UNIVERSITAT AUGSBURG

A descriptive Mode Inference for Logic
Programs

Ebénézer Ntienjem

Report 1997-05 Dezember 1997

Bz

|nst|tut ;
mformatlk

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright © Ebénézer Ntienjem
Institut fiir Informatik
Universitat Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

A descriptive Mode Inference for Logic Programs

Ebénézer Ntienjem

December 17, 1997

Abstract

In general, an n-ary predicate (relation) describes the relationship
among its arguments, and such that no argument has to be of a special
mode. The unification and the resolution (SLDNF-resolution) do capture
this state of affair. Hence, the aim of logic programming is in some point
approximatively achieved if the system is able to automatically determine
the descriptive mode of an n-ary predicate symbol with respect to a logic
program. The descriptive mode of an n-ary predicate symbol with respect
to a logic program indicates the instantiation of the arguments of that
n-ary predicate symbol when it occurs in a goal. To get a sound descrip-
tive mode for an m-ary predicate symbol we consider the abstraction of
terms and hence of a set of clauses, the unification of abstract terms and
define an NJSLDT-derivation. The descriptive mode inference determines
which arguments of an n-ary predicate symbol in a goal become closed or
partially instantiated or remain variable. Since the mode of an n-ary pred-
icate symbol does influence the operational semantics of that predicate,
this information may be used by a compiler for the purpose of efficiency.
The mode inference will also help automatically determine the literal to be
selected when constructing an SLDNF-derivation, weaken the condition of
allowedness, automatically prove the termination of logic programs for a
large class of programs, and detect some errors at compile time.

Keywords: Logic Programming, Unification, Abstract Interpretation, Resolution,
Mode

Contents

1 Introduction 2
2 Objective and related works 3
3 Preliminaries and motivating examples 5

1 Introduction 2

4 Unification by transformation on systems

4.1 Preliminaries and basic definitions 7
4.2 'Transformation rules and soundness 9
4.3 Termination 10
4.4 Lattice on the quotient set of terms 11
5 NJSLDT-Derivation for mode inference 13
5.1 NJSLDT-tree 16
6 Descriptive mode inference 16
6.1 Examples 19
7 Related works and conclusion 23
7.1 Related works 23
7.2 Conclusion 24

1 Introduction

We assume throughout this paper that the reader is acquainted with the basic
notions of logic programming. If nothing else is noted, all notations used in the
following are borrowed from Apt in [1] or Lloyd in [8] or Schwichtenberg in [18].
We say logic program as a short hand for normal logic program as defined in [8]
respectively general logic program as defined in [1].

The mode is in general useful to both the compiler, for optimization, and the
programmer, to help when verifying the correctness of the program. A mode
of an n-ary predicate symbol defined in a program is a possible n-tuple of the
instantiation of arguments of that n-ary predicate symbol in term of some domain.
An element of such a domain says something about the degree of instantiation
of an argument of an n-ary predicate symbol. Let us denote in the sequel such a
domain by M.

In the context of imperative or functional languages, such a domain is the set M =
{ input, output }. Note that in imperative or functional languages arguments are
passed by pattern matching and a program is evaluated with respect to some
fixed order of evaluation. Hence, a mode of an n-ary predicate symbol might be
prescribed, that is declared. In this case a mode of an n-ary predicate symbol says
how the arguments of this predicate symbol has to be according to the underlying
domain M when this predicate symbol occurs and is selected in a goal. Let us
call it a prescriptive mode.

In the context of logic programming languages, arguments are passed using the
unification instead of pattern matching and a logic program is evaluated by the
SLDNF-resolution which has no order of evaluation fixed in advance. Because of
the unification it is reasonable to say closed term instead of input term. Hence,

E. Ntienjem, A descriptive Mode Inference for Logic Programs

2 Objective and related works 3

it is not a good idea, if a mode of an n-ary predicate symbol is prescribed. To
keep the spirit of unification and that of SLDNF-resolution, logic programming
languages are not augmented with the notion of mode. But a mode of an n-ary
predicate symbol may be inferred from a logic program if it is said that a mode of
an n-ary predicate symbol says how the arguments of this predicate symbol are
instantiated according to the underlying domain M when this predicate symbol
occurs and is selected in a goal. Let us call it a descriptive mode.

Let us first of all find an adequate domain M for logic programming languages. In
addition to closed or variable terms do logic languages allow partially instantiated
terms as arguments. Hence, we classify arguments, that is terms, according to
the degree of how they are instantiated. That is

M = { closed, partially instantiated, variable }.

Since the use of mode in logic programs has been discussed by many researchers
with different objective, the domain M is not unique. Warren in [22] uses the set
{+,—,7} where “4+, — 7" denotes respectively bound, unbound, and unknown
argument; Stroetmann in [21] uses {+, —}; Stérk in [20] uses {in,out, normal }
where “in, out, normal” stands respectively for input, output and normal(logical)
argument; Debray in [5] and Debray and Warren in [6] use the set {c,d, e, f, nv}
where “c, d, e, f, nv” denotes respectively the set of closed terms, the set of don’t
know terms, the empty set of terms, the set of uninstantiated variables and the
set of non variable terms.

This paper is organized as follows. In section 2 we briefly look at the objec-
tive and some related works on mode consideration in logic programming. In
section 3 we give the syntax of our logic programming language, the notational
conventions and motivate our method. In section 4 we revisit the unification as a
transformation in a special domain of discourse. In section 5 we briefly describe
the NJSLDT-derivation!, which does recognize infinite derivations. We discuss in
section 6 the descriptive mode inference. In section 7 we consider works related
to mode for logic programs and give a short conclusion of our mode inference
method.

2 Objective and related works

A better look at the objective of the descriptive mode inference is given when
considering the intended meaning of a predicate and the formulation of the pro-
gram for that predicate. The intended meaning of the well-known 3-ary predicate
symbol append is the description of the fact that the third argument is the result
of adding the second argument as a supplement to the first one. Hence, one gets
the well known mode (closed, closed, variable) for append. The interpretation
of this intended meaning of append is not unique since one may search for first
and/or second argument such that the third argument holds. In this case the
mode of append is for example (variable, variable, closed).

INJSLDT means “nténe njem” SLD, T for terminating

E. Ntienjem, A descriptive Mode Inference for Logic Programs

2 Objective and related works 4

It may happen that the body of a clause consists of two subgoals in which the
same n-ary predicate symbol occurs and that these subgoals have an argument
at an argument position instantiated as, say a closed term, in one subgoal and as,
say a variable term, in the other. The intended meaning of that predicate remains
unchanged, but the order of the evaluation. The evaluation of goals having one
of these modes differs on the order of the evaluation of the subgoals derived from
each one (see example 6.3 for an illustration of this claim) and therefore the
interpretation. This has been seen as the expressive power of logic languages
[16]. To define a new set of clauses because of this fact is any more evident if the
definition of the n-ary (n > 1) predicate symbol is complex. Another reason why
avoiding the definition of new sets of clauses can be stated as follows: suppose
that the number of elements of the set M is £ > 1 and that an n-ary predicate
symbol with n > 0 is given. Then the number of possible modes of that n-ary
predicate symbol is k™.

Since languages for logic programming do allow partial instantiation of arguments
(see for example the second argument of append in goal in example 3.1) it is not
correct to speak of input argument and output argument as this is the case in im-
perative respectively functional languages. Hence, we will consider an argument,
that is a term, as closed (ground) or partially instantiated or variable.

The informal definition of a descriptive mode of an n-ary predicate symbol with
respect to a given logic program indicates which arguments of that n-ary predicate
symbol become closed or partially instantiated or remain variable when a literal
in which this n-ary predicate symbol occurred has to be selected in a goal. This
definition of the mode of an n-ary predicate symbol is more general than the
prescriptive, that is declarative, one given in [4, 6], which states that the mode
of an n-ary predicate symbol in a logic program indicates how its arguments
have to be instantiated when that n-ary predicate symbol appears in a goal; it
is a functional definition of a mode of an n-ary predicate symbol. Prescriptive
mode or well-known as syntactic mode declaration has been used to prove the
completeness of SLDNF-resolution for a class of logic programs [20, 21].

To automatically infer a descriptive mode of an n-ary predicate symbol with
respect to a logic program, every closed term is abstracted to an abstract closed
term; that means that the real value of a constant term is irrelevant. We will then
speak of an abstract logic program respectively an abstract goal. We consider an
abtract domain of data descriptions which is also called abstract interpretation.
The abstract interpretation is then sound if the data descriptions computed for
each program point approximate the set of concrete data that may occur during
a program execution. To correctly infer a descriptive mode, an unification of
abstract terms is considered, and next a terminating SLD-resolution of a logic
program with a goal.

We consider a method which lets the system at compile time infer the mode
of an n-ary predicate symbol, when given a logic program. Our method does
not consider all possible goals of a given predicate to infer the mode of that n-
ary predicate symbol, but just the clauses defining that n-ary predicate symbol
and those predicate symbols on which the predicate symbol in consideration
depends. When the n-ary predicate symbol does occur in a goal its mode is

E. Ntienjem, A descriptive Mode Inference for Logic Programs

3 Preliminaries and motivating examples 5

then deduced. The method also consider functions as arguments in the definition
of predicate symbols. Our method can also be used to verify the consistency of
user supplied mode declarations. Such a consistency verification for user supplied
mode declarations is necessary because of errors which may be made by the user.
One can use this mode inference to improve the efficiency of logic programs
(2,3,4,6,9, 11, 12, 13, 16, 22| or to control the evaluation of logic programs [14]
or to prove the completeness of SLDNF-resolution for a large class of programs
[20, 21].

3 Preliminaries and motivating examples

Let V be a countably infinite set of variables, for each n > 0 a countably infinite
set F of function symbols be given, and for each n > 0 a countably infinite set
P of predicate symbols be given. Let then the syntactic categories 7z of terms,
FOR of formulae, § of substitutions, R C S of variable renaming substitutions,
MGU of most general unifiers of terms be defined as usual. The falsehood L
denotes a formula that is false at all or finitely failed. A literal is an atomic
formula or a negated atomic formula. A program clause or clause for short is
a formula of the form a < Aq,---,\,, where « is an atomic formula which is
also called the head, A{,---,)\, is a formula which is also called the body, and
n > 0; we write a < ¢, if n = 0. Note that ’,” in the body stands for 'A’.
A program goal or goal for short is a clause of the form 1< Ay, ---, A,, where
n > 0; we write € if n = 0. If no confusion is feared, we also write a goal in the
form Ay, -+, Ao A logic program or program for short is a (finite) set of clauses.
Instead of considering a logic program to be a set of clauses we let it be the union
of the definitions of predicate symbols, where the definition of an n-ary predicate
symbol is the set of clauses such that this n-ary predicate symbol does occur in
the head of each clause belonging to this set of clauses. Let vars(t) be the set
of variables occurring in the term ¢ and fvars(L) be the set of (free) variables
occurring in the literal L.

We say that the definition of an n-ary predicate symbol containing exactly m
clauses is well-formed, if for each 1 <7 < n and for all 1 < 57 < m the arguments
t;; are linearly ordered with respect to the order <, where £/ < F' holds for two
terms E and F' if there exists some substitution 6 such that F' = Ef holds. A
logic program is well-formed, if the definition of each predicate symbol occurring
in this logic program is well-formed. We suppose in the following that each logic
program unter consideration is well-formed.

Let us write for the sake of simplicity

| for il

[x] for cons(x,nil),
| for cons(zs,ys),

[z|zs] for cons(z,xs),

Z for my,...,x,,

where n > 0, s and ys are list and « is an element of a list. Let in the sequel «

E. Ntienjem, A descriptive Mode Inference for Logic Programs

3 Preliminaries and motivating examples 6

stands for a term ¢ such that vars(t) = (), v stands for a term ¢ which is a variable
and s stands for a term of the form f(t) such that vars(f(t)) # 0.

Let us first of all motivate our method with two sample examples. The first
example illustrates the problem that occurs when specifying the modes of an n-
ary predicate symbol, and hence the modes of all predicates symbols occurring
in a logic program.

Example 3.1 Let us consider the program APPEND and denote a closed term by
u, U1, Uy ete.

append(], ys, ys) “
append([z|zs], ys, [x]|zs]) < append(zs,ys,zs)

The set of all modes of append when specifying an argument as closed, + for
short, or variable, — for short, is { (+,+,+), (+,+,—), (+, —, =), (=, —, =),

(=, —4),(+,—+),(—,+,-), (= +,+) }. Suppose now that one consider the
goal I' =« append(xs, [uy, ys], [us, uz]). Then the specification of the second
argument as closed or variable is any more correct. To fully consider this last
fact we let an argument be specified as partially instantiated. The number of
modes in the set of all modes of append is then 27 = 33, that is very large to be
listed. &

The next example illustrates information a compiler can obtain from a (prescrip-
tive/descriptive) mode inference to make various improvements.

Example 3.2 Let us consider the following program PP and denote a closed term
by u, uy, us etc.

Ch: p(h(x),g(x,y)) — q(x,z),r(f(z),z),s(z,y)
Cy: s(x,uz) — q(z,u)

With respect to this set of program clauses one remarks that the variable y
occurring in the clause C will always be instantiated to a closed term, if it is
not. &

When one infers the mode, for example closed respectively variable, for an n-ary
predicate symbol, that does not mean that the argument occurring in that n-ary
predicate symbol at the argument position where a closed term respectively a
variable term stands has to be a closed respectively variable term in a goal. A
closed term means that the argument at this position will become a closed term
if it is not; example 6.1 illustrates this claim. That is another reason why we use
a closed term instead of “input” and a variable instead of “output”.

Before formally discussing the descriptive mode inference for logic programs,
let us first of all reconsider in section 4 the unification method for this special
purpose. This is necessary because of the two new rules which are introduced
when considering abstract terms; an abstract term is a term for which the real
value of a constant is not relevant.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

4 Unification by transformation on systems 7

4 Unification by transformation on systems

It is important that the unification be fully reconsidered because of the two new
rules needed for the purpose of descriptive mode inference. Since we are dealing
with unification of abstract terms, i.e. terms in which any closed term is mapped
to a symbolic closed term such that rule (3) in definition 4.5 is applicable, the
assumption that a closed term unify with any term cannot be wrong. Note that
the real value of a constant term, for example 5, is irrelevant in this context.

4.1 Preliminaries and basic definitions

We mainly deal with term in arguments and terms are inductively defined over F
and V. An important point by an automatic mode inference is the classification
of terms occurring in a program with respect to how they are instantiated. For
simplicity, a term ¢ may be:

e closed, if vars(t) = 0,
e partially instantiated, if t is of the form f(#) with vars(#') # 0,

e variable, if t = wv.

Definition 4.1 A substitution is a function o 1V — Tz such that for finitely
many v € V the following holds: vo # v. The domain of o is the set dom(c) =
{v|ve # v}. The set of variables introduced by o is

ivars(o) = Usedom(o) vars(vo).

We denote a substitution o by {t,/vy,...,t,/v,} if dom(o) = {vy,...,v,} and if
v;o = t; for 1 < i < n. The function o may naturally be extended to terms by a
recursive definition.

We suppose that the reader is acquainted with the basic notions on substitutions.
A term ¢ is more general than an other term 7, denoted ¢ < r, if and only if there
exists a substitution 6 such that » = 6 holds. A substitution o is more general
than an other substitution #, denoted by 6 < o, iff there exists a substitution p
such that 8 = 0 o p, where o denotes the composition of substitutions, which we
also denote by op.

Let us consider an equivalence relation on terms to formally achieve the abstrac-
tion of terms as noted in section 2. Our consideration of an equivalence relation
on terms is a little different from the usual one in the sense that closed terms are
identified. We now define the relation = on 7z as follows:

e let the terms ¢ and r be closed. Then ¢ = r.

e let the terms £ and r not be closed. Then ¢t = r if and only if there exists
substitutions # and o such that r = to and ¢ = 76 hold.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

4 Unification by transformation on systems 8

The relation = is reflexive, symmetric and transitive. We denote by 7z, /= the
quotient set of Tz y. Let us for simplicity use the word term for formula as well
and var for vars or fvars. We now define the unification of first order abstract
terms as a set of non-deterministic rules of transformation. This elegant approach
is due to [10, 19].

A pair of terms (for short a pair) is a multiset of two terms, denoted by (s,t);
we call a substitution 6 an abstract unifier of a pair (s, t) if s = tf. A system of
terms (for short a system) is a multiset of pairs; a substitution # is an abstract
unifier of a system if it unifies each pair. We denote by U,(S) the set of abstract
unifiers of a system S.

Definition 4.2 Let (v,t) be a pair in a system S. v is called a solved variable in
a system S if v is a vartable which does not occur anywhere else in S, and such
that v & var(t). (v,t) is in solved form if v is a solved variable. A system is in
solved form if all its pairs are in solved form.

Definition 4.3 A substitution o is a most general abstract unifier (for short
a-mgu) of a system S iff

(i) dom(o) C var(S),

(i) o € Uy(S) and

(tit) for each 6 € U,(S) it holds 6 < o.

Definition 4.4 Let U,(S) be the set of all abstract unifiers of the system S, 6
and o be abstract substitutions.

(i) 0 € Uy(S) <L for each (s,t) € S 5022 t6.

(i) 0~ o0 <L foreachz €V 160 =~ 0.

(iii) 0 < o AL there erists p such that 6= op.

The following lemma shows the importance of a system in solved form. Let then
S be a finite system.

Lemma 4.1 Let S = {{vy,t1),...,{vn,tn)} be in solved form.
If o ={ti/v1,...,tn/vn}, then o is an idempotent a-mgu of S. Furthermore, for
a substitution 0 € U,(S), we have 6 = of.

Proof Let 6 a substitution which solves the system S be given. Then v;6 = ¢;0
for each (v;,t;) € S. That means v, = v;of for 1 < i < n and 26 = x6
otherwise. Since dom(f) N ivars(d) = O by the definition of a system in solved
form, # is an a-mgu and is idempotent. O

From this definition we investigate on a new special unification algorithm on
terms.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

4 Unification by transformation on systems 9

4.2 Transformation rules and soundness

Let ¢ and r be any terms, u and u' be closed terms in the sequel. We assume
that the representation of any closed term in the following definition is a good
candidate in the sense that it unifies with any not necessary closed term as
expressed by rule (7) below. Hence, in this abstract interpretation closed terms
are identified even if their representation is not the same.

Definition 4.5 (transformation rules) Let S be a finite system, o = {t/v} =
(v,t) be in solved form, v € var(S) and f respectively g be n-ary respectively m-
ary function symbols. Let furthermore assume that f(t) and g(7) are not closed
in rules (3) and (9). The following defines the set of transformation rules.

{{t,Hrus = S (1)
{{u,u)}US = S (2)
{{(F@),g(PNIUS = {{ti,r)s s tnr)}USf f=g and m=n (3)
{{v,th } U S = {{v, >}USU if v ¢ var(t) (4)
{t,yus = {(v,)}us (5)
{(f(&),w}us = {{u, fENIUS if var(5) # 0 (6)
{(u, FGNIUS = {(f(W), FENIUS if var(F) #0 (7)
{v,t) }US = fail if t= f(r) and v € var(r) (8)
{(f(0),g(FN}YUS = fail if f#g, m#n, {#d and 7#u 9)

Note that an empty system is allowed in this definition, that rule (1) is a special
case of rule (3) and that rule (9) is the negation of rules (3), (1) and (2). It will
also be noted that transformation rule (3) is usually called term decomposition.
Note that this unification algorithm may find an abstract unifier for a system
which fails under the well-known unification algorithm as the example below
shows. To deal with formulae is straightforward.

= defines on Tryp/= a relation which is reflexive and transitive. Hence, for a
system S there exists some sequence of transformations S = --- = S’, which
we denote S =* S'. If S’ is in solved form, then S’ is an abstract unifier § = og
of the system S.

Let us, before considering soundness result, fix this procedure in mind by a simple
example.

Example 4.1 In this example we misuse the ordinary set meaning by considering
the set as an ordered list, and hence always choose the first element of the list

and insert a pair in solved form at the end of the list. g, (1) < i < (9), means
that the rule (i) is used to get the next system.

{(F(h(x, 2), g(uz, y), us), f(ug, gy,), k(z,ug)))}
G {(h(x, 2), us), (g(ur,), g(y,), (us, k(z, ug))}
{

(=6g (ug, h(z, 2)), (9(u1,y), 9(y, x)), (us, k(2, us)) }

E. Ntienjem, A descriptive Mode Inference for Logic Programs

4 Unification by transformation on systems 10

¢

Lemma 4.2 If S = S’ using a transformation rule from definition 4.5 and 0 €
U.(S"), then 6 € U,(S).

Proof The point to be proved lies in rule (4). Let 0 = {t/v} = (v, t) be in solved
form and @ be any abstract substitution. Suppose {(v,t)} US = {(v,t)} U So.
If vh =16, then vh =t = (vo)f = vof. Hence,

0ecU,({(v,t)}US) <= v0=t0 and 6 € U,(S). That means

v =t and 6 € U,(S) < v =th and o0 € U,(S). That means

v =t and of € Uy,(S) <=vh=t) and 6 € U,(So). That means

v =t and 6 € U,(So)<=0¢cU,({(v,t)}USo). O

The soundness is then a straightforward induction on the length of a transforma-
tion sequence.

Theorem 4.1 (Soundness) If S =* 5" and S' is in solved form, then og is an
a-mgu of S.

Proof By induction on the length of the transformation sequence and use of
lemma 4.2, which trivially means § € U,(S") imply 6 € U,(S) for some abstract
substitution #. Hence, og is an a-mgu of S. O

4.3 Termination

In this subsection we look at the termination of a sequence generated by the
transformation rules.

Lemma 4.3 (Termination) The relation = does not produce infinite transfor-
mation sequences.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

4 Unification by transformation on systems 11

Proof First of all let us recursively define the (pseudo-)length, ||, of a term ¢
as follows:

0 if ¢ is a closed term
lt| =<1 if ¢ is a variable
L+ Y0 |t ift=f(t1,...,t,)and Ji, 1 <i <mn, t; is not closed.

Let us now define, for any finite system S, a complexity measure
w:SYS — INxIN, S +— (m,n),

where SYS is the set of all systems S, m is the number of unsolved variables v
occurring in the system, and n is the sum of the (pseudo-)length of the terms
occurring in the system. It is well known that IVxIV with the lexicographic
ordering on (m,n) is well-founded. One easily observes the following:

e rule (1) lets n stationary, if ¢ is a closed term. Since S is finite and rule
(1) does not increase m, S may become empty or another rule applies after
some finite step. If ¢ is not a closed term, then rule (1) may decrease n.

e rule (3) decreases n and does not increase m.
e rule (2) lets n stationary and does not increase m.
e rule (4) decreases m and does not increase n.

e rules (5)—(7) each lets m and n stationary and the relation = does not cycle
on these rules.

Hence, the relation = is well-founded, and each transformation sequence termi-
nates in a finite system to which no transformation rule applies, that is a system
which is either in solved form or is failed. O

4.4 Lattice on the quotient set of terms

The ordering < on 7z) induces an ordering < on Tx)/=. Let us in addition
extend this ordering on 7x, /= as follows:

e a variable term is more general than a partially instantiated term respec-
tively a closed term.

e a partially instantiated term is more general than a closed term.

We now show that (7x,/=,>) is a (complete) lattice, where the relation >
stand for >. Similar to the greatest lower bound (glb) respectively the least
upper bound (lub) of the usual lattice we define the greatest lower instance (gli
for short) respectively the least upper instance (lui for short) as follows. Let ¢
and 7 be terms.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

4 Unification by transformation on systems 12

1. The term ¢’ is a lower instance of the terms ¢ and r if and only if ¢ > ¢’ and
r = t'. The term t' is an gli(¢, r) if and only if ¢’ is a lower instance of ¢ and
r and if 7' is another lower instance of ¢ and r, then ¢’ > 7.

2. The term ¢’ is a upper instance of the terms ¢ and r if and only if ¢’ = ¢
and t' = r. The term ¢’ is an lui(¢, r) if and only if ¢’ is a upper instance of
t and r and if 7’ is another upper instance of ¢ and r, then r' > ¢'.

The extension of gli and lui to a set of terms is straightforward. Since we consider

terms modulo variable renaming an gli respectively an lui is unique. Following
Plotkin in [15] and Reynolds in [17] we have

Lemma 4.4 Let L be a term such that for allt € Try/= it holds t =L. Then
(Try /= U{L}, =) is a complete lattice.

We now state and prove an useful lemma when determining the gli respectively
the lui of a set of terms.

Lemma 4.5 Let S, and Sy be sets of terms. Then

(1) lui(Sy U Sg) = lui(lui(Sy), lwi(S2)) and

Proof is well-known. O

The following corollary shows that gli and lui are associative.

Corollary 4.1 Let S1, Sy and Sz be sets of terms. Then

(i) gli(S1 U S2 U S3) = gli(gli(S1 U Sa), gli(Ss)) = gli(gli(S1), gli(S2 U S3)).
gli and lui are naturally extended to substitutions. Lemma 4.5 also holds if a set
of substitutions is considered then. With all these results and methods in mind

we are able to derive or give a method to derive a mode of an n-ary predicate
symbol with respect to a given program.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

5 NJSLDT-Derivation for mode inference 13

5 NJSLDT-Derivation for mode inference

In this section we introduce a variant of the SLD-derivation for abstract logic
programs, the NJSLDT-derivation. This variant is needed for the purpose of
mode inference since a mode of an n-ary predicate is a (logical) consequence of
the mode of those predicate symbls on which it depends. The derivation has
to be finite since a mode of an n-ary predicate symbol has to be determined at
compile time. We assume familiarity with the SLD-resolution.

We assume that a given logic program P is constructed using the terms in 7 /.
We call it the abstraction of P and denote it by P,. P and P, differ only on the
abstraction of closed terms.

The unary operator — will in the following be ignored, because the negation does
not have an effect on the behavior of the inference of a mode of an n-ary predicate
symbol. That means that the way the arguments of an n-ary predicate symbol
are instantiated when this appears in a goal does not depend on the fact that
this goal is a negative literal.

Let P, be given and G =< Ay, -+, A\, be an abstract goal. The intended meaning
of P, U {G} is: given an abstract logic program P, and an abstract goal G
determine a mode of the goal G with respect to F,.

A mode for P, U {G} is an idempotent abstract substitution 6 in the sense of
section 4 such that dom(f) C Ul var(\;).

Such a mode determination is better obtain by derivation. The following defini-
tions are inspired from the SLD-definition since the data descriptions computed
for each program point have to approximate the set of concrete data which may
occur during a program execution. In the following we suppose a computation
rule be given.

We consider an NJSLDT-resolution, that is an SLD-resolution, where a literal
in a goal is removed if it is already selected and used with the same clause in a
former resolution step.

Definition 5.1 Let G =< Ay, ---, A\, be an abstract goal, kK = a < Ly, - -+, Ly
be a variant of a clause in P, such that var(k) Nwvar(G) = 0, S be the set of pairs
(selected literal, used clause), and 0 be an abstract substitution. Then G' and S’
are derived from G and S using 0 and k if there exists an j € {1,...,n} such
that

(1) A; is the selected literal, § = a-mgu(a, \;) and

(i1) if there exists a variable renaming substitution p and (L,k) € S such that
Ai < L or L <)\ and var(Lp) = var();), then
G' =AM, -, N Ajr, o, A and S'T=5,
else G'= (M, -, Nj_1, L1, Lig, Aj, -+, Ap)f8 and S" = S U {(A\j, k) }.

An NJSLDT-derivation of P, U {G} consists of four sequences

G =Gy, G,Go,. .. of goals,

E. Ntienjem, A descriptive Mode Inference for Logic Programs

5 NJSLDT-Derivation for mode inference 14

Cy,Cy,Cs, ... of clause variantes,
01,05,05, ... of substitutions and
SY=5,61 8% ... of sets of pairs (literal, clause)

such that G, and S**! are derived from G; and S* using 6, and C;, ;.

An NJSLDT-derivation of P, U {G} is finite or infinite. An NJSLDT-derivation
of P, U{G} is successful if it is finite and has the empty goal € as the last goal in
the derivation. An NJSLDT-derivation of P, U {G} is failed if it is finite and has
the goal fail as the last goal in the derivation. A successful NJSLDT-derivation
has length n if G, = €.

Definition 5.2 A substitution 0 is a computed mode for P, U {G}, if there ex-
ists a successful NJSLDT-derivation G = Gy, G1,Go, ..., Gy, C,Cy,Cs,...,C,,
01,05,05,...,0, and S®°=S,8' 5% ..., S" of P,U{G} such that 0 is obtained
by restricting the composition 610505 -- -0, to the variables of G.

A mode 0 for P, U{< Ay, ---,\,} is acceptable if and only if for each 7 €
{1,...,n} P,U{<« \f} has a successful NJSLDT-derivation.

We first of all prove that the deletion of a literal that occurs in a goal according
to definition 5.1 does not worsen a computed mode. For this sake, let us consider
a definition wherein the set S does contain the pairs literal and used clause even
if such a pair were already used in a former step of the derivation. The set S is
maintained in this definition for the sake of compatibility.

Definition 5.3 Let G =< A\y,---, \, be a goal, Kk =« < Ly, -+, Ly be a variant
of a clause in P such that var(k) Nvar(G) = 0, S be the set of pairs (selected
literal, used clause), and 0 be an abstract substitution. Then G’ and S" are derived
from G and S using 0 and k if there ezists an j € {1,...,n} such that

(1) A; is the selected literal, § = a-mgu(c, \;) and

(ZZ) G' = ()\1, o ';)\j—I;LI; v ',Lk,)\j_H, o 7)\77,)0 and S'=SU {()\j,lf)}.

We are now able to formulate the lemma stating the correctness of the deletion
of some particular literals occurring in the goal and used in a former derivation
step with the same clause.

Lemma 5.1 Let P, and I, be given. If 0 is a computed mode for P,U{l',} using
definition 5.3, then there exists a computed mode ¥ for P, U{l',} using definition
5.1 such that 0 = Yo and ivars(0) = ivars(9p) hold for some substitution o and
variable renaming substitution p.

Proof By induction on the length n of an NJSLDT-derivation. The length n is
represented as a multiset of the indices of the literals in an NJSLDT-derivation.
It is well-known that the lexicographical ordering on multiset over IN is well-
founded. A multiset {1,...,n} is minimal with respect to P, U {I',} if for all

E. Ntienjem, A descriptive Mode Inference for Logic Programs

5 NJSLDT-Derivation for mode inference 15

j € {1,...,n} it holds that 6;---6;_16;11---6, is not a computed mode for
P,u{l,}.

If the length n of the derivation of P, U{l,} using definition 5.3 is minimal, then
we are done. In this case it holds m = n and ¥ = 6. Let us therefore suppose
that the length n is not minimal at all. To construct a finite NJSLDT-derivation
of P, U{Il',} of length m from that of P, U{[,} of length n we show for the
multiset n = {ly,...,[,} that § = Yo and ivars(f) = ivars(Jp) hold for some j in
n and for some substitution ¢ and variable renaming substitution p. Since the
derivation is finite, the multiset n is finite too. Hence, it suffices to show that
0 = Yo and ivars(f) = ivars(¥p) for some j in n, substitution o and variable
renaming substitution p. Suppose the derivation uses a literal A\; and a clause
kj+1 which were already used in a former step, say k. Suppose in addition that
in step k the selected literal is A, and that it hold that A < A; or A\; < A and
vars(A) = vars(A;p) for some variable substitution p. Hence, using definition 4.4
(iii), it holds that ¥ = fo and ivars(f) = ivars(dp). Now let the new derivation
be obtained by deleting the literal, say A;, in the step G; to G;+1, that is by

strictly applying the deﬁn1t1on 5.1 above. Then let m be {ll, R FERTY PR 9
It holds then {ly,..., 01,01 ..., 0} < {l,..., ;- 1,l],l]+1 l v} that means
m < n. Applying thls method repeatedly we get the result, since the derivation
is finite. a

Let us now establish the relation between an acceptable mode and a computed
mode.

Theorem 5.1 Let P, be given and G be an abstract goal. Then every computed
mode for P, U{G} is an acceptable mode.

Proof By induction on the length of the NJSLDT-derivation. Let an abstract
goal be G =< Ay,---, A\, and 6, ..., 60, be asequence of a-mgu’s used in a mode
of P,U{G}. We have to show that 0, - - - 8,, is acceptable for P,U{< Ay, -+, A\, }.
The case G' = € is so obvious that we always neglect it.

Suppose m = 1. Then G =< \; and S° = (). The program P, has then an unit
clause, say « <, such that \;#; = af,. Since a#;, < is an instance of a unit
clause of P,, it is clear that #; is a mode for P, U {<— A\, }.

Suppose now m > 1, S™ 1 £ () and 0y,...,0,, is a sequence of a-mgu’s used in
an NJSLDT-derivation of P, U {G} of length m. Let C = o < Ly,---, L; be a
variant of a clause and \; be the selected literal of G. Two cases arise.

case 1: there exists (\;,C) in S™ ! and variable renaming substitution p
such that A\; < Aj or A\; < \; and vars();) = vars(A;p) hold. Then the NJSLDT-
derivation of P, U{G} has already been considered in a former derivation step.
Hence, from Lemma 5.1 removing the subgoal); does not affect the resulting
substitution. By the induction hypothesis 6 ---6,, is an acceptable mode for
P,U{< A, o, N1, Aig1, -+, A b The set S™71 remains unchanged.

case 2: the condition in case 1 does not hold. Then by the induction hypoth-
esis 0, - - - 0,, is an acceptable mode for

PyoU{ A, Xic, Ly - L, A, -+, At

E. Ntienjem, A descriptive Mode Inference for Logic Programs

6 Descriptive mode inference 16

Hence 6, - -0, is an acceptable mode for P, U {< Li,---,L;}. That means
Aiby -0, = aby -0, Hence, 0 ---6, is an acceptable mode for P, U{<+ A;}.
O

Since the NJSLDT-derivation is a special case of the SLD-derivation and since
the SLD-derivation is sound, the abstract interpretation is sound as we claim in
the introduction. In the next subsection we just, for the sake of illustration later,
give the definition of NJSLDT-tree.

5.1 NJSLDT-tree

We inductively define an NJSLDT-tree as usual, top down.

Definition 5.4 Let P be a program and ' be a goal. Then the NJSLDT-tree for
PU{Tl'} is defined as follows:

(i) a node of the tree is a pair (I, S) consisting of a goal ' and a set S.
(ii) a leaf of the tree is a node consisting of a goal I' € { €, fail } and a set S.

(1ii) let the pair consisting of a goal < Ai,---, A\, and a set S be a node in
the tree. Suppose that there exists i an element of the set {1,...,n} and
Cj = aj < Lj1,---, Ljgg) in P such that 0 = a-mgu(Xi, «j). Then, if
there exists (A\;,C;) in S and a variable renaming substitution p such that
Ai <Ajoor Aj < A and vars(\;) = vars(\;p) hold, then the pair
(MAAXNAAXNTI A AN, S)
15 a descendant node, else the pair consisting of the goal
— (Ao Nic Ly ooy Lk Mgy -5 An)
and the set SU{(\;,C;)} is a descendant node.

(iv) the root is the node consisting of the pair (T, D).

Three examples of NJSLDT-trees are given in subsection 6.1 in combination
with the inference of the mode of some predicate symbols with respect to some
program.

6 Descriptive mode inference

The mode of an n-ary predicate symbol with respect to a program represents
statement about computations that are possible from it. From this claim mode
information has been studied for the sake of making logic programs as efficient
as functional or imperative ones [2, 3, 4, 6, 9, 11, 12, 13, 16, 22].

Our aim in this section is to automatically infer the mode of an n-ary predicate
symbol from a given logic program while conserving the mathematical intention
of a relation. This is a descriptive mode inference. Hence, our interest is not
focused on a syntactic mode declaration of logic programs, because doing so we
will lose the expressive power of logic programs. The intended meaning of an

E. Ntienjem, A descriptive Mode Inference for Logic Programs

6 Descriptive mode inference 17

n-ary predicate is preserved when the descriptive mode does consider the most
general use of that n-ary predicate; that is its application not only with one
meaning.

In subsection 4.3 we consider the gli and the [ui of a set of abstract terms. With-
out loss of generality the extension of lui respectively gli to (idempotent) sub-
stitutions is as follows: let § = {t1/xy, ..., tn/xm} and o = {ri/x1, ..., rm/xm}
be substitutions. Then ui(f,0) = {lui(t;/x;,ri/z;) | 1 < i < m} and
gli(0,0) = {gli(t;/xi,ri/x;) | 1 < i < m} wherein lui(t;/x;, r;/x;) = it) /x;
and

gli(t; /s, ri/x;) = gli(t;, r;)/x;. We now formally define the inferred mode of an
n-ary predicate symbol with respect to a given program.

Definition 6.1 Let P be a program and p be an n-ary predicate symbol oc-
curring in P. The inferred mode of p with respect to P, denoted by IL(p),
is the least acceptable mode for P U {« p(¥)}; that is IL(p) = i({0 |
6 is an acceptable mode for P U {« p(V)}}).

Note that if {# | € is an acceptable mode for P U {« p(?)}} is empty, then
IT(p) = ¢, the identity substitution. Let us in the following use a literal A for a
predicate symbol ¢ as well, since what is meant will be clear from the context.

Definition 6.2 Let + q(ty,...,t,) be a goal and dom(IL(q)) = {vi,...,v.}.
Suppose that var(q(t)) N dom(IL (q)) = 0. Then IF(q(t)) = {t1/v1, ..., ta/vn} is
a calledmode of q with respect to P. That means

q(t, ... ty) = q(vg, .. .,vn)If(q(f)).

Combining these two previous definitions we next define the instantiated mode
of a goal literal.

Definition 6.3 Let \; be a literal, IL()\;) be the inferred mode of \;, and
IP(\;) be a called mode of \; and such that dom(IF()\;)) = dom(IL()\:)). Then
the instantiated mode or goal mode, IF(X;), for the literal \; is I](N;) =
(IO, 17 (V)

We assume that the mode of an n-ary predicate symbol p with respect to a
given program is variable independent and closed term independent, that means
6 € I''(p) implies Vo € R : 6o € I (p). Since a closed term is a gli of any
set of terms, the instantiated mode for a literal does always exist. To illustrate
this fact let us suppose I (A) = {u/v} and IF(X) = {g(y)/v}. Then I'()) =
{9(y)/v,u/y} where u stands for a closed term. This is due to the fact that closed
terms are identified.

The following lemma is an immediate consequence of the definitions.

< 1t < n, be the selected

{uy /1, ... up .},

Lemma 6.1 Let G =+ A, -+, A\, be a goal, \;
literal. If 1L (N) = {ui/xe, ... un/2,} or IF
then IF(N) = {ur/ar,... up/an}.

&&)

E. Ntienjem, A descriptive Mode Inference for Logic Programs

6 Descriptive mode inference 18

The inference of the mode of certains predicate symbols with respect to a given
program may be done bottom up. For this sake let P be a program and P be
the set of all predicate symbols occurring in P. Assume the relation “depend on”,
denoted by T, be defined on the set P (see Kunen in [7]). The relation J defines
an equivalence relation on P. We denote by I the transitive and irreflexive
relation . Hence, P = Ulepj where P; is an equivalence class.

Let us now state and prove an useful theorem of our method.

Theorem 6.1 Let P be a program, the definition of p € P consists k clauses,
p(t) < Lij, -+, Lim@) be the i-th clause and o; = a-mgu(p(7), p(t)). Then
IP(p) = Wwi({Y; | 1 <i < k}), where for each 1 < i <k it holds either

ﬁi = If(Li,lai) . 'IP(LZ] 1O'Z)IP(LZ' j+1ai) te IP(L O'Z) ZfElp € R

such that Lij < p(t) or p(f) < Li; and vars(p(f)) = vars(L; jp)

or 0y = I1¥ (Lin0g) - - 1) (Lim(y0i) otherwise.

Proof Let us suppose that the definition of p consists of k clauses. Then from
the definition 6.1 we have

IP(p) = Mui({¢' | ¢ is an acceptable mode for P U {< p(¥)}})
= lui({0; | 6; is an acceptable mode for
PU{< (Li1, -, Lim@)oi} and 1 <0< k})

where o; = a-mgu(p t_) (¥) unifies with the head of each clause C;, 1 <
i < k. It suffices to determlne 0 for each i € {1,...,k}. That is ;. Hence, let
us consider a clause C; for a given 1 < ¢ < k. The proof is by induction using
the definition of the NJSLDT-derivation. Two cases arise.

case 1: p(#) £ Li; and L ; £ p(t) or vars(p(t))) # vars(L,;p) hold for all
variable renaming substitutions p and literal L;; occurring in the body of the
used clause. Since 0; is an acceptable mode for P,U{< L; 10, -, Lim@)0i}, 0; is
also an acceptable mode for P, U {« L; jo;} for each 1 < j < m(7). That means
P, U {+ L;;o;} has a derivation which ends with e. Let now L;,o0; = ¢(5).
Then it holds that ¢(5) = ¢(Z)IF(¢(5)). Then from definition 6.3 it suffices
to determine IT’(g) which is done by the induction hypothesis. Hence, the goal

mode for Lz ,j0i is llll(IP() IP((5))) Hence, 791 = If(Li,lo'i) o I;D(Lz,m(z)o'z)

case 2: p(¥) < Lijor L;; < p(f) and vars(p(t))) = vars(L; ;p) hold for some
variable renaming substitution p and literal L; ; occurring in the body of the used
clause. Since 0; is an acceptable mode for P, U {<= L; 104, -, L; m@i)0:}, 0; is also
an acceptable mode for P, U {<« L; jo;} for each 1 < j < m(i) Us1ng Lemma 5.1
we can remove the literal, say L; jo;, such that L; 0; = p(7)p for some variable
renaming substitution p. Then by case 1 above we obtain the result. a

Corollary 6.1 Let P be a program and p be an n-ary predicate symbol such
that at most p occurs in the body of each clause k with head predicate symbol
p, head(rk) < body(k) or body(k) < head(k) and vars(head(k))) = vars(body(k)p)
hold for some variable substitution p. Then

I (p) = Wwi({ a-mgu(p(7), head(C;)) |1 < i < k}) where C;, 1<i<k, are all
clauses of P which define the predicate p.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

6 Descriptive mode inference 19

6.1 Examples

Note that repeated variables do occur in the following examples. Let us now
formally infer the mode of some n-ary predicate symbols with respect to a given
program and use C; : 1 <1 < n to refer to a clause. The selected literal, say A, is
underlined. The edge is marked by the used clause, say C', and the substitution if
there does not exist (L, C') € S such that for all variable renaming substitutions
p it holds that var(\) # var(Lp) or A £ L and L £ A. For the sake of simplicity
the set S has been omitted; but it may be constructed following a path in the
tree. Let us write w,u; with 7 > 0 as a short hand for a closed term in the
NJSLDT-trees.

Example 6.1 Every closed term is mapped to a symbolic constant denoted by
u.

C) : person(u)

Cy : parent(uy, us)

C; : same_generation(z,x)
Cy : same_generation(z,y)

person(z)
parent(z, xp), same_generation(xp, yp),
parent(y, yp)

o«
.
-
-

Let us write sg as a short hand for same_generation, p for parent and q for
person in the NJSLDT-tree (figure 1). Let further #; with 1 < ¢ < 3 be the
composition of the substitutions on a path from the root to the leaf.

¢ = {v/w}o{u/v}

= {u/v,u/w}
0, = {v/z,w/y}o{ui/vp}o{uy/v}o{us/w} = {w/v,us/w}
O3 = {v/z,w/y} o {us/v,us/vp} o {ug/w,us/wp} = {us/v,us/w}

Then the inferred mode of sg is IL (sg) = lui{0y, 04,03} = {u'/v,u" /w}. &
Since the NJSLDT-derivation returns a most general substitution, since the ex-

istence of a fair NJSLDT-tree is guaranteed and since infinite loops are recognise
and make finite the evaluation strategy does not influent a computed mode.

Example 6.2 Let us consider the following program PP and denote a closed term
by u, uq, us etc.

Cr: p(h(x),g9(x,y)) < q(z,2),7(f(2),2),5(2,y)
02 . Q(xaul) —

03: q(z,h(z)) — T(Z,y),Q(f(y),Z)

Cy: s(z,uy) — qx,uy)

Cs . r(us, uy) —

The NJSLDT-tree (figure 2) illustrates the inference of the inferred mode of p
with respect to the program PP. Let #; with ¢« > 0 be the composition of the
substitutions on a path from the root to the leaf. Then

Iy (p) = Wi{6i]i > 0} = {h(21) /v, g(w1, u) /w}.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

6 Descriptive mode inference

20

o {v/z, w/y}
Ty oY
q(v) p(v,vp), sg(vp, wp), p(w, wp)

RRCL - vp/wp}

€ p(v, vp), q(vp), p(w, vp) p(v, vp), p(w, wp)

Ci| {u/op} Cy | {ua/v, us/vp}
pv, u), p(w,) p(w, wp)
Co | {uz/v} Co | {us/w, uz/wp}
plw, t1) €
& {us/w}

Figure 1: NJSLDT-tree for same_generation

E. Ntienjem, A descriptive Mode Inference for Logic Programs

6 Descriptive mode inference 21

p(v, w)
Gy {h(z1)/v, g(x1,y1)/w}
q(a:l,zl),r(f(zl),zl), S(Zlayl)
Cs ‘ {us/z1}
Cy q(x1, ua), s(ug, y1) {ug/ 25, 26/ 1}
* stpw)
Cy| €
s aluny) gy 22, (Ua) /Y1
G T (s, h(us) /)
€ {ua/m2us/yi} 37"(u4,y2),q(f(y2),u4)
C T(Uga yg), Q(f(yg); Ug), S(U47 y1)
{ui/y2} —
, q(f (u)), ua) ! Cs | {uio/yo}
N O tur/ 2} q(f(u1o), ug), s(us, y1)

Cy {U11/Z5}
{f(urw)/zs} C
‘ s(ug, y1) r(uin, Y10), ¢(f (10), ua1), s(ua, y1)

r(ur, y3), a(f(y3), ur)

\
C, Q(f(y3):u7){u8/z4} (*)

€ {f(y3)/333} Cs T(Us,y4),q(f(yg),u8) q(f(y10)7u11)7 8(u4,y1)
| (g, Y1)

| *)

€

Figure 2: NJSLDT-tree for PP U {<— p(v,w)}

¢

To illustrate theorem 6.1 and corollary 6.1 above let us consider the following
example.

Example 6.3 Let APPEND be the program defining the predicate append. [| is
mapped to u. The NJSLDT-tree (figure 3) illustrates the inference of the inferred
mode of append.

: reverse(uy, us)

: reverse([z|zs], [y|ys])
: rotate(uy, us)

: rotate([ylys], [x|zs])

%
< reverse(zs, zs), append(zs, [z], [y|ys])
e

< reverse(|y|ys], [x|zs]), reverse(zs, 25)

E. Ntienjem, A descriptive Mode Inference for Logic Programs

6 Descriptive mode inference 22

append (v, w, 2)

¢ ol v, w/ys, [afa1]/2)
6 {U/%US/U),U)/Z};Lppend(vl,w,zl)
Cy
{u/vy,ys/w,w/z}

Figure 3: NJSLDT-tree for append

Let #; with 1 < ¢ < 3 be the composition of the substitutions on a path from
the root to the leaf; that is

6, = {u/v,vs/w,w/z}

O, = Alzlol/v,w/ys, [z]a1]/2} o {u/vr, ys/w, w/z}
= Alzlul/v,w/ys, [z[w]/2}

Os = {lzlvil/v,ys/w, [z[=]/2}

Then the inferred mode of sg is
Ig(append) = lui{by, 0o, 03} = {[z|v1]/v,ys/w, [x|z1]/z}.

Applying theorem 6.1 we get

IF (reverse) = lui(I(Ch),1(Cy))
= lui({ui/v, uz/w}, ({[z]2s]/v, [ylys]/w}I] (append)))
= {[z|vs]/v, [ylys]/w}1] (append)
= {[z]s]/v, [ylys]/w}eli(; (append), I, (append))
= {[z]zs]/v, [ylys]/w}
The inferred mode of rotate will be inferred in a similar manner.

Suppose now a goal <— rotate([1,2,3],vs) be given. When using clause Cy and
the substitution {1/yi,[2,3]|/ys1, [x1|zs1]/vs} a part of the derivation structure
is as follows:

rotate([1, 2, 3], vs)

reverse([l,2, 3], [x1|zs1]) A reverse(zs;, zs1)

The goal mode of the subgoal reverse([1, 2, 3], [z1]zs1]) is

1] (reverse([1,2,3], [z1|z51]) = {u/v, [z]zs]/w}.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

7 Related works and conclusion 23

After the resolution of this subgoal the argument zs; becomes closed; therefore
the goal mode of reverse(zsy, zs1) is

I7 (reverse(zsy, zs1) = {x/v,u/w}.

It is obvious that not every programmer shall think of these two different modes
of reverse when writting such a program as this one above. &

Note that if we do not restrict the class of logic programs to those that are
well-formed in the sense of section 3 then there still do exist definitions of n-ary
predicate symbols for which our method does not find a mode. Let us consider

P={q(f(u1,y)) <€ q(g(s)) <€}

with g # f. Then I} (q) = lui(f(u1,y)/x1,9(s)/x2) has no lui.

7 Related works and conclusion

7.1 Related works

The idea of inferring the mode of an n-ary predicate symbol defined by a logic
program is not new. Since mode has an influence on the operational semantics,
certain languages for first order predicate logic have included annotations and
static mode inference to guide the interpreter in selecting the literal in a goal. In
this case the user is responsible for a correct annotation of mode and a consistent
use of such a moded n-ary predicate symbol in a goal. A mode checking method
may assist the user in this point. In [3, 4, 6, 9, 11, 22] the declaration of mode is
automatically inferred.

Our work is distinct from these efforts in three significant points:

e First, we do not infer the set of all possible mode tuples an n-ary predicate
symbol defined by a logic program may have. This is due to the fact that if
there is £ mode types in consideration then the total number of mode tuples
is k" for each n-ary predicate symbol. The mode tuple we do infer is most
general in the sense of most general unifier and reflect the understanding
of the relation defined by an n-ary predicate symbol.

e Second, our method is appropriate for modular logic programming, in the
sense that an inferred mode of an n-ary predicate symbol may be used to
deduce the mode of an n-ary predicate symbol which depends on it.

e Third, errors caused by user supplied mode for an n-ary predicate symbol
do not occur, and there is no need for a mode checking.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

REFERENCES 24

7.2 Conclusion

An n-ary predicate describes the relationship between its arguments, in the sense
that no argument has to be of a special mode. The unification and the resolution
(SLDNF-resolution) do capture this state of affair. The declarative style of logic
programming is an ease realisation of this fact of an n-ary predicate. Hence, the
aim of logic programming, that is to write a program in a declarative style and
to leave the control to the inplemented interpreter, is approximatively achieved
if the system is able to automatically determine the descriptive mode of an n-ary
predicate symbol with respect to a given program. Since the mode of an n-ary
predicate symbol does influence the operational semantics of that predicate, this
information may be used by a compiler for the purpose of efficiency. Our mode
inference will also help

e automatically determine the literal to be selected when constructing an
SLDNF-derivation.

e prove the completeness of the SLDNF-resolution for a class of logic pro-
grams, which contains the class of allowed programs. Work in this direction
has been suggested by Kunen in [7]. A completeness proof of the SLDNF-
resolution using prescriptive mode is given by Stérk in [20].

References

[1] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B, chapter 10, pages 495-574. Elsevier,
1990.

(2] M. Bruynooghe, B. Demoen, A. Callebaut, and G. Janssens. Abstract in-
terpretation: towards the global optimization of prolog programs. In Pro-

ceedings of the fourth IEEE Symposium on Logic Programming, New York,
1987.

[3] M. Bruynooghe and G. Janssens. An instance of abstract interpretation
integrating type and mode inferencing (extended abstract). In R. A. Kowal-
ski and K. A. Bowen, editors, Logic Programming — Proceedings of the fifth
International Conference and Symposium, pages 669-683. MIT Press, 1988.

[4] S. K. Debray. Flow analysis of dymanic logic programs. Journal of Logic
Programming, 7:149-176, 1989.

[5] S. K. Debray. Static inference of modes and data dependencies in logic

programs. ACM Transactions on Programming Languages and Systems,
11(3):418-450, 1989.

(6] S. K. Debray and D. S. Warren. Automatic mode inference for logic pro-
grams. Journal of Logic Programming, 5:207-229, 1988.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

REFERENCES 25

7]

K. Kunen. Signed data dependencies in logic programs. Journal of Logic
Programming, 7:231-245, 1989.

J. W. Lloyd. Foundations of Logic Programming. Springer, 1987.

H. Mannila and E. Ukkonen. Flow analysis of prolog programs. In Pro-
ceedings of the fourth IEEE Symposium on Logic Programming, New York,
1987.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM
Transactions on Programming Languages and Systems, 4(2):258-282, 1982.

C. S. Mellish. The automatic generation of mode declaration for prolog
programs. DAI research 163, Department of Artificial Intelligence, University
of Edinburgh, 1981.

C. S. Mellish. Some global optimization for a prolog compiler. Journal of
Logic Programming, 2(1):43-66, 1985.

C. S. Mellish. Abstract interpretation of prolog programs. Lecture Notes in
Computer Science, 225:463-474, 1986.

L. Naish. Automating control for logic programs. Journal of Logic Program-
ming, 3:167-183, 1985.

G. Plotkin. A note on inductive generalization. Machine Intelligence, 5:153—
163, 1970.

U. S. Reddy. On the relationship between logic and functional languages.
In D. De Groot and G. Lindstrom, editors, Logic Programming, pages 3-35.
Prentice-Hall, 1986.

J. Reynolds. Transformational systems and algebraic structure of atomic
formulas. Machine Intelligence, 5:135-152, 1970.

H. Schwichtenberg. Logikprogrammierung. Vorlesungsausarbeitung,
Ludwig-Maximilians-Universitat Miinchen, Wintersemester, 1993.

W. Snyder and J. Gallier. Higher-order unification revisited: Complete sets
of transformations. Journal of Symbolic Computation, 8:101-140, 1989.

R. F. Stark. Input/output dependencies of normal logic programs. Journal
of Logic and Computation, 4(3):249-262, 1994.

K. Stroetmann. A completeness result for sldnf-resolution. Journal of Logic
Programming, 15(4):337-355, 1993.

D. H. D. Warren. Implementing prolog — compiling predicate logic programs.
Research Report 39,40, Department of Artificial Intelligence, University of
Edinburgh, 1977.

E. Ntienjem, A descriptive Mode Inference for Logic Programs

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

