UNIVERSITAT AUGSBURG

Completeness and Termination of
SLDNF-Resolution and Determination
of a Selection function using Mode

Ebénézer Ntienjem

Report 1997-06 Dezember 1997

|nst|tut ;
mformatlk

INSTITUT FUR INFORMATIK
D-86135 AUGSBURG

Copyright © Ebénézer Ntienjem
Institut fiir Informatik
Universitat Augsburg
D-86135 Augsburg, Germany
http://www.Informatik.Uni-Augsburg. DE
— all rights reserved —

Completeness and Termination of
SLDNF-Resolution and Determination of a
Selection function using Mode

Ebénézer Ntienjem

December 17, 1997

Abstract

We cousider a mode of an n-ary predicate symbol with respect to a
logic program, which meets the aim of logic programming and captures the
spirit of unification as arguments passing mechanism. We prove that the
SLDNF-resolution which resolves a non-ground negative literal is complete
for an interesting class of logic programs using this mode. To obviously
do such a proof we do consider terms modulo variable renaming and map
a logic program with a goal to an allowed logic program with an allowed
goal, since it is well-known that the SLDNF-resolution is complete for the
class of allowed logic programs with allowed goals [9]. The termination of
the SLDNF-resolution is studied using a sophisticated selection function
which only chooses those literals and clauses that are applicable in the
sense that using such literals and clauses the SLDNF-resolution would not
be infinite, if a finite SLDNF-resolution does exist.

Keywords: Logic Programming, Proof Theory, Model Theory, Semantics, Resolution,

Mode

Contents

1 Introduction

2 Syntax and basic notions

2.

1 Partial completion of logic programs

3 Semantics

4 A bottom up definition of an extended SLDINF-resolution

5 Mode in logic programs

10

1 Introduction 2

6 Completeness result for goal moded programs 11
7 Determination of an admissible selection function 15
7.1 A measure function and an admissible selection function 15
7.2 An admissible selection function 15
8 Conclusion and future works 17

1 Introduction

We assume throughout this paper that the reader is acquainted with the basic
notions of logic programming. If nothing else is noted, all notations used in the
following are borrowed from Apt in [1] or Lloyd in [10]. We say logic program as
a short hand for normal respectively general logic program.

Advances in improving the class of logic programs which is complete using the
SLDNF-resolution have been made when considering the declaration of the con-
ventional input/output dependencies [16, 18]. In addition, a permutation of the
literals occurring in a goal is always assumed. To find such a permutation is as
hard as to resolve the logic program with a goal. Hence, a good idea is to reduce
the problem of finding a permutation to the case where the permutation is found
while resolving the logic program with a goal.

The assumption made when selecting a negative literal is strong and hence re-
stricts the class of logic programs which is complete using the SLDNF-resolution.
It is also observed that this assumption on the selection of a negative literal is
not used in the proof of the soundness of the SLDNF-resolution [16]. Since the
definition of the SLDNF-resolution is top down [10] or 'pseudo’ bottom up [9]
this assumption is necessary. Besides the observation mentioned above, we ob-
serve that there does exist negative literals containing variables, which do finitely
failed; for example
—member (v, [])

with [] denoting an empty list or
—append(us, [1|ys], [2,3,4]).

Such examples are meaningful and correct as long as the SLDNF-resolution is
really defined bottom up and the universe of discourse does contain variables
modulo variable renamings.

Since logic programs are in general not augmented with an explicit respectively
an implicit notion of mode, some problems related with the improvement of the
efficiency of the evaluation, the determination of the selection function and the
determination of sufficient conditions such that the evaluation might terminate
are not easy to solve without restricting the class of logic programs. In the other
hand, the absence of an explicit respectively an implicit notion of mode together
with the spirit of SLDNF-resolution and the spirit of unification make a logic

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

2 Syntax and basic notions 3

program more expressive than the same program formulated in an imperative or
a functional language; for example

append(z, y, 2)

formulated as a logic program may also be used to determine all pairs (z, y) such
that the concatenation of x and y is z.

We suppose that a mode of an n-ary predicate symbol defined in a logic program
is inferred or is declared. We also consider a Herbrand universe which does
contain variables. Since the representation of a term containing variables is not
unique, we consider terms modulo variable renamings. We consider an extension
of the SLDNF-resolution with respect to a logic program, say P, which might be
characterized by the following two rules:

NaFF1 if the body of each clause in P fails or A and the head of each clause in
P are not unifiable, then —A succeeds;

NaFF2 if the body of some clause in P succeeds with the identity substitution
and A and the head of this clause are unifiable, then —A fails.

It is obvious that this extension of the SLDNF-resolution does include that in
[16]. Hence, the selection of a non-ground negative literal is allowed. We then
discuss the effect of mode on the evaluation and the determination of the selection
function for an interesting and relevant class of logic programs for which the
SLDNF-resolution is proven complete.

This paper is organized as follows: in section 2 we briefly fix the syntax of our
language and some notational conventions. Section 3 is concerned with the se-
mantics. In section 4 we define an extended SLDNF-resolution which allows the
selection of non-ground negative literals. Section 5 briefly considers mode. In
section 6 we discuss the completeness result using mode. We then in section 7
discuss the definition of a selection function and state the main theorem of this

paper.

2 Syntax and basic notions

We assume that our language for predicate logic is fixed in advance, and does
contain, for each n > 0 a countably infinite set F,, of function symbols, for each
n > 0 a countably infinite set P,, of n-ary predicate symbols. Let }V be a count-
ably infinite set of variables. In addition, our language has particular predicate
symbols, =", for equality, and '=’, for equality modulo variable renaming; the
set P v does not contain = and =.

Let the syntactic categories F of function symbols, PRED of n-ary predicate
symbols be given, 7 of terms, FOR of formulae be defined as usual. Terms are
denoted by 7, s, t, and atomic formulae by A, B, «, 8. The falsehood L denotes a
formula that is false at all or finitely failed. A [literal is an atomic formula or a

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

2 Syntax and basic notions 4

negated atomic formula. Literals are denoted by L, A\. A program clause or clause
for short is a formula of the form

a<_)\17"'7)\n7

where « is an atomic formula and also called the head, A1, ---, A\, are literals and
also called the body, and n > 0; we write a < ¢, if n = 0. Note that ’,” in the
body stands for ’A’. A program goal or goal for short is a clause of the form

J—<_)\1>"'7)\n

where n > 0; we write € if n = 0. If no confusion is feared, we also write a goal in
the form Ay, ---, A,. A logic program or program for short is a finite set of clauses.
Instead of considering a logic program to be a set of clauses we let it be the union
of the definitions of predicate symbols, where the definition of an n-ary predicate
symbol is a set of clauses such that this n-ary predicate symbol does occur in the
head of each clause of this set.

By an ezpression we mean a term or a formula. Let vars(E) be the set of variables
occurring in the expression E. VE denotes the universal closure of F, and dF
the existential closure of E.

A substitution 6 is a function from the set of variables to the set of terms. dom(6)
denotes the domain of the substitutions 6, its range is denoted by ran(f), and Gr
\4

denotes its restriction to the set of variables V.

The application of a substitution to an expression and the relation more general
than between substitutions is defined in the usual way. A substitution # is an
unifier of expressions E and F'if Ef = F, and is a most general unifier (in short:
mgu) of E and F if it is an unifier which is more general than all other unifiers
of F and F. We assume in the following that the properties of substitutions are
stated as in [14]. In particular,

(i) if # = mgu(A;, A\2) is idempotent, then
vars(f) C vars(A;) U vars(Ag).
(ii) if o is idempotent,

6 = mgu(A, Ago) and vars(A;) N (vars(Ay0) Udom(o)) = 0,

then o6 is idempotent.

A clause is allowed iff every variable occurring in this clause does occur in at
least one positive literal in the body of that clause. A program is allowed iff each
clause of that program is.

We suppose that our language of discourse has sufficiently many terms. One get
sufficiently many terms when assuming as in [8, 9] an infinite universal language
in which all programs and goals occur.

Let P be a program and PRED(P) be the set of all predicate symbols occurring
in P. Assume the relation “depend on”, denoted by Z, be defined on the set

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

3 Semantics 5

PRED(P) as by Kunen in [9]. The relation J defines an equivalence relation
on PRED(P). We denote by J the transitive and irreflexive relation J. Hence,
PRED(P) = U¥_, PRED(P;), where PRED(P) is an equivalence class.

Let us for simplicity write & for z,...,x, with n > 0 and write 7[Z] for an
expression 7 with all its actual variables among Z. Let in the sequel u stands for
a term ¢ such that vars(t) = (), v stands for a term ¢ which is a variable and s
stands for a term of the form f(¢) such that vars(f(¢)) # 0. Let Il or A or I’
be a short hand for Ay,---, A\, with n > 1, and ~ be a new logical symbol which
denotes “finitely failed” and acts like —.

2.1 Partial completion of logic programs

Following Jéger in [7] and Stérk in [15] we form the partially completed program,
which consists of the Clark’s Equational Theory (CET for short) and a partially
completed definition of each n-ary predicate symbol. Let ¢ be a new n-ary predi-
cate symbol, whenever ¢ is an n-ary predicate symbol belonging to PRED. Then
consider in the sequel the language

L=LU{q]|qePRED}.

A formula of the form ¢(f) is a positive literal and a formula of the form §(f) is
a negative literal. Note that for formulae ~ is in general not —. If A is a literal
of the form ¢(f), then ~ X is g(£). If A is a literal of the form g(¢), then ~\ is
q(t). The partially completed definition of each n-ary predicate symbol is briefly
obtained as follows: let the definition of an n-ary predicate symbol ¢ consists of
m clauses of the form ¢(t) < II and 1, ..., z, be new variables. We write

q(t:)%)\l/\/\)\k(z)

to refer to the i-th clause 1 < i < m. Let us write mgu(E, F') as a shorthand for
E and F are unifiable and ~mgu(FE, F') as a shorthand for the unification of F
with F' fails finitely. Then the partially completed definition of ¢ is

m k(d)
@) ¢ ma(a,) A Y)
m k(%)
@) & A v V -, ®

Let Py resp. Py, be a short hand for (1) resp. (2) in the sequel and P be a
program. Then we denote the partial completion of the program P by pcomp(P).

3 Semantics

Let IB be the set of boolean values. A structure Z for the language consists
of a nonempty set, the domain of discourse D, together with an assignment of
a semantic object on D for each of the function symbols and for each of the

predicate symbols of the language.

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

3 Semantics 6

Z(=) is the true identity.

Z(=) is the true identity modulo variable renaming.

Whenever f is an n-ary function symbol with n > 1, Z(f) is a function
from D™ into D; if n = 0, then Z(f) € D.

Whenever ¢ is an n-ary predicate symbol other than =" or "=’ with n >
1, Z(q) is a function from D™ into IB; if n = 0, then Z(q) € B.

If 7[Z] is a term, then we define Z(7): D" — D in the obvious way. Likewise, if
©|Z] is a formula, then we define Z(p): D™ — IB in the obvious way.

Let the Clark’s Equational Theory, CET for short, be the equational axioms of
the completed program. Note that CET does not depend on a program. We only
do consider structures which satisfy CET. Such structures are characterized by
the following three conditions:

cetl Z(f) is an injective function for each n-ary function symbol with n > 1.

cet2 Z(f) and Z(g) have disjoint ranges whenever f and g are distinct function
symbols.

cet3 whenever z; actually occurs in the term 7[Z] and sq,...,s, € D, it holds

si 7 Z(7)[5].

The basic idea for the definition of our notion of Herbrand interpretation is to
allow variables as elements in the domain of discourse. A term containing vari-
ables represents a set of elements whose structure is partially determined. Since
in Tz there are different terms that represent the same set, for example f(x,y)
and f(v,w), it is adequate to consider Tz, modulo variable renaming. We define
on 7ry an equivalence relation = as follows: ¢ = r iff there exist variable renam-
ings p and o such that t = rp and r = to. Let Tz /= be the set of equivalence
classes of Tz, with respect to the equivalence relation =. Assume ¢t € 7z, and
r € Tx,y. Then the relation < on 7z such that ¢ < r if and only if there exists a
substitution 6 such that r = t6 holds defines a partial order on 7x . It is obvious
that the order < on 7Tr induces an order relation < on 7z /=.

A Herbrand structure His a structure whose domain of discourse is the quotient
set Try/=. The structure Z is a model of the completed program iff all the
sentences of the completed program have truth value true in Z. A Herbrand base
B is the set all formulae ¢(f), where ¢ € PRED and ¢ € (Txy)" /2. It is obvious
that the order < on 7z) /= induces an order relation < on B. Usually the notion
of truth coincides with the one of being an element of; Herbrand interpretations
are subsets of the Herbrand base. Since our Herbrand base does contain variables,
this notion of truth is no longer correct. With respect to the ordering < on 7z
and hence on Ty /= two definitions of the notion of truth arise:

truthl a formula ¢(f) with ¢ € PRED is true if there exists a formula ¢(5) such
that ¢(5) is already true and ¢(5) < ¢(f) holds.

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

4 A bottom up definition of an extended SLDNF-resolution 7

truth2 a formula ¢(f) with ¢ € PRED is true if there exists a variable renaming
p such that ¢(t)p is already true .

It is evident that the notion of truth with respect to truthl is more general
than the notion of truth with respect to truth2. A detail discussion of these
two notions of truth with respect to a domain of discourse containing variables is
given in [6]. We are interested in applying an appropriate kind of these notions
of truth to logic programming with negation. Without loss of generality, we do
consider in the following the notion of truth according to truth2.

We now define the model relation = on a structure M. We write [for the
negation of =. Let M| denote the domain of discourse of the structure M. We
define M = ¢ inductively on the structure of the formula ¢ as follows:

M e (3

M IEL . (4
MER®t, ... t) <L (tip,... tup) € IM|" for some pe R. (5
ME~R®, . t) S (tip,. tup) ¢ IM" forall peR. (6
ME (p—=1) <L if M E ¢, then M = 1. (
ME(eAY) &5 ME@ and M 4. (8
ME(pVvi) & MEg o M. (9
M= (Vop) <5 Vte M| it holds M = of t/x }. (10
ME~e & Mo (11

Let ¢ be a formula, T" be a theory and U be a structure. Then we write U = Vi
if Vo is true in the structure U; and 17" F ¢ if ¢ is derivable from 7' using the
rules of classical first order predicate calculus with equality. Even if the domain
of discourse of our model does contain variables which naturally simulate infinite
elements, the following result is similar to theorem 6.3 in [8].

Theorem 3.1 Let P be a program and I' be a goal. pcomp(P) =T if and only if
pcomp(P) has a model U such that U = VT.

Proof “<”: by induction on the definition of |=.

“=": The construction of the model is based on the construction of an universal
search structure and the used of the well-known Konig’s lemma. a

4 A bottom up definition of an extended
SLDNF-resolution

Our aim in this section and with this extended definition is to eliminate the
restrictive condition that a selected negative literal has to be closed in the well-
known definition of the SLDNF-resolution as given in [2, 9, 10, 16]. Since this
restrictive condition is not used in the proof of the soundness of the so defined

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

4 A bottom up definition of an extended SLDNF-resolution 8

SLDNF-resolution, Stirk in [16] and Schwichtenberg in [13] have suggested to
eliminate it. We argue that the elimination of this restrictive condition is best
done by a really bottom up definition of the SLDNF-resolution. Note that the
definition of the SLDNF-resolution given by Kunen in [9] is not really a bottom
up definition. Let ' = A A X\ be a goal, A be a selected literal and 3 < II be a
clause such that the predicate symbol occurring in A does also occur in 3. In the
definition of Kunen it is said that I" holds if (A AIl)mgu(A, 3) does. This cannot
be bottom up at all because of the subgoal A. When the SLDNF-resolution is
defined bottom up, that means the goal A A X holds if A and A already hold, the
elimination of this restrictive condition is obvious and natural.

Let P be a logic program. Like Kunen in [9] we define Q(P) the set of all
goals with respect to P> and RES(P) the set of all pairs (I, 0]y,yg), where
I' € Q(P) and Ofy,pgy 1s a substitution acting on the variables occurring in
I'. Let furthermore N(P) C Q(P) be the set of all goals which fail. Since
N(P) and RES(P) are related, we define the two subsets R(P) and F(P) by
simultaneous induction. F(P) is a subset of N(P) of those goals that finitely fail.
R(P) is a subset of RES(P) obtainable by SLDNF. We assume in the following
simultaneous inductive definition that (3 < II) € P is a variant of a clause and
that mgu(\, #) also denotes the fact that § and A are not unifiable as well. In
case # and A are not unifiable it holds IImgu(/3, A) =L. We write in the following
AR(P)f for (A,0) € R(P). Then R(P) and F(P) are the least sets that satisfy
the following closure properties:

(RO) eR(P)e.
(F0) Le F(P).

(R1) If AR(P)f, X is a positive literal, (8 < II) € Py, 0 = mgu(3, \d) and
[IcR(P)Y, then (A A XN)R(P)fov.

(R2) If AR(P)#,) is a negative literal and for each (8 < II) € Py it holds that
~Ilmgu(f, A\0) € F(P), then (A AN)R(P)0.

(F1) If (~A,0) € RES(P), A is a negative literal and for each (3 « II) € P, it
holds that ~IImgu(3, A0) € F(P), then (~A V \) € F(P).

(F2) If (~A,0) € RES(P), A is a positive literal and for some (5 « II) € P, it
holds that ITmgu(3, A0)R(P)V with mgu(/3, @)Y a variable renaming of A,
then (~A V \) € F(P).

Even if our definition of the SLDNF-resolution is somewhat different from the

usually well-known one like [9], the soundness is straightforward and is obviously

proven by simultaneous induction on the definition of R(P) and F(P) and using

Lemma 4.2 below; cf. also Ntienjem in [11].

Theorem 4.1 (Soundness) Let P be a program, ' be a goal and 6 be a substi-
tution.

(i) If TR(P)0, then pcomp(P) - T'6.

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

4 A bottom up definition of an extended SLDNF-resolution 9

(i) If T € F(P), then pcomp(P) F~T.

To elegantly prove the completeness we consider two sets Y (P) and N(P), which
we define by simultaneous induction. We first of all generalize the definition of
R(P) and F(P). This generalisation leads to the set Y(P) C RES(P) which is
the set of all pairs (I', 0]yaygr)) such that I'6 is true and to the set N(P) € Q(P)
which is the set of all goals which fails. The definition of the sets Y(P) and
N(P) is similar to that of YES(P) and NO(P) given by Buchholz in [3] and
Stark in [15]. The sets Y(P) and N(P) are the least sets which are closed under
the following rules:

(YO) (e,2) € Y(P).
(N0O) Le N(P).

(Y1) If (A,0) € Y(P), X is a positive literal, (3 < II) € Py, o is a substitution
such that fo = (A)o and (II,0x) € Y(P), then (A AN box) € Y(P).

(Y2) If (A, x) € Y(P),)\ is a negative literal, for all clauses (3 « II) € Py,

for all substitutions # and o it holds fo = (Ax)f and ~Ilo € N(P), then
(AANX) €Y(P).

(N1) If (~A,9) € RES(P),) is a negative literal, for all clauses (3 < I1) € Py,
for all substitutions € and o it holds fo = M0 and ~Ilo € N(P), then
(~AVA) e N(P).

(N2) If (~A,9) € RES(P), A is a positive literal, for some clause (5 < II) € P,
for some substitutions o and € it holds fo = A9 and (II,0x) € Y(P), then
(~AVA) e N(P).

The following Lemma shows the relation between the sets R(P),F(P) and
Y (P), N(P) when considering a goal I with respect to a program P. This Lemma
is proven by simultaneous induction on the definition of R(P) and F(P).

Lemma 4.1 Let P be a program, ' be a goal and 6 be a substitution.
(i) If TR(P)0, then I'0 € Y(P).
(ii) If ' € F(P), then I' € N(P).

We first discuss an useful property of the sets Y(P) and N(P). Since it holds
that R(P) C Y(P) and F(P) C N(P) the following lemma is a generalization of
lemma when considering the sets Y (P) and N(P).

Lemma 4.2 The sets Y(P) and N(P) are closed under substitutions.

Proof by simultaneous induction on the definition of Y(P) and N(P). Cf.
Ntienjem in [11] O
It is now interesting to look at the converse of (i) and (ii) in Lemma 4.1 for an

interesting and practical class of programs. To reach this objective, we better
consider the notion of mode in logic programming with negation.

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

5 Mode in logic programs 10

5 Mode in logic programs

Our aim is to use a mode of an n-ary predicate symbol defined in a program
to determine the selection function, to guide the SLDNF-resolution not to be
infinite whenever the SLDNF-resolution would be infinite in some case, and to
prove the completeness of the SLDNF-resolution for a relevant and interesting
class of programs.

The mode is in general useful to both the compiler, for optimization, and the
programmer, to help when verifying the correctness of the program. A mode
of an n-ary predicate symbol defined in a program is a possible n-tuple of the
instantiation of arguments of that predicate symbol in term of some domain. An
element of such a domain says something about the degree of instantiation of
an argument of an n-ary predicate symbol. Let us denote in the sequel such a
domain by M.

In the context of imperative or functional languages, such a domain is the set M =
{ input, output }. Note that in imperative or functional languages arguments are
passed by pattern matching and a program is evaluated with respect to some
fixed order of evaluation. Hence, a mode of an n-ary predicate symbol might be
prescribed, that is declared. In this case a mode of an n-ary predicate symbol says
how the arguments of this predicate symbol has to be according to the underlying
domain M when this predicate symbol occurs and is selected in a goal.

In the context of logic programming languages, arguments are passed using
the unification instead of pattern matching and a program is evaluated by the
SLDNF-resolution which has no order of evaluation fixed in advance. Because of
the unification partially instantiated terms are obvious and it is reasonable to say
closed term instead of input term. Hence, it is not a good idea if a mode of an
n-ary predicate symbol is prescribed. To keep the spirit of unification and that
of SLDNF-resolution, logic programming languages are not augmented with the
notion of mode. But a mode of an n-ary predicate symbol may be inferred from a
logic program if it is said that a mode of an n-ary predicate symbol says how the
arguments of this predicate symbol are instantiated according to the underlying
domain M when this predicate symbol occurs and is selected in a goal.

Let us first of all find an adequate domain M for logic programming languages.
Logic languages do allow partially instantiated terms as arguments. Hence, we
classify arguments, that is terms, according to the degree of how they are instanti-
ated. That is M = {closed, partially instantiated, variable}. Since modes in logic
programs have been discussed by many researchers, the domain M for mode pur-
pose is not unique. Warren in [19] uses the set {+, —, 7}, where “+, — 7”7 denotes
respectively bound, unbound, and unknown; Stroetmann in [18] uses {+,—};
Stérk in [16] uses {in,out,normal } where “in, out, normal” stands respectively
for input, output and normal(logical) argument; Debray in [4] and Debray and
Warren in [5] use the set {c¢,d, e, f,nv} where “c, d, e, f, nv” denotes respectively
the set of closed terms, the set of don’t know terms, the empty set of terms, the
set of uninstantiated variables and the set of non variable terms.

Let ¢t be a term. Then the term resulting from the replacement of any constant
term occurring in ¢ by a symbolic closed term is called an abstract term. That

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

6 Completeness result for goal moded programs 11

means, the real value of a constant term is not relevant for the purpose of mode
determination. A substitution o = { t/v } is an abstract substitution if the term ¢
is an abstract term. A program P is an abstract program if every term occurring
in P is an abstract term. We define in the same way an abstract literal, an abstract
clause and an abstract goal.

A mode of an n-ary predicate symbol may then be automatically inferred or
declared by the programmer. We say an inferred mode respectively a declared
mode if a mode is inferred respectively declared. We simply say mode of an n-ary
predicate symbol if the kind of mode of that predicate symbol is not relevant.
Interesting is the inference of a mode of an n-ary predicate symbol with respect
to a program. To automatically infer a mode of an n-ary predicate symbol with
respect to a program, one need (i) an abstract unification as a transformation on
abstract terms which is a little different from the well-known unification of terms,
(ii) a terminating SLD-like resolution of an abstract program with an abstract
goal since an inferred mode of an n-ary predicate symbol is a consequence of
the abstract program. Since the negation of a literal does not affect the mode
of the n-ary predicate symbol occurring in that literal, an SLD-like resolution is
right. Such SLD-like resolution has to be terminating, since it is executed while
compiling a program or just before running a program with a goal. Let us denote
in the sequel the most general unificator of two abstract terms by a-mgu.

We will either investigate the automatic inference of mode of n-ary prerdicate
symbols with respect to a program or consider the declaration of the mode by the
programmer since doing that we go out of the scope of this paper. A discussion of
the automatic inference of inferred mode of n-ary prerdicate symbols with respect
to a program is given in [12]. Note that the declaration of a mode of an n-ary
predicate symbol with respect to a program is simple but does suffer from the
fact that

i) a partially instantiated term cannot be correctly declared, especially when
y y y
repeated variables do occur in the head of a clause of the definition of an
n-ary predicate symbol (see for example append);

(i) all possible n-tuples of modes of an n-ary predicate symbol, this is £ where
k is the number of elements of the domain M, have to be declared if the
aim of logic programming is of interest.

Let us in the sequel write A for a literal and mean the n-ary predicate symbol
occurring in the literal A as well. In the context of mode we then write M () to
denote the mode of the n-ary predicate symbol occurring in the literal A\. In the
sequel we simply suppose an inferred respectively a declared mode of an n-ary
predicate symbol occurring in a program be given.

6 Completeness result for goal moded programs

Let a clause of a program be given. Then a variable occurring only in the head
of the clause is called a head variable; we denote the set of the head variables of

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

6 Completeness result for goal moded programs 12

a clause k by hvars(k). Let I' = Ay, .-+, A\, be a goal and
M) ={ M(\),...,M(\,) }

be the set of modes of the predicate symbols occurring in the goal I, where M (;)
is a mode of the predicate symbol occurring in the literal \; with 1 <7 < n. We
write for simplicity 2 M () to denote that the mode of z under M () is an element
of { closed, variable, partially instantiated }.

Let A[t] be a literal, M ()\) be a mode of A[f] with
dom(M (X)) = {z1,..., 2.}

Since M (A) is an abstract substitution we write it in the form

{ri/x, ... r/xn}
Then we write A[f] = A[Z]o, where

o={t/x1,...,ta/x, };
we also write A[£]M(\) = A[£]6, where
0 = a-mgu({ (t},7r1),...,{t,r.) }

with ¢ an abstract term of the term ¢; for 1 < i < n. We write simply I'M (")
for
{ MM, .., M\ }

whenever a goal I is of the form 1< Ay, -+, A\, and M(T') is a set of modes of I'.

The set of closed variables of A is

cvars(\) ={ = | x € vars(A) A xM () = closed }.
The set of variables of A is

ovars(A\) ={ x | = € vars(A\) A xM(\) # closed }.

The following Lemma follows immediately from the definition of the sets cvars(\)
and ovars(A).

Lemma 6.1 Let K =« < Ay, -, A\, be a clause, ' = A A X be a goal, M()\) be
a mode of A and 0 = a-mgu(c, A). Then for 1 <i < n it holds

cvars(N\;)) = { @ | x €vars(\) ANz € cvars(\f) } U
{z | x€vars(\if) N xM(N;) = closed }. (12)
ovars(;) = wars(\;) \ cvars(N;). (13)

From this Lemma we have

cvars(k) = cvars(a) U | cvars();) and ovars(k) = ovars(a) U |] ovars();),
i=1 i=1

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

6 Completeness result for goal moded programs 13

where Kk = a < Ay, -+, A\, is a clause.

A program containing head variables is not allowed. Since it is well-known that
allowed programs are complete [9], we map an arbitrary program using mode to
allowed program. The completeness of a goal moded programs is then straight-
forward.

A goal ' is allowed with respect to M (') if TM(I') is allowed.

Definition 6.1 Let A be a literal, Kk = a < Il be a clause, M(\) and 0 =
mgu(a, A) be given. The clause k is then allowed with respect to M (\) if it holds
that either

(1) hvars(k) N ovars(k) = 0 and 116 is allowed with respect to M(I10) or

(11) hvars(k) N ovars(k) # O and (Upen PRED(PL)) C PRED(P,) and 110 is
allowed with respect to M (I16).

The definition P, is allowed with respect to M (A) if each clause occurring in P,
is allowed with respect to M(\).

In the above definition C means proper subset and not simply subset. It follows
from (i) in this definition that every allowed program is allowed with respect to
any mode.

Since the selection function we are determining finds an ordering of the literals
occurring in a goal, the SLDNF-resolution may terminate provided the program
does. Hence, we do not discuss the flow dependency of the variables occurring in
a goal.

Definition 6.2 Let P be a program, I' = Ay,- -+, A\, be a goal, M(T) be a set of
modes of I'. We say that I is strong resolvable if for each literal \; the definition
P, of the predicate symbol occurring in this literal is allowed with respect to M (\;)
for1 <i<n.

Suppose the goal I' is not empty, that is [' # €. If no literal does exist such that
the definition of that literal is allowed with respect to a mode of that literal, then
I' is strong non-resolvable.

Lemma 6.2 Let P be a program and I' be a goal.

(i) If T =€, then T is strong resolvable.
(i1) If T is strong resolvable and 6 is a substitution, then T'6 is strong resolvable.

(iii) If T is strong resolvable and X is a positive literal such that for some clause
k = « < Il it holds that Ilmgu(\, «) is strong resolvable, then T" N X is
strong resolvable.

(iv) If T is strong resolvable and X is a negative literal such that for all clauses
k = « < Il it holds that Ilmgu(\, «) is strong resolvable, then T' N X is
strong resolvable.

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

6 Completeness result for goal moded programs 14

Proof (ii) by induction on the definition of R(P) and F(P). (i) and (iii) and
(iv) by induction on the structure of a goal. 0

Since the definition of each literal occurring in a goal has to be allowed with
respect to a mode of that literal, definition 6.2 is very restrictive to be applied in
practice. Considering the sample program append it is clear that this program is
strong resolvable with a goal having a mode

(u/xs,ufys,v/zs) or (v/xs,v'/ys,u/zs),
and strong non-resolvable with a goal having a mode
(v/xs,ufys,v'[zs) or (v/xs,s/ys,v'/zs).

Hence, we weaken definition 6.2 such that the allowedness of the whole definition
of a literal occurring in a goal is anymore assumed, whenever that literal is
positive.

Definition 6.3 Let P be a program, I' = Ay,---, A, be a goal, M(T') be a set of
modes of I'. We say that I' is resolvable if either

(i) for each positive literal \; there ezists a clause k which is allowed with
respect to M(\;) for 1 <i<n or

(ii) for each negative literal \; the definition Py, of the predicate symbol occur-
ring in this literal is allowed with respect to M(\;) for 1 <i < n.

If for all 1 < i < n neither (i) nor (ii) holds, then I' is non-resolvable. Note that
Lemma 6.2 also holds in the context of resolvable goals if strong resolvable in that
Lemma is replaced by resolvable. Reconsidering the sample program append it
is clear that this program is resolvable with a goal having any mode; for a mode

(v/xs, s/ys,v'/zs),

the clause
append([x|zs|, ys, [x|zs]) < append(zs,ys, 25)

is not allowed. It is obvious that any strong resolvable goal is also resolvable. We
now formulate the converse of lemma 4.1.

Lemma 6.3 Let P be a program, ' be a resolvable goal and 0 be a substitution.

(i) If 10 € Y(P), then TR(P)fo for some substitution o.
(ii) IfT € N(P), then T € F(P).

Proof by simultaneous induction on the definition of Y (P) and IN(P). O

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

7 Determination of an admissible selection function 15

7 Determination of an admissible selection
function

The determination of an admissible selection function is not widely discussed
in the literature. In most cases it is supposed that a selection function ex-
ists. When implementing the SLDNF-resolution the samplest selection function,
namely choice of the first literal in the list, is used and clauses are chosen accord-
ing to the order in which they are declared. Note that reordering the list does
not meet the objective of SLDNF-resolution and furthermore the reordering of
the list required that the literal which is next to be selected be known in advance
if it is not assumed that the user has to care of the order of the literals in a goal.
We say selection function, but it is really a selection map or application, since it
may be the case that for example two literals have the same image.

7.1 A measure function and an admissible selection func-
tion

To reach our aim, we first of all define a measure function p from a set of goals
into INXIN as follows:

pr ' — INxIN
A — (Jevars(N)|, |ovars(M)])

where | M| is the cardinality of the set M. It is well-known that (INxIV, <) is
well-founded; then the minimal element, the greatest lower bound respectively
least upper bound are well-known as well.

A literal A is now selected if the image p()) is a minimal element with respect to
<. It may be the case that for a goal the number of minimal elements with respect
to < is greater than one. Since this situation may frequently occur, some further
considerations besides the measure function are needed to permit an admissible
selection.

7.2 An admissible selection function

The measure function is required, but it does not suffice for a reasonable selection
which lets the SLDNF-resolution terminate. Two methods will be useful to reach
the aim of making the SLDNF-resolution terminate while using an admissible
selection function. The idea is to only consider those literals which are resolvable
in the sense of section 6.

Definition 7.1 Let T" be a goal, A € T be a literal and M(\) be an instantiated
mode of X\. The literal \ is strong admissible if

(i) w(\) is minimal and

(i1) the definition of the predicate symbol occurring in that literal is allowed with
respect to M(N).

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

7 Determination of an admissible selection function 16

This definition is still restrictive for an interesting class of programs. Let us next
weaken it to get a somewhat relevant class of programs.

Definition 7.2 Let T" be a goal, A € T be a literal and M(\) be an instantiated
mode of . The literal \ is admissible if

(i) () is minimal and either

(ii) A is a positive literal and there exists a clause which is allowed with respect
to M(X) or A is a negative literal and the definition of the predicate symbol
occurring in that literal is allowed with respect to M(\).

Lemma 7.1 If a literal occurring in a goal is strong admissible, then that literal
s also admassible.

Theorem 7.1 (Completeness) Let P be a program, I' be a goal and 0 be a
substitution. Suppose that the goal T" is resolvable.

(i) If pcomp(P) = T'6, then TR(P)6.
(i1) If pcomp(P) +~T, then T € F(P).

Proof follows with Lemma 6.3 together with theorem 3.1. O

Let us consider the programs plus, times and factorial. s denotes the suc-
cessor function. Our definition of these predicate symbols is a little different from
that defined in [17] pages 36-39. This formulation ensures the termination of the
SLDNF-resolution of this program with any goal, when the selection is defined
as above.

Cy: plus(0,y,y,) —

Cy: plus(s(x),0,s(x),) —

03 plus(s(x),s(y),s(z)) A plus(x,s(y),z)

Cy: times(0,y,0) —

C5: times(s(z),0,0) —

Cs: times(s(x),s(y),s(z)) <« times(z,s(y),w),plus(s(y),w,s(z))
C7: factoria —

=

z)) < factorial(wx,y),times(s(x),y,s(z))
Then considering this program with the goal
[' =1« ~factorial(v, s(s(s(0))))

we have 'R(P)e. To prove this fact let s”(0) denotes s(s(---(s(0))---)). For

n—times
any n > 0 it holds that A = plus(v,w,s"(0)) is resolvable with M(A) =
{v/z,w/y,s"(0)/z} since Pplys is allowed with respect to M (A). This fact also

holds for any goal A = plus(y,ts,t3) such that ¢; is s"(0) for 1 < i < 3. A
similar conclusion is made for the goals

times(ty,ts,t3) and factorial(ty,ts).

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

8 Conclusion and future works 17

Hence,
times(tl, tg, tg) N plus(tQ, t3, tg)

is resolvable and also

factorial(t],ts) A times(ty,to, t3)
with t5 = s™(0).
Let us consider the well known program append.

C1: append([],y,y,) —
Cy: append([z|zs],ys, [x]zs]),) < append(wzs,ys,zs,)

One prove in the same way as above that the example goal
L« ~append(us, [1]ys], [2,3,4])
given in the introduction is resolvable. Therefore, it holds that

~append(vs, [1|ys], 2,3, 4])R(P)e.

8 Conclusion and future works

Putting all together, the domain of discourse which contains variables modulo
renaming, a mode of an n-ary predicate symbol with respect to a logic program
which captures the spirit of the unification when passing the arguments, an ex-
tended SLDNF-resolution which does select non-ground negative literals, and an
admissible selection function, an interesting and practical and relevant class of
logic programs is then defined and its theoretical background proven.

The partial completion of a program does not simply meet the way the SLDNF-
resolution handles negative literals. Since the problem of inconsistency of the
program completion has already been solved by Jéger in [7] and Stirk in [15],
future works may be investigated on a program completion which is consistent
and does meet the way the SLDNF-resolution handles negative literals.

References

[1] K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of The-
oretical Computer Science, volume B, chapter 10, pages 495-574. Elsevier,
1990.

2] K. R. Apt and K. Doets. A new definition of sldnf-resolution. Journal of
Logic Programming, 18:177-190, 1994.

[3] W. Buchholz. Negation-as-failure-kalkiil. Oberseminarvortrag, Ludwig-Ma-
ximilians-Universitat Miinchen, November 1992.

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

REFERENCES 18

[4]

[10]
[11]

[12]

[13]

[14]

[15]

S. K. Debray. Static inference of modes and data dependencies in logic

programs. ACM Transactions on Programming Languages and Systems,
11(3):418-450, 1989.

S. K. Debray and D. S. Warren. Automatic mode inference for logic pro-
grams. Journal of Logic Programming, 5:207-229, 1988.

M. Falaschi, G. Levi, C. Palamidessi, and M. Martelli. Declarative model-
ing of the operational behavior of logic languages. Journal of Theoretical
Computer Science, 69:289-318, 1989.

G. Jager. Some proof-theoretic aspects of logic programming. In F. L. Bauer,
W. Brauer, and H. Schwichtenberg, editors, logic and algebra of specification,
pages 113-142. Springer, Berlin, 1993.

K. Kunen. Negation in logic programming. Journal of Logic and Computa-
tion, 4:289-308, 1987.

K. Kunen. Signed data dependencies in logic programs. Journal of Logic
Programming, 7:231-245, 1989.

J. W. Lloyd. Foundations of Logic Programming. Springer, 1987.

E. Ntienjem. Completeness Result of SLDNF-Resolution for a relevant Class
of Logic Programs. Technical Report 1997-4, Institut fir Informatik, Uni-
versitdt Augsburg, Germany, December 1997. submitted to JICSLP 1998.

E. Ntienjem. A descriptive mode inference for logic programs. Technical
Report 1997-5, Institut fiir Informatik, Universitit Augsburg, Germany, De-
cember 1997. submitted to Journal of Logic Programming.

H. Schwichtenberg. Logikprogrammierung. Vorlesungsausarbeitung, Lud-
wig-Maximilians-Universitat Miinchen, Wintersemester, 1993.

W. Snyder and J. H. Gallier. Higher-order unification revisited: Complete
sets of transformations. Journal of Symbolic Computation, 8:101-140, 1989.

R. F. Stark. From logic programs to inductive definitions. Technical report,
Mathematisches Institut, Universitat Miinchen, 1993. for Logic Colloquium
1993, Keele, Great Britain.

R. F. Stirk. Input/output dependencies of normal logic programs. Journal
of Logic and Computation, 4(3):249-262, 1994.

L. Sterling and E. Shapiro. The Art of Prolog Advanced Programming Tech-
niques. The MIT Press, Cambridge, Massachusetts, 1986.

K. Stroetmann. A completeness result for sldnf-resolution. Journal of Logic
Programming, 15(4):337-355, 1993.

D. H. D. Warren. Implementing prolog — compiling predicate logic programs.
Research Report 39,40, Department of Artificial Intelligence, University of
Edinburgh, 1977.

E. Ntienjem, SLDNF-Resolution: Determination of a Selection function using Mode

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

