
Universit�at Augsburg

ROMUNHSG�
A descriptive Mode Inference for Logic

Programs

Eb�en�ezer Ntienjem

Report ������� Dezember ����

Institut f�ur Informatik

D������ Augsburg

Copyright c� Eb�en�ezer Ntienjem
Institut f�ur Informatik
Universit�at Augsburg
D������ Augsburg� Germany
http	

www�Informatik�Uni�Augsburg�DE
 all rights reserved

A descriptive Mode Inference for Logic Programs

Eb�en�ezer Ntienjem

December ��� ����

Abstract

In general� an n�ary predicate �relation� describes the relationship

among its arguments� and such that no argument has to be of a special

mode� The uni�cation and the resolution �SLDNF�resolution� do capture

this state of a�air� Hence� the aim of logic programming is in some point

approximatively achieved if the system is able to automatically determine

the descriptive mode of an n�ary predicate symbol with respect to a logic

program� The descriptive mode of an n�ary predicate symbol with respect

to a logic program indicates the instantiation of the arguments of that

n�ary predicate symbol when it occurs in a goal� To get a sound descrip�

tive mode for an n�ary predicate symbol we consider the abstraction of

terms and hence of a set of clauses� the uni�cation of abstract terms and
de�ne an NJSLDT�derivation� The descriptive mode inference determines

which arguments of an n�ary predicate symbol in a goal become closed or

partially instantiated or remain variable� Since the mode of an n�ary pred�

icate symbol does in�uence the operational semantics of that predicate�

this information may be used by a compiler for the purpose of e�ciency�

The mode inference will also help automatically determine the literal to be

selected when constructing an SLDNF�derivation� weaken the condition of

allowedness� automatically prove the termination of logic programs for a

large class of programs� and detect some errors at compile time�

Keywords	 Logic Programming� Uni�cation� Abstract Interpretation� Resolution�
Mode

Contents

� Introduction �

� Objective and related works �

� Preliminaries and motivating examples �

�

� Introduction �

� Uni�cation by transformation on systems �

��� Preliminaries and basic de�nitions � � � � � � � � � � � � � � � � � � �

��� Transformation rules and soundness � � � � � � � � � � � � � � � � � �

��� Termination ��

��� Lattice on the quotient set of terms � � � � � � � � � � � � � � � � � ��

� NJSLDT�Derivation for mode inference ��

��� NJSLDT�tree ��

� Descriptive mode inference ��

��� Examples ��

� Related works and conclusion ��

��� Related works ��

��� Conclusion ��

� Introduction

We assume throughout this paper that the reader is acquainted with the basic
notions of logic programming� If nothing else is noted� all notations used in the
following are borrowed from Apt in ��� or Lloyd in ��� or Schwichtenberg in �����
We say logic program as a short hand for normal logic program as de�ned in ���
respectively general logic program as de�ned in ����

The mode is in general useful to both the compiler� for optimization� and the
programmer� to help when verifying the correctness of the program� A mode
of an n�ary predicate symbol de�ned in a program is a possible n�tuple of the
instantiation of arguments of that n�ary predicate symbol in term of some domain�
An element of such a domain says something about the degree of instantiation
of an argument of an n�ary predicate symbol� Let us denote in the sequel such a
domain by M �

In the context of imperative or functional languages� such a domain is the setM �
f input� output g� Note that in imperative or functional languages arguments are
passed by pattern matching and a program is evaluated with respect to some
�xed order of evaluation� Hence� a mode of an n�ary predicate symbol might be
prescribed� that is declared� In this case a mode of an n�ary predicate symbol says
how the arguments of this predicate symbol has to be according to the underlying
domain M when this predicate symbol occurs and is selected in a goal� Let us
call it a prescriptive mode�

In the context of logic programming languages� arguments are passed using the
uni�cation instead of pattern matching and a logic program is evaluated by the
SLDNF�resolution which has no order of evaluation �xed in advance� Because of
the uni�cation it is reasonable to say closed term instead of input term� Hence�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Objective and related works �

it is not a good idea� if a mode of an n�ary predicate symbol is prescribed� To
keep the spirit of uni�cation and that of SLDNF�resolution� logic programming
languages are not augmented with the notion of mode� But a mode of an n�ary
predicate symbol may be inferred from a logic program if it is said that a mode of
an n�ary predicate symbol says how the arguments of this predicate symbol are
instantiated according to the underlying domain M when this predicate symbol
occurs and is selected in a goal� Let us call it a descriptive mode�

Let us �rst of all �nd an adequate domainM for logic programming languages� In
addition to closed or variable terms do logic languages allow partially instantiated
terms as arguments� Hence� we classify arguments� that is terms� according to
the degree of how they are instantiated� That is

M � f closed� partially instantiated� variable g�

Since the use of mode in logic programs has been discussed by many researchers
with di�erent objective� the domainM is not unique� Warren in ���� uses the set
f���� �g where ��� �� �� denotes respectively bound� unbound� and unknown
argument� Stroetmann in ���� uses f���g� St�ark in ���� uses f in� out� normal g
where �in� out� normal� stands respectively for input� output and normal�logical�
argument� Debray in ��� and Debray and Warren in ��� use the set fc� d� e� f� nvg
where �c� d� e� f� nv� denotes respectively the set of closed terms� the set of don�t
know terms� the empty set of terms� the set of uninstantiated variables and the
set of non variable terms�

This paper is organized as follows� In section � we brie y look at the objec�
tive and some related works on mode consideration in logic programming� In
section � we give the syntax of our logic programming language� the notational
conventions and motivate our method� In section � we revisit the uni�cation as a
transformation in a special domain of discourse� In section � we brie y describe
the NJSLDT�derivation�� which does recognize in�nite derivations� We discuss in
section � the descriptive mode inference� In section � we consider works related
to mode for logic programs and give a short conclusion of our mode inference
method�

� Objective and related works

A better look at the objective of the descriptive mode inference is given when
considering the intended meaning of a predicate and the formulation of the pro�
gram for that predicate� The intended meaning of the well�known ��ary predicate
symbol append is the description of the fact that the third argument is the result
of adding the second argument as a supplement to the �rst one� Hence� one gets
the well known mode �closed� closed� variable� for append� The interpretation
of this intended meaning of append is not unique since one may search for �rst
and
or second argument such that the third argument holds� In this case the
mode of append is for example �variable� variable� closed��

�NJSLDT means �nt�ene njem� SLD� T for terminating

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Objective and related works �

It may happen that the body of a clause consists of two subgoals in which the
same n�ary predicate symbol occurs and that these subgoals have an argument
at an argument position instantiated as� say a closed term� in one subgoal and as�
say a variable term� in the other� The intended meaning of that predicate remains
unchanged� but the order of the evaluation� The evaluation of goals having one
of these modes di�ers on the order of the evaluation of the subgoals derived from
each one �see example ��� for an illustration of this claim� and therefore the
interpretation� This has been seen as the expressive power of logic languages
����� To de�ne a new set of clauses because of this fact is any more evident if the
de�nition of the n�ary �n � �� predicate symbol is complex� Another reason why
avoiding the de�nition of new sets of clauses can be stated as follows	 suppose
that the number of elements of the set M is k � � and that an n�ary predicate
symbol with n � � is given� Then the number of possible modes of that n�ary
predicate symbol is kn�

Since languages for logic programming do allow partial instantiation of arguments
�see for example the second argument of append in goal in example ���� it is not
correct to speak of input argument and output argument as this is the case in im�
perative respectively functional languages� Hence� we will consider an argument�
that is a term� as closed �ground� or partially instantiated or variable�

The informal de�nition of a descriptive mode of an n�ary predicate symbol with
respect to a given logic program indicates which arguments of that n�ary predicate
symbol become closed or partially instantiated or remain variable when a literal
in which this n�ary predicate symbol occurred has to be selected in a goal� This
de�nition of the mode of an n�ary predicate symbol is more general than the
prescriptive� that is declarative� one given in ��� ��� which states that the mode
of an n�ary predicate symbol in a logic program indicates how its arguments
have to be instantiated when that n�ary predicate symbol appears in a goal� it
is a functional de�nition of a mode of an n�ary predicate symbol� Prescriptive
mode or well�known as syntactic mode declaration has been used to prove the
completeness of SLDNF�resolution for a class of logic programs ���� ����

To automatically infer a descriptive mode of an n�ary predicate symbol with
respect to a logic program� every closed term is abstracted to an abstract closed
term� that means that the real value of a constant term is irrelevant� We will then
speak of an abstract logic program respectively an abstract goal� We consider an
abtract domain of data descriptions which is also called abstract interpretation�
The abstract interpretation is then sound if the data descriptions computed for
each program point approximate the set of concrete data that may occur during
a program execution� To correctly infer a descriptive mode� an uni�cation of
abstract terms is considered� and next a terminating SLD�resolution of a logic
program with a goal�

We consider a method which lets the system at compile time infer the mode
of an n�ary predicate symbol� when given a logic program� Our method does
not consider all possible goals of a given predicate to infer the mode of that n�
ary predicate symbol� but just the clauses de�ning that n�ary predicate symbol
and those predicate symbols on which the predicate symbol in consideration
depends� When the n�ary predicate symbol does occur in a goal its mode is

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Preliminaries and motivating examples �

then deduced� The method also consider functions as arguments in the de�nition
of predicate symbols� Our method can also be used to verify the consistency of
user supplied mode declarations� Such a consistency veri�cation for user supplied
mode declarations is necessary because of errors which may be made by the user�
One can use this mode inference to improve the e!ciency of logic programs
��� �� �� �� �� ��� ��� ��� ��� ��� or to control the evaluation of logic programs ����
or to prove the completeness of SLDNF�resolution for a large class of programs
���� ����

� Preliminaries and motivating examples

Let V be a countably in�nite set of variables� for each n � � a countably in�nite
set F of function symbols be given� and for each n � � a countably in�nite set
P of predicate symbols be given� Let then the syntactic categories TF �V of terms�
FOR of formulae� S of substitutions� R � S of variable renaming substitutions�
MGU of most general uni�ers of terms be de�ned as usual� The falsehood �
denotes a formula that is false at all or �nitely failed� A literal is an atomic
formula or a negated atomic formula� A program clause or clause for short is
a formula of the form � � ��� � � � � �n� where � is an atomic formula which is
also called the head� ��� � � � � �n is a formula which is also called the body� and
n � �� we write � � �� if n � �� Note that ��� in the body stands for ����
A program goal or goal for short is a clause of the form �� ��� � � � � �n� where
n � �� we write � if n � �� If no confusion is feared� we also write a goal in the
form ��� � � � � �n� A logic program or program for short is a ��nite� set of clauses�
Instead of considering a logic program to be a set of clauses we let it be the union
of the de�nitions of predicate symbols� where the de�nition of an n�ary predicate
symbol is the set of clauses such that this n�ary predicate symbol does occur in
the head of each clause belonging to this set of clauses� Let vars�t� be the set
of variables occurring in the term t and fvars�L� be the set of �free� variables
occurring in the literal L�

We say that the de�nition of an n�ary predicate symbol containing exactly m
clauses is well�formed� if for each � � i � n and for all � � j � m the arguments
ti�j are linearly ordered with respect to the order �� where E � F holds for two
terms E and F if there exists some substitution � such that F � E� holds� A
logic program is well�formed� if the de�nition of each predicate symbol occurring
in this logic program is well�formed� We suppose in the following that each logic
program unter consideration is well�formed�

Let us write for the sake of simplicity

�� for nil�

�x� for cons�x� nil��

�xs� ys� for cons�xs� ys��

�xjxs� for cons�x� xs��

�x for x�� � � � � xn�

where n � �� xs and ys are list and x is an element of a list� Let in the sequel u

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Preliminaries and motivating examples �

stands for a term t such that vars�t� � 	� v stands for a term t which is a variable
and s stands for a term of the form f�t� such that vars�f�t��
� 	�

Let us �rst of all motivate our method with two sample examples� The �rst
example illustrates the problem that occurs when specifying the modes of an n�
ary predicate symbol� and hence the modes of all predicates symbols occurring
in a logic program�

Example �	� Let us consider the program APPEND and denote a closed term by
u� u�� u� etc�

append���� ys� ys� �
append��xjxs�� ys� �xjzs�� � append�xs� ys� zs�

The set of all modes of append when specifying an argument as closed� � for
short� or variable� � for short� is f �������� �������� �������� ��������
�������� �������� �������� ������� g� Suppose now that one consider the
goal " �� append�xs� �u�� ys�� �u�� u���� Then the speci�cation of the second
argument as closed or variable is any more correct� To fully consider this last
fact we let an argument be speci�ed as partially instantiated� The number of
modes in the set of all modes of append is then �� � ��� that is very large to be
listed� �

The next example illustrates information a compiler can obtain from a �prescrip�
tive
descriptive� mode inference to make various improvements�

Example �	� Let us consider the following program PP and denote a closed term
by u� u�� u� etc�

C� 	 p�h�x�� g�x� y�� � q�x� z�� r�f�z�� z�� s�z� y�
C� 	 s�x� u�� � q�x� u��

With respect to this set of program clauses one remarks that the variable y
occurring in the clause C� will always be instantiated to a closed term� if it is
not� �

When one infers the mode� for example closed respectively variable� for an n�ary
predicate symbol� that does not mean that the argument occurring in that n�ary
predicate symbol at the argument position where a closed term respectively a
variable term stands has to be a closed respectively variable term in a goal� A
closed term means that the argument at this position will become a closed term
if it is not� example ��� illustrates this claim� That is another reason why we use
a closed term instead of �input� and a variable instead of �output��

Before formally discussing the descriptive mode inference for logic programs�
let us �rst of all reconsider in section � the uni�cation method for this special
purpose� This is necessary because of the two new rules which are introduced
when considering abstract terms� an abstract term is a term for which the real
value of a constant is not relevant�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Uni�cation by transformation on systems �

� Uni�cation by transformation on systems

It is important that the uni�cation be fully reconsidered because of the two new
rules needed for the purpose of descriptive mode inference� Since we are dealing
with uni�cation of abstract terms� i�e� terms in which any closed term is mapped
to a symbolic closed term such that rule ��� in de�nition ��� is applicable� the
assumption that a closed term unify with any term cannot be wrong� Note that
the real value of a constant term� for example �� is irrelevant in this context�

��� Preliminaries and basic de�nitions

We mainly deal with term in arguments and terms are inductively de�ned over F
and V� An important point by an automatic mode inference is the classi�cation
of terms occurring in a program with respect to how they are instantiated� For
simplicity� a term t may be	

� closed� if vars�t� � 	�

� partially instantiated� if t is of the form f��t� � with vars��t� �
� 	�

� variable� if t � v�

De�nition �	� A substitution is a function � 	 V � TF �V such that for �nitely
many v � V the following holds� v�
� v� The domain of � is the set dom��� �
fvjv�
� vg� The set of variables introduced by � is
ivars��� �

S
v�dom���

vars�v���

We denote a substitution � by ft�	v�� � � � � tn	vng if dom��� � fv�� � � � � vng and if
vi� � ti for � � i � n� The function � may naturally be extended to terms by a
recursive de�nition�

We suppose that the reader is acquainted with the basic notions on substitutions�
A term t is more general than an other term r� denoted t � r� if and only if there
exists a substitution � such that r � t� holds� A substitution � is more general
than an other substitution �� denoted by � � �� i� there exists a substitution

such that � � � �
� where � denotes the composition of substitutions� which we
also denote by �
�

Let us consider an equivalence relation on terms to formally achieve the abstrac�
tion of terms as noted in section �� Our consideration of an equivalence relation
on terms is a little di�erent from the usual one in the sense that closed terms are
identi�ed� We now de�ne the relation �� on TF �V as follows	

� let the terms t and r be closed� Then t �� r�

� let the terms t and r not be closed� Then t �� r if and only if there exists
substitutions � and � such that r �� t� and t �� r� hold�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Uni�cation by transformation on systems

The relation �� is re exive� symmetric and transitive� We denote by TF �V	�� the
quotient set of TF �V � Let us for simplicity use the word term for formula as well
and var for vars or fvars� We now de�ne the uni�cation of �rst order abstract
terms as a set of non�deterministic rules of transformation� This elegant approach
is due to ���� ����

A pair of terms �for short a pair� is a multiset of two terms� denoted by hs� ti�
we call a substitution � an abstract uni�er of a pair hs� ti if s� �� t�� A system of
terms �for short a system� is a multiset of pairs� a substitution � is an abstract
uni�er of a system if it uni�es each pair� We denote by Ua�S� the set of abstract
uni�ers of a system S�

De�nition �	� Let hv� ti be a pair in a system S� v is called a solved variable in
a system S if v is a variable which does not occur anywhere else in S� and such
that v
� var�t�� hv� ti is in solved form if v is a solved variable� A system is in
solved form if all its pairs are in solved form�

De�nition �	� A substitution � is a most general abstract uni�er �for short
a�mgu� of a system S i�

�i� dom��� � var�S��

�ii� � � Ua�S� and

�iii� for each � � Ua�S� it holds � � ��

De�nition �	� Let Ua�S� be the set of all abstract uni�ers of the system S� �
and � be abstract substitutions�

�i� � � Ua�S�
def
�� for each hs� ti � S s� �� t��

�ii� � � �
def
�� for each x � V x� �� x��

�iii� � � �
def
�� there exists
 such that � �� �
�

The following lemma shows the importance of a system in solved form� Let then
S be a �nite system�

Lemma �	� Let S � fhv�� t�i� � � � � hvn� tnig be in solved form�
If � � ft�	v�� � � � � tn	vng� then � is an idempotent a�mgu of S� Furthermore� for
a substitution � � Ua�S�� we have � �� ���

Proof Let � a substitution which solves the system S be given� Then vi� �� ti�
for each hvi� tii � S� That means vi� �� vi�� for � � i � n and x� �� x�
otherwise� Since dom��� � ivars��� � 	 by the de�nition of a system in solved
form� � is an a�mgu and is idempotent� �

From this de�nition we investigate on a new special uni�cation algorithm on
terms�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Uni�cation by transformation on systems �

��� Transformation rules and soundness

Let t and r be any terms� u and u� be closed terms in the sequel� We assume
that the representation of any closed term in the following de�nition is a good
candidate in the sense that it uni�es with any not necessary closed term as
expressed by rule ��� below� Hence� in this abstract interpretation closed terms
are identi�ed even if their representation is not the same�

De�nition �	� �transformation rules Let S be a �nite system� � � ft	vg �
hv� ti be in solved form� v � var�S� and f respectively g be n�ary respectively m�
ary function symbols� Let furthermore assume that f��t � and g��r � are not closed
in rules ��� and �	�� The following de�nes the set of transformation rules�

fht� tig � S � S ���

fhu� u�ig � S � S ���

fhf��t �� g��r �ig � S � fht�� r�i� � � � � htn� rnig � S if f � g and m � n ���

fhv� tig � S � fhv� tig � S� if v
� var�t� ���

fht� vig � S � fhv� tig � S ���

fhf��s �� uig � S � fhu� f��s �ig � S if var��s �
� 	 ���

fhu� f��s �ig � S � fhf��u� �� f��s �ig � S if var��s �
� 	 ���

fhv� tig � S � fail if t � f�r� and v � var�r� ���

fhf��t �� g��r �ig � S � fail if f
� g� m
� n� �t
� �u and �r
� �u� ���

Note that an empty system is allowed in this de�nition� that rule ��� is a special
case of rule ��� and that rule ��� is the negation of rules ���� ��� and ���� It will
also be noted that transformation rule ��� is usually called term decomposition�
Note that this uni�cation algorithm may �nd an abstract uni�er for a system
which fails under the well�known uni�cation algorithm as the example below
shows� To deal with formulae is straightforward�

� de�nes on TF �V	�� a relation which is re exive and transitive� Hence� for a
system S there exists some sequence of transformations S � � � � � S �� which
we denote S �� S �� If S � is in solved form� then S � is an abstract uni�er � � �S�

of the system S�
Let us� before considering soundness result� �x this procedure in mind by a simple
example�

Example �	� In this example we misuse the ordinary set meaning by considering
the set as an ordered list� and hence always choose the �rst element of the list

and insert a pair in solved form at the end of the list�
�i�
�� ��� � i � ���� means

that the rule �i� is used to get the next system�

fhf�h�x� z�� g�u�� y�� u��� f�u�� g�y� x�� k�z� u	��ig
���
� fhh�x� z�� u�i� hg�u�� y�� g�y� x�i� hu�� k�z� u	�ig
�	�
� fhu�� h�x� z�i� hg�u�� y�� g�y� x�i� hu�� k�z� u	�ig

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Uni�cation by transformation on systems ��

���
� fhh�u�� u
�� h�x� z�i� hg�u�� y�� g�y� x�i� hu�� k�z� u	�ig

���
� fhx� u�i� hz� u
i� hg�u�� y�� g�y� x�i� hu�� k�z� u	�ig
���
� fhz� u
i� hg�u�� y�� g�y� u��i� hu�� k�z� u	�i� hx� u�ig

���
� fhg�u�� y�� g�y� u��i� hu�� k�u
� u	�i� hx� u�i� hz� u
ig

���
� fhy� u�i� hu�� yi� hu�� k�u
� u	�i� hx� u�i� hz� u
ig

���
� fhu�� u�i� hu�� k�u�� u	�i� hx� u�i� hz� u
i� hy� u�ig

���
� fhu�� k�u
� u	�i� hx� u�i� hz� u
i� hy� u�ig

���
� fhk�u�� u��� k�u
� u	�i� hx� u�i� hz� u
i� hy� u�ig

���
� fhx� u�i� hz� u
i� hy� u�ig�

�

Lemma �	� If S � S � using a transformation rule from de�nition
�� and � �
Ua�S

��� then � � Ua�S��

Proof The point to be proved lies in rule ���� Let � � ft	vg � hv� ti be in solved
form and � be any abstract substitution� Suppose fhv� tig � S � fhv� tig � S��
If v� �� t�� then v� �� t� �� �v��� �� v��� Hence�
� � Ua�fhv� tig � S� �� v� �� t� and � � Ua�S�� That means
v� �� t� and � � Ua�S� �� v� �� t� and �� � Ua�S�� That means
v� �� t� and �� � Ua�S�� v� �� t� and � � Ua�S��� That means
v� �� t� and � � Ua�S��� � � Ua�fhv� tig � S��� �

The soundness is then a straightforward induction on the length of a transforma�
tion sequence�

Theorem �	� �Soundness If S �� S � and S � is in solved form� then �S� is an
a�mgu of S�

Proof By induction on the length of the transformation sequence and use of
lemma ���� which trivially means � � Ua�S

�� imply � � Ua�S� for some abstract
substitution �� Hence� �S� is an a�mgu of S� �

��� Termination

In this subsection we look at the termination of a sequence generated by the
transformation rules�

Lemma �	� �Termination The relation � does not produce in�nite transfor�
mation sequences�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Uni�cation by transformation on systems ��

Proof First of all let us recursively de�ne the �pseudo��length� jtj� of a term t
as follows	

jtj �

���
��

� if t is a closed term
� if t is a variable
� �

Pn
i�� jtij if t � f�t�� � � � � tn� and �i� � � i � n� ti is not closed�

Let us now de�ne� for any �nite system S� a complexity measure

�	 SYS � IN�IN� S �� hm�ni�

where SYS is the set of all systems S� m is the number of unsolved variables v
occurring in the system� and n is the sum of the �pseudo��length of the terms
occurring in the system� It is well known that IN�IN with the lexicographic
ordering on hm�ni is well�founded� One easily observes the following	

� rule ��� lets n stationary� if t is a closed term� Since S is �nite and rule
��� does not increase m� S may become empty or another rule applies after
some �nite step� If t is not a closed term� then rule ��� may decrease n�

� rule ��� decreases n and does not increase m�

� rule ��� lets n stationary and does not increase m�

� rule ��� decreases m and does not increase n�

� rules ������� each lets m and n stationary and the relation� does not cycle
on these rules�

Hence� the relation � is well�founded� and each transformation sequence termi�
nates in a �nite system to which no transformation rule applies� that is a system
which is either in solved form or is failed� �

��� Lattice on the quotient set of terms

The ordering � on TF �V induces an ordering � on TF �V	��� Let us in addition
extend this ordering on TF �V	�� as follows	

� a variable term is more general than a partially instantiated term respec�
tively a closed term�

� a partially instantiated term is more general than a closed term�

We now show that �TF �V	����� is a �complete� lattice� where the relation �
stand for �� Similar to the greatest lower bound �glb� respectively the least
upper bound �lub� of the usual lattice we de�ne the greatest lower instance �gli
for short� respectively the least upper instance �lui for short� as follows� Let t
and r be terms�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Uni�cation by transformation on systems ��

�� The term t� is a lower instance of the terms t and r if and only if t � t� and
r � t�� The term t� is an gli�t� r� if and only if t� is a lower instance of t and
r and if r� is another lower instance of t and r� then t� � r��

�� The term t� is a upper instance of the terms t and r if and only if t� � t
and t� � r� The term t� is an lui�t� r� if and only if t� is a upper instance of
t and r and if r� is another upper instance of t and r� then r� � t��

The extension of gli and lui to a set of terms is straightforward� Since we consider
terms modulo variable renaming an gli respectively an lui is unique� Following
Plotkin in ���� and Reynolds in ���� we have

Lemma �	� Let � be a term such that for all t � TF �V	�� it holds t ��� Then
�TF �V	�� � f�g��� is a complete lattice�

We now state and prove an useful lemma when determining the gli respectively
the lui of a set of terms�

Lemma �	� Let S� and S� be sets of terms� Then

�i� lui�S� � S�� �� lui�lui�S��� lui�S��� and

�ii� gli�S� � S�� �� gli�gli�S��� gli�S����

Proof is well�known� �

The following corollary shows that gli and lui are associative�

Corollary �	� Let S�� S� and S� be sets of terms� Then

�i� lui�S� � S� � S�� �� lui�lui�S��� lui�S� � S��� �� lui�lui�S� � S��� lui�S����

�ii� gli�S� � S� � S�� �� gli�gli�S� � S��� gli�S��� �� gli�gli�S��� gli�S� � S����

gli and lui are naturally extended to substitutions� Lemma ��� also holds if a set
of substitutions is considered then� With all these results and methods in mind
we are able to derive or give a method to derive a mode of an n�ary predicate
symbol with respect to a given program�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� NJSLDT�Derivation for mode inference ��

� NJSLDT�Derivation for mode inference

In this section we introduce a variant of the SLD�derivation for abstract logic
programs� the NJSLDT�derivation� This variant is needed for the purpose of
mode inference since a mode of an n�ary predicate is a �logical� consequence of
the mode of those predicate symbls on which it depends� The derivation has
to be �nite since a mode of an n�ary predicate symbol has to be determined at
compile time� We assume familiarity with the SLD�resolution�

We assume that a given logic program P is constructed using the terms in TF �V	���
We call it the abstraction of P and denote it by Pa� P and Pa di�er only on the
abstraction of closed terms�

The unary operator � will in the following be ignored� because the negation does
not have an e�ect on the behavior of the inference of a mode of an n�ary predicate
symbol� That means that the way the arguments of an n�ary predicate symbol
are instantiated when this appears in a goal does not depend on the fact that
this goal is a negative literal�

Let Pa be given and G �� ��� � � � � �n be an abstract goal� The intended meaning
of Pa � fGg is	 given an abstract logic program Pa and an abstract goal G
determine a mode of the goal G with respect to Pa�

A mode for Pa � fGg is an idempotent abstract substitution � in the sense of
section � such that dom��� �

Sn
i�� var��i��

Such a mode determination is better obtain by derivation� The following de�ni�
tions are inspired from the SLD�de�nition since the data descriptions computed
for each program point have to approximate the set of concrete data which may
occur during a program execution� In the following we suppose a computation
rule be given�

We consider an NJSLDT�resolution� that is an SLD�resolution� where a literal
in a goal is removed if it is already selected and used with the same clause in a
former resolution step�

De�nition �	� Let G �� ��� � � � � �n be an abstract goal� � � � � L�� � � � � Lk

be a variant of a clause in Pa such that var���� var�G� � 	� S be the set of pairs
�selected literal� used clause�� and � be an abstract substitution� Then G� and S �

are derived from G and S using � and � if there exists an j � f�� � � � � ng such
that

�i� �j is the selected literal� � � a�mgu��� �j� and

�ii� if there exists a variable renaming substitution
 and �L� �� � S such that
�i � L or L � �i and var�L
� � var��i�� then
G� � ��� � � � � �j��� �j��� � � � � �n and S � � S�
else G� � ���� � � � � �j��� L�� � � � � Lk� �j��� � � � � �n�� and S � � S � f��j� ��g�

An NJSLDT�derivation of Pa � fGg consists of four sequences

G � G� G�� G�� � � � of goals�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� NJSLDT�Derivation for mode inference ��

C�� C�� C�� � � � of clause variantes�

��� ��� ��� � � � of substitutions and

S � S� S�� S�� � � � of sets of pairs �literal� clause�

such that Gi�� and Si�� are derived from Gi and Si using �i�� and Ci���

An NJSLDT�derivation of Pa � fGg is �nite or in�nite� An NJSLDT�derivation
of Pa � fGg is successful if it is �nite and has the empty goal � as the last goal in
the derivation� An NJSLDT�derivation of Pa � fGg is failed if it is �nite and has
the goal fail as the last goal in the derivation� A successful NJSLDT�derivation
has length n if Gn � ��

De�nition �	� A substitution � is a computed mode for Pa � fGg� if there ex�
ists a successful NJSLDT�derivation G � G� G�� G�� � � � � Gn� C�� C�� C�� � � � � Cn�
��� ��� ��� � � � � �n and S � S� S�� S�� � � � � Sn of Pa � fGg such that � is obtained
by restricting the composition ������ � � � �n to the variables of G�

A mode � for Pa � f� ��� � � � � �n g is acceptable if and only if for each i �
f�� � � � � ng Pa � f� �i� g has a successful NJSLDT�derivation�

We �rst of all prove that the deletion of a literal that occurs in a goal according
to de�nition ��� does not worsen a computed mode� For this sake� let us consider
a de�nition wherein the set S does contain the pairs literal and used clause even
if such a pair were already used in a former step of the derivation� The set S is
maintained in this de�nition for the sake of compatibility�

De�nition �	� Let G �� ��� � � � � �n be a goal� � � �� L�� � � � � Lk be a variant
of a clause in P such that var��� � var�G� � 	� S be the set of pairs �selected
literal� used clause�� and � be an abstract substitution� Then G� and S � are derived
from G and S using � and � if there exists an j � f�� � � � � ng such that

�i� �j is the selected literal� � � a�mgu��� �j� and

�ii� G� � ���� � � � � �j��� L�� � � � � Lk� �j��� � � � � �n�� and S � � S � f��j� ��g�

We are now able to formulate the lemma stating the correctness of the deletion
of some particular literals occurring in the goal and used in a former derivation
step with the same clause�

Lemma �	� Let Pa and "a be given� If � is a computed mode for Pa�f"ag using
de�nition ���� then there exists a computed mode for Pa�f"ag using de�nition
��� such that � �� � and ivars��� � ivars�
� hold for some substitution � and
variable renaming substitution
�

Proof By induction on the length n of an NJSLDT�derivation� The length n is
represented as a multiset of the indices of the literals in an NJSLDT�derivation�
It is well�known that the lexicographical ordering on multiset over IN is well�
founded� A multiset f�� � � � � ng is minimal with respect to Pa � f"ag if for all

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� NJSLDT�Derivation for mode inference ��

j � f�� � � � � ng it holds that �� � � � �j���j�� � � � �n is not a computed mode for
Pa � f"ag�

If the length n of the derivation of Pa�f"ag using de�nition ��� is minimal� then
we are done� In this case it holds m � n and �� �� Let us therefore suppose
that the length n is not minimal at all� To construct a �nite NJSLDT�derivation
of Pa � f"ag of length m from that of Pa � f"ag of length n we show for the
multiset n � fl�� � � � � l�g that � �� � and ivars��� � ivars�
� hold for some j in
n and for some substitution � and variable renaming substitution
� Since the
derivation is �nite� the multiset n is �nite too� Hence� it su!ces to show that
� �� � and ivars��� � ivars�
� for some j in n� substitution � and variable
renaming substitution
� Suppose the derivation uses a literal �j and a clause
�j�� which were already used in a former step� say k� Suppose in addition that
in step k the selected literal is �� and that it hold that � � �j or �j � � and
vars��� � vars��j
� for some variable substitution
� Hence� using de�nition ���
�iii�� it holds that �� �� and ivars��� � ivars�
�� Now let the new derivation
be obtained by deleting the literal� say �j� in the step Gj to Gj��� that is by
strictly applying the de�nition ��� above� Then let m be fl�� � � � � lj��� lj�� � � � � l�g�
It holds then fl�� � � � � lj��� lj�� � � � � l�g � fl�� � � � � lj��� lj� lj�� � � � � l�g� that means
m � n� Applying this method repeatedly we get the result� since the derivation
is �nite� �

Let us now establish the relation between an acceptable mode and a computed
mode�

Theorem �	� Let Pa be given and G be an abstract goal� Then every computed
mode for Pa � fGg is an acceptable mode�

Proof By induction on the length of the NJSLDT�derivation� Let an abstract
goal be G �� ��� � � � � �n and ��� � � � � �m be a sequence of a�mgu�s used in a mode
of Pa�fGg� We have to show that �� � � � �m is acceptable for Pa�f� ��� � � � � �ng�
The case G � � is so obvious that we always neglect it�

Suppose m � �� Then G �� �� and S � 	� The program Pa has then an unit
clause� say � �� such that ���� � ���� Since ��� � is an instance of a unit
clause of Pa� it is clear that �� is a mode for Pa � f� ��g�

Suppose now m � �� Sm��
� 	 and ��� � � � � �m is a sequence of a�mgu�s used in
an NJSLDT�derivation of Pa � fGg of length m� Let C � � � L�� � � � � Lk be a
variant of a clause and �i be the selected literal of G� Two cases arise�

case �� there exists ��j� C� in Sm�� and variable renaming substitution

such that �i � �j or �j � �i and vars��i� � vars��j
� hold� Then the NJSLDT�
derivation of Pa � fGg has already been considered in a former derivation step�
Hence� from Lemma ��� removing the subgoal �i does not a�ect the resulting
substitution� By the induction hypothesis �� � � � �m is an acceptable mode for
Pa � f� ��� � � � � �i��� �i��� � � � � �ng� The set Sm�� remains unchanged�

case �� the condition in case � does not hold� Then by the induction hypoth�
esis �� � � � �m is an acceptable mode for

Pa � f� ��� � � � � �i��� L�� � � � � Lk� �i��� � � � � �ng�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Descriptive mode inference ��

Hence �� � � � �m is an acceptable mode for Pa � f� L�� � � � � Lkg� That means
�i�� � � � �m � ��� � � � �m� Hence� �� � � � �m is an acceptable mode for Pa �f� �ig�
�

Since the NJSLDT�derivation is a special case of the SLD�derivation and since
the SLD�derivation is sound� the abstract interpretation is sound as we claim in
the introduction� In the next subsection we just� for the sake of illustration later�
give the de�nition of NJSLDT�tree�

��� NJSLDT�tree

We inductively de�ne an NJSLDT�tree as usual� top down�

De�nition �	� Let P be a program and " be a goal� Then the NJSLDT�tree for
P � f"g is de�ned as follows�

�i� a node of the tree is a pair h"� Si consisting of a goal " and a set S�

�ii� a leaf of the tree is a node consisting of a goal " � f �� fail g and a set S�

�iii� let the pair consisting of a goal � ��� � � � � �n and a set S be a node in
the tree� Suppose that there exists i an element of the set f�� � � � � ng and
Cj � �j � Lj��� � � � � Lj�k�j� in P such that � � a�mgu��i� �j�� Then� if
there exists ��j� Cj� in S and a variable renaming substitution
 such that
�i � �j or �j � �i and vars��j� � vars��i
� hold� then the pair
h�� � � � � � �i�� � �i�� � � � � � �n� Si
is a descendant node� else the pair consisting of the goal
� ���� � � � � �i��� Lj��� � � � � Lj�k�j�� �i��� � � � � �n��
and the set S � f��i� Cj�g is a descendant node�

�iv� the root is the node consisting of the pair h"� 	i�

Three examples of NJSLDT�trees are given in subsection ��� in combination
with the inference of the mode of some predicate symbols with respect to some
program�

� Descriptive mode inference

The mode of an n�ary predicate symbol with respect to a program represents
statement about computations that are possible from it� From this claim mode
information has been studied for the sake of making logic programs as e!cient
as functional or imperative ones ��� �� �� �� �� ��� ��� ��� ��� ����

Our aim in this section is to automatically infer the mode of an n�ary predicate
symbol from a given logic program while conserving the mathematical intention
of a relation� This is a descriptive mode inference� Hence� our interest is not
focused on a syntactic mode declaration of logic programs� because doing so we
will lose the expressive power of logic programs� The intended meaning of an

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Descriptive mode inference ��

n�ary predicate is preserved when the descriptive mode does consider the most
general use of that n�ary predicate� that is its application not only with one
meaning�

In subsection ��� we consider the gli and the lui of a set of abstract terms� With�
out loss of generality the extension of lui respectively gli to �idempotent� sub�
stitutions is as follows	 let � � ft�	x�� � � � � tm	xmg and � � fr�	x�� � � � � rm	xmg
be substitutions� Then lui��� �� � flui�ti	xi� ri	xi� j � � i � mg and
gli��� �� � fgli�ti	xi� ri	xi� j � � i � mg wherein lui�ti	xi� ri	xi� � lui�ti� ri�	xi
and
gli�ti	xi� ri	xi� � gli�ti� ri�	xi� We now formally de�ne the inferred mode of an
n�ary predicate symbol with respect to a given program�

De�nition �	� Let P be a program and p be an n�ary predicate symbol oc�
curring in P� The inferred mode of p with respect to P� denoted by IPm�p��
is the least acceptable mode for P � f� p��v�g that is IPm�p� � lui�f� j
� is an acceptable mode for P � f� p��v�gg��

Note that if f� j � is an acceptable mode for P � f� p��v�gg is empty� then
IPm�p� � �� the identity substitution� Let us in the following use a literal � for a
predicate symbol q as well� since what is meant will be clear from the context�

De�nition �	� Let � q�t�� � � � � tn� be a goal and dom�IPm�q�� � fv�� � � � � vng�
Suppose that var�q��t ��� dom�IPm�q�� � 	� Then IPc �q��t �� � ft�	v�� � � � � tn	vng is
a calledmode of q with respect to P � That means

q�t�� � � � � tn� � q�v�� � � � � vn�I
P
c �q��t ���

Combining these two previous de�nitions we next de�ne the instantiated mode
of a goal literal�

De�nition �	� Let �i be a literal� IPm��i� be the inferred mode of �i� and
IPc ��i� be a called mode of �i and such that dom�IPc ��i�� � dom�IPm��i��� Then
the instantiated mode or goal mode� IPg ��i�� for the literal �i is IPg ��i� �
gli�IPm��i�� I

P
c ��i���

We assume that the mode of an n�ary predicate symbol p with respect to a
given program is variable independent and closed term independent� that means
� � IPm�p� implies �� � R 	 �� � IPm�p�� Since a closed term is a gli of any
set of terms� the instantiated mode for a literal does always exist� To illustrate
this fact let us suppose IPm��� � fu	vg and IPc ��� � fg�y�	vg� Then IPg ��� �
fg�y�	v� u	ygwhere u stands for a closed term� This is due to the fact that closed
terms are identi�ed�
The following lemma is an immediate consequence of the de�nitions�

Lemma �	� Let G �� ��� � � � � �n be a goal� �i� � � i � n� be the selected
literal� If IPm��i� � fu�	x�� � � � � un	xng or IPc ��i� � fu�	x�� � � � � un	xng�
then IPg ��i� � fu�	x�� � � � � un	xng�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Descriptive mode inference �

The inference of the mode of certains predicate symbols with respect to a given
program may be done bottom up� For this sake let P be a program and P be
the set of all predicate symbols occurring in P� Assume the relation �depend on��
denoted by w� be de�ned on the set P �see Kunen in ����� The relation w de�nes
an equivalence relation on P� We denote by � the transitive and irre exive
relation w� Hence� P � �k

j��Pj where Pj is an equivalence class�
Let us now state and prove an useful theorem of our method�

Theorem �	� Let P be a program� the de�nition of p � P consists k clauses�
p��t�� Li��� � � � � Li�m�i� be the i�th clause and �i � a�mgu�p��v �� p��t ��� Then
IPm�p� � lui�fi j � � i � kg� � where for each � � i � k it holds either
i � IPg �Li���i� � � � I

P
g �Li�j���i�I

P
g �Li�j���i� � � � I

P
g �Li�m�i��i� if �
 � R

such that Li�j � p��t � or p��t � � Li�j and vars�p��t �� � vars�Li�j
�
or i � IPg �Li���i� � � � IPg �Li�m�i��i� otherwise�

Proof Let us suppose that the de�nition of p consists of k clauses� Then from
the de�nition ��� we have

IPm�p� � lui�f�� j �� is an acceptable mode for P � f� p��v�gg�
� lui�f�i j �i is an acceptable mode for

P � f� �Li��� � � � � Li�m�i���ig and � � i � kg�

where �i � a�mgu�p��v�� p��t��� p��v� uni�es with the head of each clause Ci� � �
i � k� It su!ces to determine �i for each i � f�� � � � � kg� That is i� Hence� let
us consider a clause Ci for a given � � i � k� The proof is by induction using
the de�nition of the NJSLDT�derivation� Two cases arise�

case �� p��v �
� Li�j and Li�j
� p��t � or vars�p��t ���
� vars�Li�j
� hold for all
variable renaming substitutions
 and literal Li�j occurring in the body of the
used clause� Since �i is an acceptable mode for Pa�f� Li���i� � � � � Li�m�i��ig� �i is
also an acceptable mode for Pa � f� Li�j�ig for each � � j � m�i�� That means
Pa � f� Li�j�ig has a derivation which ends with �� Let now Li�j�i � q��s ��
Then it holds that q��s � � q��x �IPc �q��s ��� Then from de�nition ��� it su!ces
to determine IPm�q� which is done by the induction hypothesis� Hence� the goal
mode for Li�j�i is lui�I

P
m�q�� I

P
c �q��s �� �� Hence� i � IPg �Li���i� � � � I

P
g �Li�m�i��i��

case �� p��v � � Li�j or Li�j � p��t � and vars�p��t ��� � vars�Li�j
� hold for some
variable renaming substitution
 and literal Li�j occurring in the body of the used
clause� Since �i is an acceptable mode for Pa�f� Li���i� � � � � Li�m�i��ig� �i is also
an acceptable mode for Pa�f� Li�j�ig for each � � j � m�i�� Using Lemma ���
we can remove the literal� say Li�j�i� such that Li�j�i � p��v �
 for some variable
renaming substitution
� Then by case � above we obtain the result� �

Corollary �	� Let P be a program and p be an n�ary predicate symbol such
that at most p occurs in the body of each clause � with head predicate symbol
p� head��� � body��� or body��� � head��� and vars�head����� � vars�body���
�
hold for some variable substitution
� Then
IPm�p� � lui�f a�mgu�p��v�� head�Ci�� j � � i � kg � where Ci� � � i � k� are all
clauses of P which de�ne the predicate p�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Descriptive mode inference ��

��� Examples

Note that repeated variables do occur in the following examples� Let us now
formally infer the mode of some n�ary predicate symbols with respect to a given
program and use Ci 	 � � i � n to refer to a clause� The selected literal� say �� is
underlined� The edge is marked by the used clause� say C� and the substitution if
there does not exist �L�C� � S such that for all variable renaming substitutions

 it holds that var���
� var�L
� or �
� L and L
� �� For the sake of simplicity
the set S has been omitted� but it may be constructed following a path in the
tree� Let us write u� ui with i � � as a short hand for a closed term in the
NJSLDT�trees�

Example �	� Every closed term is mapped to a symbolic constant denoted by
u�

C� 	 person�u�� �
C� 	 parent�u�� u�� �
C� 	 same generation�x� x� � person�x�
C� 	 same generation�x� y� � parent�x� xp�� same generation�xp� yp��

parent�y� yp�

Let us write sg as a short hand for same generation� p for parent and q for
person in the NJSLDT�tree ��gure ��� Let further �i with � � i � � be the
composition of the substitutions on a path from the root to the leaf�

�� � fv	wg � fu	vg
� fu	v� u	wg

�� � fv	x� w	yg � fu�	vpg � fu�	vg � fu�	wg � fu�	v� u�	wg
�� � fv	x� w	yg � fu�	v� u�	vpg � fu		w� u�	wpg � fu�	v� u		wg

Then the inferred mode of sg is IPm�sg� � luif��� ��� ��g � fu�	v� u��	wg� �

Since the NJSLDT�derivation returns a most general substitution� since the ex�
istence of a fair NJSLDT�tree is guaranteed and since in�nite loops are recognise
and make �nite the evaluation strategy does not in uent a computed mode�

Example �	� Let us consider the following program PP and denote a closed term
by u� u�� u� etc�

C� 	 p�h�x�� g�x� y�� � q�x� z�� r�f�z�� z�� s�z� y�
C� 	 q�x� u�� �
C� 	 q�z� h�z�� � r�z� y�� q�f�y�� z�
C� 	 s�x� u�� � q�x� u��
C
 	 r�u�� u�� �

The NJSLDT�tree ��gure �� illustrates the inference of the inferred mode of p
with respect to the program PP � Let �i with i � � be the composition of the
substitutions on a path from the root to the leaf� Then

IPm�p� � luif�iji � �g � fh�x��	v� g�x�� u�	wg�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Descriptive mode inference ��

���������

���������

PPPPPPPP

sg�v� w�
C�

q�v�
fv	wg C�

fv	x� w	yg

p�v� vp�� sg�vp� wp�� p�w�wp�

p�v� vp�� q�vp�� p�w� vp�

C�

PPPPPPPP

fvp	wpg

C�

p�v� vp�� p�w�wp�

fu	vgC�

�

fu�	vpg

p�v� u��� p�w� u��

C�

fu�	vgC�

p�w� u��

fu�	wgC�

�

�

p�w�wp�

C� fu		w� u�	wpg

fu�	v� u
	vpg

Figure �	 NJSLDT�tree for same generation

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Descriptive mode inference ��

hhhhhh

q�f�y��� u��

�

C�

ff�y��	x�g C� r�u�� y��� q�f�y��� u��

fu�	z�g

q�f�y��� u��

�

r�u�� y��� q�f�y��� u��
��������

XXXXXXXX

r�u�� y��� q�f�y��� u��� s�u�� y��

fu�	y�gC

C�

fu��	z
g
ff�u��	x�g

q�f�u��� u��� s�u�� y��
C�

q�f�y��� u���� s�u�� y��

s�u�� y��

s�u�� y�� r�u��� y��� q�f�y��� u���� s�u�� y��

�
�
�

������
hhhhhh

������

�
�

�
�
�

��
C

����
Q
Q
Q
Q

hhhhhhhhhhhhhhhh

�

�

C� fh�x��	v� g�x�� y��	wg

C�

q�u�� y��

�C�

�

q�x�� u��� s�u�� y��

q�x�� z��� r�f�z��� z��� s�z�� y��

p�v� w�

fu�	z�gC

s�u�� y��

C�

C�
r�u�� y��� q�f�y��� u��

fu�	z�� h�u��	y�g

fu�	z	� z		x�g

� fu�	x�� u		y�g

C�

�

C�

q�f�u���� u��

� C�

fu�	z�g

��

��

��

fu��	y�g

Figure �	 NJSLDT�tree for PP � f� p�v� w�g

�

To illustrate theorem ��� and corollary ��� above let us consider the following
example�

Example �	� Let APPEND be the program de�ning the predicate append� �� is
mapped to u� The NJSLDT�tree ��gure �� illustrates the inference of the inferred
mode of append�

C� 	 reverse�u�� u�� �
C� 	 reverse��xjxs�� �yjys�� � reverse�xs� zs�� append�zs� �x�� �yjys��
C� 	 rotate�u�� u�� �
C� 	 rotate��yjys�� �xjxs�� � reverse��yjys�� �xjzs��� reverse�xs� zs�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Descriptive mode inference ��

�
�

�
�

�
�

�
�

�
�
�
�

a
a
a
a
a
a
a
aa

append�v� w� z�

C�

C�

H
H
H
H
H
H
HH

C�

�

f�xjv��	v� w	ys� �xjz��	zg

append�v�� w� z��

fu	v�� ys	w� w	z�g

fu	v� vs	w� w	zg

�

�

Figure �	 NJSLDT�tree for append

Let �i with � � i � � be the composition of the substitutions on a path from
the root to the leaf� that is

�� � fu	v� vs	w� w	zg
�� � f�xjv��	v� w	ys� �xjz��	zg � fu	v�� ys	w� w	z�g

� f�xju�	v� w	ys� �xjw�	zg
�� � f�xjv��	v� ys	w� �xjz��	zg

Then the inferred mode of sg is

IPm�append� � luif��� ��� ��g � f�xjv��	v� ys	w� �xjz��	zg�

Applying theorem ��� we get

IPm�reverse� � lui�I�C��� I�C���
� lui�fu�	v� u�	wg� �f�xjxs�	v� �yjys�	wgIPg �append�� �
� f�xjxs�	v� �yjys�	wgIPg �append�
� f�xjxs�	v� �yjys�	wggli�IPc �append�� I

P
m�append��

� f�xjxs�	v� �yjys�	wg

The inferred mode of rotate will be inferred in a similar manner�

Suppose now a goal � rotate���� �� ��� vs� be given� When using clause C� and
the substitution f�	y�� ��� ��	ys�� �x�jxs��	vsg a part of the derivation structure
is as follows	

rotate���� �� ��� vs�

reverse���� �� ��� �x�jzs��� � reverse�xs�� zs��
			

The goal mode of the subgoal reverse���� �� ��� �x�jzs��� is

IPg �reverse���� �� ��� �x�jzs��� � fu	v� �xjxs�	wg�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

� Related works and conclusion ��

After the resolution of this subgoal the argument zs� becomes closed� therefore
the goal mode of reverse�xs�� zs�� is

IPg �reverse�xs�� zs�� � fx	v� u	wg�

It is obvious that not every programmer shall think of these two di�erent modes
of reverse when writting such a program as this one above� �

Note that if we do not restrict the class of logic programs to those that are
well�formed in the sense of section � then there still do exist de�nitions of n�ary
predicate symbols for which our method does not �nd a mode� Let us consider

P � f q�f�u�� y��� �� q�g�s��� � g

with g
� f � Then IPm�q� � lui�f�u�� y�	x�� g�s�	x�� has no lui�

� Related works and conclusion

	�� Related works

The idea of inferring the mode of an n�ary predicate symbol de�ned by a logic
program is not new� Since mode has an in uence on the operational semantics�
certain languages for �rst order predicate logic have included annotations and
static mode inference to guide the interpreter in selecting the literal in a goal� In
this case the user is responsible for a correct annotation of mode and a consistent
use of such a moded n�ary predicate symbol in a goal� A mode checking method
may assist the user in this point� In ��� �� �� �� ��� ��� the declaration of mode is
automatically inferred�

Our work is distinct from these e�orts in three signi�cant points	

� First� we do not infer the set of all possible mode tuples an n�ary predicate
symbol de�ned by a logic program may have� This is due to the fact that if
there is k mode types in consideration then the total number of mode tuples
is kn for each n�ary predicate symbol� The mode tuple we do infer is most
general in the sense of most general uni�er and re ect the understanding
of the relation de�ned by an n�ary predicate symbol�

� Second� our method is appropriate for modular logic programming� in the
sense that an inferred mode of an n�ary predicate symbol may be used to
deduce the mode of an n�ary predicate symbol which depends on it�

� Third� errors caused by user supplied mode for an n�ary predicate symbol
do not occur� and there is no need for a mode checking�

E� Ntienjem� A descriptive Mode Inference for Logic Programs

REFERENCES ��

	�� Conclusion

An n�ary predicate describes the relationship between its arguments� in the sense
that no argument has to be of a special mode� The uni�cation and the resolution
�SLDNF�resolution� do capture this state of a�air� The declarative style of logic
programming is an ease realisation of this fact of an n�ary predicate� Hence� the
aim of logic programming� that is to write a program in a declarative style and
to leave the control to the inplemented interpreter� is approximatively achieved
if the system is able to automatically determine the descriptive mode of an n�ary
predicate symbol with respect to a given program� Since the mode of an n�ary
predicate symbol does in uence the operational semantics of that predicate� this
information may be used by a compiler for the purpose of e!ciency� Our mode
inference will also help

� automatically determine the literal to be selected when constructing an
SLDNF�derivation�

� prove the completeness of the SLDNF�resolution for a class of logic pro�
grams� which contains the class of allowed programs� Work in this direction
has been suggested by Kunen in ���� A completeness proof of the SLDNF�
resolution using prescriptive mode is given by St�ark in �����

References

��� K� R� Apt� Logic programming� In J� van Leeuwen� editor� Handbook of The�
oretical Computer Science� volume B� chapter ��� pages �������� Elsevier�
�����

��� M� Bruynooghe� B� Demoen� A� Callebaut� and G� Janssens� Abstract in�
terpretation	 towards the global optimization of prolog programs� In Pro�
ceedings of the fourth IEEE Symposium on Logic Programming� New York�
�����

��� M� Bruynooghe and G� Janssens� An instance of abstract interpretation
integrating type and mode inferencing �extended abstract�� In R� A� Kowal�
ski and K� A� Bowen� editors� Logic Programming � Proceedings of the �fth
International Conference and Symposium� pages �������� MIT Press� �����

��� S� K� Debray� Flow analysis of dymanic logic programs� Journal of Logic
Programming� �	�������� �����

��� S� K� Debray� Static inference of modes and data dependencies in logic
programs� ACM Transactions on Programming Languages and Systems�
�����	�������� �����

��� S� K� Debray and D� S� Warren� Automatic mode inference for logic pro�
grams� Journal of Logic Programming� �	�������� �����

E� Ntienjem� A descriptive Mode Inference for Logic Programs

REFERENCES ��

��� K� Kunen� Signed data dependencies in logic programs� Journal of Logic
Programming� �	�������� �����

��� J� W� Lloyd� Foundations of Logic Programming� Springer� �����

��� H� Mannila and E� Ukkonen� Flow analysis of prolog programs� In Pro�
ceedings of the fourth IEEE Symposium on Logic Programming� New York�
�����

���� A� Martelli and U� Montanari� An e!cient uni�cation algorithm� ACM
Transactions on Programming Languages and Systems� ����	�������� �����

���� C� S� Mellish� The automatic generation of mode declaration for prolog
programs� DAI research ���� Department of Arti�cial Intelligence� University
of Edinburgh� �����

���� C� S� Mellish� Some global optimization for a prolog compiler� Journal of
Logic Programming� ����	������ �����

���� C� S� Mellish� Abstract interpretation of prolog programs� Lecture Notes in
Computer Science� ���	�������� �����

���� L� Naish� Automating control for logic programs� Journal of Logic Program�
ming� �	�������� �����

���� G� Plotkin� A note on inductive generalization� Machine Intelligence� �	����
���� �����

���� U� S� Reddy� On the relationship between logic and functional languages�
In D� De Groot and G� Lindstrom� editors� Logic Programming� pages �����
Prentice�Hall� �����

���� J� Reynolds� Transformational systems and algebraic structure of atomic
formulas� Machine Intelligence� �	�������� �����

���� H� Schwichtenberg� Logikprogrammierung� Vorlesungsausarbeitung�
Ludwig�Maximilians�Universit�at M�unchen� Wintersemester� �����

���� W� Snyder and J� Gallier� Higher�order uni�cation revisited	 Complete sets
of transformations� Journal of Symbolic Computation� �	�������� �����

���� R� F� St�ark� Input
output dependencies of normal logic programs� Journal
of Logic and Computation� ����	�������� �����

���� K� Stroetmann� A completeness result for sldnf�resolution� Journal of Logic
Programming� �����	�������� �����

���� D� H� D� Warren� Implementing prolog � compiling predicate logic programs�
Research Report ������ Department of Arti�cial Intelligence� University of
Edinburgh� �����

E� Ntienjem� A descriptive Mode Inference for Logic Programs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

