 6-invariant measure
on ). With the notation of Theorem 5.4.1 for a LRDS, there exists )y such
that for each w € Q, RY = ®_,L;(w). Then for a random compact set Q
we have for w € €y that the topological entropy for m;,(Q.) satisfies

h(miw(Qu)) < di(w) - Ai(w)  if \i(w) >0,

and
h(ﬂ-z’,w(Qw)) =0 Zf )‘z(w) S 07

where d;(w) is the dimension of the spaces L;(w) and m;, : R* — L;(w) C R?
are the projections x — m;(w,x) = x;,, given by the Theorem 5.4.1.

Proof. Let w € )y fixed and assume, for simplicity of notation, that @), C
L;(w) for some i. Suppose first that \;(w) < 0 (for the case \;(w) = 0 we will
show that the first inequality holds and since h(Q,,) > 0 we have the result).
If \;(w) < 0 there is, for each x € L;(w), a T,, > 0 such that ||¢(T,w)z|| <1
for all 7' > T,. Then, since ¢y is uniformly continuous on the compact set
Bl = {x € V!;||z|| < 1}, there is a T > 0 such that ||p(¢t,w)z|| < 1 for
all z € B! and t > T. Consequently for all ¢ > T, || (t,w)L,w) || < 1 and
then the cardinality of any (.S, ¢)-spanning set for @, for S > T satisfies
ru(S,€) < 1yu(T,€), showing that h(Q,) = 0.

Suppose now \;(w) > 0. Since @, is a compact set, there exists N(w) € N
such that
Qu C [-N(w), N(w)] "),

For 6 > 0 and M := [§] every point in [-N(w), N(w)] has distance less

than -7 < 6 to one of the 2M N (w) + 1 points in



Then in the max-norm, every point in Q,, C [~N(w), N(w)]%“) has distance
less than - < § to one of the (2MN(w) + 1)%®) points in the product
S(w)%«). Denote by ¢ (t,w) : RY — R? the linear map given by ¢ (t,w) =
or(t,w)|L,(w)- We have

lez(t, z,w) — er(t,y,w)ll < lleL(t w)lll|z -yl

and then the set S(w)%“) is a (T, 6 maxseo) || % (t,w)]||, w)-spanning set of
cardinality
(2M N (w) + 1)di(w) < Mdi(w)(QN(w) + 1)di(w)

- [5] " o) + 1y < (G+1)  ene+ e

Thus for &€ > 0 and § := e[maxepr) ||g0iL(t,(,u)||r1 we find that the
minimal cardinality of a (7', ¢)-spanning set for @, satisfies

d;i(w)
T < [ mac bl +1] NG+ 1
€10,

di(w)
= lmax 1oy (8, w)|| + €:| e @ QN (w) + 1)),

te[0,T
Let 1
limsup — Inr,(T,e) = lim — Inr,(7T},¢).
T—oo Tj—00 j
There are 7; € [0,Tj] with ||} (75, w)|| = maxie(0,7;) %t w)l|. If 75 and

hence || (7j, w)|| remains bounded for j — oo, it is easy to see that h(Q,) =
0. Hence we may assume that there is a subsequence of (7;), that we again
denote by (7;), with 7; — oo. It follows that

1 1
limsup —In7,(T,e) = lim —Inr,(7},¢)
T—oc0 Tj—oo 1

1
< lim —Inr,(7},¢)

T j—oo Tj

1 .
< lim — (| (7, )| + )" — di(w) Ine + di(w) (2N (w) + 1)]
J

1 , 1
= di(w) lim —Inlpr (73, )]| < di(w) limsup - In [} (7, )|

j T—o00
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We will show that

1 .
limsup — In [, (T, w)|| < Aiw),

T—oo

and then for € N\, 0 we have that

MQu) < di(w) - Aifw).

Consider a sequence T;, — oo that satisfies
. 1 i . 1 7
lim sup 7 In ||y, (T, w)l| = Tim 7 In [l (T, W)
We need to show that for each € > 0, there is ng such that
1 )
7Tln||<,0}4(Tn,(,u)||—/\,-((,u) <e Vn > ng.

But for each x € L;(w), there exists n, such that for n > n, we have

1 )
0< o In ||} (T, w)z|| — Mi(w) < e (5.13)

n

and by continuity that is actually valid in a small neighbourhood of x. Then,
over the compact set D' = {z € L;(w); ||z|| < 1} there is ny such that for all
n > ng and all x € D" we have that (5.13) holds. Consequently, taking the
supremum over D, we have

1 .
sup {?ln |07 (T, w)z|| — )\i(w)} <e

zeD?

and since

1 | ] |
SUP{T Il (T, w)l| — Az'(cv)} == hl{sup IIsD’L(Tn,w)xH} — Ai(w),
rzeD? n

we have the result. m

We can give then an upper bound for the invariance entropy for a LRCS
given by (5.11).
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Theorem 5.4.5 Let Q be a random compact set for the LRCS given by
(5.11) and let p an O-invariant measure in ). Then the invariance entropy
at satisfies

Riny (W, Q) < Z di(w)Ai(w),

w 1 a set of full measure.

Proof. We have already shown that hi,, (w, Q) < hii (w, Q) < h(Q,,). If we
consider the random compact sets Q; = m;,,(Q) defined as before, we get by
Lemma 5.4.3 that h(Q.,) < >, M(Qiw), where Q;, = m,(Q,). Also, by
Lemma 5.4.4 we know that

< di(w) - Ni(w) if N(w) >0,
Qi) { =0 if \i(w) <0,

where d;(w) is the dimension of L;(w). If we put that everything together we
get that h(Qu) < 375, ()0 Li(w)Ai(w) as desired. m

Corollary 5.4.6 Let (KC, Q) be a random pair for the system (5.11) and let
i a O-invariant measure. Assume that IC has nonvoid interior and Q is upper
semi-continuous and has bounded Lebesque measure. Then there is a set of
full measure Qo of Q0 such that

hine (W, K, Q) = Y di(w)\i(w)

)\i(w)>0

for every w € Qqy. In particular if @ is ergodic, the invariance entropy is
constant | a.e.

We notice that the above formula says us that in the linear case, the
invariance entropy of a random pair, under some assumptions, is measurable,
invariant by the flow # and constant in the ergodic case. A question that
arises is: Are that true also for the general case?
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