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INTRODUCTION

The mathematical concept of dynamical system is founded on the fact that motions of many appli-
cation processes are subjected to certain rules. In Newtonian mechanics, in other natural sciences
and even in an economical and social context, these laws are given implicitly by a relation that
determines the state of a system for all future times just by the knowledge of the present state. A
dynamical system therefore consists of the following two components: the space of states and the
rule which, given an initial state, allows the projection of the state of the system in the future.

Historically, the notion of dynamical system was derived as an abstraction and generalization of
ordinary differential equations. It was first used in 1927 by the American mathematician George
D. Birkhoff (1884—1944) in his homonymous book [31]. Birkhoff was strongly influenced by the
French mathematician Henri Poincaré (1854—1912), who is regarded—together with the Russian
mathematician and engineer Aleksandr M. Lyapunov (1857-1918)—as the father of the so-called
qualitative theory of dynamical systems. The goal of the qualitative theory is to understand the
behavior of solutions from a more geometrical and topological point of view. In this thesis, we
mainly address two aspects of this theory: the theory of attractivity and the theory of bifurcation.
These fields are strongly related, since bifurcations from a dynamical viewpoint are associated
with loss or gain of attractivity.

The theory of attractivity has its origin in the thesis The General Problem of the Stability of Mo-
tion [109, 111, 112], where Lyapunov introduced several definitions and methods to analyze the
dynamical behavior in the vicinity of an equilibrium or—more generally—an arbitrary solution
of an ordinary differential equation. The term attractor was first used by Coddington and Levin-
son [47] and Mendelson [118]. In the article Attractors in Dynamical Systems [23], Auslander,
Bhatia and Seibert considered attractors consisting of more than one point. In 1967, Stephen
Smale introduced in Differential Dynamical Systems [174] a new type of attractor, the axiom A
attractor. A new highlight in the theory of attractor was reached in 1971, when Ruelle and Takens
regarded so-called strange attractors as a reason for the turbulent behavior in fluids (On the Na-
ture of Turbulence [147]). This notion of attractor allowed the connection of the attractor theory
and the upcoming chaos theory. Similar ideas have formerly been used by Edward N. Lorenz
in Deterministic Nonperiodic Flow [107]. In Isolated Invariant Sets and the Morse Index [52],
Charles C. Conley introduced in 1978 a very natural notion of local attractor which allowed the
construction of so-called attractor-repeller pairs and Morse decompositions, and Ruelle modified
this concept by considering so-called pseudoorbits in Small Random Perturbations of Dynamical
Systems and the Definition of Attractors [146].

The fundamental ideas and elements of bifurcation theory go back to Poincaré [136] and Lyapunov
[110]. Poincaré first used the term bifurcation to describe the splitting of asymptotic states of a
dynamical system in his article Sur l’equilibre d’une masse fluids animes d’'un mouvement de
rotation [134, §2 Equilibre de bifurcation, p. 261]. In 1937, a great step towards a formalization
of bifurcation theory was undertaken by the definition of structural stability by Andronov and
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Pontryagin (Systemes grossiers [4]). Since the 1960s, the bifurcation theory was fast-paced. One
reason for this development was the introduction of the center manifold theory by Pliss [131] and
Kelley [91], which allowed systems of high dimension amenable to a low-dimensional bifurcation
analysis. Moreover, the normal form theory, which dates back to the thesis of Poincaré [133] and
Birkhoff [31], became a field of intensive research.

In many cases, the notion of dynamical system is not general enough to model real world phe-
nomena, since it is often indicated to assume that the underlying rules are time-dependent. For
biological processes, for instance, it is more realistic to take evolutionary adaptations into account,
and sometimes it is unavoidable to consider random perturbations such as white noise or to model
the control of a process by a human being. The appropriate class to treat such problems are the so-
called nonautonomous dynamical systems. Another reason to consider nonautonomous dynamical
systems is given by the fact that the investigation of states of dynamical systems which are non-
constant in time leads to nonautonomous problems in form of the equation of perturbed motion.
The notion of nonautonomous dynamical system was created in the 1990s from the studies of
both topological skew product flows and random dynamical systems. The theory of topological
skew product flows was founded in the late 1960s by George R. Sell and Richard K. Miller (see
[119, 164, 165, 166]), and the notion of the random dynamical system is based on research by
Baxendale, Bismut, Elworthy, Ikeda, Kunita, Watanabe and many others (see [25, 32, 64, 82, 99]).
Further progress in this field was achieved by Ludwig Arnold and his “Bremen Group”.

The nonautonomous theory of attractivity has been stimulated in the last fifteen years by the intro-
duction of the notions of pullback attractor, forward attractor, random attractor and weak random
attractor. In particular, questions of existence, uniqueness, perturbation and discretization have
been addressed. These contributions were made by Cheban, Crauel, Flandoli, Kloeden, Ochs,
Schmalfuf3 and others (see [40, 41, 57, 95, 122]; cf. also Subsection 2.2.3). Nonautonomous bi-
furcation theory is a new branch which has been developed quite independently for topological
skew product flows (see Fabbri, Johnson, Kloeden, Mantellini [66, 84, 85, 86]; cf. also Sub-
section 2.4.2) and random dynamical systems (see Arnold, Sri Namachchivaya, Schenk-Hoppé
[6, 8, 155, 175]; cf. also Subsection 2.4.3) so far.

The philosophy behind the present bifurcation theory of
nonautonomous dynamical systems is based on a given
structure of nonautonomy such as quasi-periodicity or
the existence of an invariant measure, and the question - — —
arises how to describe bifurcations in a more general
nonautonomous context. Recently, Langa, Robinson and
Sudrez discussed an answer to this question by defining
a bifurcation of a nonautonomous differential equation
as a merging process of two distinct solutions with dif- 4« -
ferent stability behavior (see [102, 104]; cf. also Sub-
section 2.4.4). In this thesis, other possible approaches
are pursued, which are explained demonstratively in the ' X '
following.

Aa)

FIGURE 1. Pitchfork bifurcation
Since the basic understanding of nonautonomous bifur-

cations in this thesis is based on phenomenological observations from the autonomous bifurcation
theory, it is useful to look exemplarily at an autonomous bifurcation. For a real parameter a,
consider the ordinary differential equation x = x(a + xz), which is a prototype of a pitchfork
bifurcation as indicated in Figure 1. For o > 0, there is only one equilibrium, which is given
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by zero and which is repulsive. By letting the parameter o pass through zero in negative direc-
tion, this equilibrium becomes attractive, and two other repulsive equilibria, given by +./—a, are
bifurcating.

In order to establish a nonautonomous bifurcation theory, consider this scenario in the following
way: For a < 0, the trivial solution is attractive, and the domain of attraction A(a) is given by
the open interval between the two other equilibria. Now, the main point is that this domain of
attraction undergoes a qualitative change from a nontrivial to a trivial object in the limit a ~0.
Moreover, A(a) is also a repeller, and therefore, also a repeller changes qualitatively for a »0.
We call the shrinking of a domain of attraction (repulsion, respectively) a bifurcation, whereas the
case of a changing repeller (attractor, respectively) is denoted as a transition.

To implement this idea in the nonautonomous con-
text, locally defined notions of attractive and repulsive
solutions, domains of attractivity and repulsivity, as
N well as attractor and repeller are needed. This thesis
all-time distinguishes between four points of view concerning
different time domains. The new concepts are intro-
duced for the past (past attractivity, repulsivity, bifur-
cation and transition), the future (future attractivity, repulsivity, bifurcation and transition), the
entire time (all-time attractivity, repulsivity, bifurcation and transition) and compact time intervals
(finite-time attractivity, repulsivity, bifurcation and transition) (see Figure 2).

] I ] I AY
1

past finite-time future

/N

N
N

FIGURE 2. Time domains

While the first chapter of this thesis is devoted to notational preparations and the introduction of
nonautonomous dynamical systems, Chapter 2 contains all relevant notions of attractivity, repul-
sivity, bifurcation and transition. Several examples illustrate these definitions, and fundamental
questions such as existence and uniqueness are discussed. Moreover, the relationship to other
notions of attractivity and bifurcation is examined.

Chapter 3 is devoted to Morse decompositions, which were introduced by Charles C. Conley in
1978 to describe the global asymptotic behavior of (autonomous) dynamical systems on compact
metric spaces (see [52]). Their components, the so-called Morse sets, are obtained as intersections
of attractors and repellers. It is shown that the notions of past and future attractivity and repulsivity
are designed to establish nonautonomous generalizations of the Morse decomposition. The dy-
namical properties of these decompositions are discussed and nonautonomous Lyapunov functions
which are constant on the Morse sets are constructed explicitly. Moreover, Morse decompositions
of linear systems on the projective space are examined, and a nonautonomous analogon to the
Theorem of Selgrade (see [163]) is proved.

In Chapter 4, methods for the analysis of linear systems with respect to the notions of attractivity
and repulsivity are introduced. First, several notions of dichotomy are defined, and it is shown that
the ranges and null spaces of the corresponding invariant projectors form repellers and attractors of
the linear system on the projective space. Furthermore, for the different time domains, dichotomy
spectra are introduced which are based on the analysis of the entire time by Sacker and Sell (see
[153]) and Siegmund and Aulbach (see [171, 170, 19]). It is also shown that the so-called spectral
manifolds give rise to a Morse decomposition on the projective space. This chapter is concluded
with a discussion of the relationship to the Lyapunov spectra and some roughness results.

Chapter 5 is devoted to the development of the qualitative theory with respect to the notions of
attractivity and repulsivity for nonlinear systems. First, nonautonomous invariant manifolds are
constructed, and methods are derived to obtain attractivity and repulsivity from the linearization.
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Moreover, as an application to bifurcation theory, it is shown that the zero is contained in the
dichotomy spectrum of a bifurcating solution, and the relationship of the concept of finite-time
bifurcation to the bifurcation theory of adiabatic systems is discussed.

The aim of Chapter 6 is to develop counterparts for the classical one-dimensional transcritical
and pitchfork bifurcation patterns in the context of nonautonomous bifurcations and transitions.
The sufficient conditions are formulated in terms of Taylor coefficients for the right hand side
of ordinary differential equations. It is shown that the results are proper generalizations of the
autonomous bifurcation scenarios.

In the last chapter of this thesis, asymptotically autonomous systems are discussed. It is sup-
posed that the underlying autonomous system admits a one-dimensional bifurcation of saddle
node, pitchfork or transcritical type or a two-dimensional Hopf bifurcation. Sufficient conditions
are obtained for the transfer of this bifurcation behavior to the asymptotically autonomous system.

In order to keep this thesis self-contained, some basic facts about ordinary differential equations
and projective spaces are noted in the Appendix. Furthermore, the definitions and results are
formulated—whenever it was possible—in a very general form. However, to provide reading
fluency, attention is restricted to continuous time in Chapter 5, 6 and 7. Extensions for the discrete
time can be obtained similarly. Please note that for future reference, the definitions in Chapter 2 are
also formulated for noninvertible systems, although invertibility is supposed in all other chapters.

Chapter 1 and 2 are necessary for the understanding of all the other chapters, since they contain
both basic facts and the notions of attractivity and bifurcation. The other chapters can be read quite
independently of each other. Please note that in Chapter 4, the assertions concerning the Morse
decomposition require Chapter 3, and in Chapter 6, results concerning linearized attractivity and
repulsivity from Chapter 5 are used.

Finally, please note that—although the applications in this thesis are mainly of low dimension—
the concepts of bifurcation and transition also apply in a higher dimensional setting, since the
definitions of attractivity and repulsivity are given in a very general form. The main tool for the
analysis of such systems is the method of center manifold reduction (cf. Example 7.2.8). The
basic idea is to detect a bifurcation of the system restricted to a center manifold. For instance,
consider again the motivating example x = x (a + xz) with an additional second equation, given
by y = Ay. In case 4 > 0, the trivial solution is not attractive for & < 0, in contrast to the one-
dimensional system, and therefore, we have no bifurcation of attraction areas but only a transition
of repellers. For A < 0, the trivial solution is attractive, and thus the two-dimensional system
admits a bifurcation of attraction areas, but no longer a repeller transition. Restricting the attention
to the lower dimensional invariant manifold R x {0}, however, yields the original one-dimensional
system, and for this system we obtain both a bifurcation and a transition.

Writing this dissertation would not have been possible without the aid of many people to whom
I would like to express my gratitude. First of all, I would like to thank my supervisor Professor
Bernd Aulbach, who unfortunately suddenly and unexpectedly passed away on January 14, 2005,
at the age of 57 years. I am grateful for his longstanding support while writing my diploma thesis
and dissertation. I benefited from his great ability to explain complicated facts very clearly and
lucidly, and I am thankful to him for many fruitful discussions. Moreover, I am greatly indebted
to Professor Fritz Colonius who became my advisor after the death of Professor Aulbach. He was
very interested in the details of my work, and I was very encouraged by his positive attitude to
my ideas and suggestions. I would also like to thank Dr. Stefan Siegmund for many useful discus-
sions and remarks, especially in the first year of my work. Special thanks go to my friends and
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colleagues Dr. Christian Potzsche and Dr. Ludwig Neidhart for reading the manuscript and mak-
ing useful comments. I also thank the Deutsche Forschungsgemeinschaft for the financial support
I received from them, when I was a member of the Graduiertenkolleg “Nichtlineare Probleme in
Analysis, Geometrie und Physik” in the department for mathematics and physics at the University
of Augsburg. Finally, I would like to thank my parents for making it possible for me to study
mathematics and for their support during all these years.

Augsburg, in November 2005 Martin Rasmussen






CHAPTER 1

PRELIMINARIES

The first section of this chapter is devoted to elementary definitions and notational preparations. In
Section 1.2, basic properties of nonautonomous dynamical systems are introduced and discussed.

1.1 BASIC DEFINITIONS

As usual, we denote by Z and R the sets of all integers and reals, respectively, and we define
R := RU {—00,00}. RM*N i the set of all real M x N matrices, and we write 1 for the
unit matrix and 0 for the zero matrix. Given an arbitrary set A C R and ¥ € R, we define
AF:={xeR:xeAor —x € A}, AT := AN(0, ), A} := AN[k, 00), A~ := AN (—00, 0)
and A := A N (—o0, x]. Moreover, we set N := Z*t.ForT =RorT = Z, a T-interval is given
by the intersection of a real interval with T.

Let f : X — Y be a function from a set X to a set Y. Then, the graph of f is defined by
graph f = {(x,y) eXxY:y= f(x)}.

Given a metric space (X, d) and ¢ > 0, we write U, (xg) = {x € X :d(x,xy) < e} for the ¢-
neighborhood of a point xg € X and U, (A) = U,c4 U, (x) for the e-neighborhood of aset A C X.
The set of all inner points of a nonempty set A C X is denoted by int A; we write cls A for the
closure of A and 0 A for the boundary of A. We define the distance of a point x € X to a nonempty
set A C X by d(x, A) := infyea d(x, y) and the Hausdorff semi-distance of two nonempty sets
A,B C X by

d(A|B) :=sup d(x, B).
xeA
In addition, if both A and B are empty, we set d(A|B) := 0. The Hausdorff distance of A and B
is defined by
dg (A, B) := max {d(AlB), d(BlA)} )

Moreover, for A, B C X with B C int A, we define
d(A|B) :=sup {r > 0: U,(B) C A}.

The diameter of a nonempty set A C X is given by diam(A) := sup {d(x, y) 1 X,y € A}.
Additionally, we define diam(9) := 0.

If X is a vector space, A, B C X and x € X, the following notations will be used:

x+A={x+a:aeA} and A+B:={a+b:aeA,be B}.
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With the Euclidian norm

IGet, .o xn) =

N
> x? forall (xi,...,xy) e RY,
i=1

induced by the Euclidian scalar product (-, -), defined by

N

(x,y) == > xy; forall x = (x1,...,xy),y = (1,...,yn) €RY,
i=1

the R" is a normed vector space.

Let | C R bea T-interval (T = R,Z) and y € R. A function g : | — R" is called y *-
quasibounded if | is unbounded above and sup,;+ [|g(¢)|le””" < oo. Accordingly, we say, a
function g : | — RY is y ~-quasibounded if [ is unbounded below and sup, ;- [|g(t)|le™"! < oo.
The (N — 1)-sphere of the RY is defined by SV ! := {x e R : |Ix|| = 1}.

Given a differentiable function f : X ¢ RN — RM, we write Df : X — RM*¥ for its derivative
and D;f : X —> RM for its partial derivative with respect to the i-th variable, i € {I,..., N}.
Higher order derivatives D" f or D f are defined inductively.

1.2 NONAUTONOMOUS DYNAMICAL SYSTEMS

The notion of nonautonomous dynamical system has emerged in the late 1990s as an abstraction
of both continuous skew product flows (see, e.g., MILLER [119] and SELL [164, 165, 166]) and
random dynamical systems (see, e.g., the monograph ARNOLD [5]). The definition is given as
follows (see also the conference proceedings COLONIUS & KLOEDEN & SIEGMUND [51]).

1.2.1 DEFINITION (NONAUTONOMOUS DYNAMICAL SYSTEM). A (local) nonau-
tonomous dynamical system (NDS for short) on a metric space X with a time T
(:[R, [RS',Z,Z(’)L) and base set P is a pair of mappings

O:T*xP—>Po:DCTxPxX—X)

with the following properties:

(i) The so-called base flow or driving system 6 is a dynamical system, i.e., we have the
relations

00,p)=p and O(t+s,p)=0(0(s, p)) forall pe Pandt,seTT.

(ii) The maximal interval of existence Dy, (p, x) 1= {t el :(p,x)e D} forp € P
and x € X is either empty or an open T -interval which contains 0 € T.

(iii) ¢ is a cocycle over 0, i.e., for allt,s € T and (p, x) € P x X withs € Dy, (p, x) and
t+s € Dyax(p, x), we have t € D,y (Q(S, p),e(s, p, x)) and

pO,p,x)=x and ¢@(t+s,p,x)= go(t,ﬁ(s, p), ¢(s, p,x)).

(iv) ¢ is continuous with respecttot € T andx € X.
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X is called phase space, and P x X is called extended phase space. We say, a nonautonomous
dynamical system is invertible if T = Ror T = Z and t € Dy,qx(p, x) forsome p € Pand x € X

implies —t € Dyax (9(1', p): (ﬂ(f, p; X))
For simplicity in notation, we also write ¢, p instead of 8(¢, p) and ¢(¢, p)x for ¢(t, p, x).

{p} x X Osp}x X {Orssp) x X

o(t,0;p)

p(t+s, p)x =
gﬂ([, esp)¢(sa p)x

p(t+s,p)

p Orysp

FIGURE 1.1. Property (iii) of Definition 1.2.1.

A standard example of a nonautonomous dynamical system, which is of main interest in this
thesis, is provided by a nonautonomous ordinary differential equation

a

with f : D ¢ Rx RY — RY (see Appendix A.1). Here, T = R, and the base set P can
simply be chosen to be R with base flow (¢,s) — ¢ + 5. In case the function f is fulfilling
special conditions, the nonautonomous differential equation (1.1) gives rise to a general solution
2:QCRxRxRY — RN (see Proposition A.1.3), and ¢ can then be defined by

o(t,s)x ;== At +s,s,x) forall (fr,5,x) € Rx R x RY such that (t+s,5,x) e Q.

Without further notice, we assume that all ordinary differential equations considered in this thesis
fulfill conditions of local existence and uniqueness of solutions.

A similar construction is also possible for nonautonomous difference equations of the form
Xpt1 = f(n,x,), T=P=171.

In both cases above, however, P is noncompact, which may cause difficulties. This can be avoided
for a special class of right hand sides f by considering the Bebutov flow on the hull of f (see,
e.g., BEBUTOV [26] and SELL [166]).

Apart from deterministic also random and stochastic differential and difference equations (see,
e.g., ARNOLD [5]) and some other types of equations such as functional differential equations or
nonautonomous evolutionary equations generate nonautonomous dynamical systems.

1.2.2 REMARKS.

(i) Normally, one has additional structures concerning the driving system 6. In the determinis-
tic case, the base set P is a metric space and 6 is continuous; in case of random dynamical
systems, 6 represents an ergodic dynamical system. For a discussion of the relationship of
these two concepts, see BERGER & SIEGMUND [28].
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(i) In the literature, one usually considers global nonautonomous dynamical systems, i.e.,
D =T x P x X. The above definition of a local nonautonomous dynamical system stems
from AULBACH & SIEGMUND & RASMUSSEN [16] (see also RASMUSSEN [143]; in case
of random dynamical systems, see ARNOLD [5] and ARNOLD & NAMACHCHIVAYA &
SCHENK-HOPPE [8]).

(iii) Although using the definition of a local nonautonomous dynamical system, we try to avoid
overloaded notation. For instance, in Definition 2.1.1 (iii), the statement “forall & > O, ...,
we have ¢(t, 0—; p)U.(R(6—;p)) D M(p)” means actually “there exists an & > 0 such that
forall ¢ € (0,8), ..., we have ¢(t,0_;p)U.(R(6—;p)) D M(p)”. Here, the situation for
small ¢ is crucial, and writing the “abbreviated form” does not imply that ¢ (¢, 0_;p, -) is
globally defined.

Let 0 be a base flow on P. For an element p € P, we define the forward orbit of p by Ot (p) :=
{6;p : t > 0}, the backward orbit of p by O~ (p) := {Q,p it < O}, the T-orbit of p, T € TT, by
OT(p) :={6;p : t € [0, T1N T} and the orbit of p by O(p) := {f;p : t € T*}. Two elements
P1, p2 € P are called equivalent (p; ~ p») if p1 € O(p2). We denote the set of all equivalence
classes [p] by P/ ~.

1.2.3 DEFINITION (NONAUTONOMOUS SETS). We consider a nonautonomous dynamical
system (6, ¢) on a metric space X with a base set P. For an arbitrary set M C P x X, we
define the so-called p-fibre of M by

M(p) := {x eX:(p,x)e M} forall p € P,
and we denote by P*(M) := {p € P:M(p) # ﬂ} the set of all base elements leading to
nonempty fibres. M is called
(i) past nonautonomous set if O~ (p) C P*(M) forall p € P*(M),
(ii) future nonautonomous set if O+ (p) c P*(M) for all p € P*(M),
(iii) all-time nonautonomous set if O(p) C P*(M) for all p € P*(M),
(iv) (p, T)-nonautonomous set if O7 (p) ¢ P*(M).
We say that M is
(i) invariant if (¢, p)M(p) = M(6;p) forall p € P*(M) andt € T with&;p € P*(M),
(i) closed if M (p) is closed for all p € P*(M),
(iii) compact if M (p) is compact for all p € P*(M) .

1.2.4 REMARKS.

(i) An all-time nonautonomous set is a past, as well as a future nonautonomous set. The rever-
sal is certainly not true.

(i) In the literature, an all-time nonautonomous set M with P*(M) = P is called nonau-
tonomous set.

1.2.5 PROPOSITION. Let (8, ¢) be a NDS with a locally compact phase space X and M be a
compact and invariant past (future, all-time, (p, T)-, respectively) nonautonomous set. Then,
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forall p € P*(M),e > 0andt € T with,p € P*(M), there exists ad > 0 with

p(t, p)Us(M(p)) C U (M (6,p)) .

PROOF. Given p € P*(M), due to the local compactness, there exists a f > 0 such that
clsUp(M(p)) is compact. Lete > O and ¢t € T with 6,p € P*(M). Then, the map ¢(¢, p, -)
is uniformly continuous on the compact set cls Ug(M (p)). Thus, there exists a 6 € (0, #) with

o(t, p)Us(M(p)) C U (M (0, p)). U

The following definition is adapted from AUBIN & FRANKOWSKA [12] (see also AKIN [3, Exer-
cise 1.5, p. 9] and ELSTRODT [63, p. 9]).

1.2.6 DEFINITION. For a past nonautonomous set M C P x X and p € P*(M), we define

lltn_1>ilip M@O-;p) = ﬂ U M@-,p) and h}ll)égf M@O-;p) = U ﬂ M@O-:p).

>0127 >01>7

Given a future nonautonomous set M C P x X and p € P*(M), we define

limsup M (0 p) := (|| M@ p) and lim inf M (6, p) := UM menp.

=00 r>01>1 r>01>1

It is easy to show that the following characterizations hold:
o limsup, ,, o MO_p)={xeX:Vr>0:3r>1:xe€ MOp)},
e liminf; oo M(O—-;p) = {x eX:dt>0:Vt>1:x¢€ M(Q_tp)},
o limsup, ,,  M@p)={xeX:Vr>0:3t>7:xeMOp)},
e liminf, oo M(6;p) = {x eX:dt>0:Ver>1:x¢€ M(Q,p)}.






CHAPTER 2

NOTIONS OF ATTRACTIVITY, REPULSIVITY,
BIFURCATION AND TRANSITION

In this chapter, new concepts of (local) attractivity and repulsivity (in Section 2.1) and bifurcation
and transition (in Section 2.3) are introduced for nonautonomous dynamical systems. By a bifur-
cation and transition, a qualitative change of the attractivity or repulsivity of nonautonomous sets
is meant. Due to the nonautonomous framework, it is distinguished between four distinct points of
view concerning different time domains. The notions of attractivity and repulsivity—and for this
reason also the notions of bifurcation and transition—are introduced for the past (past attractivity
and repulsivity), the future (future attractivity and repulsivity), the entire time (all-time attractivity
and repulsivity) and the present (finite-time attractivity and repulsivity) of the system.

Since the definitions in this chapter are new to a broad extent, the relationship to well-known
concepts is discussed in Section 2.2 (in case of attractivity and repulsivity) and Section 2.4 (in
case of bifurcation and transition).

2.1 ATTRACTIVITY AND REPULSIVITY

This section is divided into six subsections. In the first subsection, several notions of nonau-
tonomous attractor and repeller are introduced, and equivalent characterizations in special situ-
ations are formulated. In Subsection 2.1.2 and 2.1.3, the theoretical background to analyze the
strength of attractivity and repulsivity is established. The introduced definitions are illustrated by
means of two examples in Subsection 2.1.4, and in Subsection 2.1.5, properties of the definitions
under time reversal are studied. In the last subsection, criteria for the existence of attractors and
repellers are formulated, and the question of their uniqueness is discussed.

Throughout this section, let (0 TE*x P> P, p:DCTxPxX—> X) be a nonautonomous
dynamical system with an arbitrary base set P and a metric space (X, d).

2.1.1 Definitions. = We begin with the definitions concerning the past of the system.

2.1.1 DEFINITION (PAST ATTRACTIVITY AND REPULSIVITY). Let A and R be invariant
and compact past nonautonomous sets and M be a collection of past nonautonomous sets.
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(i) A is called M-past attractor if for all M € M, we have P*(M) C P*(A) and

Jlim d(e(t,0—p)M©O-,p)|A(p)) =0 forall p e P*(M).

(ii) A is called past attractor if A is an { M }-past attractor for some past nonautonomous set
M fulfilling the following property: There exists an > 0 such that for all p € P*(A),
there exists a p € [p] N P*(A) with

U, (A(6_1p)) C M(6_p) forall t >0.

(iii) R is called M-past repeller if for all M € M, we have P*(M) C P*(R), and for all
M e M, pe P*(M) ande > 0, there exists at™ > 0 with

o, 0_;p)U,(R(O—;p)) D M(p) forall t >1t*.

(iv) R is called past repeller if R is an {M }-past repeller for some past nonautonomous set
M fulfilling the following property: There exists an n > 0 such that for all p € P*(R),
there exists a p € [p] N P*(R) with

Uy(R(O-;p)) Cc M(0—;p) forallt>0.

It follows directly from the definitions that the empty set is both a past attractor and a past repeller.
If X iscompactand D =T x P x X, then P x X is also both a past attractor and a past repeller.

To understand Definition 2.1.1, the following equivalent characterizations are useful.

2.1.2 PROPOSITION (EQUIVALENT CHARACTERIZATIONS). Let A and R be invariant and
compact past nonautonomous sets and M be a collection of past nonautonomous sets. Then,
the following statements are fulfilled:

(i) In case X is locally compact, A is an M-past attractor if and only if for all M € M,
we have P*(M) C P*(A), and for al M € M and p € P*(M), there exists a
p € [p]N P*(M) with

lim d(p(t, 0-p)M©O-1p)| A(5)) =0.

(ii) A is a past attractor if and only if there exists an n > 0 such that for all p € P*(A),
there exists a p € [p] N P*(A) with

lim d(¢(t, 60— P)Uy(A@O-r— P))| A0, p)) =0 forall T > 0.
1— 00

(iii) In case X is locally compact, A is a past attractor if and only if there exists an n > 0
such that for all p € P*(A), we have

lim d(p(t, 0-p)Uy(A©O-p))| A(p)) = 0.

(iv) In case X is locally compact, A is a past attractor if and only if there exists an n > 0
such that for all p € P*(A), there existsa p € [p] N P*(A) with
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Tim d(p(t,0-H)U,(AO-P)|A(H)) =0.

(v) R is a past repeller if and only if there exists an n > 0 such that for all p € P*(R),
there exists a p € [p] N P*(R) such that for alle > 0 and t > 0, we have at* > 0 with

o(t,0——P)Us(R(O-r—;p)) D Uy(R(O-rp)) forall t >1t*.

In addition, we assume that (6, ¢) is invertible. Then, the following statements are ful-
filled:

(vi) R is an M-past repeller if and only if for all M € M, we have P*(M) C P*(R) and

Jlim d(p(—t, p)M(p)|R(0—;p)) =0 forall p e P*(M).

(vii) R is a past repeller if and only if there exists an n > 0 such that for all p € P*(R),
there exists a p € [p] N P*(R) with

lim d(p(—t, 60— p)Uy(R(O—; p))|R(O-r—:p)) =0 forall > 0.
11— 00

PROOF. (ii), (v), (vi) and (vii) are direct consequences of Definition 2.1.1. (i), (iii) and (iv) follow
using Proposition 1.2.5. O

2.1.3 REMARKS.

(i) The notions of Definition 2.1.1 represent the behavior of (@, ¢) in the past. This can be seen
by considering another nonautonomous dynamical system (0,9 : D C T x P x X — X)
with the following property: For all p € P, there exists a p € [p] with

o(t, p)x = ¢(t, p)x forall (¢, p,x) € D fulfilling p,0;,p € O~ (p) .

Then, for any past attractor (repeller, respectively) A of (0, ¢), there exists a past attractor
(repeller, respectively) A of (6, ¢) such that for all p € P, there exists a p € [p] with

A(p) = A(p) forall p e O~ (p).

(i) Let A be a past attractor with # given as in Definition 2.1.1 (ii). In case X is locally compact,
forall p € P*(A), we have

A(p) = limsup ¢(z, 0 p)U, (A0 p)) = liminf ¢(z, 6 p)U, (A0 p)) .
1— 00 11— 00

In the following definition, the notions of future attractivity and repulsivity are explained.

2.1.4 DEFINITION (FUTURE ATTRACTIVITY AND REPULSIVITY). Let A and R be invari-
ant and compact future nonautonomous sets and M be a collection of future nonautonomous
sets.

(i) A is called M-future attractor if for all M € M, we have P*(M) c P*(A) and

Jlim d(e(t, p)M(p)|A6;p)) =0 forall p e P*(M).
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(ii) A is called future attractor if A is an {M}-future attractor for some future nonau-
tonomous set M fulfilling the following property: There exists an n > 0 such that
for all p € P*(A), there exists a p € [p] N P*(A) with

U,(A;p)) C M(6;p) forallt>0.

(iii) R is called M-future repeller if for all M € M, we have P*(M) C P*(R), and for all
M e M, pe P*(M) and ¢ > 0, there exists at* > 0 with

o, p)U(R(p)) D M(O;p) forall t >1t*.

(iv) R is called future repeller if R is an { M }-future repeller for some future nonautonomous
set M ftulfilling the following property: There exists an n > 0 such that for all
p € P*(R), there exists a p € [p] N P*(R) with

U,(R(;p)) Cc M(6,p) forallt>0.

It follows directly from the definitions that the empty set is both a future attractor and future
repeller. If X is compactand D = T x P x X, then P x X is also a future attractor and future
repeller.

2.1.5 PROPOSITION (EQUIVALENT CHARACTERIZATIONS). Let A and R be invariant
and compact future nonautonomous sets and M be a collection of future nonautonomous
sets. Then, the following statements are fulfilled:

(i) A is a future attractor if and only if there exists an n > 0 such that for all p € P*(A),
there exists a p € [p] N P*(A) with

lim d(p(t, 0, p)U,(A©O; p))|AO:4:p)) =0 forall z >0.
11— 00

(ii) R is a future repeller if and only if there exists an > 0 such that for all p € P*(R),
there exists a p € [p]N P*(R) such that for all¢ > 0 and t > 0, we have at* > 0 with

¢ (1,0: p)Us(R(0: p)) D Uy(R(Or4,p)) forall 1 >1".

In addition, we assume that (6, ¢) is invertible. Then, the following statements are ful-
filled:

(iii) R is an M-tuture repeller if and only if for all M € M, we have P*(M) Cc P*(R) and
lim d((p(—t,@tp)M(Htp)|R(p)) =0 forall pe P*(M).
— 00

(iv) In case X is locally compact, R is an M -future repeller if and only if for all M € M,
we have P*(M) C P*(R), and for all M € M and p € P*(M), there exists a
p € [p]N P*(M) with

lim d(p(—t,6,p)M(6;p)
r—o0

R(p)) =0.

(v) R is a tuture repeller if and only if there exists an > 0 such that for all p € P*(R),
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there exists a p € [p] N P*(R) with
Jlim d(¢(=t,0: 4 P)Uy(R(O;4+:9))|R(O:p)) =0 forall t >0.

(vi) In case X is locally compact, R is a future repeller if and only if there exists an n > 0
such that for all p € P*(R), we have

Tim d(p(—1,0,p)Uy (RO p)|R(p)) = 0.

(vii) In case X is locally compact, R is a future repeller if and only if there exists an n > 0
such that for all p € P*(R), there exists a p € [p] N P*(R) with

Tim d(p(—1,0,)Uy(RO:H)|R(5)) = 0.

PROOF. See proof of Proposition 2.1.2. 0

2.1.6 REMARKS.

(i) As seen in Remark 2.1.3 (i) in case of past attractivity and repulsivity, the notions of Defi-
nition 2.1.4 represent the behavior of (6, ¢) in the future.

(i) There are important analogies in the concepts of past and future attractivity and repulsivity,
but in the general noninvertible case, it is not possible to reduce the amount of definitions.
For the invertible case, this question is treated in Section 2.1.5. It is shown that a past
attractor corresponds to a future repeller, and a past repeller is related to a future attractor.

(iii) Suppose, (4, ) is invertible and X is locally compact, and let R be a future repeller with #
given as in Definition 2.1.4 (iv). Then, for all p € P*(R), we have

R(p) = limsup ¢ (=1, 6; p)Uy(R(0; p)) = liminf ¢ (—1, 6, p)Uy(R(6; p)) -
t—00 =00

In the following definition, the notions of all-time attractivity and repulsivity are explained.

2.1.7 DEFINITION (ALL-TIME ATTRACTIVITY AND REPULSIVITY). Let A and R be
invariant and compact all-time nonautonomous sets.

(i) A is called all-time attractor if there exists an n > 0 with

lim sup d(p(t, p)Uy(A(p))|AGp)) =0.
—0o0 pGP*(A)

(ii) R is called all-time repeller if there exists an # > O such that for all ¢ > 0, there exists
at* > 0 with

o(t, p)Us(R(p)) D Uy(R(G,p)) forall pe P*(R)andt >1t".

It follows directly from the definitions that the empty set is both an all-time attractor and an all-
time repeller. If X is compactand D =T x P x X, then P x X is also an all-time attractor and
all-time repeller. An all-time attractor (all-time repeller, respectively) is also both a past attractor
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(past repeller, respectively) and a future attractor (future repeller, respectively), since in the above
definition, p can be replaced by 6_; p.

In case of invertibility, Definition 2.1.7 (ii) can be simplified.

2.1.8 PROPOSITION (EQUIVALENT CHARACTERIZATION). Let R be an invariant and
compact all-time nonautonomous set, and suppose, (6, ¢) is invertible. Then, R is an all-
time repeller if and only if there exists an n > 0 with

lim  sup d(p(=t, p)Uy(R(p))|R(O-p)) = 0.
o peP*(R)

Finally, the definitions of finite-time attractivity and repulsivity are introduced.

2.1.9 DEFINITION (FINITE-TIME ATTRACTIVITY AND REPULSIVITY). For p € P and
T > 0, let A and R be invariant and compact (p, T')-nonautonomous sets.

(i) A iscalled (p, T)-attractor if

1
lim sup ;d(w(T, p)U,(A(p)|A(Orp)) < 1.
7\

(ii) R is called (p, T)-repeller if

1 A
limint - d(p(T, p)Uy(R(P)|R@rp)) > 1.

2.1.10 REMARK. In contrast to the above definitions in case of past, future and all-time attrac-
tivity and repulsivity, the notions of finite-time attractivity and repulsivity are not invariant with
respect to a change of the metric to an equivalent metric.

In case of invertibility, Definition 2.1.9 (ii) can be simplified.

2.1.11 PROPOSITION (EQUIVALENT CHARACTERIZATION). Let R be an invariant and
compact (p, T)-nonautonomous set. If (0, ¢) is invertible, then R is a (p, T)-repeller if and
only if

1
limS(;lp Zd((/)(—T, Orp)U,y(ROrp))|R(p)) < 1.
7N

We will often consider invariant nonautonomous sets which are solutions of the nonautonomous
dynamical system (6, ¢).

2.1.12 DEFINITION (SOLUTION). Let P C P be nonempty with P c O(p) for some
p € P. A function u : P — X is called solution of (6, ¢) if graph u is invariant.

The attractivity and repulsivity of solutions are defined by considering the graph of the solution as
an invariant nonautonomous set.
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2.1.13 DEFINITION (ATTRACTIVITY AND REPULSIVITY OF SOLUTIONS). Let u be a
solution of (6, ¢).

(i) p iscalled past attractive (future attractive, all-time attractive, (p, T')-attractive, respec-
tively) if graph(u) is a past attractor (future attractor, all-time attractor, (p, T )-attractor,
respectively).

(i) u is called past repulsive (future repulsive, all-time repulsive (p, T)-repulsive, respec-
tively) if graph(u) is a past repeller (future repeller, all-time repeller, (p, T')-repeller,
respectively).

Concluding this subsection, we state the following proposition, whose obvious proof will be omit-
ted.

2.1.14 PROPOSITION. A past nonautonomous (future nonautonomous, all-time nonau-
tonomous, (p, T)-nonautonomous, respectively) set can never be both a past attractor (future
attractor, all-time attractor, (p, T)-attractor, respectively) and a past repeller (future repeller,
all-time repeller, (p, T)-repeller, respectively).

2.1.2 Radii of Attraction and Repulsion. Since the local dynamical behavior of nonau-
tonomous sets is studied in the definitions of the preceding subsection, it is useful to know some-
thing about the range of attractivity or repulsivity. In this subsection, notions of radii of attraction
and repulsion are introduced.

2.1.15 DEFINITION (RADII OF ATTRACTION AND REPULSION). We define the radius of
past attraction of a past attractor A by

A 1= sup {;1 > 0 : Forall p € P*(A), thereexistsa p € [p] N P*(A) with
lim d(p(t, 0—c_ p)Uy(AO—r— p))|AO_ p)) = O forall T > o}
— 00

(cf. also Proposition 2.1.2 (ii)) and the radius of past repulsion of a past repeller R by

Ry =sup{n > 0: Forall p e P*(R), there exists a p € [p] N P*(R) such that for all
¢>0andt >0, wehave at™ > 0 with
9 (t,0—r—1 P)Ue(R(O—;—1P)) D Uy(R(O-. p)) forall t > 1"}

(cf. also Proposition 2.1.2 (v)). The radius of future attraction of a future attractor A is defined
by

M, :=sup {;7 > 0: Forall p € P*(A), thereexistsa p € [p] N P*(A) with
lim d(p(t,0; p)Uy(A©: p))|AOr4:p)) =0 forall T > o}
—00

(cf. also Proposition 2.1.5 (1)), and the radius of future repulsion of a future repeller R is
defined by
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Ry = sup {77 > 0 : Forall p € P*(R), there exists a p € [p] N P*(R) such that
foralle > 0Oandt >0, we have at™ > 0 with
9 (1,0: p)U: (RO p)) D Uy(R(O,4,p)) forall t > 1"}

(cf. also Proposition 2.1.5 (ii)). The radius of all-time attraction of an all-time attractor A is
defined by

R = sup {;7 >0: lim  sup d(p(, p)Uy(A(p)|AG:p)) = 0}
t— 00 peP*(A)

(cf. also Definition 2.1.7 (i)), and the radius of all-time repulsion of an all-time repeller R is
defined by

Ry = sup {;7 > 0 : Foralle > 0, there exists at™ > 0 with
o(t, p)Us(R(p)) D Uy(R(6;p)) forall p e P*(R) andt > t*}

(cf. also Definition 2.1.7 (ii)). The radius of (p, T')-attraction of a (p, T')-attractor A is defined
by

Qll(f’T) :=sup{n > 0:d(p(T, p)Us(A(p))|A@Orp)) < 7 forall i € (0, n)}

(ct. also Definition 2.1.9 (i)), and the radius of (p, T)-repulsion of a (p, T)-repeller R is
defined by

R = sup {n > 0: d(p(T, p)Us(R(p)|ROrp)) > & forall 7 € (0, n)}

(ct. also Definition 2.1.9 (ii)).

When considering a solution x of (6, ¢) which is either past (future, all-time, (p, T)-, re-
spectively) attractive or repulsive, one of the above definitions applies for graph u. We write
A, = Ugraph u Or Ry := NRgraph  and proceed similarly with further notation (concerning, e.g.,
the domains of attraction and repulsion introduced in the next subsection).

2.1.3 Domains of Attraction and Repulsion. = The above defined radii of attraction and repul-
sion are positive real numbers. However, if X is a finite-dimensional Banach space (or equivalently
locally compact, see LANG [101, Corollary 3.15, p. 39]) and in case of past, future and all-time
attractivity and repulsivity, we will—in addition to the radii of attraction and repulsion—consider
domains of attraction and repulsion as subsets of the phase space.

We begin with some auxiliary definitions for the extended phase space. Given a past attractor A,
we define for all p € P*(A)

A5 (p) == {x € X : There exists a neighborhood U of x such that
Jim d(p(t, 0-p)(A©-p) + V)| A(p) = 0}
—00
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(cf. also Proposition 2.1.2 (iii)), and for a past repeller R, we define for all p € P*(R)

Ry (p) = {x € X : There exists a neighborhood U of x such that
for all ¢ > 0, there exists a t* > 0 with
¢(t,0-p)U:(R(O-p)) D R(p) + U forall t > 1"}

(cf. also Proposition 2.1.2 (v)). In case the NDS (8, ¢) is invertible, for all p € P*(R), we have
Ry (p) = {x € X : There exists a neighborhood U of x such that
lim d(p(=1, p)(R(p) + U)| RO p)) = 0]
— 00

(cf. also Proposition 2.1.2 (vii)).
Given a future attractor A, we define for all p € P*(A)

A7 (p) == {x € X : There exists a neighborhood U of x such that
lim d(p(, p)(A(p) + V)| 4@ p)) =0
t— 00
(cf. also Proposition 2.1.5 (i)), and for a future repeller R, we define for all p € P*(R)

Rz (p) = {x € X : There exists a neighborhood U of x such that for all ¢ > 0, there
existsat* > 0 with ¢ (¢, p)U.(R(p)) D R(0;p) + U forall t > t*}

(cf. also Proposition 2.1.5 (ii)). In case the NDS (6, ¢) is invertible, for all p € P*(R), we have

Rz (p) = {x € X : There exists a neighborhood U of x such that
lim d(p(=1,0,p)(R@:p) + U)|R(p)) =0

(cf. also Proposition 2.1.5 (vi)).

Some properties of these sets are derived in the following proposition.

2.1.16 PROPOSITION. Suppose, X is a finite-dimensional Banach space. Then, the follow-
ing statements are fulfilled:

(i) Given a past attractor A, for all p € P*(A), the set A5 (p) is open, and we have
A5 (p) = A5 (p) for all p € [p]l N P*(A). Furthermore, for all p € P*(A) and
compact sets C C A5 (p), the relation

Tim d(p(t, 0-p)(A@O-p) + C)| A(p)) = 0

is fulfilled.

(i) Given a past repeller R, for all p € P*(R), the set Ry (p) is open. Furthermore, for all
p € P*(R), compact sets C C R (p) and e > 0, there exists at* > 0 with

o(t,0-p)U:(R(O-p)) D R(p)+C forallt > 1.

In case of invertibility, the last formula is equivalent to

lim d(p(=1, p)(R(p) + O)|R(O-p)) = 0.
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(iii) Given a future attractor A, for all p € P*(A), the set A} (p) is open. Furthermore, for
all p € P*(A) and compact sets C C A (p), the relation

lim d(p(r, p)(A(p) + O)|A(6:p)) =0

is fulfilled.

(iv) In addition, we suppose that the NDS (0, @) is invertible. Then, given a future repeller
R, for all p € P*(R), the set Ry (p) is open, and we have Ry (p) = Ry (p) for all
p € [p]l N P*(R). Furthermore, for all p € P*(R) and compact sets C C Ry (p), the
relation

Tim d(p(~1.6,p)(R@;p) + O)|R(p) =0
is fulfilled.

PROOF. (i) The openness of A (p) is a direct consequence of its definition, and the second
assertion follows from Proposition 1.2.5, since the finite-dimensional Banach space X is locally
compact (see LANG [101, Corollary 3.15, p. 39]). Let us now assume that there exist p € P*(A),
a compact set C C Aj(p), an ¢ > 0 and sequences {x,},en in C and {¢#,},en in T such that
lim,, s t;, = 00 and

d (9 (tn, 01, P)(AOy, p) + x,)|A(p)) = ¢ forall n e N.

Since C is compact, we assume w.l.o.g. that {x, },c is convergent with lim,,_, s X, = Xxo. Since
xg € C C AT (p), there exists a neighborhood U of xo such that

lim d(p(z,0-; p)(AO-p) + U)|A(p)) = 0.

This is a contradiction.
(i1) As in (i), the first assertion is clear. Suppose now, there exist a p € P*(R), a compact set
C C Ry (p), an e > 0 and sequences {x,}nen in C and {t,},en in T such that lim, o 1, = 00
and

0 (tns 0—1, PYU:(R(O1,p)) D R(p) + x, forall n e N,

Since C is compact, we assume w.l.o.g. that {x, },< 1s convergent with lim,,_, o X, = Xxo. Since
xo € C C Ry (p), there exists a neighborhood U of x¢ such that for all & > 0, there exists a
t* > 0 with

o(t,0_p)U:(R(O-p)) D R(p)+ U forall t >¢".

This is a contradiction and finishes the proof of (ii).
The proofs of (iii) and (iv) will be omitted, since they are similar to (i) and (ii). ]

For simplicity in description, it is our aim to characterize the strength of attractivity or repulsivity
not by the above defined fiber-wise sets, but by subsets of the phase space. This reduction is done
by the following definition.

2.1.17 DEFINITION (DOMAINS OF ATTRACTION AND REPULSION). Suppose, X is a
finite-dimensional Banach space.

(i) The domain of past attraction of a past attractor A is defined by
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— ._ I —
Ay = ﬂ lim inf A (0—p).
pEP*(A)

(ii) The domain of past repulsion of a past repeller R is defined by

— . S —
Ri = [) liminf R (0-p).
peP*(R)

(iii) The domain of future attraction of a future attractor A is defined by
- . s -
A = ﬂ htrglogf AL Op) .
peP*(A)
(iv) The domain of future repulsion of a future repeller R is defined by
- . s -
Re = [) liminf R (6, p) .
peP*(R)
(v) The domain of all-time attraction of an all-time attractor A is defined by

AL = {x € X : There exists a neighborhood U of x

such that lim  sup d(p(t, p)(A(p) + U)|A(6;p)) =0
11— 00 pEP*(A)

(vi) The domain of all-time repulsion of an all-time repeller R is defined by

Ry = {x € X : There exists a neighborhood U of x such that

for all ¢ > 0, there exists at™ > 0 with

I

o(t, p)U(R(p)) D R p)+ U forall pe P*(R) andt > t*} :

In case the NDS (8, ¢) is invertible, we have

RY = {x € X : There exists a neighborhood U of x such that

lim sup d(p(=t, p)(R(p) + U)|R©Op)) =0}
T peP(R)

2.1.18 REMARKS.

(i) It can be seen immediately from the definitions that all above defined domains of attraction

and repulsion are neighborhoods of zero.

(i1)) The relations

AT =d(AT[{0Y), AT =d(A7]{0}), RE =d(RF|{0}) and
Ry =d(Rg[{0}), AL =d(AT[0}). WY =d(RE[{0})

are fulfilled.
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(iii)) Given a past attractor A, from Proposition 2.1.16 (i), the relation

A= () AS®

peP*(A)

follows. In case of invertibility, Proposition 2.1.16 (iv) implies for a future repeller R,

RZ =[] RR®.
peP*(R)

2.1.19 PROPOSITION. Suppose, X is a finite-dimensional Banach space and (0, ¢) is invert-
ible. Then, the following statements are fulfilled:

(i) Let 4 : O~ (p) = X be a past repulsive solution. Then, the past nonautonomous set
with the O_; p-fibres Rl‘l_(ﬁ_tp) + w(@-¢p),t > 0, is invariant.

(i) Let u : O (p) — X be a future attractive solution. Then, the future nonautonomous
set with the 6, p-fibres A, (0, p) + 1(6;p), t > 0, is invariant.

PROOF. (i) We choose 7 € T/, 7 € TN (=00, 7] and x € Rﬁ(ﬁ_,p) + u(@—.p). Let U be a
neighborhood of x — x(6—; p) such that

lim d(p(=t, 0 p)(uO-cp) + U)|[{(0——p)}) = 0. 2.1)

Since (0, @) is invertible, the set ¢ (7, 60—, p)(u(0—, p) + U) is a neighborhood of ¢ (7, 6_; p)x,
and we have

lim d(p(=1,0;—: )9 (%, 0 p) (O p) + V) {11 (O P)})

= lim d(p(=1,0_cp)(u(O-cp) + V) [{uO=c-0}) = 0.

This means that ¢ (7, 0_, p)x — u(6;_;) € R/‘T(Qf_fp).
The assertion (ii) can be proved analogously. 0

2.1.4 Examples. In this subsection, two examples—given by a linear and a nonlinear one-
dimensional differential equation—are discussed in order to illustrate the notions of attractivity
and repulsivity introduced in the preceding three subsections.

2.1.20 EXAMPLE. We consider the linear nonautonomous differential equation

with a continuous function a : R — R, which generates a nonautonomous dynamical system
with T = P = R (see Section 1.2). It is easy to see that every invariant and compact all-time
nonautonomous set M C R x Ris a

e past attractor with A}, = R if and only if lim,_, _ flo a(s)ds = —oo0,

e past repeller with Rj, = R if and only if lim,_, _ fto a(s)ds = oo,
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e future attractor with A3, = R if and only if lim;_, fot a(s)ds = —o0,

e future repeller with R}; = R if and only if lim;_, « fol a(s)ds = oo,

e all-time attractor with A§; = R if and only if lim;_, o sup, g fTH't a(s)ds = —oo,
e all-time repeller with R}, = R if and only if lim;_, o sup, cg f:ﬂ a(s)ds = oo,

e (p, T')-attractor with ngf;’T) = oo if and only if f}f-"T a(s)ds <0,

e (p, T)-repeller with 9%55’” = oo if and only if flerT a(s)ds > 0.

2.1.21 EXAMPLE. The nonautonomous differential equation

X =a(t)x + b(r)x® = x(a(t) + b(t)xz)

with continuous functions @ : R - Rand b : R = R for some x > 0 generates a nonau-
tonomous dynamical system with T = P = R (see Section 1.2). For simplicity, we define

a(t)

w(t):= [———= forall t € Rwitha(t) <O0.

b(1)

Then, for fixed t € R with a(f) < 0, the zero set of the right hand side is {0, +w(¢)}; forall r € R
with a(¢) > 0, this zero set is the singleton {0}. An elementary discussion of the sign of the right
hand side of this equation yields that the trivial solution is

e Dpast attractive with

(— liminf w(r), liminf w(t)) CAS C (— lim sup w(t), lim sup w(t))
[——00 > —00 t——00 t——00

if lim inf,_s _ oo —% >0,

o past repulsive with R§™ = Rif limsup,_, _,, —43 <0,
e future attractive with
(— liminf w(), liminf w(t)) CA7 (— limsup w(r), limsup w(t))
11— 00 =00

t—00 t—00

if liminf,_ oo —% >0,

e future repulsive with Ry = R if limsup,_, o, —ZE—;; <0,

e all-time attractive with

(— inf w(r), inf w(t)) CAS C (— sup w(r), sup w(t))

teR teR

if inf, e —% >0,
a(t)

e all-time repulsive with ROH = Rif ~50 <Oforallt e R,

e (p, T)-attractive with

inf  w() < Q(ép’T) < sup w(t)
telp,p+T] telp,p+T]

if—%>0f0rallte[p,p+T],



28 Chapter 2: Notions of Attractivity, Repulsivity, Bifurcation and Transition

e (p, T)-repulsive with %ép’T) =ooif —% <Oforallr e [p,p+T].

These conditions are only sufficient for attractivity or repulsivity of the trivial solution but not
necessary.

2.1.5 Properties of Time Reversal. As the reader may have observed, there are important
analogies in the concepts of, say, past repulsivity and future attractivity. The aim of this subsection
is to study these relationships.

We assume that (€, ¢) is invertible, which implies T = R or T = Z, and we consider the NDS
under time reversal, denoted by (97!, ¢~!) and defined by the relations

0=\, p) :==6(—t, p) forall (t,p) eT x P,
(p_l(t, p,x) :=@(—t, p,x) forall (¢, p,x) with (—¢, p,x) € D.

The pair (0, ¢)~! := (0_1, go_l) is indeed a nonautonomous dynamical system, since we have

go_l(t + s, p,X) = (0(-1‘ -5, p,X) = (p(—t,@(—s, p)a @(—S, p’x))
=9 ' (t,07'(s, p). 9 (s, p, x))

forallz,s € Tand (p,x) € P x X with —s € Dy,4x(p, x) and —t — s € Dy,0.(p, x).

2.1.22 PROPOSITION (PROPERTIES OF TIME REVERSAL). Let M be a subset of P x X.
Then, the following statements are fulfilled:

(i) M is a past attractor of (0, ¢) if and only if M is a future repeller of (8, ¢)~!. We
have 9[1\7 = 9%;4’ If, in addition, X is a finite-dimensional Banach space, then also
Ay, =Ry, is fulfilled.

(ii) M is a past repeller of (@, ¢) if and only if M is a future attractor of (0, p)~!. We
have 9‘{]‘7 = QIA_; If, in addition, X is a finite-dimensional Banach space, then also
Ry, = Ay, is fulfilled.

(iii) M is an all-time attractor of (0, ¢) if and only if M is an all-time repeller of (9, ¢)~".
We have 9%;) = Ql‘ﬁ If, in addition, X is a finite-dimensional Banach space, then also
Ry, = Ay, is fulfilled.
(iv) M isa (p, T)-attractor of (0, ¢) if and only if M is a (O p, T)-repeller of (0, p)~!. We
(».T) _ oa@rp,T)
have 2L, " =R, .

PROOF. (i) Let M be a past attractor of (6, ¢), i.e., due to Proposition 2.1.2 (ii), there exists an
n > 0 such that for all p € P*(M), there exists a p € [p] N P*(M) with

lim d(p(t,0—c— P)Uy(M O~ p))|M©O-.p)) =0 forall  >0.
11— 00
This is equivalent to

lim d(p™! (=1,07 (e +1, P)U, (MO (c +1, )| MO (2, 5)) =0 forall 7 20,

—o0

and due to Proposition 2.1.5 (v), this means that M is a future repeller of (6, ¢)~'. In case X is a
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finite-dimensional Banach space, the relation A3, = R, follows from

Ay (p) = {x € X : There exists a neighborhood U of x such that
lim d(p(t,0-p)(M(O-p) + U)|M(p)) =0}
— 00
= {x € X : There exists a neighborhood U of x such that

lim d(go_l(—t,@_l(t, p)) (MO~ @, p)+ U)‘M(P)) = 0} =Ry (p)

—0o0

for all p € P*(M). The relation 2, = 2}, follows analogously.
The proofs of (ii), (ii1) and (iv) are very similar to that of (i); we therefore omit them. O

2.1.6 Existence and Uniqueness. In this subsection, criteria for the existence of attractors
and repellers are formulated, and the question of their uniqueness is discussed.

First, the notions of past absorbing and future rejecting sets are introduced (these definitions are
derived from FLANDOLI & SCHMALFUSS [67] and KLOEDEN [93, 94]).

2.1.23 DEFINITION (PAST ABSORBING AND FUTURE REJECTING SETS).

(i) Let B be a past nonautonomous set and M be a collection of past nonautonomous
sets. Then, B is called past absorbing with respect to M if for all M € M, we have
P*(M) C P*(B), and for all M € M and p € P*(M), there exists at* > 0 such that

o(t,0_;p)M@O-;p) C B(p) forall t >t*. (2.2)

(ii) We suppose that (0, ) is invertible. Let B be a future nonautonomous set and M
be a collection of future nonautonomous sets. Then, B is called future rejecting with
respect to M if for all M € M, we have P*(M) C P*(B), and for all M € M and
p € P*(M), there exists at* > 0 such that

o(—t,0,p)M 6, p) C B(p) forall t >1t*.

2.1.24 REMARK. In case the past absorbing set is compact (which is a hypothesis of the next
theorem), Definition 2.1.23 (i) is a nonautonomous generalization of the notion of the dissipative
dynamical system (see, e.g., HALE [76]).

The following existence result is adapted from FLANDOLI & SCHMALFUSS [67] (for related
results in the context of random attractors, see also CRAUEL & FLANDOLI [57, Theorem 3.11],
SCHENK-HOPPE [158, Theorem 4.2] and SCHMALFUSS [159, 160]).

2.1.25 THEOREM (EXISTENCE OF M-PAST ATTRACTORS AND M-FUTURE RE-
PELLERS). The following statements are fulfilled:

(i) Let M be a collection of past nonautonomous sets and B be a compact past absorbing
set with respect to M. Then, there exists an M -past attractor A fulfilling the represen-
tation
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A(p) = (cls| J ot 6-p)B©O-1p) forall pe P*(B).

>0 >t
If, in addition, A € M, then A is uniquely determined. In case B € M, the relation
A C B is fulfilled.

(ii) We suppose that (6, ¢) is invertible. Let M be a collection of future nonautonomous
sets and B be a compact future rejecting set with respect to M. Then, there exists an
M -tuture repeller R fulfilling the representation

R(p)=()cls| Jo(~1.6,p)B©,p) forall p e P*(B).

>0 1>t

If, in addition, R € M, then R is uniquely determined. In case B € M, the relation
R C B is fulfilled.

PROOF. For assertion (i), see FLANDOLI & SCHMALFUSS [67, Theorem 3.5], (ii) follows from
(1) using Proposition 2.1.22. 0J

In case the collection M of the above theorem contains a neighborhood of the set B, existence
results for past attractors and future repellers follow directly.

2.1.26 COROLLARY (EXISTENCE OF PAST ATTRACTORS AND FUTURE REPELLERS).
The following statements are fulfilled:

(i) Let M be a collection of past nonautonomous sets, B be a compact past absorbing set
with respect to M and 5 > 0 such that the past nonautonomous set B, defined by

B(p) :=Uy(B(p)) forall p e P*(B)

lies in M. Then, the M -past attractor of Theorem 2.1.25 (i) is also a past attractor.

(ii) We suppose that (6, ¢) is invertible. Let M be a collection of future nonautonomous
sets, B be a compact future rejecting set with respect to M and n > 0 such that the
future nonautonomous set B, defined by

B(p) := U,(B(p)) forall pe P*(B)

lies in M. Then, the M-future repeller of Theorem 2.1.25 (ii) is also a future repeller.

PROOF. The assertions follow directly from Definition 2.1.1 (ii) and Definition 2.1.4 (iv). 0

In the following proposition, the question of local uniqueness and nonuniqueness for nonau-
tonomous attractors and repellers is discussed.

2.1.27 PROPOSITION (LOCAL UNIQUENESS AND NONUNIQUENESS). The following
statements are fulfilled:

(i) Let Ay and A, be past attractors such that A{(p) # Ax(p) for all p € P. Then, we
have




2.1 Attractivity and Repulsivity

(ii)

(iii)

(iv)

lim inf dr ((A1(0=:p), A2(0—;p)) > min{A, A} forall pe P.

We suppose that (0, ¢) is invertible. Let Ry and R, be future repellers such that
Ri(p) # Ry(p) forall p € P. Then, we have

litgcigf du(R1(0;p), R2(6;p)) > min {iRZ, 9‘{%} forall pe P.

We suppose that (6, ¢) is invertible. Let R| be a past repeller. Then, for all p € P*(R;)
and o € (0, 9%1‘3_1) there exists a p € [p] N P*(Ry) such that for all T > 0 and compact
sets Ry(0—, p) C X with

R1(0-:p) C Ra(0-.p) C clsUs(R1(0-. D)),
the past nonautonomous set R;, defined by

o(—t,0_;p)Rr(O—. D) 0_._,p forsomet e TT(J)F

o p=
Ra(p) = R (p) . pe P (R)\[p] ’

is also a past repeller with R = R .

Let Ay be a future attractor. Then, for all p € P*(A1) and 6 € (0, Q(Z), there exists a
p € [p]l N P*(Ay) such that for all t > 0 and compact sets A>(0; p) C X with

Al(erﬁ) - AZ(erﬁ) Ccls Ué(Al(HTpA)) 5
the future nonautonomous set A,, defined by

o(t,0:p)A20:p) : p=0,4p forsomet e —l]—(_){_

Ax(p) = A(p) . pe P (AD\Ip] ’

is also a future attractor with 91:1 = QlA_;.

2.1.28 REMARKS.

(i) The form of (local) nonuniqueness of past repellers and future attractors is weak in the sense
that, for instance, the past repellers R; and R; from (iii) fulfill

lim dH(Rl(G_tp), Rz(G_,p)) =0 forall peP.
11— 00

(i1) Since all-time attractors (repellers, respectively) are past attractors (future repellers, respec-
tively) (cf. remark after Definition 2.1.7), they also fulfill a uniqueness result similar to (i)
((ii), respectively).

(ii1) Concerning finite-time attractors and repellers, it is not possible to show uniqueness and
nonuniqueness results. More precisely, it is possible that in every neighborhood of a (p, T)-
attractor lies another (p, T')-attractor and an invariant (p, T )-nonautonomous set which is
not a (p, T)-attractor.

(iv) In case X is a finite-dimensional Banach space, in (iii) ((iv), respectively), not only the
rF:lation Mg, = Ri, @ = A, respectively) but also Ry = Ry (Aj = Aj, respec-
tively) holds.

31
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PROOF OF PROPOSITION 2.1.27. We will only prove the statements (i) and (iii), since the proofs
of (ii) and (iv) are similar.
(i) Assume to the contrary that there exists a p € P with

litg(igf d (A1(0—;p), A2(6—;p)) < min {2, AT}

Hence, there exista f < min {221“1 , Qlf;z} and a sequence {t,},en With lim, 5 ¢, = 00 and
A(0—;,p) C Up(A1(0—;,p)) forall n e N.

Due to Definition 2.1.15, this implies the existence of a ¢ > 0 such that

lim d(p(tn = 7,0, p)A2(0-1, ) |A1(0-c p)) = 0.
= A2(0-cp)

This means that d (A2 (0. p)|A1(6-. p)) = 0, and hence, d(A2(p)|A1(p)) = 0. Analogously,
one can show d(Al(p)}Az(p)) = 0. This implies A;(p) = A2(p), since A1(p) and Ay(p) are
compact, and this contradiction finishes the proof of (i).

(iii)) We choose p € P*(R;) and 9, 1 € (0, %E) arbitrarily and define

1
p = E(max {6, n} +Rg,) € (max {4, n}, R,) -
Due to Definition 2.1.15, there exists a p € [p] N P*(R}) such that

lim d(p(=1,0-c YUp(R1(O~: p))|R1(0—c—p)) =0 forall z > 0. (2.3)

We choose 7 > 0 and a compact set Ry(0—, p) C X with
R1(0-:p) C Ra(0—:p) C cls Us(R1(0-:p))

and define the nonautonomous set R as stated in the proposition. Because of (2.3), there exists a
t* > 0 such that

<_ —
Ry

forall + > t*.
2

d(gﬂ(—t, e—rﬁ)RZ(e—rﬁ) }Rl(e—r—tﬁ)) <
= R2(0—T—tﬁ)

Since %(%;2_1 - ﬁ) + 5 < p, this implies using (2.3) the relation

Jlim d(p(—t,0—;—s P)Uy(R2(O—r—s p))|R1(O—r—s—1p)) =0 forall s > t*.
Because of Ry C Rj, we obtain

lim d(p(=1,0-c—sp)Uy(R2(O-—p))|R2(O—c—5—1p)) =0 forall s > 1",

and this means that R is a past repeller with 9%1‘32 > 7 (please note that Ry(p) = Ry(p) for all
p € P*(R))\ [p]). Hence, 9%1‘{2 > m;e_l (1 has been chosen arbitrarily). The relation 9%;2 < ER‘R_I
can be obtained from

lim d(Ry(0-p)|R1(0—p)) =0.
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This finishes the proof of this proposition. 0

In the following lemma, attraction (repulsion, respectively) areas of attractive (repulsive, respec-
tively) solutions lying in repellers (attractors, respectively) are analyzed.

2.1.29 LEMMA. We suppose that X is a finite-dimensional Banach space and (0, ¢) is in-
vertible. Then, the following statements are fulfilled:

(i) Let R be a past repeller and 1t : O~ (p) — X be a past attractive solution with
u(@—;p) eintR(O—_,p) forallt>0.

Then, we have
. . %
liminf (R(O-;p) — u(0-p)) D A .

(i) Let A be a past attractor and p : O~ (p) — X be a past repulsive solution with
w(@-:p) e A(B_;p) forallt >0.

Then, the relation A(0—;p) — u(@-;p) O R;_(H_,p) holds for all t > 0, and we thus
have

. . _ (_

liminf (A(0-p) — u(0-p)) D R}/

(iii) Let A be a future attractor and u : OV (p) — X be a future repulsive solution with
w(@:p) eintAG,p) forallt >0.

Then, we have
. . %
liminf (A(6;p) — x(6:p)) DR,/ .

(iv) Let R be a future repeller and p : O (p) — X be a future attractive solution with
w(@p)e RO;p) forallt>0.

Then, the relation R(0;p) — u(6;p) D .A/? (6; p) holds for all t > 0, and we thus have

liminf (R(0;p) = 1(6,p)) > A7 .

2.1.30 REMARKS.

(i) This lemma implies that (past and future) attractors or repellers containing repulsive or
attractive solutions, respectively, are nontrivial, i.e., their fibers are no singletons.

(i) Since the notions of all-time attractivity and repulsivity are stronger than those of past and
future attractivity and repulsivity (cf. remark after Definition 2.1.7), the assertions of the
above lemma are also applicable for all-time attractors and repellers.

PROOF OF LEMMA 2.1.29. Because of Proposition 2.1.22, it is sufficient to show the statements
(1) and (i1).
(i) We choose x € A/T. Due to the hypotheses, there exists an # > 0 such that

o(—t, p)Uy(u(p)) C R(O—;p) forall t >0.
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Since x € A/?, there exists a ¢ > 0 with

o(t,0-:p)(uO-tp) + x) € Uy(u(p)) forall 1 > 7.

Hence, we have

#(O-p) +x = o(—t, p)o(t,0_p)(u(0-;p) +x) € R(O—,p) forall t > 7.

Therefore, x € liminf;_ (R(H_tp) — ,u(e_,p)).
(i) We choose x € R/T (p) and 6 > 0 arbitrarily. Since u lies in A, there exist # > Oand ¢ > 0
such that

0t 0-:p)U, (10 p)) C Us(A(p)) forall ¢ > t.
Since x € R} (p), there exists a 7 > 0 with
¢(—t, p)(u(p) +x) € Uy(u(0-,p)) forall 1

Hence, with ¢ := max {z, 7}, the relation

u(p)+x =9, 0_p)o(—t, p)(u(p) +x) € Us(A(p))

holds. Since J has been chosen arbitrarily and A(p) is compact, we have u(p) + x € A(p),
and therefore, u(p) + R/‘f (p) C A(p) is fulfilled. The assertion follows directly from Proposi-
tion 2.1.19 (i). OJ

v
N>

In the following theorem, sufficient conditions are derived to guarantee the existence of a nonau-
tonomous attractor (repeller, respectively) which contains a nonautonomous repulsive (attractive,
respectively) solution.

2.1.31 THEOREM (EXISTENCE OF NONAUTONOMOUS ATTRACTORS AND REPELLERS).
Assume, X is a finite-dimensional Banach space and (6, ¢) is invertible. Then, the following
statements are fulfilled:

(i) We suppose that u : O~ (p) — X is a past attractive solution such that A/? is bounded
and there existe > 0 and s > 0 with

lim d(p(=t,0- p)Us (O p) + A7) |0 (O—c—1p) + AT) =0 forall z > s.
— 00
(2.4)
Then, there exists a § > 0 such that the invariant and compact past nonautonomous set
R, defined by

R(O-1—sp) 1= 9(~1,0_sp) cls Up(u(6_sp)) forallt >0,
is a past repeller fulfilling

Ay Climinf (R0~ p) — u(0—p)) C lim sup (R(O-1p) — u(6-;p)) Ccls A5

(ii) We suppose that u : O~ (p) — X is a past repulsive solution such that R; is bounded
and there exists an n > 0 such that for all ¢ > 0, there exists an s > 0 such that for all
T > s, thereisaT > 0 with

0(t,0—r i P)Up(0(O=c—p) + RT) C Up(u(O0—cp) +R;7) forallt >T.

Then, there exists a past attractor A C O~ (p) x X fulfilling
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R, C liminf (A(0—,p) — u(6-;p)) C limsup (A0 p) — u(0—p)) CclsR .
=00 t—00

(iii) We suppose that u : Ot (p) — X is a future repulsive solution such that R; is
bounded and there existe > 0 and s > 0 with

tl_l)rgo d(¢(t,01p)Ug(,u(¢91p) +R7)|,u(9,+fp) —|—R;>) =0 forall t >s.

Then, there exists a § > 0 such that the invariant and compact future nonautonomous
set A, defined by

AOr45p) == ¢(t,0,p) cls Up(u(@sp)) forall t >0,
is a future attractor fulfilling

R, C lim inf (A@O:p) — u(6:p)) C limsup (A, p) — u(6:p)) CclsR, .

—0o0

(iv) We suppose that u : O (p) — X is a future attractive solution such that A; is
bounded and there exists an n > 0 such that for all ¢ > 0, there exists an s > 0 such
that for all T > s, thereisa T > 0 with

p(—t, ‘9r+tp)Uf7(,u(‘9H—tp) + A;)) c U (,LL(@T])) + A;) forall t > T .
Then, there exists a future repeller R ¢ OT(p) x X fulfilling

A, climinf (R(®,p) — 1(6:p)) lim sup (R©:p) — u(0,p)) Ccls A,

PROOF. Due to Proposition 2.1.22, it is sufficient to show the statements (i) and (i1).
(i) We choose a f > 0 with cls Ug(0) C U, (Aj) and define

R(O_s—:1p) = o(—t,0_sp)clsUg(u(0—sp)) forall t >0.
This means that
R(O—s—1p) C 9p(=1,0_sp)U.(u(0-sp) + A) forall 1 >0. (2.5)
Moreover,

[lggo d(R(H_tp) ‘ﬂ O—:p) + A/i_)

235 2.4)
< lim d(p(=t,0-,p)Us (1O p) + AT ) | O-s—ep) + AT) =

is fulfilled, and therefore,

lim sup (R(H_,p) — ,u(H_[p)) Ccls A;T

t—0o0

holds. Next, we show that R is a past repeller. Suppose that

¢ := liminf d(uO-ip) + AT|RO-p)) > 0O (2.6)
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is fulfilled. Since cls .Aj is compact, there exist an n € N and elements x1, ..., x, € cls A/T such
that

n
cls A" C U Us(xi).
i=1
Foralli € {1, ..., n}, we choose arbitrary elements

y; € Ug(xi) HAL_.

Then, the set C := {y1, ..., y,} 1s a compact subset of A:l_ which fulfills

d(AT|C) < <. 2.7)

It follows from Proposition 2.1.16 (i) that there exists a 7 > 0 such that

00— p) (1(0s—1p) + C) C Up(u(©—,p)) C R(O-sp) forall 1 >17.

Hence, due to the invariance of R, we obtain
lim d(u(0-,p) + C|R(O-;p)) = 0.
— 00
Using Lemma A.2.2, this implies
. . <_
liminf d (0 p) + A;"|R(©O-p))

.. 27 o
< liminf (d(u(O-p) + A O-p) + C) +d(u(0-p) + C|RO-p))) < 5.
1— 00 2
This is a contradiction to (2.6). Therefore,
lim d(u(0-p) + A;T|R(O-p)) =0 (2.8)

is fulfilled. Furthermore, there exists a 7 > 0 with

d(R(O=5— p)| (05— p) + A)

2.5) 24 ¢ N
< d(p(=1,0-5p)Us (nO-sp) + A7) | O-—cp) + AT) "< 5 forall 7 > 7.
Hence, we have
U, (/u (O—s—cp) + Aﬁ) > U% (U% (u(O-s—:p) + -’4;—))
D Uz (R(O-5-:p)) forall T > 1. (2.9)

For all 7 > f, the inequality

t1—1>rgo d((p(—t, O—s—2 D) U% (R(O-5—:p)) | R(G—s—r—tp))

2.9) ‘
< dim d(p(=t, 05— p)Us(u(O—s—p) + A5 ) |[RO—s—1—p))
t— 00

(
L A2.2
T im d (91, 0—s—e DU (1 Os— p) + AL) |1 Os—e—ep) + AS) +
11— 00
(

Jim d(uO-s—c—1p) + Ay |RO-s—c—P))

(2.4),(28) 0
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holds, and this means that R is a past repeller. The relation
liminf (R(0-,p) — u(0-1p)) D AT
t—0o0

follows from Lemma 2.1.29 (i).
(i1) We define the past nonautonomous set M by its fibers

M(O-;p) = Uy(u(®)+Ry) forallt>0.

Due to the hypotheses, the fibers of a compact past absorbing set B with respect to {M} can be
defined with the following property: For all ¢ > 0, there exists a ¢ > 0 such that

R 4 u6-p) C B(0—p) C U:(R + pu(@-p)) forall r>rz. (2.10)
Therefore, Theorem 2.1.25 implies the existence of an {M }-past attractor A C B fulfilling

. ) (2.10)
lim sup (A(Q_,p) — ,u(H_tp)) C lim sup (B(Q_tp) — ,u((9_,p)) C cls Rj
t—00

r—0o0

Due to Corollary 2.1.26, A is also a past attractor. The relation
. . _ e
liminf (A0~ p) — u(0-p)) DRy

follows from Lemma 2.1.29 (ii). O

2.2 OTHER NOTIONS OF ATTRACTIVITY AND REPULSIVITY

In this section, other notions of attractivity and repulsivity from the literature are discussed with
respect to their relationship to the definitions of the previous section. In the first subsection,
the well-known theory of stability in the sense of Lyapunov is treated, and in Subsection 2.2.2,
it is indicated that the notions of past (future, all-time, respectively) attractor and repeller are
generalizations of the concept of attractor and repeller introduced in CONLEY [52]. Finally, the
last subsection is devoted to the theory of nonautonomous attractors.

2.2.1 Theory of Stability in the Sense of Lyapunov.  Several different forms of stability are
examined in the literature. Most articles in this area, however, deal with the concept of stabil-
ity in the sense of Lyapunov, which has been introduced by LYAPUNOV in his thesis [109] (see
[111, 112] for translations into French and English). We shortly review the basic definitions of
this theory in the context of nonautonomous differential equations (see also the classical books
from CESARI [39] and HAHN [73]). An analogous theory exists for nonautonomous difference
equations (see, e.2., AGARWAL [2]). Let

a1

be a nonautonomous differential equation with a function f : D € R x RY — RY satisfying
conditions guaranteeing local existence and uniqueness of solutions (see Appendix A.l). The
general solution of (2.11) is denoted by 1. A solution x : (z, 00) — R is called Lyapunov-stable
if for all 7o > 7 and & > 0, there exists a 0 = d(fp, ¢) > 0 with

A1, t, Us(u(t9))) C Uy (u(r)) forall t > 1.
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Furthermore, a solution u : (7, 00) — RY is called Lyapunov-attractive if for all ty > t, there
exists an 7 = 7(fp) > 0 such that

lim [|A(¢, 10, x) — u(@)| =0 forall x € U,(u(t)).
— 00

There exist counterexamples in dimensions greater than one which show that not every Lyapunov-
attractive solution is Lyapunov-stable (see, e.g., AULBACH [14, Beispiel 7.4.16, p. 325] and
BHATIA & SZEGO [30, p. 59]). However, if a solution is both Lyapunov-stable and Lyapunov-
attractive, we call this solution Lyapunov-asymptotically stable. 1f in the definition of the
Lyapunov-stable solution, ¢ is independent of #y, we call this solution uniformly Lyapunov-stable.
In case 7 is independent of fy in the definition of the Lyapunov-attractive solution, we call this
solution uniformly Lyapunov-attractive. A solution which is both uniformly Lyapunov-stable
and uniformly Lyapunov-attractive is called uniformly Lyapunov-asymptotically stable (see, e.g.,
SELL [166, p. 130]).

The concept of uniform asymptotically stability is a very strong form of stability in the sense of
Lyapunov. It is easy to prove that any future attractive solution of (2.11) is uniformly Lyapunov-
asymptotically stable.

2.2.2 Theory of Autonomous Attractors and Repellers. There are many different notions
of attractor and repeller for (autonomous) dynamical systems (see SIENZ [173] for a summary).
Many authors use various properties such as irreducibility, topological transitivity or connectivity,
in their definitions. As stated below, the concept of nonautonomous attractor and repeller in this
thesis is closely related to the autonomous definitions used in CONLEY [52]. There, the main
building blocks of attractor and repeller are invariance, compactness and local attractivity and
repulsivity. We shortly review the definitions. Let ¢ : T x X — X be a discrete (i.e., T = 7)
or continuous (i.e., T = R) dynamical system on a metric space (X, d). A compact set A C X is
called attractor of ¢ if A is invariant, i.e.,

¢p(t,A)=A forallteT,

and if A is the w-limit set of some neighborhood V of A, i.e.,

A=) :=)¢(t.),V).

t>0

An invariant and compact set R C X is called repeller if it is the a-limit set of some neighborhood
W of R, i.e.,

R=a(W):=()¢((—o0,1],W).

t<0

One easily verifies that the definitions of past (future, all-time, respectively) attractor and repeller
are indeed proper generalizations of this concept of attractor and repeller. In case of finite-time
attractors and repellers, the situation is more subtle, since, given 7 > 0, not every attractor is a
(0, T)-attractor. However, given an attractor A, there exists a 7 > 0 such that forall T > 7, A is
a (0, T)-attractor.

2.2.3 Theory of Nonautonomous Attractors. Since the 1990s, the attractivity of nonau-
tonomous sets is intensively discussed. In particular, the notions of pullback attractor and forward
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attractor have been introduced (see, e.g., CHEBAN & KLOEDEN & SCHMALFUSS [40, 41] or
KLOEDEN & KELLER & SCHMALFUSS [97]). Closely related to pullback attractors are the so-
called random attractors (see, e.g2., ARNOLD [5], CRAUEL & DEBUSSCHE & FLANDOLI [55],
CRAUEL & FLANDOLI [57] and SCHENK-HOPPE [158]). The most general form of a pullback
attractor (see, e.g., ARNOLD [5, Definition 9.3.1, p. 483]) coincides basically with the notion of
the M-past attractor as introduced in Definition 2.1.1 (i). In the literature, M is called the at-
traction universe. Global pullback attractors are considered often, e.g., in CHEBAN & KLOEDEN
& SCHMALFUSS [41, Definition 2.4]. In this case, the universe M is supposed to contain all
fiber-wise constant and compact nonautonomous sets. The past attractor as introduced in Def-
inition 2.1.1 (i), however, is a local form of a pullback attractor. Here, the universe contains a
neighborhood of the attractor itself. Another form of a local pullback attractor is introduced in
LANGA & ROBINSON & SUAREZ [102, 104].

In contrast to pullback attractors, forward attractors play a minor role in the literature. Usually,
only global forward attractors are considered (for an exception, see AULBACH & RASMUSSEN
& SIEGMUND [16, Definition 3.4]). The M-future attractor of Definition 2.1.4 (i) provides a
very general form of a forward attractor. By choosing M as the set of all fiber-wise constant
and compact nonautonomous sets, one obtains the usual definition of a global forward attractor.
A local form of a forward attractor, however, is provided by the future attractor as introduced in
Definition 2.1.4 (ii).

Apart from these classes of attractors, pullback and forward attractors which are allowed to be
noncompact are introduced in AULBACH & RASMUSSEN & SIEGMUND [16, Definition 3.4].
Instead to be compact, attractors of this type are supposed to be “compactly generated”. This
notion includes some classes of noncompact nonautonomous invariant manifolds (see AULBACH
& RASMUSSEN & SIEGMUND [17, 18]), but is no proper generalization of a compact attractor,
since a compact attractor is not compactly generated in general.

2.3  BIFURCATION AND TRANSITION

This section is devoted to the introduction of various nonautonomous concepts of bifurcation and
transition based on the notions of attractivity and repulsivity from Section 2.1.

Throughout this section, let (0 : Tx P = P,pq : Dg CTx P x X = X),a € (a”,a™),
be a family of nonautonomous dynamical systems with a base set P and a locally compact metric
space (X, d).

2.3.1 Definitions. In addition to the four different time domains (past, future, all-time and
finite-time), we also distinguish between bifurcations of radii of attraction and repulsion and tran-
sitions of attractors and repellers. Attractors transitions are studied in, e.g., MA & WANG [113],
or see KLOEDEN & SIEGMUND [98], where also nonautonomous attractors are considered.

We begin with the definitions concerning the past of the system.

2.3.1 DEFINITION (PAST BIFURCATION AND TRANSITION). Letag € (a~, a™). We say,
(@, ¢,) admits a supercritical past bifurcation at a if there exists an . > o and a continuous
function u : D C O(p) x (a9, a) — X such that one of the following two statements is
fulfilled:
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(i) u(-, o) is a past attractive solution of (8, ¢,) for all & € (ag, &), and

oNa 1
is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim d(AS /10) =0

aNo

holds, otherwise, we call this bifurcation partial.

(i) u(-, &) is a past repulsive solution of (6, ¢,) for all a € (ag, @), and

. e _
lim iﬁﬂ(,’a) =0

aNog

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim d(Ry7,[(0)) =0

holds, otherwise, we call this bifurcation partial.

We say, (8, ¢,) admits a supercritical past attractor (past repeller, respectively) transition at
a if there exist an 0. > o and past attractors (past repellers, respectively) M, of (8, ¢,) for
a € (ag, @) with

lim limsup diam M, (0—,p) =0 forall p € P.

aNa0 o0

Accordingly, subcritical past bifurcations and past attractor (past repeller, respectively) tran-
sitions are defined by considering the limit a. ~o..

The following definition is devoted to the definition of future bifurcations and transitions.

2.3.2 DEFINITION (FUTURE BIFURCATION AND TRANSITION). Letag € (a_, a+). We
say, (0, ¢,) admits a supercritical future bifurcation at o if there exists an a > ag and a
continuous function u : D C O(p) x (ag, @) — X such that one of the following two
statements is fulfilled:

(i) u(-, o) is a future attractive solution of (6, ¢, ) for all & € (ag, &), and

. % _
lim Qlﬂ("a) =0

aNoQ

is fulfilled. In case X is a Banach space, we call this bifurcation total if
lim d (A7 [10}) =0

holds, otherwise, we call this bifurcation partial.

(ii) u(-, ) is a future repulsive solution of (8, ¢,) for all o € (o, @), and
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lim R

N0 n(a

)= =0
is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim d(R #(a)} =0

oNa
holds, otherwise, we call this bifurcation partial.

We say, (0, ¢, ) admits a supercritical future attractor (future repeller, respectively) transition
at a if there exist an & > o and future attractors (future repellers, respectively) M, of (0, ¢,)
for o € (agp, a) with

lim limsup diam M, (6;p) =0 forall p € P.

aNao  t—o0

Accordingly, subcritical future bifurcations and future attractor (future repeller, respectively)
transitions are defined by considering the limit o. ~a.

In the next definition, the notions of all-time bifurcation and transition are explained.

2.3.3 DEFINITION (ALL-TIME BIFURCATION AND TRANSITION). Letag € (a‘, a+).
We say, (0, ¢,,) admits a supercritical all-time bifurcation at a if there exists an & > o and
a continuous function u : O(p) x (ag, @) — X such that one of the following two statements
is fulfilled:

(i) wu(-,a) is an all-time attractive solution of (6, ¢,) for all a € (o9, &), and

lim Qlﬂ( @) = =0

N

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim d(A$; < a)|{0}

N0

holds, otherwise, we call this bifurcation partial.

(ii)) u(-, &) is an all-time repulsive solution of (8, ¢,,) for all o € (ag, &), and

lim SR#( @ = =0

aNog

is fulfilled. In case X is a Banach space, we call this bifurcation total if

lim d(R¢; " a)\{()})

aNoQ

holds, otherwise, we call this bifurcation partial.

We say, (0, p,) admits a supercritical all-time attractor (all-time repeller, respectively) transi-
tion at oy if there exist an & > aq and all-time attractors (all-time repellers, respectively) M,,
of (0, ¢,) fora. € (ag, &) with
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lim sup diam M,(p) =0.

aNaoQ pEP

Accordingly, subcritical all-time bifurcations and all-time attractor (all-time repeller, respec-
tively) transitions are defined by considering the limit a. ~o..

Finally, the following definition treats the concept of finite-time bifurcation and transition.

2.3.4 DEFINITION (FINITE-TIME BIFURCATION AND TRANSITION). Letag € (a‘, a+).
We say, (0, ¢,) admits a supercritical (p, T )-bifurcation at o if there exists an & > ag and a
continuous function u : OT (p) x (ag, @) — X such that one of the following two statements
is fulfilled:

(1) wu(-,a)isa(p, T)-attractive solution of (0, ¢,) for all a € (a9, @), and

lim A% — o

aNog ,u(~,a) =
is fulfilled.
(ii) wu(-,a) is a(p, T)-repulsive solution of (8, ¢,) for all o. € (ag, @), and

lim R2T) =0

aNaog lu(':a) -

holds.

We say, (0, ¢,) admits a supercritical (p, T)-attractor ((p, T)-repeller, respectively) tran-
sition at ag € (a_, a*) if there exist an @ > og and (p, T)-attractors ((p, T)-repellers,
respectively) M, of (0, ¢,) foro. € (ag, &) with

lim diam M,(p) =0.
oo

Accordingly, subcritical (p, T)-bifurcations and (p, T)-attractor ((p, T)-repeller, respec-
tively) transitions are defined by considering the limit a. ~o..

2.3.2 Examples. In this subsection, two nonautonomous differential equations are discussed
which are closely related to standard examples of equations admitting an autonomous bifurcation.
The first example is of pitchfork type and leads to a total nonautonomous bifurcation; the second
one is of transcritical type and gives rise to a partial nonautonomous bifurcation.

2.3.5 EXAMPLE (NONAUTONOMOUS PITCHFORK BIFURCATION). We consider the nonau-
tonomous differential equation

X = aa(t)x + b(r)x> = x(aa(t) + b(t)xz) (2.12)

depending on a real parameter a with continuous functions @ : R — Rand b : R — R for some
x > 0. The ODE (2.12) is a nonautonomous version of the well-known autonomous differential
equation

x:ax+x3:x(a +x2) )
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which admits a pitchfork bifurcation (see, e.g., GUCKENHEIMER & HOLMES [71, p. 150]). For
fixed a € R, (2.12) has already been discussed in Example 2.1.21, where we have derived suffi-
cient conditions concerning the attractivity and repulsivity of the trivial solution. The following
statements are direct consequences of these observations. The above nonautonomous differential
equation admits a

e total supercritical past bifurcation at a = 0 if

. oa() . a(r)
liminf ——— >0 and limsup ——— < o0,
t——00  b(t) >—00 D(1)

e total subcritical past bifurcation at a = 0 if

.. qalt ) a(t)
liminf — >0 and limsup — < o0,
t==0c0 b(t) ——oc b(?)
e total supercritical future bifurcation at o = 0 if
RO : a(r)
liminf ——— >0 and limsup ——— < o0,
=00 b(1) oo b(r)
e total subcritical future bifurcation at o = 0 if
t t
lim inf & >0 and limsup @ <00,
1—00 1) t—oo  b(1)
e total supercritical all-time bifurcation at « = 0 if
t t
inf —& >0 and sup —& <00,
teR  b(t) er b(1)
e total subcritical all-time bifurcation at & = 0 if
t t
inf&>0 and supa—<oo,
teR b(t) ter b(t)
e total supercritical (z, T')-bifurcation at a = 0 if
t
—%>O forall t e[z, 7+ T],
e total subcritical (z, T')-bifurcation at a = 0 if
t
%>0 forall t e [t,7 +T].

A generalization of this ODE is discussed in Section 6.2. It is also shown there that this example
admits attractor and repeller transitions.

2.3.6 REMARK. A special form of the above example (for constant functions a) is discussed
in LANGA & ROBINSON & SUAREZ [102, Proposition 3.1] and CARABALLO & LANGA [37,
Subsection 4.1].
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2.3.7 EXAMPLE (NONAUTONOMOUS TRANSCRITICAL BIFURCATION). We consider the
nonautonomous differential equation

X =aa(t)x + b(t)x2 = x(aa(t) + b(t)x)

depending on a real parameter a with continuous functions a : R — Rand b : R —» R for
some k¥ > 0. This ODE is a nonautonomous version of the well-known autonomous differential
equation

x=oax+x>=x(a+x)|,

which admits a transcritical bifurcation (see HALE & KOCAK [77, Example 2.3, p. 28]). Ana-
logously to Example 2.3.5, we see that the above nonautonomous differential equation admits
a

partial supercritical and subcritical past bifurcation at o = 0 if

.. . |a) , a(t)
liminf |—| >0 and limsup |—| < o0,
1——00 | b(t) t>—o0o |b(1)
e partial supercritical and subcritical future bifurcation at o = 0 if
t t
lim inf & >0 and limsup & <00,
=00 [b(t) oo | b(1)
e partial supercritical and subcritical all-time bifurcation at o« = 0 if
t t
inf & >0 and sup & < 00,
teR b(l) teR b(l)
e partial supercritical and subcritical (z, T')-bifurcation at a = 0 if
4
% >0 forall rer,7+T].

A generalization of this nonautonomous differential equation is discussed in Section 6.1.

2.4 OTHER NOTIONS OF BIFURCATION AND TRANSITION

In this section, several notions of bifurcation for (nonautonomous) dynamical systems are dis-
cussed with respect to their relationship to the concept of bifurcation and transition introduced in
the previous section.

In the first subsection of this section, the autonomous bifurcation theory is treated. As mentioned
in Section 1.2, the notion of the nonautonomous dynamical system is an abstraction of both topo-
logical skew product flows and random dynamical systems. In the recent studies of bifurcations of
nonautonomous dynamical systems, one should also distinguish between topological skew prod-
uct flows (ctf. Subsection 2.4.2) and random dynamical systems (cf. Subsection 2.4.3). So far,
there are only few approaches to the nonautonomous bifurcation theory without imposing special
hypotheses on the base set P such as compactness or existence of an invariant measure (cf. Sub-
section 2.4.4).

Please note that in Section 5.4, a relationship between the concept of finite-time bifurcation and
the bifurcation theory of adiabatic systems is pointed out.
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2.4.1 Autonomous Bifurcation Theory. As mentioned in CHOW & HALE [45] and MARS-
DEN & HUGHES [115], there are two distinct aspects of autonomous bifurcation theory: static and
dynamic. The static point of view is concentrated on the qualitative changes in the structure of the
set of zeros of a function as parameters are varied. The dynamic bifurcation theory, however, is
concerned with dynamical changes that occur in invariant sets (such as equilibria, periodic orbits,
heteroclinic orbits and invariant tori).

Since the concept of bifurcation and transition used in this thesis is based on notions of attractivity
and repulsivity, the static approach is too narrow in our situation, and we hope that the center
manifold theory, which had been so fruitful in dynamic bifurcation theory, will be a method for
future research in a higher dimensional nonautonomous bifurcation theory (cf. Example 7.2.8).
It is not clear a priori to what extent the method of Lyapunov-Schmidt (see, e.g., HALE [75,
Section 1]) is able to give a contribution in the nonautonomous context.

In the Introduction, an easy example already indicated that autonomous bifurcation phenomena
can be described in terms of the concepts of nonautonomous bifurcation and transition. Please
note also that in Chapter 6, one-dimensional nonautonomous bifurcations are studied, and Exam-
ple 6.1.3 shows that the nonautonomous patterns are applicable also in the autonomous context.
Moreover, it is shown in Chapter 7 that the classical bifurcation scenarios of saddle node, pitch-
fork, transcritical or Hopf type can be transferred to asymptotically autonomous equations. By
regarding an autonomous system which admits a bifurcation of this type as an asymptotically
autonomous system, one sees that the autonomous situation fits well into our context.

Interesting books on the topic of autonomous bifurcation theory are CHOW & HALE [45], GUCK-
ENHEIMER & HOLMES [71], HALE & KoOCAK [77], KUZNETSOW [100] and LUO & WANG &
ZHU & HAN [108]. For a brief introduction, see also CRAWFORD [59].

2.4.2 Bifurcation Theory of Topological Skew Product Flows. In the bifurcation theory of
nonautonomous dynamical systems where the base set is supposed to have a certain topological
structure, one distinguishes between attractor-repeller bifurcations and bifurcations of solutions.

An attractor-repeller bifurcation either occurs if a nontrivial attractor or repeller, respectively,
shrinks down to a trivial object by variation of the parameter (this corresponds to the notion of
transition), or if an attractor bifurcates from a repeller in the sense of Hausdorff distance. Please
note that the attractors and repellers under consideration are autonomous objects of the skew
product flow.

In JOHNSON & MANTELLINI [85], FABBRI & JOHNSON & MANTELLINI [66] and FABBRI &
JOHNSON [65], for one-dimensional nonautonomous differential equations with strictly ergodic
time dependence (e.g., quasi-periodic equations are of this type), attractor-repeller bifurcations
are considered. Bifurcations of attractors and repellers are also studied in JOHNSON & KLOEDEN
& PAVANI [84] and JOHNSON [83] for deterministic counterparts of the Two-Step-Bifurcation-
Pattern. These considerations are based on the studies of Ludwig Arnold and his coworkers in
the context of stochastic differential equations (see ARNOLD [5]). In GLENDINNING [69], a
bifurcation of nonchaotic strange attractors of a quasi-periodic differential equation is verified,
both numerically and analytically.

A bifurcation (of pitchfork and transcritical type) of almost periodic solutions of an almost peri-
odic ordinary differential equation is examined in KLOEDEN [96].

We also mention autonomous bifurcations of invariant sets on which the dynamics of the system
is nonperiodic, because the analysis requires—by means of the equation of perturbed motion—
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nonautonomous techniques. In JOHNSON [83] and JOHNSON & Y1 [86], former studies concern-
ing the bifurcation of invariant tori (see, e.g., SELL [168] and CHENCINER & [00sSS [42, 43])
are continued. The authors consider for an autonomous differential equation the loss of stability
of an invariant set (which is, for instance, the closure of a nonperiodic and bounded trajectory).
The bifurcation theory of tori with quasi-periodic flows whose frequencies satisfy the Diophantine
condition is well-developed (see BROER & HUITEMA & TAKENS & BRAAKSMA [36], BROER
[35] and BRAAKSMA & BROER [33]).

2.4.3 Bifurcation Theory of Random Dynamical Systems. To study bifurcation phenom-
ena of random dynamical systems, two different concepts have been pursued so far: the so-
called phenomenological approach (P-bifurcation) and the dynamical approach (D-bifurcation).
For fundamental explanations and comparisons, we refer to ARNOLD & NAMACHCHIVAYA &
SCHENK-HOPPE [8], ARNOLD [5, 6] and SCHENK-HOPPE [155, 156] (see also SCHENK-HOPPE
[157, 158]).

P-bifurcations describe changes in stationary probability densities in special families of random
dynamical systems. For instance, these densities exhibit transitions from one-peak to two-peak or
crater-like structures. The concept of P-bifurcation can be formalized using the notion of equiv-
alent probability densities, introduced by ZEEMAN [184, 185], which gives rise to a notion of
structural stability. There are many drawbacks to this phenomenological approach, which are
mentioned, e.g., in ARNOLD [5, Subsection 9.2.2]. Since P-bifurcations are static in the sense that
there is no connection to stability properties obtained by Lyapunov exponents, we cannot expect
a relationship to the concept of bifurcation introduced in this chapter.

Recently, the study of random bifurcation phenomena concentrated on D-bifurcations. A D-
bifurcation occurs if from an invariant reference measure, another invariant measure bifurcates
in the sense of weak convergence. It has been shown that this concept links the local bifurcation
of invariant measures with the stability determined by the Lyapunov exponents.

2.4.4 Bifurcation Theory of General Nonautonomous Dynamical Systems.  So far, there
have been two approaches in the study of bifurcation phenomena of nonautonomous dynamical
systems where no special hypotheses concerning the base set are made.

In KLOEDEN & SIEGMUND [98], a nonautonomous bifurcation is understood as a (continuous or
discontinuous) transition from a nontrivial (global) pullback attractor to a trivial pullback attractor.

In LANGA & ROBINSON & SUAREZ [102], for nonautonomous differential equations, notions
of Lyapunov pullback-stable and Lyapunov pullback-unstable solutions are introduced, and bi-
furcations in form of merging processes of two distinct solutions with different stability behavior
are studied by means of relatively simple examples. In their recent paper [104], the three authors
found sufficient conditions for the Taylor coefficients of the right hand side of one-dimensional
differential equations which guarantee the existence of such bifurcations. These conditions, how-
ever, are of a quite different form than the results obtained in Chapter 6 (cf. also the introduction
of Chapter 6).



CHAPTER 3

NONAUTONOMOUS MORSE
DECOMPOSITIONS

The global asymptotic behavior of dynamical systems on compact metric spaces can be described
via Morse decompositions. Their components, the so-called Morse sets, are obtained as inter-
sections of attractors and repellers. In this chapter, nonautonomous generalizations of the Morse
decomposition are established with respect to the notions of past and future attractivity and re-
pulsivity. The dynamical properties of these decompositions are discussed, and nonautonomous
Lyapunov functions which are constant on the Morse sets are constructed explicitly. Furthermore,
Morse decompositions of one-dimensional and linear systems are analyzed.

For a discussion of elementary properties of Morse decompositions, we refer to the original work
of CONLEY [52] and to RYBAKOWSKI [148, Chapter 3] (see also COLONIUS & KLIEMANN [49,
Appendix B2], ROBINSON [145], AKIN [3] and SCHMIDT [161]). Recently, OCHS [122] used the
notion of weak attractor to construct Morse decompositions for random dynamical systems (see
also CRAUEL & DUC & SIEGMUND [56]).

In this chapter, we suppose that (6 : Tx P — P,¢ : T x P x X — X) is an invertible NDS (this
implies that T = R or T = Z) with an arbitrary base set P and a compact metric space (X, d).
Moreover, we assume that all (past or future) attractors and repellers M under consideration fulfill
either P*(M) = P or M = §.

Since Morse decompositions for the future are obtained via time reversal from Morse decom-
positions for the past, only the results concerning past Morse decompositions are proved in this
chapter.

3.1 NONAUTONOMOUS ATTRACTOR-REPELLER PAIRS

In this section, it is analyzed if for a given nonautonomous attractor, there exists a corresponding
nonautonomous repeller and vice versa.

Due to the Axiom of Choice, there exists a set P* C P such that [p] N P* is a singleton for all
p € P. We write P* = P; U P with P containing all periodic points in P*, i.e., p* € P, if
and only if there exists a t € T* with p* = 6, p*, and P} := P*\ Py

Let R be a past repeller. Due to Proposition 2.1.2 (vii), there exists an # > 0 such that for all
p* € P*, there exists a t*(p*) > 0 with

lim d(p(=t,6-p")Uy(RO- p)|RO-c—p")) =0 forall = 1*(p").  (.1)
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For ¢ € (0, n], we define the compact nonautonomous set B- by

B (Op*) = { X\Ué“(’;((‘g—fp R ;iig’;; forall p* € P*and7 e T
and

B:(0—p*) := X\ U (R(0-;p*)) forall p* e Prandt eT.

3.1.1 THEOREM (EXISTENCE OF A PAST ATTRACTOR-REPELLER PAIR). Let R be a
past repeller, and set M := {B; : { € (0, n]} with B; defined as above. Then, there exists a
uniquely determined M-past attractor R* C B,,, which is also a past attractor. Furthermore,
R* is the maximal past attractor outside of R in the following sense: Any other past attractor
A D R* has nonempty intersection with R. We call (R*, R) a past attractor-repeller pair.

PROOF. We show that the hypotheses of Theorem 2.1.25 (i) are fulfilled by setting B := B,,.
Thereto, let ¢ € (0,5] and p € P. In case B(p) = X, the condition (2.2) certainly holds,
otherwise, there exist p* € P* and r > t*(p*) with O_, p* = p. Due to (3.1), there existsa > 0
with

d(p(—t, p)U,y(R(p))|R(O-p)) < g forall t > 1.

This means that ¢ (-1, p)U,(R(p)) C Us(R(6—;p)) for all r > 7. Thus, we have
2

o(—t, p)By(p) = X \ ¢(—t, p)Uy(R(p)) D B:(0_;p) forall 1 >1.

This implies the desired relation ¢(t, 0, p)B-(0—,p) C B(p) for all t > f. Therefore, Theo-
rem 2.1.25 (i) guarantees the existence of an M-past attractor R* C B;,. Due to Corollary 2.1.26,
R* is also a past attractor. Let A D R* be another past attractor. Then, there exists a p € P with
A(p) 2 R*(p). We choose an x € A(p) \ R*(p). Since A > (p, x) is a past attractor, there exists
an 77 > 0 with

lim d(p(.0- p)Us(p(—t, p)x)| A(p)) = 0.

Due to lim;_, o0 d (¢ (—t, p)x, R(6—;p)) = 0 (we will see this in Theorem 3.1.5 (ii)), there exists
a sequence {y,}nen in R(p) with

lim d(y,, A(p)) =0.
n—oo
Since R(p) and A(p) are compact, this implies that their intersection is nonempty. OJ

Based on Proposition 2.1.22, the construction of a future attractor-repeller pair is not difficult.

3.1.2 COROLLARY (EXISTENCE OF A FUTURE ATTRACTOR-REPELLER PAIR). Let A be
a future attractor. Then, there exists a uniquely determined future repeller A* C (P x X)\ A,
which is the maximal future repeller outside of A in the following sense: Any future repeller
R D A* has nonempty intersection with A. We call (A, A*) a future attractor-repeller pair.

PROOF. Because of Proposition 2.1.22, A is a past repeller of (4, ¢)~!. Due to Theorem 3.1.1,
there exists a corresponding past attractor A* of (4, ¢)~!. Then, A* is a future repeller of (6, ¢).
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The property that A* is the maximal future repeller outside of A follows easily from Theo-
rem 3.1.1. O

It is natural to ask if a past attractor implies the existence of a past repeller and, equivalently, if a
future repeller implies the existence of a future attractor. The following example shows that this
is not fulfilled.

3.1.3 EXAMPLE. The nonautonomous differential equation

with the function f : R x [0, 1] — R, defined by

2x — 1] =1 : t>0andx €[0,1]

Fox) = 2x — 1| —1 : t<Oandx €0, 4
Tl e-2(x—4) -1 : t<Oandx e[, 5L]
0 : t<Oandx e (&£, 1]

generates a nonautonomous dynamical system with P = R and X = [0, 1]. The invariant nonau-
tonomous set A := R x {0} is a past (as well as a future and an all-time) attractor. Assume, there
exists a past repeller A* C R x (0, 1]. Due to the invariance of A*, the form of the right hand side
implies that there exist y > % and 7; < 0 with

A*(t) C (y,1] forall r < 1y.
Thus, there exists a 7o < 71 with
A*(s) =A*(@t) and f(z,[y,1]) ={0} forall z,s < ;.
This contradicts the fact that A* is a past repeller.

3.1.4 REMARK. This example shows that there is no possibility to construct an all-time
attractor-repeller pair: The past attractor A is also an all-time attractor, and no corresponding
all-time repeller exists, since this would be also a past repeller. Furthermore, A is an all-time
repeller for the system under time reversal (see Proposition 2.1.22), and there is no corresponding
all-time attractor, since this would be an all-time repeller for the original system.

Now, some properties of nonautonomous attractor-repeller pairs are derived.

3.1.5 THEOREM (PROPERTIES OF NONAUTONOMOUS ATTRACTOR-REPELLER PAIRS).
Let (R*, R) be a past attractor-repeller pair. Then, the following statements are fulfilled:

(i) Pastisolation. There exists a § > O such that for all p € P, there exists at > 0 with
Ug(R*(0-:p)) NUp(R(O—;p)) =90 forallt > 1.

(ii) Backward convergence. Let p € P and C C X \ R*(p) be a compact set. Then, we
have

lim d(p(=t, p)C|R(O-;p)) =
(iii) Pullback convergence. For all p € P and all functions y : T — X with

liminf d(y (1), R(O-p)) > 0,
I— o0
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we have
lim d(p(,0-p)y (1), R*(p)) = 0.

Let (A, A*) be a future attractor-repeller pair. Then, the following statements are ful-
filled:

(i) Future isolation. There exists a f > 0 such that for all p € P, there exists at > 0 with
Ug(AG:p)) NUR(A*(G;p)) =0 forallt > 7.
(ii) Forward convergence. Let p € P and C C X \ A*(p) be a compact set. Then, we have
lim d(p(r, p)C|A®@p)) =0.
(iii) Pushforward convergence. For all p € P and all functions y : T* — X with
litg(i)gf d(y (1), A(Q,p)) >0,

we have
lim d(p(=1,6,p)7 (1), A*(p)) = 0.

PROOF. Let (R*, R) be a past attractor-repeller pair with # and M defined as in the introduction
of this section.

(i) Theorem 3.1.1 implies R* C B,,. The assertion follows by choosing f := g

(ii) Let p € P and C C X \ R*(p) be a compact set. Since R* is an M-past attractor and thus a
{B,}-past attractor, there exists a r > 0 such that

CNo(t,0_p)By(0—p)=90 foralt>r1.

Hence, for all t > 7, the relation ¢ (—t, p)C N B,(0—;p) = ¥ is fulfilled, and therefore, we have
(iii) We set ¢ := % min {7, liminf;, o d(y (), R(6—;p))} and see that there exists a z > 0 with

y(t) € B(0_;p) forall t > 7.

This finishes the proof, since B- € M and R* is a M-past attractor. U

Theorem 3.1.1 implies that, given a past repeller R, the set R* is the uniquely determined past at-
tractor outside of R with the property of pullback convergence as described in Theorem 3.1.5 (iii).
It is easy to see that such a uniqueness result is not valid for past repellers, i.e., it is possible that
(A, Ry) and (A, Ry) are past attractor-repeller pairs with Ry # R,. The following proposition
says that in this case, R; and R; are converging to each other when time tends to the past.

3.1.6 PROPOSITION (FORM OF NONUNIQUENESS OF NONAUTONOMOUS ATTRACTOR-
REPELLER PAIRS). Let Ry and R; be past repellers with R = R;. Then, we have

lim dH(Rl(G_,p), R2(9_tp)) =0 forall pe P.
— o0

Let Ay and A be future attractors with A7 = A3. Then, we have
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lim dy(A1(0;p), A2(6;p)) =0 forall pe P.
— o0

PROOF. Suppose, there exist a p € P and sequences {f,},en in T and {y,}nen in X with
lim, o0, = 00 and y, € R1(0—;, p) such that

liminf d(yn, R2(6—, p)) > 0.
n— oo
Hence, Theorem 3.1.5 (iii), applied to the attractor-repeller pair (R5, R,), implies that
lim d(p (s, 0—,p)yn R3(p)) = 0.

Since ¢ (ty, 04, p)yn € R1(p) and Ry and R} = R; are compact nonautonomous sets, we obtain
R1(p) N Ry (p) # @. This is a contradiction. 0

3.2 NONAUTONOMOUS MORSE DECOMPOSITIONS

In this section, the notion of the attractor-repeller pair is generalized by considering Morse de-
compositions.

3.2.1 DEFINITION (NONAUTONOMOUS MORSE DECOMPOSITIONS). A family
{M{, M3, ..., M,} of nonautonomous sets, the so-called Morse sets, is called past Morse
decomposition if the representation

M; =R’ NR;— forallie{l,...,n}
holds with past repellers
PxX=Ry2R12---2R, =190
fulfilling® = Ry C R} C---C R, =P x X.
A tamily {M, M», ..., M,} of nonautonomous sets, the so-called Morse sets, is called future
Morse decomposition if the representation
M; =A;NA;_, forallie{l,...,n}
holds with future attractors
B=A)C A C---CA, =PxX

fulfilling P x X = A% D AT D --- D Ar =0.

3.2.2 REMARK. Let (A, R) be a past (future, respectively) attractor-repeller pair such that the
relation # C A C P x X is fulfilled. Then, {A, R} is a past (future, respectively) Morse decom-
position.
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3.2.3 PROPOSITION (BASIC PROPERTIES OF NONAUTONOMOUS MORSE DECOMPOSI-
TIONS). The Morse sets of a past Morse decomposition {M1, ..., M,} are nonempty, in-
variant, pairwise disjoint and past isolated, i.e., there exists a f > 0 such that for all
1 <i<j<nandp e P, there exists at > 0 with

Up(M;(0—p)) NUp(M;(0_;p)) =9 forall t > 7.

The Morse sets of a future Morse decomposition {M1, ..., M,} are nonempty, invariant, pair-
wise disjoint and future isolated, i.e., there exists a f§ > O such that forall 1 <i < j < n and
p € P, there exists at > 0 with

Up(M;(0;p)) N Up(M;(6;p)) =0 forallt > 1.

PROOF. Let M; = R} N R;— be a Morse set. Since RY_; C R}, we can choose a p € P and an
x € R'(p)\ R’_,(p). Since R} > (p, x) is a past attractor, there exists an 7 > 0 with

lim d(p(t, 0~ p)Uy(p(—t, p)x)|R} (p)) = 0.

Due to lim,_>ood(go(—t, p)X, R,-_I(Q_,p)) = 0 (cf. Theorem 3.1.5 (ii)), this means that there
exists a sequence {y,}nen in R;—1(p) with

lim d(yn, R} (p)) =0.
n—oo

Since R;—1(p) and R (p) are compact, this implies M; = R N R;_; # @. Furthermore, M; is
the intersection of two invariant nonautonomous sets and thus invariant. Choose another Morse
set M; = R;’f N R;j_;. W.lo.g, we assume j > i. Then, we get

M; ﬂMj = R;kﬂR,'_l ﬂR;ﬂRJ‘_l = R;k_l ﬂRj_] - R;—l ﬂRj_] =40.
The fact that the Morse sets are past isolated is an easy consequence of Theorem 3.1.5 (i). 0

As in the autonomous case, nonautonomous Morse decompositions are not uniquely determined.

3.2.4 DEFINITION. We say, the past Morse decomposition {M1, ..., My} is finer than the
past Morse decomposition {Ml, e, Mm} if

m
UMi(Q_,p) =0 forallpe P

i=1

n
lim d | | JMi6-p)

t— 00
i=1

is fulfilled.
We say, the future Morse decomposition {Mj, ..., My} is finer than the future Morse decom-
position {Ml, e, Mm} if

n
lim d ( | JM:@6:p)

t—00

m
UMi(Q,p) =0 forall pe P
i=1

i=1

is fulfilled.
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3.2.5 REMARKS.

@

(ii)

The above definition is a generalization of the notion of a finer (autonomous) Morse de-
composition. In the autonomous case, a Morse decomposition {M1, ..., M, } is called finer
than the Morse decomposition {Ml, e Mm} if for all j € {1,...,m}, there exists an
i e{l,...,n}suchthat M; C 1\7Ij (see, e.g., COLONIUS & KLIEMANN [49, p. 542]). It is
easy to see that this is equivalent to

n m
d UMi UMi =0.
i=1 i=1

The additional limit in our nonautonomous context is motivated by Proposition 3.1.6.

There are different forms of nonuniqueness for the Morse sets. As seen in Proposition 3.1.6,
two past attractor-repeller pairs are converging to each other in case the past attractors are
equal. One can find examples to show that such a (weak) form of nonuniqueness is not valid
for arbitrary Morse decompositions (i.e., those consisting of more than two sets). However,
in the special cases of one-dimensional and linear systems (cf. Section 3.4 and 3.5), one
obtains similar results as in Proposition 3.1.6 (cf. Proposition 3.4.2 and 3.5.5).

The following theorem shows that Morse sets are important for the asymptotic behavior of nonau-
tonomous dynamical systems.

3.2.6 THEOREM (DYNAMICAL PROPERTIES OF NONAUTONOMOUS MORSE DECOMPO-
SITIONS). Pullback convergence. Let {M, ..., M,} be a past Morse decomposition obtained
by the finite sequence of past repellers Ry O --- D R,. Then, for all p € P and all functions
y : T — X with

t— o0
j=1
we have
n
lim d [ (e, 60-p)y ), |J M;(p) | =0.
j=1
Pushforward convergence. Let {M, ..., M,} be a future Morse decomposition obtained by

the finite sequence of future attractors Ao C --- C A,. Then, for all p € P and all functions
y : Tt — X with

liminf d ( y (1), | ) 0R;(6-p) | > 0,

n
liminfd |y (), (] o4;@p) | >0,

j=1
we have
n
lim d | o(=1,6:p)y (). | M;(p) | =0.
j=1
PROOF. We assume w.l.0.g. that there exists ani € {1, ..., n} with

y(t) € Ri—1(6—;p) and vy (t) ¢ R;(O—,p) forall t > 0.
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Then, liminf;_; o d(y (t), OR; (Q_tp)) > 0 yields liminf,_, o d(y (1), R (0_,p)) > (. Therefore,
Theorem 3.1.5 implies that

lim d(p(t,0-p)y (), R} (p)) =0. (3.2)
t—00
Assume, there exist an ¢ > 0 and a sequence {t,,},cn in TT with lim,,_, o 2, = 0o and
d(¢(tn, 01, p)y (), Mi(p)) > ¢ forall n e N. (3.3)

W.Lo.g., the sequence {¢ (1, 0, p)y (t2)}, _,, in Ri—1(p) is convergent with limit xo € Ri—_1(p)
(R;—1(p) is compact). Moreover, xo € R(p), since (3.2) holds and R (p) is compact. Thus,
xo € M;(p) = R(p) N R;—1(p). This contradicts (3.3) and finishes the proof of this theorem.

OJ

3.2.7 REMARK. In contrast to attractor-repeller pairs, backward and forward convergence con-
ditions as described in Theorem 3.1.5 do not hold for arbitrary Morse decompositions. However,
in the special cases of one-dimensional and linear systems (cf. Section 3.4 and 3.5), one obtains
similar results as in Theorem 3.1.5 (cf. Theorem 3.4.1 and 3.5.4).

If the backward (in case of a past Morse decomposition) or forward (in case of a future Morse
decomposition) convergence holds, the following uniqueness result concerning the past attractors
or future repellers, respectively, is fulfilled.

3.2.8 PROPOSITION. Let {My, ..., M,} be a past Morse decomposition obtained by the fi-
nite sequence of past repellers Ry O --- D R,. We assume that the backward convergence
holds, i.e., for all (p, x) € P x X, there exists ani € {1, ..., n} with

lim d(p(—t, p)x, M;(0-1p)) =0.
Then, the representation
Ri = 1(p.x): lim d [ g(=1, p)x, | Mj@6-p)| =0¢ foralliefl,... n)
j=1

holds, i.e., the past attractors of the past Morse decomposition are uniquely determined.

Let{M,, ..., M,} be a future Morse decomposition obtained by the finite sequence of future
attractors Ag C --- C A,. We assume that the forward convergence holds, i.e., for all
(p,x) € P x X, there existsani € {1, ...,n} with

lim d(go(t, p)x, M; (Htp)) =0.
t— 00
Then, the representation

n

Af=1(p,x): lim d [ 9(, p)x, U M;@p) | =0} foralliefl,... n)
j=i+1

holds, i.e., the future repellers of the future Morse decomposition are uniquely determined.
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PROOF. (C) Let (p, x) € R}. We choose j € {1, ..., n} such that
0= lim d(p(~t, p)x. M;(0~p)) = lim d(p(~t, p)x. Rj-1(0~P)).
The assumption j > i leads to
lim d(p(—t, p)x, Ri(0—1p)) =0.
1— 00

This contradicts Theorem 3.1.5 (i), since ¢ (—¢, p)x € R’ (0, p) forall ¢ € T.
(2) Let (p, x) € (P x X) \ R". Then, Theorem 3.1.5 (ii) implies

lim d(p(~t, p)x, Ri(0~p)) = 0. (34)
t— 00
The assumption

i
lim d | o(=t, px. | Mj©O-p) | =0

j=1
leads to
lim d(p(=t, p)x, R} (0—p)) =0,
since M; C R} for j € {1,...,i}. Because of Theorem 3.1.5 (i), this is a contradiction to (3.4).

OJ

3.3 LYAPUNOV FUNCTIONS FOR NONAUTONOMOUS MORSE
DECOMPOSITIONS

In this section, nonautonomous Lyapunov functions which are constant on the Morse sets and
which strictly decrease outside them are obtained explicitly. A similar construction is used in
CONLEY [52, §5 and §6 of Chapter II] (see also FRANKS [68, §1], ROBINSON [145, Chapter X]
and NORTON [121]), and this technique has also been adapted in KLOEDEN [93, 94] and ARNOLD
& SCHMALFUSS [7] in the nonautonomous setting.

First, the case that the nonautonomous Morse decomposition is given by a nonautonomous
attractor-repeller pair is treated.

3.3.1 LEMMA. Let (A, R) be a past (future, respectively) attractor-repeller pair. Then, there
exists a function L : P x X — [0, 1] which is continuous with respect to x € X such that
Lla=0,L|g=1and

L(Q;p,go(t, p)x) < L(p,x) forallt> 0and(p,x)e (P xX)\(AUR)

is satisfied.

PROOF. In case of a past attractor-repeller pair, R* = A is fulfilled, and we define the function
V:PxX—[0,1]by

V(p,x) = dx, R*(p)) forall (p,x) e P x X .

~ d(x, R*(p)) +d(x, R(p))
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This function is continuous with respect to x € X and fulfills V|z+ = 0, V|g = 1, but is not
necessarily decreasing along solutions. Therefore, we define by

V*(p,x):= in(f) V(H_Sp, o (—s, p)x) forall (p,x) e P x X
5>
a function V* : P x X — [0, 1], which obviously satisfies V*|g« = 0, V*|g = 1 and

V*(Op,o(t, p)x) < V*(p,x) forallt > 0 and (p,x) € P x X. To prove that V*(p, -) is

continuous for all p € P, we first choose £ € X \ R*(p) and ¢ > 0. Then, there exists a >0
such that C := Us({) € X \ R*(p). It follows that

lim inf V(H_Sp, o(—s, p)x) =1,

s—> 00 xeC

since limg_, oo d(go (=s, p)C, R(H_sp)) = 0 (cf. Theorem 3.1.5 (ii)) and there exist a f > 0 and

an § > 0 such that d((o(—s, p)C, R*(H_sp)) > g for all s > § (cf. Theorem 3.1.5 (i), (ii)). Thus,
there exists an sg > 0 such that

ing V(0—sp,¢(—s,p)x) > 1 —¢ forall s > s0.
xe

Due to the continuity of V (6(, p), p(-, p,-)) : T x X — R, there exists a J € (0, d) such that
‘V(H_sp, o(—s, p)f) - V(Q_sp, o(—s, p)x)| <¢ forall x e Us()and 0 < s < 59.

This implies that V*(p, -) is continuous in & ¢ R*(p). The continuity of V*(p,-) in & € R*(p)
follows directly from the continuity of V. Please note that V is not strictly decreasing along
solutions in (P x X) \ (R* U R). Therefore, we define L to be a weighted average of V* over the
backward solution:

o0
L(p, x) ::/ e *V*(0—sp,¢(—s, p)x)ds forall (p,x)e P x X.
0

This function is obviously continuous with respect to x € X, and we have

0
L(O:p, o(t, p. x)) = /O SV (0,0 p. 0(=s, 6, p)p 0, p)x) dis
0
— /0 eV (0,030, (1, 05 p)p(—s, p)x) ds

0.9]
< / e V*(0—sp, p(—s, p)x)ds = L(p, x).
0

To prove that this function is also strictly decreasing along solutions in (P x X) \ (R* U R),
we assume that L(Htp,(/)(t, p)x) = L(p,x) forsomet > Oand x € (P x X)\ (R* UR).
Then, V*(0—sp, ¢(—s, p)x) = V*(0;—sp, 9(t — s, p)x) for all s > 0. This is impossible, since
V*(p,x) € (0,1) and limy_,c V*(6—sp, 9 (—s, p,x)) = 0. O

In the following theorem, the above Lyapunov function for attractor-repeller pairs is extended to
Morse decompositions.

3.3.2 THEOREM (LYAPUNOV FUNCTIONS FOR NONAUTONOMOUS MORSE DECOMPO-
SITIONS). Let {My, ..., M,} be a past (future, respectively) Morse decomposition. Then,
there exists a function L : P x X — [0, 1] which is continuous with respect to x € X such
that L|y;, = i=1 fori e {1,...,n} and

n—1
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L(0:p,o(t, p)x) < L(p,x) forall t > 0and(p,x) e (P x X)\ (M;U---UM,)

is satisfied.

PROOF. Let P x X = Ry 2 Ry 2 --- 2 R, = 0 be the sequence of past repellers leading to the
given past Morse decomposition, i.e.,

M; =R'NR;_; forallie{l,...,n}.

Furthermore, let L;, i € {1,...,n — 1}, be the Lyapunov function corresponding to the past
attractor-repeller pair (R, R;) as introduced in Lemma 3.3.1. We define

n—1
L(p,x):= LZLi(p,x) forall (p,x) e P x X.

n—1 P
Choose (p,x) € M, arbitrarily, and let j € {1,...,n — 1}. Then (p,x) € R; if and only if
jefl,....i—1},and (p,x) € R} ifand only if j € {i,...,n — 1}. This implies L|y, = =1
forall i € {1,...,n}. Now choose (p,x) € (P x X)\ (M; U---U M,). Then, there exists a
Jj e {l,...,n} with (p,x) ¢ R; U R;. This means that Lj(Htp,(p(t, p)x) < L;(p, x) for all
t > 0 and finishes the proof of this theorem. U

3.4 NONAUTONOMOUS MORSE DECOMPOSITIONS IN
DIMENSION ONE

In this section, Morse decompositions of nonautonomous dynamical systems whose phase space
is a compact interval are studied. In this special case, stronger results concerning the convergence
behavior of the system and the nonuniqueness of the Morse sets are obtained.

Let [ C R be a compact interval and ((9 IxXP—>P,p:TxPxl— I]) be a nonautonomous
dynamical system.

3.4.1 THEOREM (DYNAMICAL PROPERTIES OF NONAUTONOMOUS MORSE DECOMPO-
SITIONS IN DIMENSION ONE). Let {My, ..., M,} be a past Morse decomposition obtained
by the finite sequence of past repellers Ry O --- D R,. Then, the following statements are
fulfilled:

(i) Pullback convergence. For all p € P and all functions y : Tt — [ with

n
liminf d y(r>,UlaR,~(e_,p) >0,
J:

we have

n
lim d [ o(t.0-p)y ), |JM;(p) | =0.
j=1
(ii) Backward convergence. For all (p, x) € P x [, there exists ani € {1, ..., n} with
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lim d((”(_t’ p)xa Ml(e—l‘p)) =0.
11— 00

Let {M, ..., M,} be a future Morse decomposition obtained by the finite sequence of future
attractors Ao C --- C A,. Then, the following statements are fulfilled:

(i) Forward convergence. For all (p, x) € P x |, there exists ani € {1, ..., n} with

lim d(p(, p)x, Mi(6,p)) =0.

— o0
(ii) Pushforward convergence. For all p € P and all functions y : T — I with

n
liminf d | (1), | 04;@p) | >0,
j=1
we have

n
lim d | o(=1,6p)y (). | M;(p) | =0.
j=1

PROOF. (i) This assertion is also valid for general Morse decompositions and was proved in
Theorem 3.2.6.
(ii) Choose (p, x) € P x [ arbitrarily. Then, there exists an i € {1, ..., n} such that

x € R'(p) and x ¢ R’ (p).

In case x € R;_1(p), the asserted limit relation follows, since then x € M;(p) and M; is invariant.
We therefore assume x ¢ R;_1(p) from now on. Due to the topology of 1, ¢ is order preserving in
the following sense: For fixed ¢ € T, exactly one of the following two statements is fulfilled:

e yi < y2implies ¢(z, p)y1 < @(t, p)y2,
e yi < y2implies ¢(z, p)y1 > ¢(, p)y2.
Since lim;—, 00 d (¢ (—1, p)x, Ri—1(6—;p)) = O (cf. Theorem 3.1.5 (ii)), this implies that there
exists a y € R;_1(p) such that
lim |p(—t, p)x — o(—t, p)y| =0. (3.5)
=00

Because R is a past attractor, there exists an 7 > 0 such that

R/ (p) =limsup ¢(t, 60— p)Uy(R; (0~ p))

t—00

(cf. Remark 2.1.3 (ii)). This implies limsup,_, ¢ (t,0—_;p)U,(p(—t, p)x) C R:(p). Due to
(3.5), this leads to y € R/(p). Hence, y € M;(p), and this finishes the proof of this theorem.
O

In our special situation, Proposition 3.1.6 can be generalized.

3.4.2 PROPOSITION (FORM OF NONUNIQUENESS OF THE MORSE SETS). Let
{My,...,M,} and {Ml, e, Mn} be past Morse decompositions obtained by the finite se-

quences of past repellers Ry O --- D R, and ﬁo D---D I%n. We assume that



3.4 Nonautonomous Morse Decompositions in Dimension One 59

R* =R foralliel{l,...,n—1}.

14 l

Then, the relation

lim dy(M;(©0-:p), M;(0—;p)) =0 foralli €{l,...,n}andp e P
— 00

is tulfilled. A A
Let{M,,..., M,} and {Ml, e, Mn} be future Morse decompositions obtained by the finite

sequences of future attractors Ay C --- C A, and Ao c---C An. We assume that
A} :Al* forall i e {l,...,n—1}.
Then, the relation

lim dy(M;©,p), Mi(0,p)) =0 forallie{l,...,n}andp € P
t— 00

is fulfilled.

PROOF. Choose i € {1,...,n}and p € P arbitrarily. W.l.o.g., we only show the relation
lim d(M;(0-p)|M; (0~ p)) = 0.
=0

The proof is divided into three steps. .
STEP 1. There exists a past repeller R;—y D R;—y with R, = R _, such that

M;(p) := R (p) N Ri—1(p) forall p e [p]

has only finitely many connected components.
Since R is a past attractor, there exists an # > 0 such that

R;(p) =limsup ¢(t, 0, p)Uy(R; (6~ p))

r—0o0

(cf. Remark 2.1.3 (ii)). Since ¢ is continuous and U, (R (6 p)) has only finitely many connected
components for r € T, this implies that R (p) has only finitely many connected components.
Because R;_1 is a past repeller, there exists a f > 0 such that

lim d(p(=t, PUp(Ri—1 (P))| Ri-1(0-1p)) = 0.
Hence, the nonautonomous set Ri_l, defined by

p(t,p)clsUs(Ri—1(p)) : p=6;p forsomet el
2

Ri_ p) =
) [ Ri—1(7) : B elp)

is also a past repeller fulfilling Iéf_l = R_, (cf. Proposition 2.1.27 (iii)). Moreover, for all

p € [p], the set Ié,-_l (p) has only finitely many connected components, since ¢ is continuous and
clsUp (R;—1(p)) has only finitely many connected components. This implies the assertion.
2

STEP 2. For all connected components C of M;(p), we have

lim d(p(—t, p)C[M;(0-1p)) = 0.
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Let C = [c1, c2] be a connected component of M;(p), and choose ¢ > 0 arbitrarily. Due to
Theorem 3.4.1 (i1), there exists a 71 > 0 such that we have

d(p(~t, p)cj, Mi(O0_p)) < % forall 7 > 7, and j € {1,2}. (3.6)

Furthermore, because of Proposition 3.1.6, there exists a 7o > 71 with

&

di (Ri—1(0—:p), Ri—1(0—;p)) < 5 forall 1> 7. (3.7)

Lett > 15 and x € ¢(—t, p)C. In case min{lx — o(—t, p)cil, |x — o (—t, p)czl} < 3, the
inequality (3.6) implies that d (x, M; (60—, p)) < ¢. Otherwise, since x € R;_{(f—,p) and due to
(3.7), there existsa y € Ri_ (0—;p) with |x — y| < 5. Obviously,

y € p(=t, p)C C p(—t, p)Mi(p) C R} (6 p)

is fulfilled. Hence, y € M; (60—, p), and thus, d (x, M; (60—, p)) < ¢. This finishes the proof of this
step.
STEP 3. The relation .

tlggo d(Mi (G—tl?)|Mi (9—117)) =0

is fulfilled.
Since M;(p) has only finitely many connected components, this assertion follows from Step 2 and
the fact that M; D M;. Il

3.5 NONAUTONOMOUS MORSE DECOMPOSITIONS OF LINEAR
SYSTEMS

In this section, Morse decompositions of linear nonautonomous dynamical systems are analyzed.
Under the assumption that the base space is chain recurrent, such (autonomous) Morse decompo-
sitions of the corresponding skew product flow have been studied in SELGRADE [163], SALAMON
& ZEHNDER [154] and COLONIUS & KLIEMANN [49, Chapter 5] (see also COLONIUS & KLIE-
MANN [48, 50] and BRAGA BARROS & SAN MARTIN [34]).

Given N e N,let (0 : Tx P — P, ¢ : Tx P xRN — R") be a linear nonautonomous dynamical
system, i.e.,

o(t, p,ax + fy) =ap(t, p,x)+ Bo(t, p,y) forall a,feR,teT,pe Pandx,yecR".
Thus, there exists a matrix-valued function ® : T x P — R¥*YN with ® (¢, p)x = ¢(¢, p, x) for
allt €T, p € P and x € RY. We suppose that (0, ¢) is invertible, i.e., T=Ror T = Z.

For our purpose, R is equipped with the Euclidian norm | - ||, induced by the Euclidian scalar
product (see Section 1.1). The NDS (8, ¢) canonically induces a nonautonomous dynamical sys-
tem (@, P®) on the real projective space PV ~! of the vector space R by defining

P®(z, p)Px := P(®(z, p)x) forall 1 € T,p e Pandx € RY

(see also COLONIUS & KLIEMANN [49, Lemma 5.2.1, p. 149]). For basic properties of the
projective space and notation, we refer to Appendix A.3.
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The main observation of the following lemma is that past attractors and future repellers in PY~!
are linear nonautonomous invariant manifolds in RY (cf. Definition 4.1.1). For a similar result,
see SALAMON & ZEHNDER [154, Proposition 2.9] and COLONIUS & KLIEMANN [49, Lemma
5.2.2.,p. 149].

3.5.1 PROPOSITION (PAST ATTRACTORS AND FUTURE REPELLERS IN PV~1). Let A be
a past attractor of (6, P®). Then, for all p € P and all compact sets C ¢ S¥N=1\ P~1A(p),

we have
. SUp,esn-1np-1(p) 1P (=1, p)oll
lim =

=00 inf,ec [|D(—t, p)wl|

Moreover, P~ A is a linear nonautonomous invariant manifold in RV, i.e., P~ A is an in-
variant nonautonomous set and for all p € P, the set P"'A(p) is a linear subspace of
the RN. Let R be a future repeller of (6, P®). Then, for all p € P and all compact sets
C c S¥=1\ P~'R(p), we have

lim SupvesN—lm[P—lR(p) “(D(ta p)D” .
1—00 inf,ec |D(, pw||

Moreover, P! R is a linear nonautonomous invariant manifold in R" .

PROOF. Let A be a past attractor of (6, P®), and choose a p € P and a compact set
C c S¥~1'\ P~'A(p) arbitrarily. First, we define for any nonzero v € P~'A(p) and w € C
the two-dimensional linear subspace L, , C RY by

Lyw:={ro+sw:r,seR}.

The proof of this proposition is divided into five steps.
STEP 1. Forall0 # v € P~'A(p) and w € C such that Pv is a boundary point of A(p) NPL,
relative toPL, ,,, we have

@ (=2, pol
m ——— =
=00 ||®(—t, p)w]

Since A is a past attractor, there exists an # > 0 such that
Jim d(PO(1, 0 p)Usy(AO-1p))|A(p)) = 0. (3.8)

Due to Lemma A.3.1, there exists a ¢ € (0, 1) such that for all nonzero uy, u, € RN with
(Ui, uz)?

e r)
loay 112|212 ’

we have
d[P([Pul, [Puz) <n7.

We argue negatively and suppose that there exist a y > 0 and a sequence {f,},en With
lim,,— » t; = —0o0 such that

Ot
19U )0l atl e .
D (2, p)oll
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For nonzero ¢ € R with |c| sufficiently small, this implies that for all n € N,

(© (14 p)(cw + 0), D1, p)o)’
19 (i, (et +0) 2@ (1 pIVI12
O, pw, Ot pIO) + 2 (1, pOIHP(tn, )1, © (1, IV) + Q1 pIo]|*
~ 210, PY0IRI Rty PV I + 2] Dt pIOIAD (tn, pIw, D1, pIV) + 1D (2, p)0II*
>1—-0

holds. Hence, for |c| > O sufficiently small, we have
dp (IP(D(I,,, p)P(cw + v), A(G,np)) <n forall n eN.
This implies
dp ([P(cw +0), A(p)) = nlgrolo dp (IP(cw +0), A(p))

= lim dp(PO(=ty, 0, p) PO (1, p)P(cwo +v), A(p))
€Uny (A, p)

W

This is a contradiction, since Po is assumed to be a boundary point of A(p) N PL, ,, in PL, 4,
and thus, the first step of this proof is finished.

STEP 2. For all nonzerov € P~'A(p) and w € C, the set A(p) N PL,_, is a singleton.

Please note that any pointin PL, ,, \ {Pv} is given by P(w + cv) for some ¢ € R. It follows from
Step 1 that

(@@, p)(w + cv), O, p)w)2
1m
15—c0 | ®(t, p)(w + cv) 2| O, p)w]?
LG pwl* + 2|0, pywlH@ @, p)v, B, p)w)+ (O, p)v, B, p)w)
1=>=00 | ®(t, pwll* + 2| O(t, p)wlX@ (2, p)o, D(t, p)w) + 2| D(t, p)o|?|D(t, p)w]?
=1

in case Po is a boundary point of A(p)PL, , relative to PL, ,,. This implies with Lemma A.3.1
that

lim dp ([PCD(—I, p)P(w + cv), PO(—t, p)[Pw) =0,

1— 00

and hence, P(w + cv) ¢ A(p). Therefore, A(p) N PL, ,, consists of a single point.
STEP 3. For all nonzerov € P~'A(p) and w € C, we have

o pol _
=% [O(=1, p)ol

This follows directly from Step 1 and Step 2.
STEP 4. P~'A(p) is a linear subspace of RV
We have shown that for any two-dimensional subspace L, ., the set A(p)NPL, , is either empty,
equals PL, ,, or consists of a single point. This implies that P~ A intersects each fiber in a linear
subspace.
STEP 5. We have

lim SUP, esN-1nP-14(p) |®(—t, p)o]l _

100 infyec [[@(—2, pwl|
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We assume to the contrary that there exist sequences {t, },en in R, {0, }nen 1n sh-1n IP_IA( p) and
{wp}nen in C such that lim, 5« #, = —o0 and, w.l.o.g., lim, 00 v, = v and lim, 0 W, = W
for some v € P~'A(p) N S¥~!and w € C, and the following property is fulfilled: There exists a
y > 0 such that
19ty YOI _
T, o~ =
1D (0, p)oall

We write @,, := D (t,, p). Similarly to Step 1, for nonzero ¢ € R with |c| sufficiently small, this
implies that forall n € N,

forall n € N.

(@ (ctn + vn), Dpv,)
1D, (ctwn + 02) P D0, 12
@10, ©0,) + 261 Dy0, 12D 0, D) + |0 I*
@0, 210412 + 26 @0, [2{@ 10, By + (@0, [14
>1—-0

holds, with 0 € (0, 1) chosen as in Step 1. Hence, for |c| > O sufficiently small, we have
dp ([P(I)(tn, p)P(cw, + v,), A(Q,np)) <pn forall n e N.

Since P(cw + v) ¢ A(p) (due to Step 2, A(p) N PL, ,, is a singleton), there exist an nyp € N and
a f > 0 such that cw, + v, ¢ Up(A(p)) for all n > np. Similarly to Step 1, using (3.8), this
implies a contradiction. 0J

Concerning past repellers and future attractors, we can not expect that their fibers give rise to
linear subspaces, since they are intrinsically nonunique (cf. Proposition 2.1.27). The following
lemma, however, says that for any past attractor or future repeller, a linear counterpart in form of
a past repeller or future attractor, respectively, can be found easily.

3.5.2 PROPOSITION (PAST REPELLERS AND FUTURE ATTRACTORS IN PV~1), Let A be
a past attractor of (6, P®) and R ¢ P x PN~! be an invariant nonautonomous set such that
P~'R(p) is a linear subspace of the R" and

P'A(p) ® P~ 'R(p) =RN forall pe P.

Then, R is a past repeller, and the relation A = R* is fulfilled.
Let R be a future repeller of (6, P®) and A ¢ P x PN~! be an invariant nonautonomous set
such that P! A(p) is linear subspace of the RN and

P~'A(p) ®P'R(p) =R"N forall pe P.

Then, A is a future attractor, and the relation R = A* is fulfilled.

PROOF. The proof of this proposition is divided into five steps.
STEP 1. For all p € P and compact sets C ¢ PN~! with C N A(p) = @, we have

. . ”(D(_ta p)”r” . ”(D(_ta p)vr”
lim mf ———=1m sup ————=
=00 o4pep-lc || (—t, p)o|| 1200 gtpep-1c D (=2, p)oll
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where v = v, + v, withv, € P~'A(p) and v, € P™'R(p).
The first assertion follows from

1D (~1, p)o,| | @ (=1, p)od|

lim inf > lim  sup + 1
=00 gtpep-ic || P(—t, p)ol| 1590 oyep-ic | @ (=1, p)o,|
. loall| @ (=2, p) ey |
= lim sup o + 1
=% epic g0 10-l| @ (=1, p) g |
Prop.:3.5.1 1
and
-1
o=t po . [ (=t poa|
lim inf _— < lim sup 1l
=00 0zpeP-ic || P (=1, p)v| 1290 4y ep-1C | @ (=2, p)o|
-1
- loall | @ (=1, p) g |
= lim sup - o
100, CP-1C, p, 0 ol @ (=2, p) e |
Prop.:E}.S.l 1.

In both relations, Proposition 3.5.1 is applicable, because the set {va v e PTlengVy _1} is
compact and the set {v, 0 eP lcngy _1} is bounded away from zero. This is due to the fact
that the projector Q € RV*" with range A(p) and null space R(p) satisfies

{oa:veP NS’} = o(P'cnsY ) and
{o,:0eP'cns Y =@- Q)P 'cnsh )

(cf. also Step 3 of the proof of Lemma 4.1.14). The assertion

. |P(=t, p)osll
lim sup — =1
[—00 0£veP-1C |D(—2, p)oll

follows analogously.
STEP 2. For all p € P and compact sets C C PN~! with C N A(p) = @, we have

lim dp(P®(—t, p)C|R(O-p)) =0.
1— 00
With v, and v, defined asin Step 1, forallz > Oandov € SN=INpP~1C, we consider the expression

(@ (=1, p)o, (=1, pyo,)’  ((®(=1, p)oa, D(=t, p)v,) + (D=1, p)o,, O(=1, p)v,))’
(=1, p)ol?I®(—t, po|I> @ (=2, p)o|?|©(—t, p)o,||?
((D(—t, P)va, (=1, P)Ur)z + | @ (-1, p)l)r||4 + 2(@(—1?, P)va, (-1, p)l)r)”q)(—l‘, P)vrllz
@ (=2, p)ol2I| (=1, p)o,||?
(0=t poa, D(=1, pos) 0=t plol | 2@ (=1, p)va, D(—1, p)o/)
@ (=t, plPIID(=t, pyoel? T D (—1, p)olf? @ (=2, p)o|?
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Using the Cauchy-Schwartz inequality, we obtain the following relations:

2
i (Q)(—[, P)a, P(—t, p)Ur)
0 < lim sup - . <
t—00  aon-1qp-ic 1P(=t, p)oll*[|D (=1, p)v,||
hm Sup ”(D(_t’ l))va”2 PI'OpOSiE)n 35.1
r— 00 DesN—lﬂ[}D—]C ||(I)(—t’ p)l)”z

0

and
2D (—t, p)vg, (-1, p)o,
0 < lim sup ‘( (=1, ) ( 5 p) )}
1700 egN-1np-1¢ |® (=1, p)v]
D (=2, p)oall | (=1, p)o,||

< lim sup
1500 on-1qp-ic  I@(=t, p)o|l [|P(=t, p)oll
Sepl 2| (=, p)val
= im sup
1200 can-inp-ic  1P(=2, p)o]

Proposition 3.5.1

= 0.

Hence, we obtain
2
. . (q)(_t5 p)U,(I)(—t, p)l)r)
lim inf 3 >
1500 yesN-lnp-ic | (=1, p)o||*|®(—t, p)o,||

2
. . (®(—t, p)oa, ©(—t, p)vs) I (=2, p)o,?
= lim inf 3 5 o)
t—00 pesV-Inp-ic \ @ (=2, p)o||*[|DP (=1, p)v,|| (=2, p)v]

2(D(—t, p)va, D(—t, p)v;)
@ (=1, p)ovll?

Stg) 1 1
Using Lemma A.3.1, this implies the assertion.
STEP 3. A and R are past isolated, i.e., there exists a f > O such that for all p € P, there exists a
7 > 0 with

Up(A(O—p)) NUs(R(O—;p)) =0 forall t > 7.

Since A is a past attractor, Proposition 2.1.2 (iii) implies that there exists an # > 0 such that for
all p € P, we have

lim dp(p(t, 0 p)Uy(A(O-p))|A(p)) = 0.

Defining /8 := 7 and using the invariance of R, this implies the assertion.

STEP 4. R is a past repeller.

This is a direct consequence of Step 2 and Step 3.

STEP 5. The relation A = R* is tulfilled.

We define n > 0, P* and B; for { € (0, #] as in the introduction of Section 3.1. We also consider
the collection M := {B; : ¢ € (0, ]}. Due to Theorem 3.1.1, it is sufficient to show that A
is an M-past attractor. Thereto, we fix ¢ € (0, #] and p € P*. Furthermore, we choose ¢ > 0
arbitrarily and consider the compact set C := PV~1\ U,(A(p)). Due to Step 2, we have

lim d(P®(~t, p)C|R(O-p)) = 0.
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This implies that there exists a z > 0 such that PO (—t, p)C N B-(0_;p) = @ forall t > 7. Thus,
dp(D(t,0-,p)B;(0—p)|A(p)) <& forall t > 1.

Due to Proposition 2.1.2 (i), A is an M-past attractor. This finishes the proof of this proposition.
OJ

3.5.3 LEMMA. For all n € N, we consider nontrivial linear subspaces W, C V,, C RV,
Furthermore, let {x,},en be a sequence in RY such that the following hypotheses are ful-
filled:

(i) x, ¢ V, foralln € N,
(i) lim,— 0 dp(Px,, PV,) =0,
(iii) there exists an ¢ > 0 such that dp(Px,, PW,) > ¢ foralln € N.
For alln € N, we define C,, := W,, @ {Ax,, : 4 € R}. Then, the limit relation

lim dp(PCy|PV,) =0
n— oo

is fulfilled.

PROOF. W.l.o.g., we assume that ||x,| = 1 for all n € N. Due to Hypothesis (ii), there exists a
sequence {v,},en With v, € V, and ||v,|| = 1 for all n € N such that lim,,_,« ||x, — v,|| = 0.
Since PC,, is a compact subset of PN—1 there exists a sequence {c,},en With ¢, € C, for all
n € N such that dp (PC,,|PV,) = dp(Pc,, PV,). W.Lo.g., we assume that ¢, is of the form

ch =X, +w, forallneN,
where {w,},cN 1s a sequence with w, € W, for all n € N, and we define
rp,:=v, +w, forall neN

and £, 1= (x,, wy), Oy := (g, wy) and y, := (x,, v,) for all n € N. Then, for all n € N, we have

= fn = n
(casrn)? 724 B+ Op A llwall* + 290 l1xall” + 28400 +2(Bn + 60) (Ilwnll® + 1)
llenll1rall? 1+ 2l wa|1? + llwall* + 4Budn +2(Bn + 62) (Ilwall® + 1)
= En = ﬁn
and it is easy to see that lim, oy, = 1, limn%oofn/fn = 1 and lim,— o #,/%, = 1. This
implies that
(Cn, rn>2

1 —_— =
n=>00 ||cy ||2[|7y [|*
under the condition that ||c, ||||7, || is bounded away from O in the limit n — oo. To see that this is
fulfilled, we need Hypothesis (iii), which says that there exists a 6 € (0, 1) with

P, ) <¢ forall n e Nand w € W,

[[wll
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(cf. Lemma A.3.1). This means that for all n € N and w € W,,, we have
%0 — w]|* = 1 = 2(x, w) + [w]|* > 1 = 25|w| + |w]* >y forsome y >0,

and using lim;,_; o || X, — v, || = O, this finishes the proof of this lemma. O

In our special situation, convergence in both directions to the Morse sets is satisfied.

3.5.4 THEOREM (DYNAMICAL PROPERTIES OF NONAUTONOMOUS MORSE DECOMPO-

SITIONS OF LINEAR SYSTEMS). Let {My, ..., M,} be a past Morse decomposition obtained
by the finite sequence of past repellers Ry O - - - D R, such that P~' R;(p) is a linear subspace
of RN fori € {1,...,n — 1} and p € P. Then, the following statements are fulfilled:

(i) Pullback convergence. For all p € P and all functions y : Tt — PN~! with

n
liminf dp | y (1), | 0R;©0-p) | >0,
j=1

we have
n
lim dp | PO, 0-p)y (1), | M;(p) | =0.
1—00 =
J:
(ii) Backward convergence. For all (p, x) € P x PN=1 there exists ani € {1,...,n} with
lim dp ([P(D(—t, p)x, M; (G_Ip)) =0.
— o0
Let{Mi, ..., M,} be a future Morse decomposition obtained by the finite sequence of future
attractors Ag C --- C A, such that [P_lAi(p) is a linear subspace of RN fori e {1,...,n—1}

and p € P. Then, the following statements are fulfilled:

(i) Forward convergence. For all (p, x) € P x PN=1 there exists ani € {1,...,n} with

lim dp ([P(D(t, p)x, M; (Htp)) =0.
=00

(ii) Pushforward convergence. For all p € P and all functions y : Tt — PN~ with

liminf dp y(t),UlaAj(etm >0,
j:

we have

lim dp [ PO(=1,6,p)y (). | M;(p) | =0.
j=1

PROOF. (i) This assertion is also valid for general Morse decompositions and was proved in
Theorem 3.2.6.
(ii) Choose (p, x) € P x PV -1 arbitrarily. Then, there exists ani € {1, ..., n} such that

x € R/(p) and x ¢ R |(p).
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In case x € R;—1(p), the above limit relation follows, since then x € M;(p) and M; is invariant.
We therefore assume x ¢ R;_1(p) from now on. To obtain a contradiction, we also assume that
there exist an ¢ > 0 and a sequence {,,},en in R with lim,,_, o #, = 00 such that

dp (PO (=tn, p)x, M;(0—;,p)) > ¢ forall n e N.

We define C := P~'M;(p) & P~!{x}. Since lim,, o0 dp (P®(—1, p)x, Ri—1(6—p)) = O (cf. The-
orem 3.1.5), Lemma 3.5.3 implies

lim dp(P®(—ty, p)PC|Ri—1 (60—, p)) = 0. (3.9)
n— oo

We define C := [P_lRi_l(p) @ P~ {x}. Then,

dim (C NP~'R?_,(p)) = dim C +dim P~'R?_,(p) — dim (C + P~'R’_,(p))
=N+1—-N=1.

Let y = v 4+ w be a nonzero element of C N [P_lle“_l(p) witho € P~'{x}and w € P~ 'R;_1(p).
Since y and v are in [P_IR;" (p), w is also an element of [P_IR;" (p). Hence, w € P~'M;(p). This
implies y € C, and hence, we get from (3.9) the relation

lim dp (P®(—ty, p)Py, Ri—1(6;,p)) =0.
n— 00

This is a contradiction, since Py € R’ ,(p) and R;—; and R’_, are past isolated (cf. Theo-
rem 3.1.5 ()). ]

In our special situation, Proposition 3.1.6 can be generalized.

3.5.5 PROPOSITION (FORM OF NONUNIQUENESS OF THE MORSE SETS). Let
{My,...,M,} and {Ml, el Mn} be past Morse decompositions obtained by the finite se-

quences of past repellers Ry O --- D R, and 1%0 DD Ién such that P~ R; (p) and
P~IR; (p) are linear subspaces of RN fori € {1,...,n — 1} and p € P. We assume that

R} =I§l* forall i € {1,...,n—1}.
Then, the relation

lim dpp (M;(0—:p), Mi(0_,p)) =0 foralli e{l,...,n}andp € P
11— 00

is fulfilled. A A
Let{M,,..., M,} and {Ml, cee Mn} be future Morse decompositions obtained by the finite

sequences of future attractors Ao C -+- C A, and Ay C --- C A, such that P~'A;(p) and
P~1'A;(p) are linear subspaces of RN fori € {1,...,n — 1} and p € P. We assume that

Ar =AY forallie(l,...,n—1}.

Then, the relation

lim d[pH(Mi(Q,p), Ml-(etp)) =0 forallie{l,...,n}andp € P
— 00

is fulfilled.
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PROOF. For i € {1,n}, the above limit relation follows from M; = R} = Iéi“ = Ml and

from Proposition 3.1.6, since M,, = R,—; and Mn = Ién_l. We argue negatively and assume
w.l.o.g. that there existani € {2,...,n — 1} and a p € P such that

lim sup dp (Ml (G_tp)|M,- (9_,1))) > 0.

—0o0

Since Proposition 3.1.6 implies that
lim dppy (Ri—1(0-p), Ri—1(0—p)) =0,
r—0o0

and ﬁi_l D M,-, this means that there exista y > 0 and sequences {¢, },en (With lim,_  #,, = 00)
and {x,},en (With x, € R;—1(0—;,p) \ M;(0—,, p)) such that

dp (x,,, Mi(ﬁ_tnp)) >y forall neN

and A
lim dp (xn, M; (0_,np)) =0.

n— oo

The last formula implies lim,_, oo dp (xn, R (0, p)) = (0. We define
Cp =P 'M;(0-,p) ®P '{x,} forall n eN.
Due to Lemma 3.5.3, the relation

lim dp(PCy|R} (6, p)) =0

n—0o0

holds. Since R is a past attractor, we thus get

lim dp(P®(ty, 60—, p)PCy|R} (p)) = 0. (3.10)
n— oo

Due to Lemma A.3.2, we have dp ([P(D(tn,G_,np)[PCn|M,- (p)) = /2 for all n € N, since
P~Pd(s,, 0_,,p)PC, has a higher dimension than P~1Mm; (p). This means that there exists a
sequence {yy }nen With

Y € PO(ty, 60—, p)PC, and  dp(ys, Mi(p)) > 1 forall neN. (3.11)

Since y, € R;—1(p) for all n € N, we assume w.l.o.g. that this sequence is convergent with limit
y € Ri—1(p). Due to (3.10), we also have y € R?(p). Hence, y € M;(p), and this contradicts
(3.11). OJ

For the rest of this chapter, attention is restricted to the situation P = T and 8(¢, s) = t + s for all
t,s € T. As described in Section 1.2, this setting includes arbitrary nonautonomous differential
and difference equations. Under this assumption, an analogon to the THEOREM OF SELGRADE
(see SELGRADE [163, Theorem 9.7] and COLONIUS & KLIEMANN [49, Theorem 5.2.5]) can be
proved.

3.5.6 THEOREM (FINEST NONAUTONOMOUS MORSE DECOMPOSITION). We suppose
that P = T and O(t,s) = t + s for allt,s € T. Then, the following statements are ful-
filled:

(1) There exists a finest past Morse decomposition {Mj, ..., M,}, i.e., any other past Morse
decomposition {M, ..., M,,} fulfills
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n

m
Jlim dp ((JMi(=n| Mi(=0) | =0.
1 i=1

1=

Moreover, we have n < N, and the following decomposition in a Whitney sum holds
(cf. the definition on p. 74):

P'Mi@® - @P'M, =T xR".
(i1) There exists a finest fut11~re Morsei decomposition {M1, ..., M}, i.e., any other future
Morse decomposition {M Ly ovns Mm} fulfills

n m
lim dp { | JM:i0)| | JMi(0) | =0.
i=1 i=1

Moreover, we have n < N, and the following decomposition in a Whitney sum holds:

P'Mi® - -oP 'M, =T xR".

PROOF. First, we prove that any past attractors A and A either fulfill
ACA or ADA
Supposing the contrary, due to P = T, there exist a 7 € T and elements
xeSNTIN(PTTAG)\PT'A(r)) and £ eSNT' N (PT'A() \PT'A(1)).
Because of Proposition 3.5.1, we obtain

IO (—t, o)x|l

O(—1,7)X
im — =0 and lim M—
=00 [|d(—t, 7)x||

=00 |O(=t, T)x||

This is a contradiction. Proposition 3.5.1 also implies that the fibers of past attractors correspond
to linear subspaces. Thus, there are at most N + 1 past attractors of (6, P®), namely

F=A)CA C---CA,=TxPV!
with n < N. Due to Proposition 3.5.2, it is possible to choose a sequence of past repellers
TxP¥"!'=RyDR 2 -2 R, = 0 such that R = A; fori € {0,...,n}. We denote by
{My, ..., M,} the corresponding past Morse decomposition. Let {M Lo onns Mm} be another past
Morse decomposition, obtained by the sequence T x PV~ = Ro 2 R 2 2D Iiln = @ of past
repellers. Then, for each i € {0, ..., m}, there exists an n; € {0, ..., n} such that R" = A,,. We

consider now the past Morse decomposition {M Lyvnes Mn} which is obtained by the past repellers
Ry, - .., Ry,,. Due to Proposition 3.5.5, we have

m
lim dppy UMHLUMH)=0
Moreover, it is easy to see that U?_ | M; C U;”le\;l,- holds, and this finishes the proof of the first

assertion of this theorem. To show

P'My® - - @oP 'M, =T xR",
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we first note that for 1 <i < j < n, we have P~1M; N IP_le = T x {0} (cf. Proposition 3.2.3).
Furthermore, Proposition 3.5.2 and Lemma A.2.3 implies

TxRY =P 'R} + PRy
=P "My + (PT'RIN(PT'RS + P Ry))
=P "My + (P'RINPT'R;) + P7'R,
=P "M+ P 'M, + PR,

It follows inductively that
TxRV =P "M+ +P "M, +P'R, =P'M; +--- +P™'M,.

This finishes the proof of this theorem. U

3.5.7 REMARK. A finest past Morse decomposition {M1, ..., M,} is not uniquely determined,
but it follows directly from the above theorem that any other finest Morse decomposition
{M,, ..., M,} satisfies

Aim dpy U M;(-1), U Mi(-t) | =0.
i=1 i=1

Moreover, the relation n = m is fulfilled. A similar statement holds for finest future Morse
decompositions.






CHAPTER 4

LINEAR SYSTEMS

In the qualitative theory, the study of linear systems is very important, since a comprehensive
analysis of nonlinear systems via perturbation techniques requires linear theory. This is due to
the fact that in many cases, stability properties of solutions can be derived from the linearization
along the solution, the so-called variational equation. In this chapter, methods are provided for
the analysis of linear systems with respect to the notions of attractivity and repulsivity which have
been introduced in Chapter 2.

Throughout this chapter, let (0 :TxP— P,p:TxPxR¥Y - RN ) be a linear nonautonomous
dynamical system, i.e.,

o(t, p)ax + By) = ap(t, p)x + po(t, p)y forall a,feR,teT,pe Pandx,yeR".

We suppose that (0, ¢) is invertible, i.e., T = Ror T = Z. Moreover, let ® : T x P — R¥*N be
the matrix function with @ (¢, p)x = ¢(¢, p,x) forallt € T, p € P and x € RV.

4.1 NOTIONS OF DICHOTOMY

In this section, several notions of dichotomy are introduced for the different time domains. The
classical concept of exponential dichotomy for nonautonomous linear differential equations has
been established by PERRON [129, 130] in the late 1920s. In the sequel, many authors developed
the theory; for fundamental work on this topic, we refer to COPPEL [54], DALECKIT & KREIN
[60], MASSERA & SCHAFFER [117], PALMER [124, 125, 126] and SACKER & SELL [150, 151,
152, 149] (see also PAPASCHINOPOULOS [128] for difference equations). The noninvertible case
is treated in HENRY [78, Section 7.6], KALKBRENNER [88], AULBACH & KALKBRENNER [15]
and AULBACH & SIEGMUND [20].

4.1.1 DEFINITION (LINEAR NONAUTONOMOUS INVARIANT MANIFOLD). An invariant
nonautonomous set M C P x R" is called linear nonautonomous invariant manifold of (0, ¢)
if M(p) is a linear subspace of RN forall p € P.

Given linear nonautonomous invariant manifolds My, M, of (6, ¢), the sets

M| N M, = {(p,f) e P xRN e Mi(p)N Mz(p)} and
My + My :={(p,&) e P xRY : & € Mi(p) + Ma(p)}
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are also linear nonautonomous invariant manifolds of (@, ¢). A finite sum M| + --- + M, of
linear nonautonomous invariant manifolds is called Whitney sum M| & - - - & M, if the relation
M; " M; = P x {0} is satisfied for i # j.

Linear nonautonomous invariant manifolds can be described via invariant projectors.

4.1.2 DEFINITION (INVARIANT PROJECTOR). An invariant projector of (6, ¢) is a func-
tion Q : P — RV*N with

Q(p) = O(p)* forall pe P,
Ql;p)®(t, p) = ©(t, p)Q(p) forall pe Pandt eT.

4.1.3 REMARK. In case the NDS (@, ¢) is a topological skew product flow, i.e., P is a topolog-
ical space, one usually supposes additionally that an invariant projector is continuous (see, €.g.,
SACKER & SELL [150]).

The range
R(Q) :={(p,&) e P xRV : & e R(Q(p))}

and the null space

N(Q) :={(p.&) e P xRY : £ e N(Q(p))}

of an invariant projector Q are linear nonautonomous invariant manifolds of (8, ¢) such that

R(Q)®N(Q) = P x R".

Next, several notions of dichotomy are introduced for the linear system (6, ¢).

4.1.4 DEFINITION (NOTIONS OF DICHOTOMY). Let Q : P — RN*N be an invariant
projector of (6, ¢).

(i) We say, (0, ¢) admits a past exponential dichotomy with constants o > 0, K > 1 and
projector Q if for all p € P, there exists a p € [p] with

|D(t,0_.p)QO_.p)|| < Ke™™ forall t >0and0 <t <71,
|®(=t,6—.p)@ — QO p))| < Ke™* forall t >0and0 < 1.

(ii) We say, (0, ¢) admits a future exponential dichotomy with constants oo > 0, K > 1 and
projector Q if for all p € P, there exists a p € [p] with

@, 0. p)QO:p)Il < Ke™" forall z > 0and0 < ¢,
|®(=2,0.p)@ — QO p))| < Ke™ forall t >0and0 <t <.

(iii) We say, (0, ¢) admits an all-time exponential dichotomy with constants o > 0, K > 1
and projector Q if for all p € P, we have

@z, p)Q(P)Il < Ke™*" forall 1 >0,
|D(=t, p)@ — Q(p))| < Ke™ forall t >0.

(iv) Givenp € P andT € T™, we say, (0, ¢) admits a (p, T)-dichotomy with projector Q
if we have
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ID(T, p)¢Il < 1€l forall 0# ¢ e R(Q(p)),
1@ (=T,0rp)|l < IS forall 0#¢ e N(QOrp)).

Having these definitions at hand, some remarks are in order.

4.1.5 REMARKS.

(i) In the literature (see the references cited in the introduction of this section), an all-time
exponential dichotomy is simply called exponential dichotomy.

(i1) Incase the NDS (0, ¢) is generated by a nonautonomous differential or difference equation,
i.e., P =T, a past or future exponential dichotomy is called exponential dichotomy on half
line Ry, Z, or IRa' , Z(‘)", respectively (see, e.g., COPPEL [54] and Proposition 4.2.1).

(iii) In contrast to past, future or all-time exponential dichotomies, the notion of (p, T)-
dichotomy is not invariant with respect to a change of the norm to an equivalent norm
(cf. also Remark 2.1.10).

(iv) In the scalar case (N = 1), (8, ¢) admits a (p, T')-dichotomy if and only if |® (T, p)| # 1.

In the following proposition, the relationship between the above introduced notions of dichotomies
is examined.

4.1.6 PROPOSITION. The following statements are fulfilled:

(i) If (0, ¢) admits an all-time exponential dichotomy, then it also admits a past exponential
dichotomy and a future exponential dichotomy.

(ii) Suppose, (0, @) is generated by a nonautonomous differential or difference equation,
ie., P =T, and (0, ¢) admits a past exponential dichotomy and a future exponential
dichotomy with the same invariant projector Q : T — R¥*N_ Then, (0, ¢) also admits
an all-time exponential dichotomy.

PROOF. Statement (i) is obvious; for (i1), see COPPEL [54, p. 19]. O

4.1.7 DEFINITION (NONHYPERBOLIC DICHOTOMIES). Lety € R, and consider the linear
NDS (0, ¢, ), defined by

0, (t, p,x) :=e "p(t,p,x) forallteT,pe Pandx e RY.

We say, (6, ¢) admits a nonhyperbolic past exponential (future exponential, all-time expo-
nential, (p, T)-, respectively) dichotomy with growth rate y, constants a > 0, K > 1 and
projector Q if (0, ¢,) admits a past exponential (future exponential, all-time exponential,
(p, T)-, respectively) dichotomy with constants o > 0, K > 1 and projector Q.

4.1.8 REMARK. The NDS (6, ¢) admits a nonhyperbolic past exponential (future exponential,
all-time exponential, (p, T)-, respectively) dichotomy with growth rate y = 0 if and only if it ad-
mits a past exponential (future exponential, all-time exponential, (p, T'), respectively) dichotomy.
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4.1.9 LEMMA (CRITERIA FOR NONHYPERBOLIC DICHOTOMIES). Suppose, (0, ¢) ad-
mits a nonhyperbolic past exponential (future exponential, all-time exponential, (p, T)-, re-

spectively) dichotomy with growth rate y and projector Q, . Then, the following statements
are fulfilled:

(i) If Q, = 1, then (0, ¢) admits a nonhyperbolic past exponential (future exponential,
all-time exponential, (p, T)-, respectively) dichotomy with growth rate { and projector
Qs =1forall{ > y.

(i) If Q, = O, then (0, ¢) admits a nonhyperbolic past exponential (future exponential,
all-time exponential, (p, T)-, respectively) dichotomy with growth rate { and projector
Qr=0forall{ <y.

PROOF. The assertions follow directly from the monotonicity of the exponential function. 0J

We make use of the following equivalent characterizations of nonhyperbolic dichotomies.

4.1.10 PROPOSITION (EQUIVALENT CHARACTERIZATIONS OF NONHYPERBOLIC DI-
CHOTOMIES). Let Q : P — RN*N be an invariant projector of (0, ¢). Then, the following
statements are fulfilled:

(i) (0, ¢) admits a nonhyperbolic past exponential dichotomy with growth rate y € R,
constants oo > 0, K > 1 and projector Q if and only if for all p € P, there exists a
p € [p] with
1D, 60— p)OO— Pl < Ke" ™" forall t >0and0 <t <7,
|©(=t,0_.p)(1 — QO p))| < Ke=OT" forall z >0and0 <.
(ii) (0, ¢) admits a nonhyperbolic future exponential dichotomy with growth rate y € R,
constants oo > 0, K > 1 and projector Q if and only if for all p € P, there exists a
p € [p] with
1D, 0. p)0O: p)l < KeV ™" forall t >0and0 <1,
|©(=,0.p)@ — QO p))| < Ke™ "+ forall t >0and0 <t < 1.
(iii) (0, ¢) admits a nonhyperbolic all-time exponential dichotomy with growth rate y € R,
constants a > 0, K > 1 and projector Q if and only if for all p € P, we have
1@, p)Q(p)Il < Ke =" forall 1 >0,
|©(=t, )@ — Q(p)| < Ke U+ forall t > 0.

(iv) Given p € Pand T € T", (0, ¢) admits a nonhyperbolic (p, T)-dichotomy with
growth rate y € R and projector Q if and only if we have

lp(T, p)ENl < e TIE|l forall 0# & € R(Q(p)),
lp(=T,0rp)éll < e ?T|&|l forall 0 # ¢ € N(Q©Orp)).
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For y € R, we define

S, =={(p,&) € P xRV : @, p)¢ is y T-quasibounded}
and

Uy, :={(p,&) € P x RY : @, p)¢ is y “-quasibounded} .

It is obvious that S, and I/, are linear nonautonomous invariant manifolds of (0, ¢). Given y < ¢,
the relations S, C S; and U, D U; are fulfilled.

We now discuss the important relationship between the projectors of nonhyperbolic exponential
dichotomies with growth rate y and the sets S, and Uf,, .

4.1.11 PROPOSITION (DYNAMICAL PROPERTIES). If (6, ¢) admits a nonhyperbolic past
exponential dichotomy with growth rate y , constants o > 0, K > 1 and projector Q, then we
have N (Q) = U, , and for all p € P, there exists a p € [p] with

1O, 0 p)EIl < KElle?" forall © >0,0<t<7andl e R(QO-.p).  (4.1)

If (6, ¢) admits a nonhyperbolic future exponential dichotomy with growth rate y , constants
a > 0, K > 1 and projector Q, then we have R(Q) = §,, and for all p € P, there exists a
p € [p] with

IO (=2,0. p)CN| < K|[Elle™”" forall T >0,0<7<7and¢ e N(QO:p)).

If (0, ¢) admits a nonhyperbolic all-time exponential dichotomy with growth rate y and pro-
jector Q, then N'(Q) = U, and R(Q) = S, are fulfilled.

PROOF. Suppose, (6, ¢) admits a nonhyperbolic past exponential dichotomy with growth rate y,
constants @ > 0, K > 1 and projector Q. Due to Proposition 4.1.10, for given p € P, there exists
a p € [p] with

1D, 60— p)OO—p)|| < Ke ™" forall t >0and0 <t < 7,
|©(=t,0_.p)(1 — QO p))| < Ke=@T" forall z >0and0 <.

The first inequality implies (4.1). Choose 7 € T such that 0;p = p. We now prove the relation
N(Q) =U,. A
(2) We choose (p,&) € U, arbitrarily. This implies |®(—z, 6;p)® (7, p)¢|| < Ce™?! for all
t > 0 with some real constant C > 0. We write q)(f, p)é‘ =& + & with & € R(Q(p)) and
& € N(Q(p)). Hence, for all 1 > 0, we get

G = | @@, 0-:pYD(—t, P)Q(P)PE, p)E | = | P, 0-p) QO P)D(—t, )P (7, p) |

< K" (=1, p)O(F, p)é|| < CKe" '™ = CKe™™ .
The right hand side of this inequality converges to zero in the limit t — oo. Therefore, & = 0,
and ® (7, p)¢ € N(Q(p)). Due to the invariance of N'(Q), we finally obtain (p, &) € N (Q).
(C) We choose (p, &) € N(Q). Thus, for all ¢ > 0, the relation
|@(=1, O, p)E| = | @(=1, P~ QNP p)E| < Ke™ T @@, p)é|

is fulfilled. This means that ®(-, p)¢ is y ~-quasibounded, i.e., (p, &) € U, .
The assertions concerning the future exponential dichotomy are treated analogously. In case (6, ¢)
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admits an all-time exponential dichotomy, Proposition 4.1.6 (i) yields that (8, ¢) also admits a past
exponential dichotomy and a future exponential dichotomy. Hence, we obtain A (Q) = U, and
R(Q) =S,. OJ

4.1.12 REMARK. According to this proposition, an invariant projector is uniquely determined
only in case of a nonhyperbolic all-time exponential dichotomy. In addition, the null space of
a projector of a past exponential dichotomy and the range of a projector of a future exponential
dichotomy are uniquely determined. For further information about the kind of nonuniqueness
of ranges of projectors of past exponential dichotomies and null spaces of projectors of future
exponential dichotomies, we refer to Lemma 4.2.4.

This section is concluded by pointing out several evidences that the notions of dichotomy are
consistent to the concepts of attractivity and repulsivity.

4.1.13 THEOREM (NONHYPERBOLIC DICHOTOMIES AND THE NOTIONS OF ATTRAC-
TIVITY AND REPULSIVITY). Suppose, (0, ¢) admits a nonhyperbolic past exponential (fu-
ture exponential, all-time exponential, (p, T)-, respectively) dichotomy with growth rate y
and invariant projector Q. Then, the following statements are fulfilled:

(i) Ify <0andrk Q(p) > 1 forall p € P, then every trivial solution of (6, ¢) is not past
(future, all-time, (p, T)-, respectively) repulsive.

(ii) Ify > 0andrk Q(p) < N — 1 forall p € P, then every trivial solution of (6, ¢) is not
past (future, all-time, (p, T)-, respectively) attractive.

(iii) If y < 0 and Q = 1, then every trivial solution of (0, ¢) is past (future, all-time,
(p, T)-, respectively) attractive with 21y = oo.

(iv) If y > 0 and Q = 0, then every trivial solution of (6, ¢) is past (future, all-time,
(p, T)-, respectively) repulsive with Ry = o0.

PROOF. These assertions are direct consequences of Proposition 4.1.10 and 4.1.11. 0J

For the rest of this section, the studies are concentrated on the induced nonautonomous dynamical
system (@, P®) on the real projective space PV ~! (cf. Section 3.5).

4.1.14 LEMMA. The following statements are fulfilled:

(i) We suppose that (0, ¢) admits a nonhyperbolic past exponential dichotomy with invari-
ant projector Q. Then, there exists a f > 0 such that for all p € P, there exists a
p € [p] with

Up(PR(QO-:p))) NUg(PN(Q(6-:p))) =@ forall 1 >0

(i.e., PR(Q) and PN (Q) are past isolated). Moreover, for all p € P and compact sets
C c SN\ N (Q(p)), we have

o SUPsesv-1owo(p 1L POl
=00 infyec |O(—t, p)wl|

(ii) We suppose that (0, ¢) admits a nonhyperbolic future exponential dichotomy with
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invariant projector Q. Then, there exists a § > 0 such that for all p € P, there exists a
p € [p] with

Up(PR(Q6:p))) N Ug(PN(Q(6:p))) =8 forall t >0

(i.e., PR(Q) and PN (Q) are future isolated). Moreover, for all p € P and compact
sets C  SV=1'\ R(Q(p)), we have

[ SUPyesv-1nr(o(py 19 PIOIl
t—00 inf,cc || O, p)w]|

(iii) We suppose that (6, ¢) admits a nonhyperbolic all-time exponential dichotomy with
invariant projector Q. Then, there exists a f > 0 with

Ug(PR(Q(p))) NUg(PN(Q(p))) =@ forall pe P

(i.e., PR(Q) and PN (Q) are all-time isolated),

lim sup et iwieey 19CL Pl

00 pep infycsv-inp-1y, R0 1P(=1 PIw]
and

lim sup SUPyesv-1nR(o(py 1P P0ll B

[=00 pep infU)ESN_]ﬂﬂD_lU/;([PN(Q(p))) 1Dz, p)w|

PROOF. (i) Suppose that (¢, ¢) admits a nonhyperbolic past exponential dichotomy with growth
rate y, constants & > 0, K > 1 and projector Q. We define f := 3LK, fix an arbitrary p € P and
choose p € [p] as in Definition 4.1.4 (i). The remaining proof of (i) is divided into four steps.
STEP 1. The sets PR(Q) and PN (Q) are past isolated.

Assume, there exists a ¢ > 0 such that Ug(PR(Q(0-;p))) N Ug(PN(Q(6-:p))) # . Hence,
there exist x € PR(Q(#—,p)) and y € PN (Q(O—;p)) with dp(x, y) < 2f. Due to the definition
of dp (cf. Appendix A.3), there exist ¥ € S¥~! NP~ !{x} and § € S¥~! N P~!{y} such that

X — ¥|| < 2B. This yields

eO-pHE =3I _ 1% _ 1 _ 3K
X =yl Ix=31~ 28 27

and this is a contradiction, since Definition 4.1.4 (i) implies ||Q(@—;p)|| < K.
STEP 2. We have

1
| (—t,6_; p)x|| > Ee-@ ~OM|x|| forall 7,7 > 0and x € R(Q(O_, p)).

The assertion follows from

. . oo DefdlA) .
Ixll = 1®(, 0—z— p)P(—1, 0 p) QO p)x| s Ke [®(—1,0-rp)x|| .

STEP 3. Let M SN~ \ N (Q(p)) be a compact set. For w € M, we write w = w, + w, with
w, € R(Q(P)) and w, € N(Q(p)). Then,

W, (M) :={w, : w e M} = Q(p)M
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is bounded away from zero, and
W (M) :={w, : w e M} =(1-Q(p)M

is bounded.

Assume, the set W,.(M) = Q(p)M is not bounded away from zero. Then, it contains 0, since it is
compact, and thus, there exists a w € M with w € N (Q(p)). This is a contradiction. Moreover,
the set W,,(M) = (1 — Q(p))M is bounded, since it is compact.

STEP 4. For all compact sets C € S¥~1\ N (Q(p)), we have

. Sup, esv-1apn7(o(py) 19 (=2, pvll _
100 infyec [|@(=1, p)w]|

Choose 7 € T such that p = 6, p. Defining C = ¢(z, p)C, it is sufficient to show

i SUPsesv-tnwoepy 1L Poll
— 00 inwa(Aj |[®(—t, p)wl|

We have

SUP, esh-1nAr((py) 19 (=2, p)vll Def. 414 () _ SUPyesN-1nN(Q(p)) Ke=0F0 |y

inf, e |Q(=2, p)w] — inf o 19(=t, Pwr + O (=1, pwy|
Ke—(+a)t
< sup —1PCLPwd
O ‘1 _ 1=t pywyl
‘ [®(=7.p)uwr]

Please note that for the last inequality, we require w, # 0 for all w € C. This is fulfilled, since
W, (C ) is bounded away from zero (cf. Step 3). Furthermore, using

Ke—(l"f'a)’ St?Z Ke_(y+a)t Kze—Zat
|®(=2, pwll — %e—(V—“)’Hw,H l|wy ||
we obtain
Ke— (7o)

lim sup ——— =
=00 o [D(—t, plwy |

since W, (é’) is bounded away from zero. Moreover, due to

|©(=t, p)wl] Def- 414 ). Step2 Ke= O+ iy || K2e ™2 ||wy|
1D (=1, p)w|| B e~ (=i, | lworll
we get
i [P (=1, p)wall
im sup - =0
=00 o | ®(—t, pw,|

(please note that Step 3 says that W, (é ) is bounded and W, (é ) is bounded away from zero). This
implies the assertion.

(i1) can be be proved similarly to (i).

(iii) Suppose that (6, ¢) admits a nonhyperbolic all-time exponential dichotomy with constants
a > 0, K > 1 and projector Q. We define § := 3L1< The remaining proof of (iii) is divided into
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five steps.
STEP 1. The sets PR(Q) and PN (Q) are all-time isolated.
Assume, there exists a p € P such that Uy ([PR(Q(p))) N Up ([PN(Q(p))) # . Hence, there
exist x € PR(Q(p)) and y € PN (Q(p)) with dp(x,y) < 2B. Due to the definition of dp
(cf. Appendix A.3), there exist ¥ € S¥ "' NP~ !{x}and y € S¥~! N P~I{y} with |x — J| < 28.
This yields

oG-I _ & _ 1 3K

1% — 3l Ix—31-28 2

This is a contradiction, since Definition 4.1.4 (iii) implies ||Q(p)| < K.
STEP 2. We have

1
|®(—1, p)x|| > Ee_(y_“)tHxH forall p e P,t > 0and x € R(Q(p)).

The assertion follows from

Def. 414 (i) (0
x|l = 1@, 60— p)@(—t, p) Q(p)x| < Ke [®(—1, p)x]| .

STEP 3. For p € P and w € SN~' N P~'U4(PR(Q(p))), we write w = w} + wj, with
wy € R(Q(p)) and w;; € N'(Q(p)). Then,

W, :={w!:peP,weS" I NPUL(PR(Q(p))))}
is bounded away from zero, and

W, i={w?:peP, wesS NP Us(PR(Q(p)))}

is bounded.
To show that W, is bounded away from zero, assume for contradiction, there exist sequences
{Pnlnen in P and {w™} _ in S¥~! such that

w™ e SNTI N PTUL(PR(Q(py))) forall ne N

and lim,_, oo 0"?" = 0. Hence, lim,_, o, dp (w™, PN (Q(pn))) = 0, and this is a contradiction
to Step 1. Moreover, since

|w?| =@ - 0(p)w| P K forall pe Pandw e SY1 0 P~ Us(PR(Q(p)))

the set W, is bounded.
STEP 4. The relation

lim sup SUPyeSN-1NN(Q(p)) D (=2, p)oll _
1500 pep infy,esv-1np-1,PR(0(p) 1P(=1, PIw]

is fulfilled.
For p € P, we have

SupveSN_lﬂj\/(Q(p)) “(D(_ta p)D”
inf, csv-1np-1y,PR(Q(p)) 1P (=1, PIw|

Def.4.1.4 i SUp, csv-1nAr(o(p) Ke™ T o]l
B inf, con-1np-10,(PR(Q(p))) |® (=1, pyw! + @ (-1, pyw}||
Ke— (o)
[@(=t.pwr |

IA

sup

— p :
weSN 1P U PR(Q(p) |1 — —”ig_;gz,,”
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Please note that for the last inequality, we require w; # 0 forallw € S¥"'NP~1U4(PR(Q(p))).
This is fulfilled, since W, is bounded away from zero (cf. Step 3). Furthermore, using

Ke~ (o)t step2 Ke— v +o) K220t
< — ’
[t pwl] = LeO-orfwf| ~ [uf]
we obtain
Ke_(y+0()t
lim sup sup ,

1790 peP weSN-1NP-1U4(PR(Q(p))) | (=, pyur| )

since W, is bounded away from zero. Moreover, due to

(=2, pyw} | Def. 4.1.4 G, Sep 2 Ke=0+or|wl| K22 |wf|
e I v ) Rl P
we get
im sup sup =

1290 pep yesh-1np-1Uy R | P~ P)wr |

(please note that Step 3 says that W, is bounded and W, is bounded away from zero). This implies
the assertion.
STEP 5. The relation

lim sup SUPyesN-1NR(Q(p)) [®(z, p)o] _
1200 pep infyesv-1ap-1,Pa0(py) 120 W]

is fulfilled.
See proof of Step 4. OJ

The following theorem says that ranges and null spaces of invariant projectors give rise to nonau-
tonomous repellers and attractors. Similar questions are treated in PALMER & SIEGMUND [127,
Proposition 3.1], where so-called generalized attractor-repeller pairs on the projective space are
examined.

4.1.15 THEOREM (RANGES AND NULL SPACES OF INVARIANT PROJECTORS AS
NONAUTONOMOUS REPELLERS AND ATTRACTORS). We suppose that (0, ¢) admits a non-
hyperbolic past (future, all-time, respectively) exponential dichotomy with projector Q and
consider the nonautonomous dynamical system (@, P®) on the real projective space PN~
Then, the following statements are fulfilled:

(i) PR(Q) is a past (future, all-time, respectively) repeller,
(ii)) PN (Q) is a past (future, all-time, respectively) attractor,

(iii) in case of a nonhyperbolic past exponential dichotomy, we have PN (Q) = PR(Q)*,
and in case of a nonhyperbolic future exponential dichotomy, PR(Q) = PN (Q)* is
tulfilled.

PROOF. In case of a nonhyperbolic past exponential dichotomy, the fact that PR(Q) is a past
repeller can be proved as in Proposition 3.5.2 (Step 1 to Step 4), where instead of Proposition 3.5.1
and Step 3 one should use Lemma 4.1.14 (i). Moreover, the proof that PA/(Q) is a past attractor
and PN (Q) = PR(Q)* is analogous to Step 5 of the proof of Proposition 3.5.2.
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The assertions concerning the case of a nonhyperbolic future exponential dichotomy are now
easily obtained by using Proposition 2.1.22.

In case (8, ¢) admits a nonhyperbolic all-time exponential dichotomy, we now prove that PR(Q)
is an all-time repeller. First, we choose f > 0 from Lemma 4.1.14 (iii). The remaining proof is
divided into two steps.

STEP 1. We have

O (—t, p)ot
= lim inf [, pror|
100 peP 0£veP~'Us(PR(Q(p)) IR (=2, p)ol|
= lim sup sup —_—
2% peP 00eP-1U5(PR(Q(p)) 1P (=, )0l

where v = vf 4+ ol withov! € R(Q(p)) and v} € N'(Q(p)).

The first assertion follows from
lim inf _—
100 peP 0£0eP~1Us(PR(Q(p)) P (=1, p)o|

> li ” (D(_ta p)DrIl) H
= m Ssup sup T o 1
1500 pep ogoer-1upPRQ() | P(=t: PIY |

-1
Jof o e, i
= lim sup sup o+ 1
[20 pep ueﬂ?—lU/;(IPR(Q(p))),vf;éO vaH ‘(D(—t, P)%‘
Lemmail.M (iii) 1
and
li . H(D(_t’ P)UIPH
im inf _
1=00 peP 0veP~'Us(PR(Q(p)) 1P (=2, p)v]
. ”(I)(_t’ p)vfll) H
< lim sup sup -
=00 peP O#UGIP_IU/;([PR(Q([)))) ”(D(_t: p)vr H
-1
Iot | o, pptir|
= lim sup sup 1 - -
S e et | Jop] [ pypty|

Lemma 4.1.14 (iii) 1

In both relations, the last equality holds, because the sets
{oF : v e PT'UZ(PR(Q(p)))} forall pe P
are compact and the sets

‘v € [P_lUﬁ([PR(Q(p)))} forall p e P

{v

S
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are bounded away from zero (cf. also Step 3 of Lemma 4.1.14 and Step 1 of Proposition 3.5.2).
The assertion

1 = lim sup sup —_—,
=00 pep 0£0eP~1U5(PR(Q(p))) |[D(—t, p)ol|

follows analogously.
STEP 2. We have

Jlim sup dp (PO (1, p)Ug (PR(Q(p))) [PR(Q(0-:p))) =0,
pE

i.e., PR(Q(p)) is an all-time repeller.
With v/ and v} defined as in Step 1, forall# > 0, p € P and v € S¥"' NP~1UL(PR(Q(p))),
the relation

(@ (=1, pyo, ®(~t, p)of)
I® (=1, pyol2| (=1, pof|?
(@t pyol, (=1, pf) o=t pf|° 2(@(~1, p)ob, B(~t, p)of)
(=t pyolP|@(—t, pl|* 1=t Pl o (~1, pyo]?

holds (cf. Step 2 of the proof of Proposition 3.5.2). Using the Cauchy-Schwartz inequality, we
obtain the following relations:

2
. (q)(_ta p)DYIZaq)(_ta p)Df)

0 < lim sup sup 3
1709 peP pesV-1nP-1Us PRQ(p)) || (=1, p)ol2]| @ (=1, p)of |

|® (=, pyol|? Lemma 4.1.14 Gi)

lim sup sup
1500 pep yeaN-1np-1U,PR(Q(p) | P (=1, PIVII?

and

2|(@ (=1, pol, ® (=1, pol)]

0 < lim sup sup
1200 peP peSN-INP-1UL(PR(Q(p))) 1D(—t, p)o|
()] —t, l)p () —t, Dp
< lim sup sup 2 ” ( p) n H H ( P) r ”

1700 peP peSN-1nP-1U4(PR(Q(p))) [® (=2, p)oll IP(—1, p)ol|

Step 1 2”(1)(_1‘5 p)v,l,) H

lim sup sup
199 peP yesN-1np-1UyPR(Q(p)) | P (=1, POl

Lemma4.1.14 (iii) 0

Hence, due to Step 1, we have

2
. . . ((D(_ta p)l),(D(—t, p)UIP)
lim inf inf 5 =
100 peP peSNTINP=IU;(PR(Q(p)) || (=1, p)ol|2]| @ (~t, p)o?||
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(@ (=, pyol, (=1, pyolY | ®(=t, p)ol |

= lim inf inf

100 peP vesNINP=U(PRQ(P)) \ |D(—t, p)o|2|D(—t, p)of ||2 | (=1, p)ol|?
2((D(_t> p)vlfa (D(_ta p)vll‘7>
@ (=1, p)o?
=1.

Using Lemma A.3.1, this implies that PR(Q) is an all-time repeller.
Moreover, with Proposition 2.1.22, it is easy to show that PA/(Q) is an all-time attractor. This
finishes the proof of this theorem. 0

4.2 DICHOTOMY SPECTRA

In the previous section, notions of dichotomy have been introduced by localizing attractive and
repulsive directions. To classify the strength of attractivity and repulsivity of linear systems, the
concept of the dichotomy spectrum is essential. For linear skew product flows with compact base
sets, the so-called Sacker-Sell spectrum (see SACKER & SELL [153]) has become widely ac-
cepted. In SIEGMUND [171] and AULBACH & SIEGMUND [19], this spectrum has been adapted
for arbitrary classes of linear differential and difference equations, respectively (for the nonin-
vertible case, see AULBACH & SIEGMUND [20]). In addition to this dichotomy spectrum, in this
section, three other kinds of spectra are introduced with respect to the notions of past, future and
finite-time attractivity and repulsivity. Thereby, attention is restricted to the following situation.

STANDING HYPOTHESIS. We suppose that (6, ¢) is generated by the nonautonomous differ-

ential equation
= A0 42)

P =T =R, or the nonautonomous difference equation

, 4.3)

’ Xpg1 = A(n)x,

P =T =7, where A : T — RV*¥ is a continuous function. The base flow fulfills the
relation (¢, 7) =t + t forall ¢, = € T (cf. Section 1.2).

This restriction is necessary, since we do not want to make assumptions concerning the structure of
the base flow @ and the base set P such as compactness, minimality, chain recurrence or invariant
connectedness.

We consider unbounded and closed T-intervals [, i.e., [ is of the form T, TT;L or T for some
k € T. We say, (0, ¢) admits a nonhyperbolic exponential dichotomy on | with growth rate y € R,
constants a > 0, K > 1 and invariant projector Q if

10, )0 < Ke” ™" forall t €l,t > Owitht +7 €1,
|©(=1, 7)1 — Q(2)| < Ke U+ forall  €,7 > Owitht —7 €.

The following proposition says that this definition coincides with the notions of nonhyperbolic
exponential dichotomy from in the previous section.
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4.2.1 PROPOSITION. Let k € T and y € R. Then, the following statements are ful-
filled:

(i) (0, ¢) admits a nonhyperbolic exponential dichotomy on T, with growth rate y if and
only if (8, ¢) admits a nonhyperbolic past exponential dichotomy with growth rate y ,

(ii) (0, ¢) admits a nonhyperbolic exponential dichotomy on T} with growth rate y if and
only if (6, ¢) admits a nonhyperbolic future exponential dichotomy with growth rate y ,

(iii) (0, ¢) admits a nonhyperbolic exponential dichotomy on T with growth rate y if and
only if (8, ¢) admits a nonhyperbolic all-time exponential dichotomy with growth rate

Y.

PROOF. (i) (=) The conditions of Proposition 4.1.10 (i) are fulfilled by choosing p := k.

(<) Suppose, (4, ¢) admits a nonhyperbolic past exponential dichotomy with growth rate y,
constants a, K and projector Q. Thus, there exists a p € T such that the two conditions in
Proposition 4.1.10 (i) are fulfilled. In case p > «, the assertion follows immediately. Otherwise,
we define

K= max{max{H(D(t, DO t.r € [px]NT withr > ),

max {| (1, )@ = (@) 1,7 € [p, KN T withs < c}}.

Then, (0, ¢) admits a nonhyperbolic exponential dichotomy on T,. with growth rate y and con-

stants a, K K.
(i1) can be shown analogously to (i), and (iii) is obviously fulfilled. O

In this section, we make use of these alternative characterizations instead of Definition 4.1.7.

4.2.2 REMARK. In case the function A of the differential equation (4.2) or difference equation
(4.3) is only defined on an interval of the form T or T} for some x € T, respectively, the nonau-
tonomous dynamical system generated by this equation does not fulfill the hypotheses of this
chapter. Due to Proposition 4.2.1, however, we are able to use the notions of past or future ex-
ponential dichotomy and the notions of past and future dichotomy spectrum (see Definition 4.2.5
below) also for these types of equations.

Given an invariant projector Q, the fibres of R(Q) and N (Q), respectively, have the same di-
mension, since the base set P is a trajectory of base flow §. We therefore define the rank of Q
by

k Q :=dimR(Q) :=dimR(Q()) forall teT,

and we set

dimN(Q) :=dimN(Q(t)) forall r eT.

4.2.3 PROPOSITION. Suppose, both Q and O are invariant projectors of a nonhyperbolic
past exponential (future exponential, all-time exponential, (z, T)-, respectively) dichotomy
with growth rate y . Then, tk Q =tk Q is fulfilled.

PROOF. In case of a nonhyperbolic past exponential (future exponential, all-time exponential, re-
spectively) dichotomy, the assertion follows directly from Proposition 4.1.11. Arguing negatively,
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we suppose thaE (@, p) admits a (z, T)-dichotomy with two invariant projectors Q and Q such
that rk Q < rk Q. Thus,

dim (M(Q) NR(Q)) = dimN(Q) + dimR(Q) — dim (N'(Q) + R(Q))
> dimN'(Q) + dim R(Q) — dim (N (Q) + R(Q)) > 0.

Hence, there exists a nonzero element & € N (Q(r)) N R(Q(r)). We obtain
1D(T, )¢l < €N = |@(=T, = + TYO(T, 2)&|| < 1O(T, 7)<,

since ) # ¢ € R(Q(r)) and 0 # ®(T, 7)¢ € N(Q(z +T)). This contradiction finishes the proof
of this proposition. O

As indicated in Remark 4.1.12, an invariant projector is uniquely determined only in case of a
nonhyperbolic all-time exponential dichotomy. The degree of nonuniqueness of projectors of past
and future exponential dichotomies is described in the following lemma, which is adapted from
AULBACH & SIEGMUND [20, Lemma 2.4].

4.2.4 LEMMA. The following statements are fulfilled:

(i) We assume that (6, ¢) admits a nonhyperbolic past exponential dichotomy with growth
rate y and projector Q, and Q is another invariant projector with

sup ”Q(t) | <oo and N(Q) :N(Q)

tely
Then, (0, ) also admits a nonhyperbolic past exponential dichotomy with growth rate
y and projector Q.

(ii) We assume that (6, ¢) admits a nonhyperbolic future exponential dichotomy with
growth rate y and projector Q, and Q is another invariant projector with

sup HQ(I)H <oo and R(Q) = R(Q)

+
tel

Then, (0, ¢) also admits a nonhyperbolic future exponential dichotomy with growth
rate y and projector Q.

PROOF. (i) Suppose, (0, ¢) admits a nonhyperbolic exponential dichotomy on T, with growth

rate y, constants o > 0, K > 1 and projector Q, and let Qpe given as above. First, we observe
that sup, ;- [|Q(1)[| < K, and we define M := sup, ;- |Q()||. The relation N'(Q) = N(Q)
implies the two equations

1-0)=1-0)(1-0) and Q0=(1-0+0)Q.
The first equation yields forall 7 € T andz > 0

[o(-1.0)(1 = 0(@) | = |@(~1. )@ — Q@) (1 - O(0))]|
< |@(=t. )@ - Q)| |1 = O(0)| < K(1 + Mye= 7+
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Using the invariance of Q and 0, the second equation implies

|o, )0 | = @@, ) (1 - Q) + 0(2)) Q(0)|
<||(1=0G+0+ 0@ + )| 10, )0
<K+ K + M) )"

for all = eFa andt > Owith 7 + ¢ eTTa.
The assertion (ii) can be proved similarly. 0

It is crucial for the definition of the dichotomy spectra, for which growth rates, the linear NDS
(@, ¢) admits a nonhyperbolic dichotomy. In case of a past exponential (future exponential, all-
time exponential, respectively) dichotomy, we will not exclude growth rates y = Fo0o from our
considerations. We say, (f, ¢) admits a nonhyperbolic dichotomy with growth rate oo if there
existsay € Rsuch that (6, ¢) admits a nonhyperbolic dichotomy with growth rate y and projector
P, = 1. Accordingly, we say that (¢, ¢) admits a nonhyperbolic dichotomy with growth rate —co
if there exists a y € R such that (6, ¢) admits a nonhyperbolic dichotomy with growth rate y and
projector P, = 0.

4.2.5 DEFINITION (DICHOTOMY SPECTRA).

(i) The past dichotomy spectrum of (6, ¢) is defined by

o = {y € R: (0, ¢) does not admit a nonhyperbolic past exponential
dichotomy with growth rate y } .

(ii) The future dichotomy spectrum of (8, ¢) is defined by

Ty = {y € R: (8, ¢) does not admit a nonhyperbolic future exponential

dichotomy with growth rate y } .
(iii) The all-time dichotomy spectrum of (8, ¢) is defined by

To = {y € R: (8, ¢) does not admit a nonhyperbolic all-time exponential

dichotomy with growth rate y } .

(iv) Givent € TandT € T, the (z, T)-dichotomy spectrum of (6, ¢) is defined by

zg’T) = {y € R : (8, ) does not admit a nonhyperbolic (z, T)-dichotomy
with growth rate y } .

The corresponding resolvent sets are defined as follows:

pe =R\ XZ§, p7 =R\ I3,
py =R\Z§F and  pg"=R\Eg".

In regard to the STANDING HYPOTHESIS, also the notation X 4 and pg4 is used for the dichotomy
spectra and resolvent sets of x = A(t)x and x,+; = A(n)x,, respectively.
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4.2.6 REMARKS.

(i) The all-time dichotomy spectrum without {—o00, 0o}, i.e., £5’ N R, coincides with the di-
chotomy spectrum for differential equations introduced in SIEGMUND [171] (see also SIEG-
MUND [170]). In case of linear difference equations, exp (Zg’ N IR) is the dichotomy spec-
trum introduced in AULBACH & SIEGMUND [19].

(i) In contrast to the past, future or all-time dichotomy spectrum, the notion of (z, T)-
dichotomy spectrum is not invariant with respect to a change of the norm to an equivalent
norm (cf. also Remark 4.1.5 (iii) and Remark 2.1.10).

(iii) From Proposition 4.1.6, we obtain directly X5~ C X3 and 2’ C X .

The aim of the following lemma is to analyze the topological structure of the resolvent sets.

4.2.7 LEMMA. We suppose that po = pg , Pg » Po » p((DT’T), respectively. Then, pp N R

is open, more precisely, for all y € pep N R, there exists an ¢ > 0 such that U,(y) C po.
Furthermore, the relation tk Q- = rk Q, is fulfilled for all { € U,(y) and every invariant
projector Q, and Q. of the nonhyperbolic dichotomies of (6, ¢) with growth rates y and ¢,
respectively.

PROOF. We first treat the case po = pg , pg > Pg and choose y € pg arbitrarily. Since (6, @)
admits a nonhyperbolic exponential dichotomy on [ = T, TTSF , I with growth rate y , respectively,
there exists an invariant projector Q, and constants « > 0, K > 1 such that
1O, 7)Q, ()| < Ke¥ ™" forall t €l, r>0witht +7€l,
|o(=t, 7)1 - Q, (@) < Ke™ "+ forall  €l, t >0withr —1 €.

We set ¢ := 7 and choose ¢ € U:(y). Thus,

101, 7)Q, ()] < Ke€™2"  forall r €, t > Owithz +7 €,
|©(=1, 7)1 — Q, ()] < Ke=€*D" forall z €1, r > Owitht —7 €.
This yields ¢ € pe. Since Proposition 4.2.3 says that the ranks of the projectors of nonhyperbolic

exponential dichotomies on [ with the same growth rate are equal, we have rk Q- = rk Q, for

any projector Q- of the nonhyperbolic exponential dichotomy on [ with growth rate {. In case

pPo = pg 'T) and ? € po, there exists an invariant projector Q, such that

|D(T, 0)EN < e’ T|IE|l forall 0# ¢ e R(Q, (7)),
IO(=T, 7+ T)¢| <e?T|&|| forall 0#¢ e N(Qy(r +T)).

We define

1T, 7)<l < 19T, 7)<l

p = max[ max — e ma T
0£CeR(0, (1)) e’ |[E]l 0#£EeN(Q, (z+T)) eV 1| <]l

and set ¢ := % In S. Thus, for all ¢ € U.(y), we have

ID(T, 0)EN < e TE forall 0# ¢ € R(Q, (7)),
ID(=T, 7 + T)| < e ¢T||E]l forall 0#¢ e N(Q,(x +T)).
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This implies ¢ € pe. The equality of the ranks of the invariant projectors follows from Proposi-
tion 4.2.3. 0

4.2.8 LEMMA. Assume that po = pg , Py » Py » pc(DT’T), respectively, let yi, y2 € pp N R

with y; < y2, and choose invariant projectors Q,, and Q,, for the corresponding nonhyper-
bolic dichotomies with growth rates y, and y,. Then, the relation rk Q,, < rk Q,, holds.
Moreover, [y1, y2] C po is fulfilled if and only iftk Q,, =1k Q,,.

PROOF. We first prove the relation tk Q,, < tk Q,,. In case po = pg , Py » Py » respectively,

this is a direct consequence of Proposition 4.1.11, since §,, C S,, and U,, D U,,. In case

pPp = p((DT’T), we observe that R(Q,,) N /\/'(Qyz) = T x {0} holds, because a nonzero element

¢ e R(Qy, (1)) NN(Q,,(1)) would satisfy
IE] = 1O(=T, 7 + T)D(T, 0)&|| < e 2T O(T, 1)E| < e 2T e T || < [I€]].

This yields 0 = dim (R(le) N N(Qyz)) =1k Q,, + dimN(Q,,) — dim (R(le) + N(Qyz)),

and therefore,
k 0y, =1k @, + N —dim (R(le) +N(Qy2)) >1k Qy, .

Assume now that [y, y2] C poe. Arguing negatively, we suppose that tk Q,, # 1k Q,,. We
choose invariant projectors Q, for the nonhyperbolic dichotomies of (0, ¢) with growth rate y
for all y € (y1, y2) and define

Co=sup {¢ € [y1, 721 : tk Qr #1k 0y, } .

Due to Lemma 4.2.7, there exists an ¢ > 0 such that rk O, = rk Q- for all { € U.({p). This
is a contradiction to the definition of {j. Conversely, let tk Q,, = 1k Q,,. We first treat the case
po = pg - Because of tk 0, = 1k Q,,, Proposition 4.1.11 yields that N'(Q,,) = N(Q,,). Due
to Lemma 4.2.4, Q,, is an invariant projector of the nonhyperbolic past exponential dichotomy
with growth rate y;. Thus, we have

1D, 7)Q,, ()| < K117 forall t > 0,7 <0witht+7 <0

for some K; > 1 and oy > 0. Q,, is also projector of the nonhyperbolic past exponential
dichotomy with growth rate y,. Hence,

|©(=t, 7)1 = Q,,(2)| < Kae™ 022" forall t > 0,7 <0

is fulfilled for some K> > 1 and ap > 0. For all y € [y1, y2], these two inequalities imply by
setting K := max {K1, K7} and a := min {a1, o>} that
10, 7)Q,,(0)|| < Ke¥™®"  forall t >0,z <Owithsr+7 <0,
|®(=t, 7)1 = Q,,(2))| < Ke™ T forall t > 0,7 <0.

This means y € po, and therefore, [y1, y2] C po. The case po = pg’, pg’ is treated analogously.

It remains to show the implication for pp = p((lf D) We have already seen at the beginning of this
proof that R(Q,,) NN (Q,,) = T x {0}. Since rk Q,, = rk Q,,, this implies the existence of an
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invariant projector Q with A'(Q) = N'(Q,,) and R(Q) = R(Q,,). Thus, forall y € [yy, y2], we
have

(T, )¢ <Ml forall 0 ¢ € R(Q(2) = R(Qy,(1)),
IO(=T, 7 + 1|l < e |€]| forall 05 & € N(Q(r +T)) = N(Qy,(r + 7).

This implies [y1, y2] C po and finishes the proof of this lemma. 0

For arbitrarily chosen a € R, we define

[—o0, a] := (—o00,a] U {—oo}, [a, 00] := [a, 00) U {o0},
[—00, —00] := {—o0} [00, 00] := {00},
and [—o0, 00] = R.

We now state the main result of this section.

4.2.9 THEOREM (SPECTRAL THEOREM). For all spectra £¢ = X3, 2g , 2g > Zg’T),
there exists ann € {1, ..., N} such that

Z(I) = [alabl] U.--u [anabn]

)

) T
with —o00 < a1 < by <ay < by <--- <a, <b, <oo. Incase Lo = Z((DT’ , we have

—00 < aj and b, < 0.

PROOF. Due to Lemma 4.2.7, the set pp N R is open. Therefore, X N R is the disjoint union
of closed intervals. In case X¢p = ZC(DT ’T), the boundedness of X is obvious, and if X¢ =
Ty, Zg, Xy, respectively, then the relation (—oo, b1] C X¢ implies [—o0, b1] C ¢, because
the assumption of the existence of a y € R such that (9, ¢) admits a nonhyperbolic dichotomy
with growth rate y and projector Q, = 0 leads to (—o0, y] C po using Lemma 4.1.9. This is
a contradiction. Analogously, it follows from [a,, 0c0) C Z¢ that [a,, 00] C Z¢. To show the
relation n < N, we assume that n > N + 1. Thus, there exist

(1< <-<(NnEPpD
such that the N + 1 intervals
(=00,01), ((1,82) 5 -+ -5 ({5 00)
have nonempty intersection with the spectrum X . It follows from Lemma 4.2.8 that
0<1kQy <1kQp, <---<1kQpy <N

is fulfilled for invariant projectors Q. of the nonhyperbolic dichotomy with growth rate ¢;,
i € {l1,...,n}. This implies eitherrk Q- = 0 orrk O, = N. Thus,

[0, (1lNZp =0 or [(ny,0]NZp =4,

and this is a contradiction. To show n > 1, we assume that X4 = @. This implies {—oc0, 00} C po.
Thus, there exist {1, {2 € R such that (8, ¢) admits a nonhyperbolic dichotomy with growth rate (|
and projector O = 0 and a nonhyperbolic dichotomy with growth rate (> and projector O, = 1.
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Applying Lemma 4.2.8, we get ({1, ) N X # @. This contradiction yields n > 1 and finishes
the proof of this theorem. U

In the following example, spectra of scalar linear differential equations are studied.

4.2.10 EXAMPLES. We consider scalar differential equations of the form

=]

where @ : R — R is a continuous function. We have ®(z,7) = exp ( [/ a(s)ds) for all
t,7 € R. The SPECTRAL THEOREM says that the past, future, all-time and (z, T')-dichotomy
spectra consist of exactly one closed interval. Furthermore, due to Remark 4.1.5 (iv), 2((1)1 1)
simply is the singleton {|(D(T, r)l}. The following examples show that the past, future and all-
time dichotomy spectra can be more complicated.
(i) Ly =Xy =Xy ={oo}fora(t) :=|t|forallt € R.
PROOF. For y € R, we have

T+t
d)y(t,r):exp(/ (|s|—y)a’s) forall t,7 € R.

Since for all s € R with |s| > y + 1, the relation [s| — y > 1 is fulfilled, (0, ®, ) admits a
nonhyperbolic exponential dichotomy on [R:y -1 and [Rr; 1 with growth rate 0, constants
o = 1, K = 1 and invariant projector 0. Moreover, Proposition 4.2.1 (i), (i1) implies that
Xy = Xg = {0o}. The remaining assertion L3’ = {oo} is a consequence of Proposi-
tion 4.1.6 (i1).

(i) X5 ={—00}, Ly ={oc}and Xy = R for a(t) :==t forall t € R.
PROOF. The assertions concerning the past and future dichotomy spectrum are proved
analogously to (i). Concerning the all-time dichotomy spectrum, we assume to the contrary
that there exists a y € R such that ®, admits an all-time exponential dichotomy. Please
note that the relation

1
@, (t,7) =exp (§t2+ Tt + yt) forall r,7 € R

holds. For the corresponding invariant projector Q, , there are only the possibilities O, = 0
or O, =1. Incase Q, = 1, the dichotomy estimate

1
@, (1,0) = exp (Et2 + yt) < Ke ™ forall t >0

yields a contradiction in the limit 7 — o0o. Analogously, the case Q, = 0 is treated.

(i) & =[—o00,Bl, 5 = {B}and £ = [—ooc, f] for

S o> —1
ﬁ—n+n(l+22n+1) : te[—22"—1,—22"] for some n € Ny
a(t) = | B—n : te[ =22+ 22 — 1] for some n € Ny
B—n(t+2*t+1) = re[—22F1—1,-22"+1] for some n € Ny
B ;e[ =22t 220+ _ 1] for some n € Ny
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(iv)

v)

PROOF. The statement concerning X’ is clear. To compute X4, assume to the contrary
that for some y < p, the linear NDS (0, ®,) admits a past exponential dichotomy with
projector Q,. In the one-dimensional context, there are only the possibilities 0, = 0 or
Q, = 1. Incase Q, = 1, we have the dichotomy estimate

T+t
®, (t,7) =exp (/ (a(s) — y)ds) < Ke ™™ forall t <0and0 <t < —71

for some K > 1and a > 0. We choose n € Ng such that K exp (—a (2*"*1 — 1)) < L.
Then,

_22n+1 .|

(Dy (22n—|—l _ 1’ _22(n+1)) = exp / (ﬁ — y)ds > 1.
—22(n+1) ~—
>0

This is a contradiction. In case O, = 0, we have the dichotomy estimate
T—t
O, (—t,7) =exp (/ (a(s) — y)ds) < Ke™ ™" forall t <Oandt >0
T

for some K > 1 and o > 0. We choose n € Ny such that K exp (—a(22" — 1)) < 1 and
f —n—7y <0. Then,

_p2n+l

o, (—22”+1,—22”—1):exp / f—n—y)ds| >1.
2] ——
<0

This is also a contradiction. Itis easy to see that for y > f, the linear NDS (€, @, ) admits a
past exponential dichotomy with projector Q, = 1. Hence, we have X3~ = [—o00, £]. Due
to Remark 4.2.6 (iii), £y’ D 5 U Xy = [—oo, B] is fulfilled. It is also easily shown that
fory > B, the linear NDS (6, ®, ) admits an all-time exponential dichotomy with projector
Q, = 1. Thus, we obtain g’ = [—o00, S].

Ty =1L Ty =I[pf,00land TG = [f, oo] for
S t<1
b+ n(t — 22") t e [22”, 2 4 1] for some n € Ny
a(t) := 1 B+n t € [22" +1,22"T!] for some n € Ny
B+n—n(t -2+ t e [22”+1, PR 1] for some n € No
B t €[22+ 4 1,220+D] for some n € Ny

PROOF. See proof of (iii).

2&3_ = {p}, Zq_)) = [f, 0] and Zg = [p, o] for
S t<1
b+ (t - 22")((5 ) t e [22”, 22 4 1] for some n € Ny
a(t) := 1 b t e [22” +1, 22"+1] for some n € Ny
S+ (t =22 (B — ) t € [227+1, 2271 4 1] for some n € Ny
B t € [22+1 4 1,220+D] for some n € Ny

PROOF. See proof of (iii).
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The following theorem says that each interval of the past (future, all-time, respectively) spectrum
corresponds to a linear nonautonomous invariant manifold.

4.2.11 THEOREM (SPECTRAL MANIFOLDS). Let

Z(D = Z&)_a Z(:I_)>) Zg: [alabl]u"'u[an;bn];
respectively, define the invariant projectors Q,, := 0, Q,, := 1, and fori € {1,...,n — 1},
choose y; € (b;,a;+1) and projectors Q,, of the nonhyperbolic dichotomy of (0, ¢) with
growth rate y;. Then, the sets

Wi :=R(Qy,) ﬂ/\/'(Qyi_,) forall i € {l1,...,n}
are linear nonautonomous invariant manifolds, the so-called spectral manifolds, such that

W@ - dW,=TxR

and W; # T x {0} fori € {1,...,n}.

PROOF. The sets Wy, ..., W, are obviously linear nonautonomous invariant manifolds. We
suppose that there exists an i € {l,...,n} with W; = T x {0}. Incasei = 1 ori = n,
Lemma 4.1.9 implies [—o0, y1]N X =0 or [y,—1, 0] N X¢ = @, and this is a contradiction. In
case 1 <i < n, due to Lemma 4.2.8, we obtain

dimW; = dim (R(Q,,) NN (Qy,_)))
=1k 0y, + N =1k 0;,_, —dim (R(Q;,) + N(Q;,_) = 1,

and this is also a contradiction. We now prove W) @& --- ® W, =T x RN . W.l.o.g., we assume
o =Xy ,2y. Forl <i < j < n, due to Proposition 4.1.11, the relations W; c R(Q,,) and
Wi c N(Q,,_)) € N(Q,,) are fulfilled. This yields

W, "W, C R(Qy,) NN(Q,,) =T x {0}.
Moreover, Lemma A.2.3 implies that

TxRY = Wi + N (Q,,) = Wi + N(Q,,) N (R(Qy,) + N(Q,,))
= Wl +N(Qy1) N R(Qyz) +N(Qy2) = Wl + WZ +N(Qy2)

holds. It follows inductively that

This finishes the proof of this theorem. U

In case of the past and future dichotomy spectrum, the spectral manifolds give rise to a Morse
decomposition on the projective space.

4.2.12 THEOREM (SPECTRAL MANIFOLDS AND MORSE DECOMPOSITIONS). Let

Z(D:Z&)_’ Z(I_)) :[alabl]U'U[anabn]a
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respectively, define the invariant projectors Q,, := 0, Q,, := 1, and fori € {1,...,n — 1},
choose y; € (b, a;jy1) and projectors Q,, of the nonhyperbolic dichotomy of (0, ¢) with
growth rate y;. Then, the sets

M; == P(R(Q,,) NN(Q,,_,)) foralli efl,...,n}

are the Morse sets of a past (tuture, respectively) Morse decomposition of (6, Pg).

PROOF. This is a direct consequence of Theorem 4.1.15. UJ

4.2.13 REMARK. It is possible that the above Morse decomposition defined by the spectral in-
tervals is coarser than the finest Morse decomposition of Theorem 3.5.6 (see also COLONIUS &
KLIEMANN [48]).

4.3 LYAPUNOV SPECTRA

In this section, the so-called Lyapunov spectra are introduced, and their relationship to the past
and future dichotomy spectrum is examined. As in the previous section, we restrict to the case that
(@, @) is generated by a nonautonomous differential or difference equation, i.e., P = T = R, Z
and0(t,t) =t + 7 forallt, 7z €T.

4.3.1 DEFINITION (LYAPUNOV EXPONENTS AND LYAPUNOV SPECTRA). For nonzero
& € RN, the numbers

1 1
AL (&) =limsup —In|[|®(—,0)¢|| and AT (E) = liminf — In || D (—z, 0)E||
t 1—>00 t

t—00

are called upper and lower Lyapunov exponent for t — —oo. Considering the future, the
numbers

1 1
Ar(f) =limsup —In [|®(z,0)¢|| and A7 (&) = liminf — In || ®(z, 0)¢||
t r—oo f

r—0o0

are called upper and lower Lyapunov exponent for # — oo. The Lyapunov spectrum for
t — —oo is defined by

o5 = U [£©, 250,

0£EeRN

and the Lyapunov spectrum for t — o0 is defined by

o = |J [12@.27©)].

0#£E€RN

It is well-known that there exist n~,n" € {1,..., N} and Cloevns cfn__, §1+, ... ,é;; e RN such
that

o8 =25, 25 @] U U2E(Em), 25 E)]
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and
oy =[22@1), A2 D] U U[AZ (&), AT (&)]
(see, e.g., BARREIRA & PESIN [24] and DIECI & VAN VLECK [61, 62]).

In the following, the relationship between the dichotomy spectra and the Lyapunov spectra is
discussed.

4.3.2 THEOREM (RELATIONSHIP TO THE PAST AND FUTURE DICHOTOMY SPECTRUM).
The relations —og, C Ly andog C Xy hold.

PROOF. Let 2 € —og . Thus, there exists a & € RY with =1 € [25(&), 25 (¢)]. Initially,
we suppose that 1 € R. Arguing negatively, we assume, (0, ¢) admits a nonhyperbolic past
exponential dichotomy with growth rate y := 4, constants K > 1, « > 0 and invariant projector

0,,1e,

1O, 7)Q, ()| < Ke¥ ™" forall ¢ <Oands > Owitht +1 <0,
|©o(=t, 7)1 - Q, ()| < Ke™ "+ forall ¢ <Oands > 0.

We write & = & + & with & € R(Q, (0)) and & € N(Q, (0)). In case & = 0, we have

1 1
A5 = limsup ~ In [ ®(—1, 0)¢]| < limsup ~ In (Ke™ 7))
t—oo 1 t—oo I
:—y—a:—i—afi:(f)—a

This is a contradiction. Otherwise (| # 0), we observe that for all ¢+ > 0,

1€ = 110, (0)E| = | @@, —)D(—1,0)Q, (0)¢|| = | @, —1) Q) (=)D (-1, 0)E |
< K" 0 (—1, 0)¢|

is fulfilled. Thus, ||®(—z, 0)¢|| > K ~le~ =@ ||& | for all ¢+ > 0, and therefore,
1 1
A£(@) = liminf —In[|®(—¢, 0)&|| > liminf —In (K ~'e™0 =)&)
t—oo t—oo f
=a—y=a—-A>a+A5().

This is also a contradiction, and hence, 1 € X5 . We now treat the case 1 ¢ R, wl.o.g., A = oo.
Assume that —oo ¢ Zq‘)_. Thus, there exist y € R, K > 1 and o > 0 with

|D(—1,0)|| < Ke~ V9" forall t >0,

and this relation implies the contradiction

1
lim sup ;1n (||CI)(—t,O)||) <—y —a <.

—0o0

Hence, A € X4 . The remaining assertion o, C X g’ can be proved analogously. 0

The following example shows that the Lyapunov spectra do not coincide with the dichotomy
spectra.
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4.3.3 EXAMPLE. We consider the scalar linear nonautonomous differential equation

X = (t sin(t) — cos(t))x ,

which generates a linear nonautonomous dynamical system with P = R. We have
D(t,7) =exp (—(t +17)cos(t+1)+7 COS(Z’)) forall 1,7 € R.

An easy calculation yields 05~ = 04> = [—1, 1]. Choosing

T T

= ,tZ::—E,n :=2k7r—5,12:=2k7r+% forall k e Z,

we obtain
O (11, 71) = O(12, 72) = exp(2km) .

Hence, for any y € R, this system does not admit a nonhyperbolic past exponential dichotomy
with growth rate y . This implies X5~ = R. Analogously, one can show that X’ = R is fulfilled.

4.4 SPECTRA OF AUTONOMOUS LINEAR SYSTEMS

It is well-known that an autonomous linear differential equation

(4.4)

with a matrix A € admits an exponential dichotomy on [ = R, R(’)L, R, respectively, if and
only if the real part of every eigenvalue of A is unequal to zero (see, e.g., KALKBRENNER [87,
Satz 1.1.3.2, p. 24] and SACKER & SELL [150, p. 430(1)]). Therefore, the corresponding past,
future and all-time dichotomy spectra satisfy

IRNXN

T =37 =327 ={Rel: lisaneigenvalue of A}.

A relation of this kind does not hold for the (z, T')-dichotomy spectrum. Nevertheless, by letting
T tend to co, we obtain the following statement.

4.4.1 THEOREM (SPECTRA OF AUTONOMOUS LINEAR SYSTEMS). Consider the linear
system (4.4). Then, the limit relation

lim ZgO’T) = {Rei : A is an eigenvalue ofA}

T—o0

holds with respect to the Hausdorftf distance.

PROOF. There existn € {1,..., N}andreals A; < 1 < --- < 4, with
{Re/l : A is an eigenvalue ofA} ={A1,..., Ax}.

It is sufficient to show that for all ¢ > 0, there exists a 7 > 0 with

n
Grseos b € U(207) and =07 ¢ | JUoGo) forall Tz <. 4.5)

i=1



98 Chapter 4: Linear Systems

Lete > 0. Itis an elementary result in the theory of linear differential equations (see, e.g., COPPEL
[53, p. 56]) that there exist nontrivial linear subspaces Uy, ..., U, C RN withU;®---®U, =RV
and a real constant K > 1 such that foralli € {1,...,n},

et ¢ < KeXH DM forall e Uy @---@U;andr >0, (4.6)
1 e
le?e|| > ?e()“i_z)[||§|| forall e U;@®-- @ Uyandt >0 4.7)

is fulfilled. We choose 7 > O and T > 7 with Ke 1% < 1.
To prove the first condition of (4.5), we choose an i € {1, ..., n} and assume to the contrary that

U,(4) N S 1(40,T) = (. Thus, there exists an invariant projector Q(/L-—%) with

|| < DTN forall 0 & € R(Q,—2)(0)) (4.8)

and an invariant projector Q¢ Li+5) with

[e4T&] < emGHDT)E| forall 0% & € N(Qei4)(T)) .- 49

Because of Lemma 4.2.8, we have rk Q(,li—g) =1k Q(Ai+g) =:r.Ifr >dmU; + --- 4+ dim U;,
then dim (R(Q(,li_%)(O)) NW; & & Un)) > 1. In this case, there exists a nonzero element
e R(Q(,li_%)(O)) N(U; @ --- ® U,), and this leads to the contradiction

_(1._¢ _& 48 _._¢ @an _., _e 1 &
€] = emHmDTAimDT &) 757 o= (him DT pAT 2| 757 = (=T (=0T

K
_epy—1
= (Ke™*")THIEN > -
If r <dimU; + - - - + dim U;, then we have dim (N(Q(,li+%)(0)) NWU - & U,-)) > 1. Thus,

there exists a nontrivial element & € N (Q(/li+§)(0)) N (U1 & --- & U;), and this also yields the
contradiction

4.9 L (4.6) L€ L€ e
”6” — He—ATeATé:” (<) e_(/lz'f'j)T HeATé:H < €_()”+§)TK€(L+Z)T”C::” — Ke—ZT”é:” < ”5” )
To prove the second condition of (4.5), let 4 ¢ U!_,U.(4;). We set 49 := —oo and 4,4 := oo.

There exists ai € {0, ..., n} such that
A>Ai+e and A<y —e.
Now, we define the invariant projector Q by
RQO)=U1®---&U and N(QO)=Uit1® S U,.
Thus, for all nonzero & € R(Q(0)), we have

(4.6) e 3
|eATE| <" KeH T IT|E) < KeP DT ¢ < T,

and for all nonzero ¢ € N'(Q(T)),

_ 4.7) e _ 3z _
le™4T¢| <" Ke W= DT g < Kem DT e < 7T

is fulfilled. Hence, 4 ¢ ZgO’T) , and this finishes the proof of this theorem. O
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4.4.2 REMARK. Using Floquet Theory (see, e.g., CODDINGTON & LEVINSON [47, pp. 78-80]
or CHICONE [44, Section 2.4, pp. 162—-197]), one can extend the above theorem to periodic linear

differential systems of the form
=], .10

where A : R — RV*N fulfills A(f) = A(t + o) for all + € R with some @ > 0. We denote
the transition operator of (4.10) by A. For the past (future, all-time, respectively) dichotomy
spectrum, we obtain

L =37 =327 ={In|4]: Ais an eigenvalue of A(w, 0)}.

The matrix A (w, 0) is called monodromy matrix of (4.10). The (0, T')-dichotomy spectrum fulfills
limit relation
lim EgO’T) = {In|] : 1 is an eigenvalue of A(w, 0)}

T—o0

in the sense of Hausdorff distance.
4.4.3 EXAMPLE. For fixed T > 0, we want to compute the (0, 7')-dichotomy spectrum ZIE‘O’T)

of system (4.4), where
1 1
e (1),

Specifically, in this example, we use the norm || - || : R? — IRg, l(x1, x2) |1 := |x1| + |x2]. Please
note that, for y € R, the relation

1-y)T 1-y)T
JA=y DT _ e1=7) Te(_ 7)
0 =T

is fulfilled (see, e.g., AULBACH [14]). Hence, for all £ = (&1, &) € R? with ||&||; = 1, we have

_ 1 _ ¢l _ 0
(A—yD)T (A—y1)T (A—yD)T
)=l @ ()

— =0T =TT 4 ,=1)T

<

S ‘
1

1 1

The term Te!=7)7T 4 (=77 ig strictly monotone decreasing in y € R, and therefore, there exists
a uniquely determined y, = y,(T) > 1 with Te =77 4 o077 — 1,
Using these observations, it is easy to see that Z;O’T) = {1, y.}, since

e for y < 1, the linear system (4.4) admits a nonhyperbolic (0, 7')-dichotomy with growth
rate y and invariant projector O, =0,

e fory € (1, y,), the linear system (4.4) admits a nonhyperbolic (0, 7')-dichotomy with growth
rate y and invariant projector Q,, determined by R(Qy (0)) = {#(1,0) : p € R} and
N(Q, () ={(0,1): f € R}.

e for y > y,, the linear system (4.4) admits a nonhyperbolic (0, T')-dichotomy with growth
rate y and invariant projector Q, =1,

e for y € {1, y,}, the linear system (4.4) admits no nonhyperbolic (0, T')-dichotomy with
growth rate y .

Please note that Theorem 4.4.1 implies that lim7_, o 7.(T) = 1.
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4.5 ROUGHNESS

We consider the nonautonomous linear differential equation

@.1)

with a continuous function A : R — R¥*¥ and a perturbed system
&= (A(t) + B(1))x]| (4.12)

with a continuous function B : R — RV*N_ The transition operators of (4.11) and (4.12) are
denoted by A and A*, respectively.

4.5.1 THEOREM (ROUGHNESS THEOREM FOR NONHYPERBOLIC EXPONENTIAL DI-
CHOTOMIES ON [). Let [ be an unbounded and closed interval, and suppose, (4.11) admits a
nonhyperbolic exponential dichotomy on | with growth rate y , constants o., K and invariant
projector Q. If the relation

a
o:=sup [|BOI < -5
tel 4K?
is fulfilled, then also the perturbed system (4.12) admits a nonhyperbolic exponential di-

. 2 . . . A
chotomy on | with growth rate y, constants (a — 2KJ), 5% and an invariant projector Q,

more precisely, we have

A 5K?
|A*(t, 5)0(s)| < Te@—(“—zm)(f—s) forall t,s € | witht > s,

A 5K? ,
|A* @, 5)(1 = Q@) < Te(H“—W)(f—*) forall t,s € | witht <'s.
In case | = R, the invariant projector Q has the same image as Q, and if | = [R;L holds, then

Q has the same null space as Q. Finally, if | = R is fulfilled, we get rk Q =1k Q.

PROOF. See COPPEL [54, Proposition 1, p. 34] or COPPEL [53]. Ol

4.5.2 REMARK. The perturbations considered in this theorem are perturbations with respect to
the uniform topology, generated by the norm
IAlloo := sup [|A(@)| forall A e C(I,RN*N),
tel

where C (I, R¥V*V) := {X : I - R¥*V : X is continuous}. It is possible to weaken this condition
on the perturbation (see, e.g., POTZSCHE [138] or PLISS & SELL [132]). For instance, considering
the topology of uniform convergence on compact sets, i.e., lim,_~ A, = Ao if and only if

lim sup ||A,(t) — Ap(t)]| =0 for all compactsets J C I,

n— oo teld

one can derive a similar but more stronger perturbation result as Theorem 4.5.1 (see also SACKER
& SELL [153, Section 5, Remark on p. 346]).

4.5.3 THEOREM (ROUGHNESS THEOREM FOR NONHYPERBOLIC (7, T)-DICHOTO-
MIES). Suppose, (4.11) admits a nonhyperbolic (t, T)-dichotomy with growth rate y and
projector Q. Then, there exists an ¢ > 0 with the following property: If
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sup  [|BOIl <e,
telr,t+T]

then also the perturbed system (4.12) admits a nonhyperbolic (t, T )-dichotomy with growth
rate y and projector Q.

PROOF. This statement follows directly from the continuity of the general solution (cf. Proposi-

tion A.1.3).

O






CHAPTER 5

NONLINEAR SYSTEMS

In the study of nonlinear systems, invariant manifolds play a central role, since it helps to under-
stand the often complicated dynamical behavior near an equilibrium, a periodic solution or—in
the nonautonomous context—an arbitrary solution. The construction of stable and unstable invari-
ant manifolds goes back to POINCARE [135] and HADAMARD [72]. In the sequel, the theory was
extended from hyperbolic to nonhyperbolic systems, from finite to infinite dimension and from
time-independent to time-dependent equations.

To mention only few references of the comprehensive amount of literature for autonomous dif-
ferential equations, we refer to CARR [38], CHOW & L1 & WANG [46], HIRSCH & PUGH &
SHUB [79], KELLEY [90, 91], KIRCHGRABER & PALMER [92], PLISS [131], SHUB [169], VAN-
DERBAUWHEDE [179] and WIGGINS [182]. In the nonautonomous context, sse AULBACH [13],
AULBACH & WANNER [21], SELL [167], WANNER [180] and Y1 [183].

In the first section of this chapter, invariant manifolds are constructed which apply to different
time domains. It suffices to extend the results of AULBACH & WANNER [21] and SIEGMUND
[170] slightly. Also, the relationship to the notions of attractivity and repulsivity is discussed.
In Section 5.2, these results are applied in the context of nonautonomous bifurcation theory. It
is shown that under special assumptions, zero is contained in the dichotomy spectrum of the
linearization of a bifurcating solution. In Section 5.3, properties of attraction and repulsion for
nonlinear systems are derived from the study of the linearization, and finally, Section 5.4 is devoted
to the relationship between the bifurcation theory of adiabatic systems and the concept of finite-
time bifurcation.

5.1 NONAUTONOMOUS INVARIANT MANIFOLDS

Let [ be an unbounded interval of the form R, R or IR,}L, respectively. In this section, we consider
nonlinear differential equations of the form

= A@)x+ F(t,x))| (5.1)

with a continuous function A : | — RY¥*N and a Cl-function F : | x U — RY, where U is
an open neighborhood of 0 and F(z,0) = O for all # € . The general solution of (5.1) will be
denoted by /. In addition to (5.1), we consider the corresponding linear differential equation

.
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with transition operator A : [ x | = R¥*N_ Let O, : 1 = RV*N be an invariant projector of
(5.2). Then, Q_ : | — R¥*¥ defined by Q_(t) := 1 — Q(¢) for all ¢ € I, is also an invariant
projector.

Please note that in the following, the symbol Q4 simultaneously stands for O+ and Q_, respec-
tively. We proceed similarly with our further notation in this section.

Next, we introduce a nonautonomous counterpart of an invariant manifold for (5.1).

5.1.1 DEFINITION (NONAUTONOMOUS INVARIANT MANIFOLDS). Assume that for an
interval | C R and a neighborhood V of 0, C'-functions s* : | x V. — RV satisfy
(i) st(t,0)=0forallt el,

(i) lim,_so Si”(;hx) — 0 uniformly int €1,

(i) s(t,x) = s(t, Q+(t)x) € R(Q+(¢)) forallt e landx € V.
Then, the graphs

ST = {(t,&+5%(1,8) e Ix RN : & € R(Q+(7)) NV}
are called (local) nonautonomous invariant manifolds of (5.1) if

for all (z,¢&) € S* and ¢ € | such that

+
(t,A2(t,7,8)) €S Mr+clt—1),7,&) eV forall c €]0,1].

We call S* global nonautonomous invariant manifolds if V = R".

Now, existence results for nonautonomous manifolds of (5.1) are proved and applications are
discussed with respect to the notions of attractivity and repulsivity introduced in Chapter 2. Before
doing so, some hypotheses on the linear part and the nonlinearity are needed.

We assume, the following hypotheses hold:

e HYPOTHESIS ON LINEAR PART. The linear system (5.2) admits a nonhyperbolic all-
time (past, future, respectively) exponential dichotomy, more precisely, there exists an
invariant projector @, : | — RV such that the inequalities

IA(t, $)Q4+(s)]| < Ke*U=) forall t > s,
IA(z, $)O_(s)|| < KePU=) forall r < s

hold with real constants K > 1 and a < /.
e HYPOTHESIS ON NONLINEARITY. There exists a monotone increasing function
— .
I':©,1) > R withlimgoI'(s) =0 and

sup  sup ||[D2F(t,x)|| <T'(s) forall s e (0,1).

xeU, |x|<s tel

5.1.2 REMARK. The Hypothesis on nonlinearity also reads as lim,_,o sup,¢; [|D2F (¢, x)|| = 0.
In the above description, the function I' is needed to explain the dependence of some constants in
the next theorems concerning the rate of this limit process.
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First, the case of all-time invariant manifolds of (5.1) is treated.

5.1.3 THEOREM (ALL-TIME INVARIANT MANIFOLDS). In case | = R, there exist p > 0
and C'-functions s* : R x U,0) — RY such that the graphs

ST i={(r,&+5T(1,8) e Rx RV : & e R(Q(2)) N U,(0)}

are local nonautonomous invariant manifolds. Furthermore, the following statements are ful-
filled:

(i) Case a < 0 and rk Q4 > 1 (Trivial solution is not all-time repulsive). For all ¢ > 0,
there exists anr > 0 such that for all (z, &) € ST with |£|| < r, we have

At,7,8) e Uy(0) forall t > 7 and A(,7,¢)is (o + ¢) T -quasibounded.

(ii) Case f > 0 and rk Q_ > 1 (Trivial solution is not all-time attractive). For all ¢ > 0,
there exists an r > 0 such that for all (z, ) € S~ with |&|| < r, we have

AMt,1,8) e Uy(0) forall t <7 and A(,7,¢) is (B — €)™ -quasibounded.

(iii) Case o < 0 and Q4+ = 1 (Trivial solution is all-time attractive). There exists an
r=r(a,K,T") > 0 with

lim sup d(Z(z +1, 7, U,(0))|{0}) = 0.

>0 7eR

(iv) Case f > 0 and Q_ = 1 (Trivial solution is all-time repulsive). There exists an
r=r(f, K,T') > 0 with

lim sup d(A(r —1,7,U(0))[{0}) = 0.

— 00 7eR

PROOF. The proof is divided into two steps.

STEP 1. Existence of S*.

Incase Q4 = 0 or Q4 = 1, the manifolds S + are trivial, and nothing has to be shown. Therefore,
we assume Q4 # 0 and Q4 # 1. In AULBACH & RASMUSSEN & SIEGMUND [18, Lemma
6.1] (see also RASMUSSEN [143, Lemma 6.3.7], COPPEL [54, Chapter 5] and SIEGMUND [172,
Lemma 2.3]), it is shown that there exists a function 7 : R — RV*N of invertible matrices such
that the so-called Lyapunov transformation y = T (t)x of system (5.1) leads to the following
system with decoupled linearization:

N
j = ( EL )y +TWOF (5 T(07y),

=:G(t,y)

=:B(¢)
where BY : R = RV ¥  and B~ : R - R¥ *¥™ with N* := tkQ, and N~ := rk O_.
The transition operators ¥+ and W~ of the linear differential equations y, = BT (t)y, and

y— = B™(t)y—, respectively, fulfill

IPH(, s)| < 2K%*C™ forall t >s and [|¥~(,s)|| < 2K2eP"™) forall r < s.
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It is also show that
IT@)) <v2K and |T7'(1)| <2 forall r e R. (5.3)
Thus, the Hypothesis on nonlinearity implies the limit relation

lim sup || D>G(t, y)|| =0. (5.4)

Y= teR

We fix a smooth cut-off function y : RN — [0, 1] (see, e.g., ABRAHAM & MARSDEN & RATIU
[1, Lemma 4.2.13]) such that

x(x) =1 forall x € RN with |x|| <1 and x(x) =0 forall x € RN with [|x|| > 2.
For any ¢ > 0 with Us, (0) C U, we define the function G, : R x RY — R" by

x(£)G(@t,x)  forall 1 e Randx € U

Gy (t,x) := 0 forall t e Randx ¢ U

Due to the mean value inequality (see, e.g., LANG [101, Corollary 4.3, p. 342]), the relation
G(-,0) =0leads to

NG, x)|| < |lx|| sup [|ID2G(t,sx)|| forall x € RV andt € R.
s€[0,1]

Since D2G, (1, x) = x (£)D2G (1, x) + JLD)( (£)G(t,x), forall 1 € R, we have

sup || D2G, (1, X))

xeRN

1
< sup [[D2G(t, %)+ — sup Dy(x) sup | [lx|| sup [[D2G(z,sx)]

xll<2o O Jxlls2 lxll<2o s€[0,1]

Hence,

sup  [|1D2Go(t, x)l < | 1+2 sup Dy(x) sup DG (1, x)ll.

(t,x)eRxRN xeRN llxl<20,teR

Due to (5.4), this implies
lim  sup [|D2G,(t,x)| =0,

U_QO(Lx)eRxRN

and thus, there exists a p > 0 such that

y=B@)y+G;,y) (5.5)

fulfills the (global) hypotheses of SIEGMUND [170, Satz 4.16 and Satz 4.30]. Denoting the general
solution of (5.5) by A, this means that there exist C'-functions 5% : R x RN — RV fulfilling

§T,8) =511, (&, ..., En+,0,...,0) € {O0,...,00} x RV c RV

and
56O =5 (6,0,...,0,Ey 415, En) € RV x {(0,...,0)} c RV
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forall t € R and ¢ € R such that the graphs
Sti={(r,&+s57(2,&) eRx RV : & =0fori > NT}

and y
STi={(r,E+57(1,&) e RxRY : & =0fori < Nt}

are global nonautonomous invariant manifolds with

+
St .= [(r,é) eR xRN : ;1(-, 7,¢) is (#) -quasibounded} )

We define §* : R x RN — RY by
§T@t,x) :=T@)"'§%@¢, T(t)x) forall 1 € Rand x € RV .
Then, §& leads to the nonautonomous sets S +_ which also can be defined by
SE(t):=Tt)"'S*(t) forall r e R. (5.6)
Let A denote the general solution of the system
x=Ax+T@)"'G, ¢, T()x), (5.7)

which is obtained via the transformation x = T'(f)~'y from system (5.5). Then, the representation
+
ST .= {(r, ¢)eRx RN - /Al(-, 7,&) s (#) —quasibounded]

is fulfilled (see RASMUSSEN [143, Satz 6.3.8] or AULBACH & RASMUSSEN & SIEGMUND [18]),
and due to AULBACH & WANNER [21, p. 83—-84, formulae (69), (70)] and (5.3), there exists an
M; > 1 with

|2, 7,8 < MyIElle S forall 1 > 7 and & € §F(r) (5.8)

and
S M(l‘—‘[) 5—
1A, 7,8)| < MilI¢lle 2 forall < 7and¢ € S (1).

Because of (5.3),

there exists a p > 0 such that the systems (5.7) and (5.1)

coincide onz € Rand x € U;(0). (5

Moreover, there exists an M, > 0 such that ”§i(t,x)H < Ms||x| forallr € Rand x € RY (see
the definition of §%, (5.3) and SIEGMUND [170, Satz 4.16 (c)]). This implies the existence of a
p > 0 such that with the functions

sTIRx U,0) — RY,  s¥(t,x) :=5§5(t,x) forall r € Rand x € U,(0),

the sets
ST i={(r,&+55(1,&) e Rx RV : & e R(Q1(7)) N U,(0)}
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are subsets of R x U;(0). Furthermore, S* are local nonautonomous invariant manifolds of (5.1),
since the conditions of Definition 5.1.1 are easily verified (ST are global nonautonomous invariant
manifolds, and (5.9), (5.6) and (5.3) are fulfilled). For further reference, please note that (5.8) and
(5.9) imply

forall ¢+ > v and & € ST () such that

M(t—r)
12, 7, Ol < Milicle Az +clt —1),7,&) € U;(0) forall ¢ e [0, 1].

(5.10)

STEP 2. The statements (i)—(iv) are fulfilled.

(i) Suppose that & < 0, and choose ¢ > 0 arbitrarily. W.l.o.g., assume that & + ¢ < 0. By
applying Step 1 with the constants o and min {£, a 4+ 2¢} instead of a and f, we get another local
nonautonomous invariant manifold S+, obtained as graph of a function 57 : R x U 50) — RN
with 0 < p < p. Then, because of %(a +a+2¢) =a+¢,(5.10) reads as

mm[ : a+e](t oy forall t > 7 and & € ST(r) such that
AMr+ct —1),7,&) € Us(0) forall c €[0,1].

Az, 7, O < MilSlle
Due to a0 + ¢ < 0, this means that there exists an r > 0 such that
At,7,$) e U,(0) and
126 1)l < My e}
Thus, for (z, &) € ST N (R x U,(0)), the solution A(-, 7, &) is both (%
(a + €)T-quasibounded. From the (“;ﬂ )+—quasib0undedness, we get

forall (z,&) e STN(R x Uy(0))andr > 7.

: ) T-quasibounded and

TN (R x U (0)) = ST N (R x U-(0))

from the dynamic characterization (of the global manifolds) in Step 1. Thus, the proof of (i) is
finished.

(i1) can be shown analogously to (i).

(iii)) We choose an L > 0 such that « + KL < 0. Let y denote the cut-off function from Step 1.
Then, we define for any ¢ > 0 with Uy, (0) C U the function F, : R x R¥ — R by

Fo(tx) = x(2)F(t,x) forall t e Randx e U
o= 0 forall r e Randx ¢ U °

Analogously to Step 1, the relation

lim sup [D2F, (1, )] =0

720 (1 x)eRxRN

follows, and the limit behavior only depends on I' and y. This means that there exists an
r=r(a, K, T, y) > 0such that

y=A@)y+ F;t,y) (5.11)
fulfills the hypotheses of AULBACH & WANNER [21, Lemma 3.4, p. 70] with the constants a, K
and L. We denote the general solution of (5.11) by A. Then, due to [21, Lemma 3.4, p. 70], we
obtain

=7 forall t > r and & € RV .

lit, 0. &) < Kl

We define r := Since (5.11) coincides with (5.1) on R x U;(0), we get

r
7

a+KL
1A, 7, O < K|E]le™?

=) forall t > 7 and & € U,(0).
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This implies the assertion.
(iv) can be proved similarly to (iii) using Lemma 3.7 of AULBACH & WANNER [21] instead of
Lemma 3.4. 0

5.1.4 REMARK. An alternative way for the construction of nonautonomous invariant manifolds
for the ODE (5.1) without applying the Lyapunov transformation as in Step 1 of the preceding
proof can be found in POTZSCHE [137].

By applying the preceding theorem, in the next two theorems, the existence of past and future
invariant manifolds is proved.

5.1.5 THEOREM (PAST INVARIANT MANIFOLDS). In case | = R, there exist p > 0 and
C!-functions s* : | x U,(0) — RY such that the graphs

ST i={(r,&+55(1,8) e I x RV : € € R(Q+(1)) N U, (0)}

are local nonautonomous invariant manifolds. Furthermore, the following statements are ful-
filled:

(i) Case a < 0andrk Q4+ > 1 (Trivial solution is not past repulsive). For all ¢ > 0, there
existr > 0 and M > 1 such that for all (z, &) € St with |£|| < r, we have

At,7,8) € Uy(0) and [|A(t, 7, &)l < Me TN forall k > 1 > .

(ii) Case f > 0 and rk Q_ > 1 (Trivial solution is not past attractive). For all ¢ > 0, there
exists anr > 0 such that for all (z,¢) € S~ with ||£]| < r, we have

AMt,1,E) e Uy(0) forall t <7 <x and A(,7,¢)is (B — &)™ -quasibounded.

(iii) Case o < 0 and Q4 = 1 (Trivial solution is past attractive). There exists an
r=r(a,K,T') > 0 with

lim sup d(A(z,t — ¢, Ur(0))[{0}) = 0.

— o0 rel

(iv) Case f > 0 and Q_ = 1 (Trivial solution is past repulsive). There exists an
r=r(f, K,T') > 0 with

lim sup d(A(t —1,7,U:(0))[{0}) = 0.

— 00 rel

PROOF. We first observe that all assertions of Theorem 5.1.3 also hold in case (5.1) is a differential
equation of Carathéodory type, since equations of this form are treated in STEGMUND [170] and
AULBACH & WANNER [22]. This is important, because we want to apply this theorem to the
Carathéodory differential equation

x=B@{t)x +G(t,x) (5.12)

with functions B : R = R¥*N and G : R x U — R defined as follows. Let C € RV*V be the
matrix fulfilling

Cx =ax forall x e R(Q4+(x)) and Cx = px forall x €e R(Q-(x)).
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Then, we define the functions B and G by

A(1) forall r < k
C forall ¢t > &

F(t,x) forall t <k, xeU

B(r) := 0 forall t >k, x e U ~

and G(t,x) =
It is easy to see that equation (5.12) fulfills the hypotheses of Theorem 5.1.3 with the invariant
projector Q4 : R — RY*N defined by

| 04+@)  forall t <«
T 040 forall t >k

0

Then, there exist nonautonomous invariant manifolds of (5.12) which, by restriction to R~ x RN,
are nonautonomous invariant manifolds of (5.1). The statements (i)—(iv) follow directly. ]

An analogous statement is fulfilled by considering R} instead of R .

5.1.6 THEOREM (FUTURE INVARIANT MANIFOLDS). In case | = [R,j, there exist p > 0
and C'-functions s* : [ x U,(0) — RY such that the graphs

ST i={(r,&+57(1,8) e I x RV : € e R(Q+(x)) N U, (0)}

are local nonautonomous invariant manifolds. Furthermore, the following statements are ful-
filled:

(i) Case o < 0 and rk Q4 > 1 (Trivial solution is not future repulsive). For all ¢ > 0,
there exists anr > 0 such that for all (z,¢) € ST with |&|| < r, we have

At,7,8) e Uy(0) forall t > 7 >x and A(-,7,¢) is (o + &) -quasibounded.

(ii) Case f > 0 and rk Q_ > 1 (Trivial solution is not future attractive). For all ¢ > 0,
there existr > 0 and M > 1 such that for all (7, ) € S~ with |£|| < r, we have

Mt,7,8) € Up(0) and [[A(, 7, &)l < MeP™UD )| forall k <t <.

(iii) Case a < 0 and Q4 = 1 (Trivial solution is future attractive). There exists an
r=r(a, K,T') > 0 with

lim sup d(A(z +1,7,U:(0))[{0}) =0.

— 00 el

(iv) Case f > 0 and Q_ = 1 (Trivial solution is future repulsive). There exists an
r=r(f,K,TI') > 0 with

lim sup d(A(r, 7 41, U-(0))[{0}) =0.

t—00 rel

PROOF. See proof of Theorem 5.1.5. 0J

5.1.7 REMARKS.

(i) The sets ST and S~ of the above theorems are also denoted as all-time (past, future, respec-
tively) pseudo-stable and pseudo-unstable invariant manifolds of (5.1), respectively. To be
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more specific, ST describes an all-time (past, future, respectively)

center-stable >0
stable invariant manifold incase { o <0 < f8
strongly stable <0

Accordingly, S~ describes an all-time (past, future, respectively)

center-unstable o <0
unstable invariant manifold incase { a <0 < f
strongly unstable o>0

This terminology corresponds to the autonomous situation of invariant manifolds consid-
ered, e.g., in CHOW & L1 & WANG [46]. Center manifolds are obtained as intersections of
center-stable and center-unstable invariant manifolds.

(ii) In the hyperbolic situation (¢ < 0 < p), the all-time invariant manifolds ST of Theo-
rem 5.1.3 are uniquely determined. Easy examples (see, e.g., HALE & KOCAK [77, Exam-
ple 10.13, p. 322]), however, show that center-stable, center-unstable or center manifolds are
nonunique in general. Since global invariant manifolds are uniquely determined, different
cut-off-techniques (as used in the proof of Theorem 5.1.3) lead to different manifolds. In the
situation of Theorem 5.1.5 and Theorem 5.1.6, the question of nonuniqueness is more sub-
tle. In the hyperbolic case, only the pseudo-unstable manifold S~ of Theorem 5.1.5 and the
pseudo-stable manifold S* of Theorem 5.1.6 are uniquely determined. This corresponds to
Remark 4.1.12 in the linear situation.

5.2 AN APPLICATION TO BIFURCATION THEORY

In autonomous bifurcation theory, it is necessary that at least one eigenvalue of the linearization in
a bifurcating equilibrium crosses the imaginary axis. In this section, this fact is generalized with
respect to the notions of past, future and all-time bifurcation. For a similar result in the context of
random dynamical systems (concerning the Lyapunov exponents of ergodic invariant measures),
we refer to ARNOLD & XU [9] and ARNOLD [5, Theorem 9.2.3, p. 471].

Let [ be an unbounded interval of the form R, [R,JCr or R, respectively. In this section, we consider
nonlinear differential equations of the form

X =A(t,0)x + F(t,x,0)] (5.13),

with a continuous matrix-valued function A : 1 x (a_,ay) — R¥*N and a C'-function
F:lxUx(a_,ay) = RN, where U is supposed to be a neighborhood of 0. Furthermore,
we assume that F(¢,0,a) =0foralla € (a—,ay)und t € [.

5.2.1 THEOREM (LINEARIZATION AND BIFURCATION). We suppose that the trivial so-
lution of (5.13), admits a past (future, all-time, respectively) supercritical bifurcation at the
parameter value o € (a—, ay) and there exists an & > og with

lim sup IDF(t,x,a)|| =0 (5.14)

x=0 4, a€lag,a]

and
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lim sup [|A(, @) = A(t, ao)]| = 0. (5.15)
I

aNao te

Then, we have
0e Z‘A_(.,ao), ZZ’(.’“O), ZAH(_’(XO), respectively .

An analogous statement is fulfilled in case of a subcritical bifurcation.

PROOF. We only treat the case of an all-time bifurcation, since the other proofs are similar.
Arguing negatively, we suppose that zero is not contained in EXE., 0" We distinguish the following
two cases.

CASE 1. There exists an a € (a, &) such that the trivial solution of (5.13), is all-time attractive
forall o. € (ag, ).

First, assume that ZAH(,’ a) " (0, 00] # 4. Since 0 ¢ ZAH(_, o this means that the linear differential
equation x = A(t, 0p)x admits a nonhyperbolic all-time exponential dichotomy with growth rate
y > 0and an invariant projector Q,, such thatrk Q,, < N (please note that due to Theorem 4.2.9,
the all-time spectrum is closed). Due to Theorem 4.5.1 and (5.15), there exists an a1 > ag such

that for all a € (ag, a1), the linear differential equation
X =A(t,a)x

admits a nonhyperbolic all-time exponential dichotomy with growth rate y and an invariant pro-
jector Q, such thattk O, < N. Hence,

ity Ny, 001 # @ forall a € (ag, a1) .

This means that at least one spectral interval of ZZ.’ ay & € (a9, a1), lies in (y, oo], and hence,
Theorem 5.1.3 (ii) is applicable with f =y > Oandrtk Q_ = N —rk Q, > 1. This implies that
the trivial solution of (5.13), is not all-time attractive, which is a contradiction to the hypothesis
of Case 1, and thus, there exists a d < 0 with

ZZ"(ZO) C [_Oo, 5)

(again, we use the fact that all-time dichotomy spectra are closed). Because of Theorem 4.5.1 and
(5.15) (cf. the argumentation above), there exists an a € (o, a1) with

Z;x_z.,a) C [—o00,d] forall a € [ag, az].

We apply Theorem 5.1.3 (iii) and obtain that, since due to (5.14), the function I" : (0, 1) — ﬁi_
can be chosen independently of a, the lower bound r of this theorem for the radius of all-time
attraction 2(§” is also independent of a. Hence, 2§~ does not converge to zero in the limit o \ag.
This contradiction finishes the proof of this case.

CASE 2. There exists an a. € (0, 0.) such that the trivial solution of (5.13),, is all-time repulsive
for all a € (ag, @).

This case is treated analogously to Case 1. 0J

5.3 LINEARIZED ATTRACTIVITY AND REPULSIVITY

In Section 5.1, properties of attractivity and repulsivity for a nonlinear system have been derived
already by studying the linearization. In contrast to these considerations, in this section, more
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quantitative results are obtained, and furthermore, Cl-differentiability is not assumed but only

continuity.

We first concentrate on the notions of past, future and all-time attractivity and repulsivity.

unbounded interval | of the form R, IR,}L or R, respectively, and let

the linearized equation x = A(t)x. Then, the following statements are fulfilled:

(i) In case there exist § < 0, K > 1 and 0 > 0 such that
IAGt, $)|| < KePU™9) forall 1 > s

and

we have
: ba-n) ;
d(/l(t,r, U;0) {0}) < e forall 7,t € l witht < 1,

i.e., the trivial solution of (5.16) is past (future, all-time, respectively) attractive.

(ii) In case there exist § > 0, K > 1 and 6 > 0 such that
IA(, s)|| < KePU™)  forall t <s

and

we have
é([_-[) .
d(/l(t,r, U;0) {0}) < e forall 7,t € | witht < t,

i.e., the trivial solution of (5.16) is past (future, all-time, respectively) repulsive.

5.3.1 THEOREM (LINEARIZED ATTRACTIVITY AND REPULSIVITY, PART I). Consider an
X =A@)x + F(t,x)] (5.16)
be a nonautonomous differential equation with continuous functions A : | — R¥*N and

F:1xU — RN,U c RN aneighborhood of 0, such that F(¢t,0) = 0 forallt € I. Let .
denote the general solution of (5.16) and A : | x | — RY*N denote the transition operator of

|F(,x)| < % |lx|| forall t €l andx € Us(0), (5.17)

| F(t,x)| < % |x|| forall t € landx € Us(0), (5.18)

PROOF. We only prove (i), since (ii) can be shown analogously. Given 7 € [ and & € Us(0), we

now prove an estimate for the general solution under the additional assumption

At,7,&) e Us(0) forall t > 7.

(5.19)

The solution A(-, 7, &) of (5.16) is also a solution of inhomogeneous linear differential equation

xX=A)x + F(t, A(t,7,¢&)).

Thus, the variation of constants formula (Proposition A.1.6) implies

A, T, &) :A(t,r)é—i—/ A(t, $)F (s, A(s, 7,&))ds  forall 1 > 7,
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and hence,
12t T, O < IIAG DI IEN + / IAGE, ) || F (s, A(s, 7,E)) | ds

CID g p=o) " g pi- =P
< KePl- ||§||+/ Ke Sﬁn/l(s, 7,8)|lds forall t >t
T

is fulfilled. This implies
_ t
e, 1,8 < Ke P& + 7/3 / e PN A(s, 7, &)l ds forall t > 7.

Hence, Gronwall’s inequality (cf. Lemma A.2.1) yields the estimate

12(t, 7, &) < KeZD)&| forall 1> <. (5.20)

We define  := %. Since g < 0,forall 7 € land & € U,(0), the assumption (5.19) is fulfilled,
therefore, (5.20) holds for such 7 and ¢. This implies

d(A(t, 7, UyO)|{0}) < Kne20= forall 7,1 e lwithr <1.

From this inequality, the required conditions for the past (future, all-time, respectively) attractivity
are easily obtained. O

In case of finite-time attractivity and repulsivity, the following result is obtained.

5.3.2 THEOREM (LINEARIZED ATTRACTIVITY AND REPULSIVITY, PART II). Consider a
compact interval | := [z, 7 + T] forsomet € Rand T > 0, and let

&= A@)x + F(t,x)] (5.21)

be a nonautonomous differential equation with continuous functions A : | — RV*N and

F:1xU — RN, U c R aneighborhood of 0, such that F(t,0) = 0 forallt € . Let A
denote the general solution of (5.21) and A : | x | = R¥*¥ denote the transition operator of
the linearized equation x = A(t)x, and define

Ky = sup{||A(t,s)|| T<s<t<t+ T}
and

K_ = sup{||A(t,s)|| T <t<s<rt —I—T}.
Then, the following statements are fulfilled:

(i) In case
A+ T, <1

and there exist 6 > 0 and > 1 with

In(BlIIA(z + T, 7))
TK,

|F(t,x)] < — lx|| forall t €l andx € Us(0), (5.22)

there exists an n > 0 such that

12(c +T,7, &) < B~ IEN forall & € U,y(0),
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i.e., the trivial solution of (5.21) is (z, T')-attractive.
(i1) In case
Az, +T)Il <1
and there existo > 0 and f > 1 with
In Az, 7+ T
|F(t,x)|| < — (ﬁ IAC )”) x| forall t €l and x € Us(0), (5.23)

TK_

there exists an n > 0 such that
(et + T, < B7HIEN forall & € Uy(0),

i.e., the trivial solution of (5.21) is (z, T)-repulsive.

PROOF. We only prove (i), since (ii) can be shown analogously. Due to the continuity of the

general solution (cf. Proposition A.1.3), there exists an 7 < J with

A, 7,8)|l <o forall t e lland & € Uy(0).

We choose ¢ € U,(0) arbitrarily. Then, the solution A(-, 7, &) of (5.21) is also a solution of the

linear differential equation
x=AMx + F@t, A, 7,9)).

Thus, the variation of the constants formula (cf. Proposition A.1.6) implies
t
M, T, &) = A(t, 7)€ +/ A(t, s)F (s, A(s,7,¢8))ds forall t €.
T

Hence, for all ¢ € [, the relation
t
12(t, 7, )| < AW, T)E] + / 1A, )| F (s, A(s, 7, 6)) | ds
T

1 A+ T, !
< IA@ OIS — K+ sl ;TKJF T)“)/ IA(s, 7, )l ds

In (B IA(x +T,0)ll)
T

t
N / 1A, 7, Ol ds .

We apply Gronwall’s inequality (cf. Lemma A.2.1) and obtain for all £ € U,(0),

1A+ T, 7, ) < IA(x + T, I €] exp (=In (BIIA(z + T, 2)1I))
=p71E .

This finishes the proof of this theorem.

5.3.3 REMARKS.

(i) Concerning Theorem 5.3.1 and Theorem 5.3.2, the past (future, all-time, (z, T')-, respec-

tively) dichotomy spectrum of the linearization x = A(¢)x is a subset of R™.
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(i1)) The conditions (5.17), (5.18) of Theorem 5.3.1 and (5.22), (5.23) of Theorem 5.3.2 are
fulfilled if we have
5 IF(@ )l
im sup ————— =

=0 e Xl

0.

This limit relation is only sufficient but not necessary for the above mentioned conditions.

5.4 BIFURCATION THEORY OF ADIABATIC SYSTEMS

In this section, a relationship between the bifurcation theory of adiabatic systems (see, e.g.,
BENOIT [27], BERGLUND [29] or LEBOVITZ & SCHAAR [105, 106]) and the concept of finite-
time bifurcation is pointed out.

The bifurcation theory of adiabatic systems is usually called dynamic bifurcation theory (see title
of BENOIT [27]). We will not employ this term here, since it is unfortunately used in a different
sense both in autonomous bifurcation theory (as opposed to static bifurcation theory, cf. Subsec-
tion 2.4.1) and random bifurcation theory (as opposed to phenomenological bifurcation theory,
cf. Subsection 2.4.3).

Let I be an open interval and D C R" be an open set, and consider an autonomous differential

equation
=], 529

depending on a parameter o with a C'-function f : I x D — RY. To mimic the situation of a
slowly varying parameter, for ¢ > 0, we also look at the system

= fen )

which can be transformed via the slow time t +— ¢t into the so-called adiabatic or singularly-
perturbed system

X = éf(t,x) . (5.25),

The central question of the bifurcation theory of adiabatic systems is: How do solutions of (5.25),
behave in the limit £\0 in case (5.24), admits an autonomous bifurcation?

We assume that (5.24), admits a bifurcation of the following type.

HYPOTHESIS. For fixed a— < a4 € I, we consider two different continuous functions
s1,52 : [a—, a4+] = D such that

si(a=) =s2(a-) and f(a,si(a)) = f(a,s2(a)) =0 forall a € [o—, ay].

We suppose that

e the function s; describes attractive equilibria of (5.24),, i.e., for a € (a—, a4 ], all eigen-
values of D f(a, s;(a)) have a negative real part,

e the function s, describes hyperbolic equilibria of (5.24),, i.e., for a € (a—, a4], all
eigenvalues of D, f (a, s2(a)) have a non-vanishing real part.

The existence of such a bifurcation implies that D; f (a—, s;(«—)) has an eigenvalue with vanish-
ing real part.
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In the bifurcation theory of adiabatic systems, the occurrence of the following two possibilities is
discussed:

(a) There exists a family of solutions v, : [a—,as+] — D of (5.25),, ¢ > 0 small, which
converge to the attractive equilibrium branch in the limit ¢ — 0.

(b) There exists a family of solutions v, : [a—, a+] = D of (5.25),, ¢ > 0 small, which follow
for some time interval (which does not depend on ¢) the equilibrium branch s, and then
jump to the stable branch s.

The phenomenon (b) is called bifurcation delay or delayed exchange of stabilities. The corre-
sponding solutions are said to be canard solutions. The property (a), which we will discuss in this
section, is generalized by the following definition.

5.4.1 DEFINITION (ADIABATIC SOLUTIONS). Letag < a1 € I. A continuous function
s : [ag,a1] = D with
f(a,s(a)) =0 forall o € [ag, o]

is called equilibrium branch which admits adiabatic solutions if there exist ¢ > 0 and a
function v : [ag, a1] x (0, &) — D such that v (-, €) is a solution of (5.25), and

lim sup |v(a,e) —s(a)]| =0.
exY aelag,a1]

In case the equilibria of (5.24), described by the function s are hyperbolic, the existence of adi-
abatic solutions follows from the following theorem. A proof can be found, e.g., in BERGLUND
[29, Theorem 5.1, p. 140].

5.4.2 THEOREM (EXISTENCE OF ADIABATIC SOLUTIONS). Letag < a1 € I, and con-
sider a continuous function s : [, a1] = D such that

f(a,s(a)) =0 and D, f(a, s(a)) is hyperbolic for all a € [ag, a1] .

Then, the equilibrium branch s admits adiabatic solutions.

In the next lemma, linearizations near a branch of stable equilibria are examined.

5.4.3 LEMMA. Letoag < o € I, and consider a continuous function s : [ag, 1] — D such
that f(a,s(a)) = 0 and D, f(a, s(a)) has only eigenvalues with negative real part for all
a € [ag, a1]. Then, there exist constants 6 > 0, K > 1 and y < 0 such that for all continuous
functions h : [ag, a;] = RN with

lh(a) —s(a)|| <o forall a € [ag, 01],

the transition operator A, of the linear system

i = ész(r,h(r»x

fulfills
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1As(@r o)l < K exp (L(ar = a0)) -

PROOF. We define A(a) := D, f(a, s(a)) for all a € [ag, a1]. Since A(-) is continuous on the
compact interval [0, a1] and all eigenvalues of A(a), a € [ag, a1], have negative real part, there
exist K > land y < 0 with

|e* @] < K e’" forall t > 0and a € [ag, o1].

Due to the uniform continuity of D; f (-, -) on compact sets, there exists a & > 0 such that

1D f (e, x) — Dy f(a, s(@)) || < ——— forall & € [a, 1] and x € Us(s(@)). (5.26)
T 16K2

Since A(-) is uniform continuous on [ag, a1], there exist n € N and constants f; € [ag, a1],
i €{0,...,n},withag=pfo < f1 <--- < B, =ajsuchthatforalli € {1,...,n}, we have

1A(BiZ1) — Aa)]| < —é forall a € [Bi_1, Bi]. (5.27)

Let i : [ag, 1] = RY be a continuous function fulfilling
|h(a) —s(a)|| <o forall a € [ag,a1],
and consider the linear system
x = Dy f(et, h(et)) x (5.28)

for fixed ¢ > 0. The transition operator of (5.28) is denoted by W¥.. Due to (5.26) and (5.27), for
fixedi € {1, ...,n},

| D2f (61, h(et)) — ABi—y)| < —é forall 7 e [

Bi—1 &]

& &

is fulfilled. Therefore, Theorem 4.5.1 implies

¥e

< ——ex
e e - 2 P

ﬁ’ Bi-1 5K? (}7 7 )ﬂi — Bi-1

Hence, the relation

n

5K? —
Y, ﬂ, 20 — | €Xp (V - L)al %0 =: K exp (Z(al - OCO))
e ¢ 2K £ e
holds. This implies the assertion, since A (a1, ag) = ¥, (%, O;—O) O

Using the preceding lemma, we are able to prove the following relationship between adiabatic
solutions of attractive equilibrium branches and the concept of finite-time attractivity.
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5.4.4 COROLLARY. Letag < a1 € I, and consider an equilibrium branch s : [ag, a1] > D
which admits adiabatic solutions such that all eigenvalues of D; f (a, s(a)) have negative real
part for o € [ag, a1]. Moreover, let i : [ag, a1] X (0,&) — RN be a function describing
corresponding adiabatic solutions. Then, there exists an & > 0 such that for all ¢ € (0, ¢), the
solution u (-, €) is (ag, a1 — ag)-attractive.

PROOF. Lemma 5.4.3 implies the existence of 6 > 0, K > 1 and y < 0 with the properties
mentioned in the lemma. We choose ¢* > 0 such that

sup  lu(a,e) —s(a)|| <o forall ¢ € (0,¢")

a€lap,a1]

and y
K exp (7(0!1 — ao)) <1.
&
By applying Lemma 5.4.3, we obtain that the transition operator A, of the variational equation

£ = Daflt, ult, ) x

satisfies || Az (a1, a9)|| < 1. Hence, Theorem 5.3.2 implies that there exists an & € (0, &*) such
that for all ¢ € (0, &), the solution u (-, €) is (ag, &1 — ag)-attractive (due to Remark 5.3.3 (ii), the
condition on the nonlinearity is fulfilled for small ¢). 0

For the main result of this section, recall the Hypothesis from the beginning of this section.

5.4.5 THEOREM (RELATIONSHIP TO THE CONCEPT OF FINITE-TIME BIFURCATION).
We assume that the equilibrium branch s admits adiabatic solutions, i.e., there exists a func-
tion u : [a—, at] x (0,) — RY such that u(-, €) is a solution of (5.25), and we have

lim  sup |lu(a, &) —si(a)l =0.

eN0 gefa_,ay]

Then, for sufficiently small « > o_ and ¢ > 0, the solution u(-, €) is (a, o+ — a)-attractive,
and the limit relation ( )
. . 0,04—a)
alirg_ llI:l\S(;.lp Ql# Coy | = 0

1is satisfied.

PROOF. Since limg_,4_ 51(a) = limg_,4_ 52(), there exists an a € (a—, a4) with

1
lIs1(a) — s2(a)ll < 3 Isi(at) — s2(a4)|l forall a € o, al. (5.29)

Now, we prove the following statement which is obviously sufficient for the assertion: For all
a € (a—, a], there exists an € > 0 such that for all & € (0, &), the solution u(-, &) is (a, a+ — a)-
attractive and

(a,04—a) 3
A < S i (@) = 2(0)]

is fulfilled. We choose a € (a—, a] arbitrarily. It follows from Theorem 5.4.2 that there exists a
function v : [a, ay] x (0, &) = R such that v(-, ) is a solution of (5.25), and

lim sup |v(a,&) —s2(a)]=0.
ex0 g a0
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Thus, there exists an & > 0 such that for all ¢ € (0, &), we have

sup lv(a, &) —s2(a) | < 1 Is1(a) = s2(a)l ,
o€la,o4]

up €)= 1@ < 1 @) = $2(0)]

&e[aa(l+]

and u(-, ¢) is (a, a4y — a)-attractive (cf. Corollary 5.4.4). For all ¢ € (0, ), this implies the
relations

[v(a, &) = pla, &) | = lv(a, &) = s2(a) + 52(a) = s1(a0) + 51(a) — u(a, &)l
< v(a, &) = sa(@) | + llsz2(a) = si(@)ll + lIs1 (@) — (e, &)

< % Is1(a) — s2(a)|l .

and

| e, @ via, &) —p(ag. &) > % Is1(as) = s2(a)] O g Is1(a) = s2(a)]

v(ag,€)

where 4. denotes the general solution of (5.25).. This finishes the proof of this theorem. 0J



CHAPTER 6

BIFURCATIONS IN DIMENSION ONE

The aim of this chapter is to develop nonautonomous counterparts for the classical one-
dimensional bifurcation patterns such as the transcritical and pitchfork bifurcation, both for nonau-
tonomous bifurcations and transitions.

In this chapter, only the continuous case of ordinary differential equations is treated. For analogous
results in the context of difference equations, see RASMUSSEN [144].

Recently, LANGA & ROBINSON & SUAREZ [104] also studied the occurrence of one-dimensional
nonautonomous bifurcations, which they understand as merging processes of two distinct solu-
tions with different stability behavior. As in this chapter, their theorems are formulated in terms of
Taylor coefficients for the right hand side of an ordinary differential equation. These conditions,
however, are of a quite different form than the results obtained in this chapter. This difference is
due to fact that, in [104], explicitly solvable models are used to formulate these conditions.

Stochastic versions (in the sense of a D-bifurcation, cf. Subsection 2.4.3) of the transcritical
and pitchfork bifurcation are examined in the thesis of STEINKAMP [176] (see also CRAUEL
& IMKELLER & STEINKAMP [58]).

6.1 NONAUTONOMOUS TRANSCRITICAL BIFURCATION

In this section, nonautonomous generalizations of the classical transcritical bifurcation are de-
rived. First, the case of unbounded time domains is treated.

6.1.1 THEOREM (NONAUTONOMOUS TRANSCRITICAL BIFURCATION, PART I). Let
x- <0 < xyanda_ < a4 be in R and [ be an unbounded interval of the form R, R
or R, respectively, and consider the nonautonomous differential equation

x=a(t,a)x +b(t,a)x>+rt,x,a) (6.1),

with continuous functionsa : | X (a—,04+) > R,b:Ix (a—,as) > Randr : I x (x_, x4) x
(a—,04) — R fulfilling r(-,0,-) = 0. Let A, : | x | = R denote the transition operator of
the linearized equation x = a(t, a)x, and assume, there exists an oy € (a—, o) such that the
following hypotheses hold:

e HYPOTHESIS ON LINEAR PART. There exist two functions f1, f> : (0—, a+) — R which
are either both monotone increasing or both monotone decreasing and K > 1 such that

hma—)oco /Bl (a) = lima%ao ﬁZ(a) = 0 and
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Ng(t,s) < KeP1@=s)  forall o € (a—,0y)andt,s € l witht > s,
Ag(t,s) < KeP2 D) forall o € (a_,ay) andt,s € | witht < s.

e HYPOTHESIS ON NONLINEARITY. The quadratic term either fulfills

0 < liminf inf b(¢, ) < limsup sup b(t,a) < oo (6.2)
a—ao rel a—ay  rel
or
—o00 < liminf inf b(¢, a) < limsup sup b(t,a) <0, (6.3)
a—ao tel a—ag  tel

and the remainder satisfies

t’ b
lim sup sup |r(—x2a)| =0 (6.4)
x=0 ge(ag—|x|,ao+x]) tel | x|
and
2K|r(t, x, o)

lim sup lim sup sup
asap  x—0 el x| max{—pi(a), fa(a)}

(6.5)

Then, there exist 6. < 0 < a4 such that the following statements are fulfilled:

(i) In case the functions f; and f, are monotone increasing, the trivial solution is past
(future, all-time, respectively) attractive for o € (0—, o) and past (future, all-time,
respectively) repulsive for o. € (a9, a4). The differential equation (6.1), admits a past
(future, all-time, respectively) bifurcation, since the corresponding radii of past (future,
all-time, respectively) attraction and repulsion satisfy

lim Q( and lim 9%0 =0.

o 10 aNap

(ii) In case the functions f; and f, are monotone decreasing, the trivial solution is past
(future, all-time, respectively) repulsive for a € (0—, ag) and past (future, all-time,
respectively) attractive for a € (ag, a+). The differential equation (6.1), admits a past
(future, all-time, respectively) bifurcation, since the corresponding radii of past (future,
all-time, respectively) repulsion and attraction satisty

hmﬁ% =0 and lim QIO_O

a o aNo(

PROOF. First of all, we assume w.l.0.g. that K > 1. Let 1, denote the general solution of (6.1),,.
We will only prove assertion (i), since the proof of (ii) is similar. The functions £; and S, are
therefore monotone increasing. W.l.o.g., we only treat the case (6.2). We choose a_ < ag < 04
such that

0< inf b(t,a) < sup b(t,a) < o0 (6.6)

a€(G—,04),tel ac(G_,ay), tel

(cf. (6.2)) and

. Ir(t,x,0)]  —min{p(a), —p2(a)}
lim sup sup <
x=0 el x| 2K

forall o € (a—, ay).

(cf. (6.5)). Because of these two relations, Theorem 5.3.1 can be applied, and the attractivity and
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repulsivity of the trivial solutions as stated in the theorem follows. Assume to the contrary that

7 :=limsup A5 > 0

o0

holds. Due to (6.6) and (6.4), there exist a_ € (a—, ag), & € (0,7) and L € ((), %) with

b(t,oc))c2 +r(t,x,0) > L foralltel, ae(a-,ap) andx € [%,f] . (6.7)
We fix a € (a—, ag) such that ?2[8 > ¢and fr(a) > p = —MTL > —%. For arbitrary 7 € [, the

solution x4, (+) := A4(-, 7, &) of (6.1); is also a solution of the inhomogeneous linear differential
equation
i = alt, @)x +b(t, @) (e () +r(t, 10 (1), 8). (6.8)

Since ng‘ > & = uy(t) forallt €1, there exist 7, 7 € I, 7 < 1, with u; (1) < 2% We choose
7o minimal with this property, i.e., u.(t) > < _forallt [z, 72]. Furthermore, we choose

2K?2
71 € [7, 72] such that

we(71) = % and u.(t) € [%,f] forall ¢ € [71, 12].

Therefore, and due to (6.7) and the variation of constants formula (cf. Proposition A.1.6), applied
to (6.8), the relation

2

pe(12) = Ng (2, 1) i (71) +/ Ng (o2, 1) (b(t, @) (e () + (1, o (1), @) dt

71

> ieﬂ(fz_fl) + L /12 P 2=0 gt
K J,

— Plm—1) i + i _i = i
2K? KB KB 2K?
—_———
=0

holds (K > 1 implies 71 < 7). This is a contradiction and proves lim, ,,, 245 = 0. Analogously,
one can show lim, 4, R = 0 and treat the case (6.3). O

6.1.2 REMARKS.

(1) In the limit @ — ag, the attractivity or repulsivity of the trivial solution is only lost in
one direction, i.e., nonautonomous transcritical bifurcations are partial bifurcations. For
instance, in case the functions f1, > are monotone increasing and (6.2) is satisfied, there
exists a y < 0 such that (y, 0] is attracted by the trivial solution of (6.4), for a € (a—, ag)
in the sense of past, future or all-time attractivity, respectively.

(i1)) The Hypothesis on the linear part implies that the past (future, all-time, respectively) di-
chotomy spectrum of the linearization x = a(z, a)x converges to {0} in Hausdorff distance
in the limit a — ag.

(ii1)) Condition (6.5) is only used to obtain the attractivity or repulsivity of the trivial solution by
applying Theorem 5.3.1. Alternatively, one can directly postulate that the trivial solution
changes their stability at the parameter value o from, say, attractivity to repulsivity.
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(iv) Please note that the above bifurcation result is essentially the combination of two scenarios
which are independent of each other. This means that it is possible to consider (6.1), only
for o > ag or a < aq, respectively, in order to obtain the results which apply for these
parameter values.

The following example shows that Theorem 6.1.1 is indeed a nonautonomous generalization of
the well-known autonomous result.

6.1.3 EXAMPLE. Let x_ < 0 < x; and a— < 0 < a4 be in R, and consider the autonomous
differential equation

x=fx,a), (6.9)

where the C*-function f : (x_, x4) X (a—, ay) — R satisfies the following assumptions:

1 fO,a)=0 forall a € (a_,ay),

(i) D1f(0,0)=0,

(iii) D1D2f(0,0) #0,

(iv) Dif(0,0) #0.
Please note that (i) implies D5 f(0,a) = O for all @ € (a—, ay) and n € N. Then, (6.9) admits
an autonomous transcritical bifurcation (see, e.g., WIGGINS [181, p. 265 f.] and AULBACH [14,
Satz 7.10.6]), i.e., there exist a neighborhood U x V of (0, 0) in R? and a C'-functionh : U —» V
with 2(0) = 0 and

f(x,h(x))=0 forall x e U.

Except the trivial equilibria and the equilibria described by £, there are no other equilibria in

U x V. Now, we will show that this example fulfills the hypotheses of Theorem 6.1.1. Thereto,
we write the second order Taylor expansion of f (see, e.g., LANG [101, p. 349]):

f(x,0) = DDy f(0,0)0 x + lD%f(o, 0) x% + r(x, a)
— 2
—_—

=:a(a) b

where

1 2
I —1
r(x,a) = / ( > ) (fo(tx, ta)x> + 3D%D2f(tx, ta)x’a+

0
3D1D%f(tx, ta)xo’ + D%f(tx, toc)oc3) dt .

Obviously, the Hypothesis on the linear part are fulfilled (with gi(a) := f2(a) = a(a) and
K :=1), and (6.2) or (6.3) holds, since the above defined function b is constant. Furthermore, the
representation for the remainder implies that

; rx @)l _
im sup  ———— =0
=0 ge(—jxllxh) I
and
, 1 1 —1¢ 2
fim sup - ocz/ (—)(|3D1D§f(0, ta)| + 11Dy D3 £ (0, ta)al) dt
x>0 X 0 2

This means that (6.5) holds, since max { —pi(a), p2 (a)} depends linearly in a. Therefore, all
hypotheses of Theorem 6.1.1 are fulfilled, and thus, this example shows that Theorem 6.1.1 is a
proper generalization of the well-known autonomous transcritical bifurcation pattern.
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In case of compact time domains, the following result is obtained.

6.1.4 THEOREM (NONAUTONOMOUS TRANSCRITICAL BIFURCATION, PART II). Let
x- <0 <xyanda_ < oy beinR andl := [z, 7 4+ T], and consider the nonautonomous
differential equation

x=a(t,a)x +b(t,a)x>+rt,x,a) (6.10),,

with continuous functionsa : | X (a—,04+) > R, b : I x (a—,as) > Randr : I x (x_, x4) x
(a—,a4+) — R fulfilling r(-,0,-) = 0. Let A, : | x | > R denote the transition operator of
the linearized equation x = a(t, a)x. We define

K(a) :=sup {Aa(t, s):t,s € I]} for all a € (a—,a4)

and assume, there exists an oy € (a—, o) such that the following hypotheses hold:

o HYPOTHESIS ON LINEAR PART. We either have

ANy(t+T,7) <1 forall a € (a—, 0gp) and

ANy(t+T,7) > 1 forall a € (ag, o) 6.11)
or
ANg(t+T,7) > 1 forall a € (a—, 0gp) and 6.12)
Ag(t+T,7) <1 forall o € (a9, a4). ’
e HYPOTHESIS ON NONLINEARITY. The quadratic term either tulfills
liminf inf b(z,a) > 0 (6.13)
a—o0 tel
or
limsup sup b(t,a) <0, (6.14)
oa—ao tel
and the remainder satisfies
L, x,
lim sup sup |r(—x20c)| =0 (6.15)
*=0 ge(ag—|x|,ao+x]) rel x|

and

. : TK(a)Ir(t, x, a)l
lim sup lim sup sup — - <1. (6.16)
0= 00 x—=0 tel |X| In (mln {Aa (T + Ta T)a Aa (Ta T+ T)})

Then, there exist o.— < 0 < a4 such that the following statements are fulfilled:

(i) In case (6.11), the trivial solution is (z, T)-attractive for a € (a_, 0g) and (t,T)-
repulsive for o € (ag,as). The differential equation (6.10), admits a (z,T)-
biturcation, since the corresponding radii of (z, T )-attraction and repulsion satisty

lim A5 =0 and lim Rj =0.
a 00 a0

(ii) In case (6.11), the trivial solution is (z, T)-repulsive for oo € (0—, ag) and (7, T)-
attractive for oo € (ag,ay). The differential equation (6.10), admits a (7, T)-
bifurcation, since the corresponding radii of (z, T)-repulsion and attraction satisfy
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Iim RZ =0 and lim A2 =0.

a 700 aNa(

PROOF. Let 1, denote the general solution of (6.10),. We will only prove assertion (i), since the
proof of (ii) is similar. Therefore, (6.11) is fulfilled. W.L.o.g., we only treat the case (6.13). We
choose a_ < 0 < a4 such that

inf b(t,a) >0 (6.17)
ae(a—_,a4),tel
and
t, X, In(min{Ay(z +T,7), Ay(z,t+ T o
lim sup sup M < —vy ( { o ) A )}) forall a € (a—, ay)
x50 rel x| TK(a)

for some y € (0, 1). Because of these two relations, Theorem 5.3.2 can be applied, and the
attractivity and repulsivity of the trivial solutions as stated in the theorem follows. We define

K_:=inf{A,(t,s) 11,5 € l,a € [a_, a0]} € (0, 1).
Assume to the contrary that

5 :=limsup A5 > 0

o A0

holds. Due to (6.17) and (6.15), there exist a_ € (a—, ag), ¢ € (0, K_7n) and L > 0 with

b(t,a)x>+r(t,x,a) > L foralltel, a € (4_,ap) and x € [K_f, Ki] . (6.18)

We fix a € (a—, ap) such that ng‘ > ¢ and

K_LT

At +T,7)>1— (6.19)

For arbitrary 7 € [, the solution u,(-) := 4;(-, 7, {) of (6.10); is also a solution of the inhomo-
geneous linear differential equation

i =alt,6)x +b(t, ) (ue (1) +r(t, 4 (1), 8). (6.20)

Since 2[8‘ > £, we have
u(t+T)<¢. (6.21)

Moreover, from the definition of K_ and (6.18), we directly get
u(t+1t)y>K_¢ forall t € [0, T]. (6.22)

We distinguish two cases.
CASE 1. There exists at € (0, T'] such that

IL“[(T_‘_E):%'
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We choose ¢ maximal with this property. Due to (6.21), this means that u(r + t) < % for all

t € [t, T]. Then, the variation of constants formula (cf. Proposition A.1.6), applied to (6.20),
implies the relation

u(t+T)
+T

= Ay +T,7+ t‘)Ki +/ A+ T ) (b(t, &) (e (1)) + r(t, 1 (1), @) dt
- T+t

.18) .
STELK_L(T—1) > €.

This contradicts (6.21).
CASE 2. Forallt € (0, T], we have

6

fe(T +1) <é-

In this case, the variation of constants formula, applied to (6.20), yields

pr(z+T)

t+T
(6.18), (6.19) ( K_LT
> 1—

)§+K_LT=5.

This contradicts (6.21) also, and thus, limg »q, ng‘ = 0 is proved. Analogously, one can show
limg g, RG = 0 and treat the case (6.14). O

6.1.5 REMARKS.

(i) The Hypothesis on the linear part implies that the (z, T)-dichotomy spectrum of the lin-
earization X = a (¢, a)x converges to {0} in Hausdorff distance in the limit a — ay.

(i) Condition (6.16) is only used to obtain the attractivity or repulsivity of the trivial solution
by applying Theorem 5.3.2. Alternatively, one can directly postulate that the trivial solution
changes their stability at the parameter value o from, say, attractivity to repulsivity.

6.2 NONAUTONOMOUS PITCHFORK BIFURCATION

In this section, nonautonomous generalizations of the classical pitchfork bifurcation are derived.
First, the case of unbounded time domains is treated.

6.2.1 THEOREM (NONAUTONOMOUS PITCHFORK BIFURCATION, PART I). Let x_ <
0 < x4 and a— < ay be in R and [ be an unbounded interval of the form R_, Rl or R,
respectively, and consider the nonautonomous differential equation

x=a(t,a)x +bt,a)x>+rt, x,a) (6.23),

with continuous functionsa : | X (a—,04+) > R, b :Ix (a—,as) > Randr : I x (x—, x4) x
(a—,a4+) — R fulfilling r(-,0,-) = 0. Let A, : | x | > R be the transition operator of the
linearized equation X = a(t, a)x, and assume, there exists an oy € (a—, o) such that the
following hypotheses hold:
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Then, there exist 6.— < 0 < a4 such that the following statements are fulfilled:

)

(ii)

HYPOTHESIS ON LINEAR PART. There exist two functions f1, p> : (6—, a+) — R which
are either both monotone increasing or both monotone decreasing and K > 1 such that

limg s 4, f1(a) = limg_s 4, f2(a) = 0 and

Au(t,s) < KePr @) forall o € (a_, o) andt,s € | witht > s,
Ag(t,s) < KeP2 D=9 forall o € (a_,ay) andt,s €| witht <s.

HYPOTHESIS ON NONLINEARITY. The cubic term either fulfills

0 < liminf inf b(¢, ) < limsup sup b(t,a) < oo (6.24)
a—ao rel a—ag  tel
or
—o00 < liminf inf b(¢, a) < limsup sup b(t,a) <0, (6.25)
a—ao tel a—ag  tel

and the remainder satisfies

r(t,x, a
lim sup Ir( 3 ) =0 (6.26)
x—0 ae(ao—xz,ao—i—xz) tel le
and
2K |r(t, x, a)|

lim sup lim sup sup <1.
asay x>0 el |x|max {—pi(a), f2(a)}

In case (6.24) and the functions p and p»> are monotone increasing, the trivial solution
is past (future, all-time, respectively) attractive for oo € (0., ag) and past (future, all-
time, respectively) repulsive for a € (o, a+). The differential equation (6.23),, admits
a past (future, all-time, respectively) bifurcation, since the corresponding radii of past
(future, all-time, respectively) attraction satisfy

lim A% =0.
o700
If, in addition, | = IR,‘CF is fulfilled, then, for a € (06—, ag), there exists a nontrivial future

repeller R, C | x R, and we have a future repeller transition, since

lim dy(Rq(r),{0}) =0 foralltel.
a o

In case (6.25) and the functions f; and > are monotone increasing, the trivial solution
is all-time (past, future, respectively) attractive for o. € (a—, ag) and past (future, all-
time, respectively) repulsive for a. € (ag, a.4). The differential equation (6.23),, admits
a past (future, all-time, respectively) bifurcation, since the corresponding radii of past
(future, all-time, respectively) repulsion satisty

lim Ry =0.

aNoQ

If, in addition, | = R is fulfilled, then, for a. € (ao, d4), there exists a nontrivial past
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attractor A, C | x R, and we have a past attractor transition, since
lim dH(Aa(t), {O}) =0 foralltel.
oNaQ

(iii) In case (6.24) and the functions f and [, are monotone decreasing, the trivial solution
is past (future, all-time, respectively) repulsive for a. € (a_, ag) and past (future, all-
time, respectively) attractive for a. € (ag, a4). The ditferential equation (6.23), admits
a past (future, all-time, respectively) bifurcation, since the corresponding radii of past
(future, all-time, respectively) attraction satisfy

lim A% =0.
oaNoQ
If, in addition, | = R is fulfilled, then, for a € (o, &), there exists a nontrivial future

repeller R, C | x R, and we have a future repeller transition, since

lim dp (R,(t),{0}) =0 forall t €1.
oG

(iv) In case (6.25) and the tunctions | and > are monotone decreasing, the trivial solution
is past (future, all-time, respectively) repulsive for a € (a—, ag) and past (future, all-
time, respectively) attractive for a € (ag, 0.+). The differential equation (6.23), admits
a past (future, all-time, respectively) bifurcation, since the corresponding radii of past
(future, all-time, respectively) repulsion satisty

lim R =0.
o 0y
If, in addition, | = R~ is fulfilled, then, for o. € (04—, a), there exists a nontrivial past

attractor A, C [ x R, and we have a past attractor transition, since

lim dp(Aq(1),{0}) =0 foralltel.
a 0

PROOF. The first part of this theorem concerning the bifurcation of the attraction or repulsion
areas, respectively, can be proved using the same methods as in the proof of Theorem 6.1.1. We
write a_ and a4 for the constants a_ and a4 used in this proof. For the proof of the attractor and
repeller transitions, w.1.0.g, we only consider the case (ii), i.e., | = R/, condition (6.25) holds and
the functions £ and > are monotone increasing. We denote the general solution of (6.23), by
Ao and define

by = - sup b(t,a) <0.

2 jel, ae(@_,iy)

Due to (6.26), there exists a p > 0 such that
(¢, x,a)| < —b+|x|3 forall x € [—p, pl,a € (ao —x2,a0 +x2) andt €.

The remaining proof is divided into two steps.
STEP 1. For given x1, x2, x3 < p such that) < x; < xp < 2’6—13(, there exists a uniquely determined
constant

a* =a*(x1, x2,x3) € (ao, min {ao + xlz, 07+}]

with the following properties:
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e Forallt <t <k anda € (ag, a*), we have A,(t, T, [—x2, x2]) C (—x3, Xx3),
e there exists a constant T* > 0 such that for all & € (09, 0*) and © < xk — T*, there exist
t+,t— € [0, T*] with

lo(T +1ty,7,x0) =x1 and Ay(r +1t-,7,—Xx2) = —Xx1,

e o is chosen maximal, i.e., for all bigger a.*, one of the two above properties is violated.
We will only prove the existence of a constant a* such that
(a) forallt <t <xanda € (a9, a*), we have 1,(t, 7, x2) < x3,

(b) there exists a constant 7* > 0 such that for all @ € (a9, a*) and 7 < xk — T*, there exists a
t+ (S [0, T*] Wlth /106 (T + t+, T, _sz) = X1,

since the extension to the above assertion follows similarly and by taking the supremum of all
such a*. We first note that for arbitrary 7 € [, the solution u,(-) := 1,(-, 7, x2) of (6.23),, is also
a solution of the inhomogeneous linear differential equation

X =alt,a)x +bt,a)(u:(t)) +rt, u. (1), a). (6.27)

Concerning the expression

box3
s(a,T) := Keﬂl(“)sz + %T forall a € (ag,a+)and T > 0,

there exist a* € (ao, min {ag + x7, a4 }] and T* > 0 such that for all & € (ao, @*], we have

s(a,T*) <0 and s(a,T) <2Kx; forall T €[0,T*].

This follows by choosing 7* such that b+K—x?T* < —2Kxj and a* such that exp (,Bl(a*)T*) < 2.
Choose a € (ag,a*] and 7,7* < xk with 7 < 7*. Assume that x; < u.(t) < x3 for all
t € [r,7*]. Then, the variation of constants formula (cf. Proposition A.1.6), applied to (6.27),
yields the relation

*

ﬂf(r*>=Aa(r*,r)xz+/ Au®s)  (blssa)(uie () + rs, ue(s).@)) ds

> % exp(Ba (@) (z* —s)) <bixi <0

T*

< KM@ =0, 4 / %eﬂz(a)(f*—ﬂb ox}ds

T

— Keﬁl(a)(f _T))Cz + 1 eﬁz(a)(r —-7) _ 1
Kﬂz(a)( )
h@ =, b \

< Ke"! x2+7(r —7)=s(a, 7" —1).

Since s(a, T) < 2Kx, < x3forall T € [0, T*], the assumption u,(t) < x3 forall t € [z, t*]is
justified. This proves (a). Because of s(a, T*) < 0, also (b) is fulfilled.

STEP 2. There exists a o+ € (ag, @) such that for all « € (ag, a+), there exists a nontrivial past
attractor A, C | x R of (6.23), which fulfills

lim dp(Aq(1),{0}) =0 foralltel.
aNo
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7%, we consider the function y : (0, x2) = (a0, a), defined by

For x3 := £ and x5 :=
y (x1) :=a"(x1, x2,x3) forall x; € (0,x2),
where a* stems from Step 1. We set a := y (%2) and define

o(a) := inf{x1 € (0,x2) : y(x1) > a} forall a € (ag, a].

Due to ag < a*(x1,x2,x3) < ap + xlz, we have lim,, 0y (x1) = ao, and sinc_e y is monotone
increasing, this implies that J is monotone increasing, d(a) > 0 for all & € (a9, a] and

lim d(a) =0. (6.28)

aNag
We define
x3(a) :=3Kd(a) and x2(a):=x1(a) := %5((1) for all o € (ao, o]
and consider the function y : (a9, a] — (ag, o), defined by
7 (a) = a*(il(a), X (a), 323(0c)) for all a € (ag, @],
where a* is taken from Step 1 again. Moreover, we define
M :=[—x2,x2] and B, :=[—x3(a),x3(a)] forall a € (ag, a]
and fix a 8 € (ao,a] and an a € (g, min {7 (B), B}). Since @ < f and x, > %(5((1) and due to

the definition of o, there exists a T* > 0 such that for all 7 < x — T, there exist ty,t_ € [0, T*]
with

Ll ) = 0P = 1) and 17, —x) = =30(8) = ~().

Moreover, since oo < y (), forall 7 <t < x, we have

Ao (t, 7, [=%2(B), 2(B)]) C (=%3(B), X3(B)) -

This means that, considering equation (6.23),, Bg x [ is past absorbing with respect to {M x [}.
Then, due to Theorem 2.1.25 (i), there exists a past attractor A, C Bg x [. The past attractor is
nontrivial due to Lemma 2.1.29. The limit relation

lim dp (A4 (t),{0}) =0 forall 7 €1
o o

follows from A, C Bg x [ for all « < min{y (f), f} and (6.28). By setting a4 := 7 (a), all
assertions of this theorem are proved. 0

6.2.2 REMARKS.

(1) In the limit & — ag, the attractivity or repulsivity of the trivial solution is lost in both
directions, i.e., no situation as described in Remark 6.1.2 (i) can occur. This means that
nonautonomous pitchfork bifurcations are total bifurcations.



132

Chapter 6: Bifurcations in Dimension One

(ii)) The Hypothesis on the linear part implies that the past (future, all-time, respectively) di-
chotomy spectrum of the linearization x = a(t, a)x converges to {0} in Hausdorff distance

(iii)

(iv)

in the limit a — ay.

As in Example 6.1.3, one can show that Theorem 6.2.1 is a proper generalization of the
well-known autonomous pitchfork bifurcation (see, e.g., WIGGINS [181, p. 267 f.] and

AULBACH [14, Satz 7.10.8])).

Please note that the above bifurcation result is essentially the combination of two scenarios
which are independent of each other. This means that it is possible to consider (6.23), only
for o > ag or a < aq, respectively, in order to obtain the results which apply for these

parameter values.

6.2.3 THEOREM (NONAUTONOMOUS PITCHFORK BIFURCATION, PART II). Let x_ <
0 <xyanda_ <oy beinRandl := [z, 7+ T], and consider the nonautonomous differential
equation

x=a(t,a)x + b(t, a)x3 +r(t,x,a)

(6.29),

with continuous functionsa : | X (a—,04+) > R, b :Ix (a—,as) > Randr : I x (x—, x4) x
(a—,a4+) — R fulfilling r(-,0,-) = 0. Let A, : | x | = R denote the transition operator of
the linearized equation x = a(t, a)x. We define

and assume, there exists an oy € (a—, o) such that the following hypotheses hold:

K(a) :=sup {Aa(t,s) 11,5 € I]} for all o € (a—, 04)

HYPOTHESIS ON LINEAR PART. We either have

ANg(t+T,7) <1 forall o € (a—,ag) and
ANy(t+T,7) > 1 forall a € (ag, o)

or
ANg(t+T,7) > 1 forall a € (a—, agp) and

Ag(t+T,7) <1 forall o € (ag,a4).

HYPOTHESIS ON NONLINEARITY. The cubic term either fulfills

liminf inf b(z,a) > 0

a—agp tel

or
limsup sup b(t,a) <0,

a—ag tel

and the remainder satisfies

lim sup
x—0 ae(ag—x2,a0+x2) tel

and

TK(a)|r(t,x,a)l

lim sup lim sup sup —

- <
asag x>0 rel  |x|In(min{Aq(r + T, 7), Au(z, 7 + T)})

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)
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Then, there exist & < 0 < a4 such that the following statements are fulfilled:

(i) In case (6.30) and (6.32) is fulfilled, the trivial solution is (z, T)-attractive for
a € (06—, ag) and (t, T)-repulsive for o. € (ag, o). The differential equation (6.29),
admits a (t, T)-bifurcation, since the corresponding radii of (t, T')-attraction satisty

lim Af =0.
o700

(ii) In case (6.30) and (6.33) is fulfilled, the trivial solution is (z, T)-attractive for
a € (06—, ag) and (t, T)-repulsive for o. € (ag, ay). The differential equation (6.29),
admits a (v, T')-bifurcation, since the corresponding radii of (t, T')-repulsion satisfy

lim R =0.
N0
(iii) In case (6.31) and (6.32) is tulfilled, the trivial solution is (t, T)-repulsive for
a € (a—, ap) and (z, T)-attractive for a € (a, ay). The differential equation (6.29),
admits a (t, T)-bifurcation, since the corresponding radii of (t, T')-attraction satisty
lim AF =0.
aNoQ
(iv) In case (6.31) and (6.33) is fulfilled, the trivial solution is (z, T)-repulsive for
a € (6—, ap) and (z, T)-attractive for a € (ag, a). The differential equation (6.29),
admits a (v, T')-bifurcation, since the corresponding radii of (v, T')-repulsion satisfy
lim R =0.

o 0

PROOF. This theorem can be proved using the same methods as in the proof of Theorem 6.2.1.
O

6.2.4 REMARKS.

(i) The Hypothesis on the linear part implies that the (z, T)-dichotomy spectrum of the lin-
earization X = a (¢, a)x converges to {0} in Hausdorff distance in the limit a — ay.

(i) Condition (6.35) is only used to obtain the attractivity or repulsivity of the trivial solution
by applying Theorem 5.3.2. Alternatively, one can directly postulate that the trivial solution
changes their stability at the parameter value o from, say, attractivity to repulsivity.






CHAPTER 7

BIFURCATIONS OF ASYMPTOTICALLY
AUTONOMOUS SYSTEMS

A nonautonomous differential equation

i

is called past (future, respectively) asymptotically autonomous with limiting equation

7>

if limy5_o f(¢,x) = g(x) (lim;— f(t,x) = g(x), respectively) holds uniformly for every
element x of the domain of the function g. This chapter deals with the question of transferring
bifurcation phenomena from the autonomous differential equation (7.2) to the nonautonomous
differential equation (7.1).

The study of asymptotically autonomous differential equations goes back to MARKUS [114].
Markus discusses properties of nonautonomous w-limit sets and generalizes the THEOREM OF
POINCARE & BENDIXSON (see, e.g., PALIS & DE MELO [123] and HIRSCH & SMALE [80,
Chapter 11]) to asymptotically autonomous planar systems. His work has stimulated the quali-
tative theory of nonautonomous differential equations (see, e.g., SELL [164, 165, 166]). Further
fundamental work on asymptotically autonomous systems was achieved by STRAUSS & YORKE
[177], ARTSTEIN [10, 11], THIEME [178] and MISCHAIKOW & SMITH & THIEME [120] in
the context of differential equations (see also KATO & MARTYNYUK & SHESTAKOV [89]); for
difference equations, we refer to SCHONEFUSS [162].

It is not clear a priori under which assumptions certain behavior carries over from the autonomous
to the nonautonomous system. In fact, in THIEME [178], several examples of asymptotically au-
tonomous systems are studied that behave quite differently from the limiting equations. In LANGA
& ROBINSON & SUAREZ [103], however, it is shown that the pullback and forward behavior of
a special asymptotically autonomous Lotka-Volterra system is consistent to the underlying au-
tonomous system.

In the first section of this chapter, some basic properties of asymptotically autonomous systems
are prepared for later use. In Section 7.2, one-dimensional bifurcations such as the pitchfork,
transcritical and saddle node bifurcation are discussed. Section 7.3 is devoted to study the Hopf
bifurcation scenario.

Whenever considering a nonautonomous differential equation in this chapter, its general solution
is denoted by A. For the flow of an autonomous differential equation, we write ¢.
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7.1 BASIC PROPERTIES OF ASYMPTOTICALLY AUTONOMOUS
SYSTEMS

In this section, some useful lemmata are derived for asymptotically autonomous differential equa-
tions. The first two lemmata deal with the question of controlling the distances of the time evolu-
tions of both systems on compact time intervals.

7.1.1 LEMMA. Consider an open set D C R, a nonautonomous differential equation

with a C'-function f : (—00,0) x D — R and an autonomous differential equation
with a C'-function g : D — R™. We assume that

lim f(t,x) = g(x) uniformly forx € D. (7.3)
——00

Furthermore, let K C D be a compact and convex set. Then, the following statements are
fulfilled:

(i) Forall T > 0 and e > O, there exists atg < —T such that forallT' < T andx € K

with
$(r,x) e K forallt € [0,T'],
the relation
1Az +1,7,x) —¢p(t,x)| <& forall T <tgandt € [0, T’]
is fulfilled.

(ii) Forall T > 0 and ¢ > 0, there exists a tg < O such that forall T’ < T and x € K with
¢(—t,x) e K forall t €[0,T'],
the relation
IA(z —t,7,x) —¢(—t,x)|| <& forall t <tgandt € [0,T’]

is fulfilled.

PROOF. (i) Since D is open, there exist a compact and convex set K and an # > O such that
U,(K) C K. Wechoose T > 0 and ¢ > 0 arbitrarily and define M := max__z |[|[Dg(x)||. Due to
(7.3), there exists a 19 < —7T with

min {¢, 7}
TeMT

For the rest of this proof, we fix arbitrary numbers 7 < 79, 7’ < T and x € K fulfilling

$(r,x) e K forall t €[0,7T'].

lf(t+T,x)—gx)| < forall t <tpandx € D.
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Since

At +1,7,x)—P(t,x) = /[ (fs+1,A(s +7,7,x)) — g(¢(s,x)))ds forall € [0,T],
0

it follows from the mean value inequality (see, e.g., ABRAHAM & MARSDEN & RATIU [1, The-
orem 2.4.8, p. 87]) that

“)"(I + 1, T,X) - ¢(t7x)“

< /0 Hf(s + 7, A(s + 7,7, X)) —g(¢(s,X))H ds

IA

/0 (Hf(s + 1, A+ 1,7,x)) — g(As + 7, 7, X)) H + ”g(i(s +17,7,x)) — g(P(s, x))”) ds

t min {e, 5}

t
M A — ds .
< DM [ 126+ 0 = g0 ds

Assume, there exists a7 € (0, T’) with [|A(t + 7, 7, x) — ¢ (¢, x)|| > min {g, 7}. We define
T* := min {t € (O, T’) A 4+ 7,7, x) — P(t, x)|| > min {e, ;7}} <T.
Hence, from Gronwall’s inequality (Lemma A.2.1), we obtain

T* min{e, n} 7+
TeMT

This is a contradiction and finishes the proof of this lemma.
(i1) See proof of (i). U]

|A(T* 4+ 7,7,x) —p(T*, x)|| < < min {g, 11} .

7.1.2 LEMMA. Consider an open set D C RY, a nonautonomous differential equation

with a C!-function f : (0, 00) x D — R" and an autonomous differential equation
with a C'-function g : D — R™. We assume that
tgrgo f(t,x) = g(x) uniformly forx € D .

Furthermore, let K C D be a compact and convex set. Then, the following statements are
fulfilled:

(i) Forall T > 0ande > 0, there exists a tg > O such that forall T’ < T and x € K with
¢(t,x) e K forall t € [0, T’] ,
the relation
1Az +1,7,x) —¢p(t,x)| <& forall T > toandr € [0, T’]

is fulfilled.
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(ii) ForallT > 0 and ¢ > 0, there exists atg > T such that forall T' < T and x € K with
¢(—t,x) e K forall t €[0,T'],
the relation
1Az —t,7,x) —¢(t,x)| <& forall T > rgandt € [0, T’]

is fulfilled.

PROOF. See proof of Lemma 7.1.1. U

In case of the classical autonomous bifurcations for ODEs (such as pitchfork, transcritical, saddle
node and Hopf bifurcation), after the bifurcation, the phase space can be separated into three
invariant parts. Therefore, we restrict attention to the following situation: Let D  R" be an open

and convex set and

be an autonomous differential equation with a C'-function g : D — RY. We suppose that D is
the disjoint union of

e abounded and open set S ! (inner area),
e an open set S? (outer area),

e acompact set § = S’ = dS° withint S = @.
(a) X ©
Si
(b X0

Si

FIGURE 7.1. The above situation in case of a (a) pitchfork bifurcation, (b) transcritical or
saddle node bifurcation, (c) Hopf bifurcation.

The occurrence of one of the above mentioned autonomous bifurcations means that (exactly) one
of the following two hypotheses holds:

e HYPOTHESIS (H;). The following conditions are fulfilled:

(i) The inner area S is forward invariant, i.e.,
$(t,x)e S forallr >0andx e S,

and there exists an attractive equilibrium xo € S’ such that for all compact sets K C ¢,
we have

lim d(¢(, K)|{xo}) = 0.
t— o0
(i1) The outer area S° is backward invariant, i.e.,

¢(t,x) e S° forall t <0Oandx € S,
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and S is a repeller, i.e., there exists an # > 0 with
Jlim d(p(—=t,Uy(S)|S) =0.
(i11) S is invariant, i.e.,
¢, x)eS forallteRandx € S.

e HYPOTHESIS (H»). The following conditions are fulfilled:

(i) The inner area S’ is backward invariant, and there exists a repulsive equilibrium xg € S i
such that for all compact sets K C S*, we have

lim d(¢ (=1, K)|{xo}) = 0.

(ii) The outer area S is forward invariant, and S is an attractor, i.e., there exists an # > 0
with
lim d(¢(, Uy(S))|S) =0.
11— 00
(iii) S is invariant.

Now, some easy consequences of Hypothesis (Hj) are derived.

7.1.3 LEMMA. Under Hypothesis (Hy), the following statements hold:

(1) For all 9 > 0, there existsa T > 0 such that for all x € D withd(x, S) > 0, there exists
aT [0, T] with A
d(qS(T,x), S) > 7.

(ii) For all y > 0, there exists a o > 0 with

¢(—1t,Us(S")) c U, (S') forall t > 0.

PROOF. (i) We choose 0 > 0 arbitrarily. Due to the hypotheses, there exists a 7 > 0 with
$(=T.Uy(S)) C Us(S).

This implies the assertion. .
(i1) We choose y > 0 arbitrarily. Since S is repulsive and § = 05", there exists a T > 0 with

¢(—1,U,(8)) c U, (S) forall t>T.

Arguing negatively, we assume that for all n» € N, there exist#, € [0, T] and x, € U1 (Si ) with

d(¢(—tn, xn), S') = d(p(—tn, x,), S) > 7 .

Since S is compact, we assume w.l.0.g. that the sequence {x, },< 1S convergent with limit x € S.
Due to the continuity of the flow ¢ and the invariance of S, there exists a f > 0 such that for all
y € Ug(x) and t € [0, T], we have

d(p(=t,y),5) < %

This is a contradiction and finishes the proof of this lemma. UJ
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7.1.4 REMARK. In case the outer area is forward invariant, statement (i) of the above lemma
can be simplified as follows: For all 0 > 0, there exists a 7 > 0 such that for all x € D with
d(x,S) >0,

d(¢(T,x),S) =7

is fulfilled

The following two lemmata deal with the question of determining past (future, respectively) at-
traction areas of past (future, respectively) attractive solutions.

7.1.5 LEMMA (ATTRACTION AREAS OF PAST ATTRACTIVE SOLUTIONS). We suppose
that Hypothesis (H ) is fulfilled and consider the nonautonomous differential equation

i
with a C'-function f : (—00,0) x D — R such that

lim f(t,x) = g(x) uniformly forall x € D .
——00

Furthermore, for some 7 < 0, let 4 : (—00,7) — RMN be a past attractive solution of (7.4)
with lim;_, _ 1 (t) = xo. Then, we have

A; =S - X0 -
If, in addition, S’ is bounded, then there exist s < 7 and a past repeller R C (—o0,s) X D
with

S’  liminf R(¢) C limsup R(¢) C cls S .
[==00 t——00

PROOF. The proof of this lemma is divided into four steps.
STEP 1. A; O S — xp.
Since u is past attractive, there exists a y > 0 such that for all s < 7, we have

Jim d(A(s,1, Uy (@) |u(5)) = 0. (7.5)

We choose y € S’ arbitrarily. Let C be a neighborhood of y such that there exists a § > 0 with
cls Us(C) c S*. Since lim,_, _o, u(t) = xo, there exists a #; < 7 such that

telU . X forall r <.
u®)y el . {%’5}( 0) <1
Due to the attractivity of xg, there exists a 7 > 0 such that

d(p(T, Us(C))|{xo}) < %

Since it is possible to choose a compact and convex superset K C D of S' (D is convex),
Lemma 7.1.1 (i) implies that there exists a t, < t; — T with

At +T,t,x)— (T, x)|| < % forall t <tpandx € u(t)+ C — xo .
~—
cUs(C)
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Hence, forallt < #p and x € u(t) + C — x¢, we have

1A@+T,t,x) —u+T)|
< A+ T,1,x) = ¢(T, )| + 1¢(T, x) = xoll + llxo — u(t + Tl

y 7Y _
<Zt3ti=v
Thus,
[_1)11’_1’100 d(l([z,t’ :u(t)+C—XQ)|{Iu(t2)})
= 1im_d((t, 1 + T, M0+ T, 1, 1(1) + C = x0) ) [{u())) ‘= 0.

CU, (u(t+T))

This implies y — xo € A¢", and since y € S' has been chosen arbitrarily, we have A;_ D S' — xo.
STEP 2. A;” C §' — Xxo.

We choose y € $? and f > 0 such that Ug(xg) C §' and define 6 := d(y, S) > 0. Due to
Lemma 7.1.3 (i), there exists a T > 0 such that for all x € S° with d(x, §) > min {2, 2}, there

existsa T € [0, T'] with
d(¢(T,x),S) >n and ¢(T,x) e S°. (7.6)

Moreover, there exists a f; < ¢ with

i
u(t) e Umin{g,g,é}(x") c S8 forallr<t.

Let K be a compact and convex superset of U, (S). Then, due to Lemma 7.1.1 (i), there exists a
1) <t such that forall T € [0, T] and x € K with ¢(r, x) € K forall ¢ € [0, T], we have

|2 +1t,,x) — ¢, x)| < min [/53 g} forall f <y and? € [0, T]. (7.7)

We argue negatively and suppose that
lim [|A(r2, 1,y = xo + (1)) = ()] =0
——00
holds. Therefore, since u(t2) € Up (xq), there exists a t3 < t, with
i)

i(tz, 3,y — X0+ ,u(t3)) € Ug (x0) - (7.8)

We define

s ‘= max {t € 3,01 :d(A(t, 13,y — x0 + u(13)), §) > min[g, g]

and l(t,tg,y—xo—l—,u(g)) ESO] .

This implies d (A(s, 13, y — xo + 1(13)), S) = min {4, g} and A(s, 13,y — xo + p(13)) € S°.
We distinguish two cases.
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CASEl.tp —s <T.
CASE 1.1. Forallt € [0, 1 — 5], we have ¢(t, A(s, 13, y — xo + u(13))) € K.
Due to (7.7), we have

H(;S(t, /l(s, 13,y —xo+ ,u(t3))) — /l(t + 5,13,y — X0+ y(t3)) H < forall t € [0, 1, — s5].

(SN

Since ¢ (1, A(s, 3, y — x0 + u(13))) € S? for all r € [0, t, — s], this leads to

12(t2, 13, y — x0 4+ u(13)) — x|
> (2 — s, A(s, 13,y — x0 + u(13))) — xo|—
|2 (t2, 13,y — x0 + u(13)) — p(t2 — 5, A(s, 13,y — x0 + p(13))) |
BB

> _— = —,
2f-5=3

This is a contradiction to (7.8).
CASE 1.2. There existsaf € [0, 1, — s] with ¢ (1, A(s, 13,y — x0 + u(13))) ¢ K.
By defining

§i=inf{t € [0, —s1: p(t, (s, 13,y — x0 + u(13))) ¢ K} > 0,

we obtain d(q§ (§, A(s, 13,y — x0 + ,u(tg))), S) > 5. Due to (7.7), the relation

146 + 5,13,y = x0 + 1(13)) = $(5, A(s, 13,y = x0 + u@3))) || <

w3

holds. Hence, we have d(i(§—|—s, 13, y—xo—i—,u(t3)), S) > %’7 and /1(§-|—s, 13, y—xo-i—,u(t3)) e S°.
This is a contradiction to the definition of s.
CASE2.tp —s > T.
CASE 2.1. Forallt € [0, T1, we have ¢(t, A(s, 13,y — xo + p(13))) € K.
Because of (7.6) and d (A (s, 13,y — xo + p(13)), S) = min{g, 1} > min {g, 1}, there exists a
T € [0, T] with A

d(p(T, (s, 13,y — x0 + (1)), S) > 7,

and (7.7) yields

(T, A(s, 13, y — x0 + p(3))) — A(T + 5,13,y — x0 + u(13))|| <

w3

Together, this implies

SN )

d(/l(fw + 5,13,y — X0+ ,u(tg,)), S) > —n and i(f + 5,13,y — X0 + ,u(t3)) € S?.

This is a contradiction to the definition of s.

CASE 2.2. There exists at € [0, T] with (7, A(s, 13, y — x0 + u(13))) € K.

This case is treated analogously to Case 1.2 (by writing 7" instead of #, — s).

Consequently, we have y — xo ¢ A;_. This leads to the assertion, since S = 85, int S = @ and
A" is open.

STEP 3. For all k < 5, there exist T > 0 and t| < t such that for allt, < ty andt > T, we have

A (tz —1t, 1, U%K(A; +,u(t2))) C Usz(.A;_ + u(tr —l‘)).
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We choose k < # arbitrarily. By applying Lemma 7.1.3 (ii), there exists a 0 > 0 with
i i
¢(—1,Us(S")) Cc Us(S') forall 1>0. (7.9)
Due to the repulsivity of S, there exists a 7 > 0 with

$(—1,Ue(S") C Uy(S7) forall > T.

By choosing K as a convex and compact superset of Usejo,71¢(—1, Ux(S')), we can apply
Lemma 7.1.2 (ii), and we therefore get a t; < t with

1At — t, 12, x) — p(—t,x)| < §  forall x € Uc(S),1o <tyandt € [0, T]
(7.10)
and () —xoll < % forall r < 1.
Thus, ' _ .
Mz =T, 12, U (S')) € Us(S') Cc Ux(S') forall np <1y (7.11)

is fulfilled. Because of (7.9), this leads to
¢(—t,2(tr — T, 12, Uc(SY))) C U%(S") forall 1o <ty andt > 0.
Due to (7.10) and g < %, we have
Mia— 1,1, Uc(S")) C U (S) forall p <ryandz € [T,2T].
Suppose now, there exist 7 > 27 and f» < t; with

d(l(fz - f, fz, UK(Si)) ‘Si) >

| xR

We define _ _ ,
si=inf{t > 2T 1 d(i(f2 = 1.0 Us(S")|S') = 5} > 2T
and settr :=tp — s + T < t;. Consequently,

Wl = 5,50, Ue(81)) = 2(t2 = T 12, (12, 1, Ui (57)) ) ' U (S7)

i
CU%(S)

holds. This is a contradiction, i.e., forall t, < ¢; and ¢t > T, we have
Mr—1,0,Uc(S')) C Us(S").

Since u(t) e U £ (xo) for all ¢ < t1, the relation

) (t2 — 1,1, U% (A;_ + ,u(tz))) C U%c (A/T + pu(n —1)) forall i, <tjands > T

is fulfilled.
STEP 4. Existence of the past repeller.
Repeated usage of Step 3 implies

tim d (4 (r, 7, Uy (AS + (D)) [AT + 1) =0 forall 7 <1

t— —00 6
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Because of Theorem 2.1.31 (i), there exist an s < 7 and a past repeller R C (—o0, s) x D with
A;_ C liminf (R(t) — ,u(t)) C limsup (R(t) — ,u(t)) C cls A;_.
I—>—00 t——00

Since lim;_, oo u(t) = x0, we have

S' c liminf R(f) C limsup R(t) C cls §' .
I——=00 ——00

This finishes the proof of this lemma. 0

7.1.6 LEMMA (ATTRACTION AREAS OF FUTURE ATTRACTIVE SOLUTIONS). We sup-
pose that Hypothesis (Hy ) is fulfilled and consider the nonautonomous differential equation

o
with a C'-function f : (0, 00) x D — RY such that

lim f(t,x) = g(x) uniformly forallx € D .
11— o0

Furthermore, for some t > 0, let i1 : (z, 00) — RY be a future attractive solution of (7.12)
with lim;_, o0 1 (t) = x9. Then, we have

A;) = Si — X0 .
If, in addition, S' is bounded, then there exist s > t and a future repeller R C (s,00) x D
with

S'  liminf R(¢) C limsup R(¢) C cls S .
=00 t—0o0

PROOF. The proof of this lemma is quite similar to that of Lemma 7.1.5, but this is not clear a
priori and there are important differences. In the following, the entire proof is therefore written
down.

STEP 1. A}’ D St — xp.

Since u is future attractive, there exists a y > 0 such that for all s > 7, we have

lim d(2(z, s, Uy (u(5)) (1) = 0. (7.13)

We choose y € S’ arbitrarily. Let C be a neighborhood of y such that there exists a 6 > 0 with
cls Us(C) c S'. Since lim;_, o, () = xo, there exists a #; > 7 such that

el . X forall t > 1.
Due to the attractivity of xg, there exists a 7 > 0 such that

d(p(T, Us(C))|{xo}) < %

Since it is possible to choose a compact and convex superset K C D of S' (D is convex),
Lemma 7.1.2 (i) implies that there exists a r, > #; with

At +T,t,x)— (T, x)|| < % forall t > tpandx € u(t)+ C — xo .
~—
cUs(C)
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Hence, forallt > #p and x € u(t) + C — x¢, we have

142G +T,t,x) —u@+T)]
< NAE+T,1,x) = ¢(T, 0)|l + 11¢(T, x) = xoll + llxo — (¢ + T)|
4 4 4

S3t3tITr

Thus, for all s > £, we have the relation
lim d(A(z, 5, u(s) + C = x0) [{1(s)})
13 o

= lim d(A(t,s + T, A6 + T, 1, p(s) + C — x0) ) [{u(1)}) "=
CU, (u(s+T))

This implies y — xg € A, and since y € S ! has been chosen arbitrarily, we have A; oS — XQ.
STEP 2. Aj c S' — xp.

We choose y € §? and f > 0 such that Ug(xg) C §' and define 0 := d(y, S) > 0. Due to
Lemma 7.1.3 (i), there exists a T > 0 such that for all x € S° with d(x, §) > min {3, 2}, there

existsa T € [0, T'] with
d($(T,x),8) >y and &(T,x)es. (7.14)

Moreover, there exists a t; > 7 with

u@®)yelU . (5,5 (xo) C 8 forall t >1y.
m{f’§’1}

m

Let K be a compact and convex superset of U, (S). Then, due to Lemma 7.1.2 (i), there exists a
t» > t; such that for all T € [0, T] and x € K with ¢(,x) € K forallt € [0, T], we have

|2+, f,x) — ¢, x)| < min [g, g] forall 7 > 1, and 1 € [0, f‘] ) (7.15)
We argue negatively and suppose, there exists an 73 > t, such that the relation
lim [ 2(t, 13,y = xo + u(13)) = n(®] =0
holds. Therefore, since lim;_, oo £ (t) = X0, there exists a 4 > t3 with

M4, 13,y — x0 + pu(13)) € Us (x0) - (7.16)

We define

s:=max {t € [t3,14] : d(A(t, 13,y — x0 + u(13)), S) > min [g g]

and Mt 13,y — x0 + u1(t3)) € 50] :

This implies d (A(s, 13, y — xo + 1(13)), S) = min {Z, g} and (s, 13, y — xo + u(13)) € S°.
We distinguish two cases.
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CASEl.t4—s<T.
CASE 1.1. Forallt € [0, 14 — 5], we have ¢(t, A(s, 13, y — xo + u(13))) € K.
Due to (7.15), we have

I (r, A(s, 13,y — x0 + u(13))) — A(t + 5,83,y — x0 + u(13)) || < forall 1 € [0, 14 — s].

(SN

Since ¢ (1, A(s, 3, y — x0 + u(13))) € S° for all t € [0, t4 — s], this leads to

12 (1a, 13, y — x0 4+ u(13)) — x0]|
> Hqﬁ(m —s, ﬂ,(s, 3,y — X0+ ﬂ(l3))) - xOH_
|4 (ta 13, y = x0 + 1 (13)) = p(ta = 5, A (s, 13, y — x0 + u(13))) |
BB

> _— = —,
2f-5=3

This is a contradiction to (7.16).
CASE 1.2. There exists at € [0, 14 — s] with ¢ (7, A(s, 13,y — x0 + u(13))) ¢ K.
By defining

§i=inf{t € 10,13 —s1: p(t, A5, 13,y — x0 + u(13))) ¢ K} > 0,

we have d(¢(§, /l(s, 13,y —xo+ ,u(tg,))), S) > 5. Due to (7.15), the relation

146 + 5,13,y = x0 + 1(13)) = $(5, A(s, 13,y = x0 + u@3))) || <

w3

holds. Hence, we have d(i(§—|—s, 13, y—xo—i—,u(t3)), S) > %’7 and /1(§-|—s, 13, y—xo-i—,u(t3)) e S°.
This is a contradiction to the definition of s.

CASE2.t4—s > T.

CASE 2.1. Forallt € [0, T1, we have ¢ (t, (s, 13, y — xo + p(13))
Because of (7.14) and d(A(s, 13, y — xo + #(3)), ) = min {g, 3
T € [0, T] with

K.
min {g, 1}, there exists a

—_
v M

A

d(p(T, A(s, 13,y — x0 + p(13))), S) > 1,
and (7.15) yields

(T, A(s, 13, y — x0 + p(3))) — A(T + 5,13,y — x0 + u(13))|| <

w3

Together, this implies

SN )

d(/l(fw + 5,13,y — X0+ ,u(tg,)), S) > —n and i(f + 5,13,y — X0 + ,u(t3)) € S?.

This is a contradiction to the definition of s.

CASE 2.2. There exists at € [0, T] with (7, A(s, 13, y — x0 + u(13))) € K.

This case is treated analogously to Case 1.2 (by writing 7" instead of #4 — s).

Consequently, we have y — xo ¢ Aj. This leads to the assertion, since S = 85, int S = @ and
A’ is open.

STEP 3. For all k < 5, there exist T > 0 and t; > O such that for allt, > t; andt > T, we have

A (tz, h+t, U%K(A;) —|—,u(t2+t))) C Usz(.A;> +,u(lz)).
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We choose k < # arbitrarily. By applying Lemma 7.1.3 (ii), there exists a 0 > 0 with
¢(—1,Us(8")) c Ux(S') forall £ > 0. (7.17)
Due to the repulsivity of S, there exists a T > 0 with

$(—1, Uc(8) C Ug(S) forall ¢ > T,

By choosing K as a convex and compact superset of Uscjo,71¢(—1, Ux(S')), we can apply
Lemma 7.1.1 (ii), and we therefore get a t; > 7 with

|A(t2, 12 + 1, x) — p(—1t,x)|| < J forall x € UK(Si), tph>tiandt € [0, T]
2 (7.18)
and lu(t) — xoll < % forall t > 1;.
Thus, . . .
M, 2+ T, Ug(S')) C Us(S') c Ux(S') forall 1> 1y (7.19)

is fulfilled. Because of (7.17), this leads to
¢(—1,A(2— T, 12, U (")) C Ux(S') forall 1> randz > 0.
Due to (7.18) and g < 7. we have
M2, 12 +1, Uy (S")) C Ux(S') forall 1 > and 7 € [T, 2T].
Suppose now that there exist f > 27T and f, < ¢ with

d(A(f2, 2 + 1, U (S))|S7) =

|

We define . . ;
si=inf {1 > 2T 1 d(i(in fa + 1. Us(8)|S') = 5} > 2T

andsettr :=tr +s —T > 1. Consequently,
Mizsta 45, U (87)) = Af2r 12, A1 T2 + 5, Ui (87)) ) € Ux(S')

"y (s)

holds. This is a contradiction, i.e., for all £, < t; and ¢t > T, we have
Mz, 2 +1,Uc(S')) € Us(S").

Since u(t) e U z (xo) for all ¢ > ¢, the relation

7 (141, Use (S + (1)) © Une (8" + () forall > ryand 1 > T

is fulfilled.

STEP 4. Existence of the future repeller.

Repeated usage of Step 3 implies that for all ¢ > 0, there exists an s > 0O such that for all 7 > s,
there exists a T > 0 with

A (T, T+, Ug(fl;> + u(z +t))> C Ug(A;> +/t(r)) forall t > T .
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Because of Theorem 2.1.31 (iv), there exists an s < 7 and a future repeller R C (s, 00) x D with

Al C lig(igf (R(t) — u@)) C litniigp (R(t) — u(t)) C cls AL

Since lim;_, o 1 (t) = xo, we have

S' c liminf R(f) C limsup R(f) C cls S' .
— o0

— o0

This finishes the proof of this lemma. 0

Please note that similar lemmata can be derived for the determination of past (future, respectively)
repulsion areas of past (future, respectively) repulsive solutions.

7.2 BIFURCATIONS IN DIMENSION ONE

In this section, one-dimensional differential equations are studied which exhibit pitchfork, trans-
critical or saddle node bifurcations. It is shown that under special assumptions, this bifurcation
behavior is transferred to asymptotically autonomous systems.

Let —oo < x_ < x4 <ooandag < ay, and consider an autonomous differential equation

720,

depending on a parameter a with a C'-function g : (x_, x4) x (ap, ;] — R. We assume that
there exists an xg € (x—, x4 ) with

g(xp,a) =0 and Dig(xp,a)#0 forall a € (ag,a1].
In the next four lemmata, conditions for the existence of nonautonomous counterparts for the equi-

librium x are studied. In a first instance, we restrict the parameter area to compact subintervals
of (ao, a1].

7.2.1 LEMMA (EXISTENCE OF PAST ATTRACTIVE SOLUTIONS). Leta_ < a4 be in
(a0, 1], and consider the nonautonomous differential equation

X =f(t,x,0)] (7.2,

depending on a parameter o. with a C!-function f : (—o00, 0) x (x—,xy) X [a—,a4] > R.
We assume that

lim f(t,x,0)=g(x,a) and tlim Dy f(t,x,0) = Di1g(x, a)
——00

——00
hold uniformly for all x € (x—, x4+) and a € [o—, ay]. Furthermore, we suppose that
Dig(xp,a) <0 forall a € [o—,a4].

Then, there exist a t < 0 and a continuous function u : (—o0, 7] X [a—, a+] — R such that
(-, &) is the uniquely determined past attractive solution of (7.21), which tulfills

lim wu(t,a) =xp.
1= —00
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In addition, for fixed o. € [o.—, a4 ], the following statements are fulfilled:

(1) In case there exist x, < xo and x0+ > xo with
g(xo_,a) = g(xar,a) =0, Dlg(xo_,a) >0 and Dlg(xar,a) >0,
and g(x, o) # 0 forall x € (xg , x0) U (x0, xy), we have
iy = (xg = X0, x5 = xo) .
Furthermore, there exists a past repeller R(a) of (7.21), with

— _|_ . . . - +
(xo ,xo) - lllgn_lgof R(a,t) C I;T_ng R(a,t) C [xo ) X ]

(i) In case there exists a x, < xo with
g(xo_,a) =0 and Dlg(xo_,a) > 0,
and g(x, a) # 0 forall x € (x; , x0) U (x0, x4), we have
:(‘,a) = (xo_ — X0, X4 — x()) )
(iii) In case there exists a xar > xo with
g(x,a) =0 and Dig(xs,a) >0,
and g(x,a) # 0 forall x € (x_, xo) U (xo, xa“), we have

lT(',a) = (x_ — X0, Xg_ - XO) .

7.2.2 REMARK. The statement (i) of above lemma corresponds to the autonomous pitchfork
bifurcation, where after the bifurcation, there are three equilibria, and (ii) and (ii1) describe the
situation after a transcritical or saddle node bifurcation.

PROOF OF LEMMA 7.2.1. The proof is divided into three steps.

STEP 1. There exist a © < 0 and a continuous function u : (—oo,7] X [a—,a4+] — R
such that u(-,a) is the uniquely determined past attractive solution of (7.21), which fulfills
lim;—, —o0 p(t, @) = xo.

Due to the hypotheses (please note that [a—, a4 ] is compact and g is uniformly continuous on
compact sets), there exist f > 0,y < 0and ¢ < 0 with

ft,xo—p,a)>0, f(t,xo+ p,a) <0 and Dy f(t,x,a) <y

forall x € Uzp(xp),t < tanda € [a_,ay]. Wefix ana € [a_, a] for the rest of this step. The
sets
My = {x e clsUg(xo) : Thereexistsar < t with A(r, 7, x, a) < xo — B}

and
M, := {x e clsUp(xo) : Thereexistsar <t with A(r, 7, x, @) > xo + S}
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are obviously nonempty and due to the continuity of the general solution (cf. Proposition A.1.3)
relatively open in cls Ug(xo). Hence, M1 UM> C cls Ug(xp). Therefore, there exists a y € Ug(xo)
such that u(t,a) := A(t,7,y,a) € Ug(xp) for all t < 7. To show that this solution is past
attractive, we study the differential equation of the perturbed motion

X =h(t,x,a):= f(t,x + ,u(t,oc),a) - f(t, ,u(t,a),a) ,

whose general solution will be denoted by 1. Due to the mean value theorem (see, e.g., LANG
[101, Theorem 4.2, p. 341]), we have

1 1
h(t,x,a) =x/ Dyh(t,0x,a)do =x/ sz(t,0x+,u(t,a),a) do .
0 0

This implies

h(t,x,a) > yx forall t <7andx € (—p,0)
and h(t,x,a) <yx forall t <tandx € (0,/).

We therefore obtain 3
lim d (,1(1, 1, Uz (0), a)’{O}) —0,
2

f——00
and consequently,
lim_d (4(c,1, Uy (u(t, @), @) (g (z, @)}) =0

t——00
holds (cf. Proposition A.1.7). Thus, the solution u(-, @) is past attractive. Moreover, the limit
relation lim;_, oo u (¢, @) = xq is obviously fulfilled. The uniqueness of u (-, @) follows directly
from Proposition 2.1.27 (i).
STEP 2. u is continuous.
First, we consider the functiond : [a—, a4+] — (x—, x), defined by

d(a) := u(r,a) forall a € [a_,as].

Suppose, there exist a a € [a—, a4] and a sequence {a,},en With lim,, a, = a such that
{d(a)}nen does not converge to d(a). Since this sequence is bounded, we assume w.l.0.g. that
it is convergent with limit ¥ € cls Ug(xp), X # d(a). Due to Step 1, there exists a7 <
with /l(f , T, X, 07) ¢ cls Ug(xp). The continuity of the general solution implies the existence of a
neighborhood V of (X, @) such that

M, 7, x,a) ¢ clsUg(xg) forall (x,a) e V.
In particular, there exists an n € N with (d(a,), a,) € V. This implies

w(t,an) = AT, 7, u(t, Gn), 6n) = A(7, 7, d(Gn), 0n) ¢ cls Up(xo) .

This is a contradiction, and therefore, the function d is continuous. To prove the continuity of x,
we choose a sequence { (7, Gn)}, _,, in (=00, 7] x [a—, ay] with lim, ;o (fu, Gn) = (7, &). The
continuity of u follows from

lim ﬂ(fn, &n) = lim /l(fn, T, u(z, ay), &n)
n—oo n— oo

= lim A(fy, 7, d(0y), an)

n— 00

= /l(f, T,d(&),&) = ,u(f, &).
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STEP 3. The statements (i), (ii) and (iii) are fulfilled.
The asserted relations for A/T(. o) and the existence of a past repeller follow directly from

Lemma 7.1.5 if we define the repulsive set S as {x;, x; } in case (i), {x; } in case (i) or {x;} in
case (iii), respectively (cf. also Figure 7.1). ]

7.2.3 LEMMA (EXISTENCE OF FUTURE ATTRACTIVE SOLUTIONS). Leta_ < a4 be in
(a0, a1], and consider the nonautonomous differential equation

&= f(t.x.0)] (7.22),

depending on a parameter a with a C'-function f : (0, 00) x (x_, x4) x [a_,a4] = R. We
assume that

lim f(t,x,a) =g(x,a) and lim D, f(t,x,a) = Dig(x, a)
t— 00 t—00
hold uniformly for all x € (x—, x4) and o € [a—, a]. Furthermore, we suppose that
Dig(xp,a) <0 forall a € [o—,a4].

Then, there exist t > 0 and f > 0 such that every solution A(-, 7, x, a) for x € Ug(xp) and
o € a—, a4] is future attractive with

lim A(z, 7, x,0) = xq.
11— 00

Letv : [t,00) = R be such a solution of (7.22),, for fixed o € [a—, a4 ]. Then, the following
statements are fulfilled:

(1) In case there exist x, < xo and x(‘)" > xo with
g(xo_,a) = g(x(')",a) =0, Dlg(xo_,a) >0 and Dlg(x(")",a) >0,
and g(x,a) #0 forall x € (xo_, xo) U (xo, xar), we have
Ay = (xo_ —xo,xa' —xo) )
Furthermore, there exists a future repeller R(a) of (7.22), with

— + . . . — +
(xo » X ) C htrglogf R(a,t) C llggp R(a,t) C [xo » X ]

(i) In case there exists a x, < xo with
g(xo_,a) =0 and Dlg(xo_,a) >0,
and g(x,a) #0 forall x € (xo_, xo) U (xo, x+), we have
A7 = (xo_ — X0, X4 —xo) )

(iii) In case there exists a xar > Xxo With
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g(xf,a)=0 and Dig(x;,a)>0,

and g(x, o) # 0 for all x € (x—, xo) U (xo, xg ), we have

A7 = (x_ —xo,xar —x()).

PROOF. Due to the hypotheses (please note that [a—, a4 ] is compact and g is uniformly continu-
ous on compact sets), there exist § > 0,y < 0and r > 0 with

f,xo—p,a)>0, f(t,xo+ p,a) <0 and Dyf(t,x,a) <y

for all x € Uxp(xp), t > 7 and a € [a—, a4]. We fix X € Ug(xp) and a € [a—, a4 ] and consider
for the rest of the proof in particular the solution v(-) := A(:, 7, X, a) of (7.22), on the interval
[z, 00). Obviously, the relation lim;_ o, V() = x¢ holds. To show that this solution is future
attractive, we study the differential equation of the perturbed motion

x=h(t,x,a) = f(t,x + v(t),a) — f(t, v(t),a) ,

whose general solution will be denoted by . Due to the mean value theorem, we have

1 1
h(t,x,a) =x/ Dyh(t,0x,a)do =x/ sz(t,Hx-I—v(t),a) do .
0 0

This implies

h(t,x,a) > yx forall ¢
and h(t,x,a) < yx forall ¢

tand x € (—5,0)
rand x € (0, ).

We therefore obtain
lim d (I(:,s, Ug(O),a)‘{O}) —0 forall s> 1,
t— 00 2

and consequently,

tim d (2(t,s, Ug(v(s)),a)‘{v(t)}) —0 foralls>1¢
t— 00 2

holds (cf. Proposition A.1.7). Thus, the solution v is future attractive. The asserted relations
for A> and the existence of a future repeller follow directly from Lemma 7.1.6 if we define the
repulsive set S as {xo_ , x(')'r } in case (i), {xo_ } in case (ii) or {xar } in case (iii), respectively (cf. also
Figure 7.1). UJ

Under the assumption D;g(xg, @) > O for all & € [a—, a4 ], analogous statements are obtained
for past (future, respectively) repulsive solutions.

7.2.4 LEMMA (EXISTENCE OF PAST REPULSIVE SOLUTIONS). Let a— < a4 be in
(a0, @1], and consider the nonautonomous differential equation

&= f(t,x,0)] (7.23),

depending on a parameter o. with a C!-function f : (—o00, 0) x (x—,x4) X [a—,a+] > R.
We assume that
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lim f(t,x,a) =g(x,a) and . lim Dyf(t,x,a) = Dig(x,a)
——00

——00
hold uniformly for all x € (x_, x4+) and a € [o—, a4 ]. Furthermore, we suppose that

Dig(xp,a) >0 forall a € [o—,a4].

Then, there exist t < 0 and > 0 such that every solution A(-, 7, x, a) for x € Up(xo) and
o € [a—, a4] is past repulsive with

lim A(t,7,x,0) = x0p.
t——00

Letv : (—o0,7] — R be such a solution of (7.23), for fixed o € [a—, as]. Then, the
following statements are fulfilled:

(i) In case there exist x; < xo and x; > xo with
g(xy.a)=g(xf,a0) =0, Dig(xy,a) <0 and Dig(x;,a) <O,
and g(x, o) # 0 for all x € (x; , x0) U (x0, xg), we have
RS = (xg — X0, x5 — X0) .

Furthermore, there exists a past attractor A(a) of (7.23), with

—_ + . . . j— +
(xo ,xo) - ltlgl_lglof Aa,t) C I;T_SIOJ(P Aa,t) C [xo , X ]

(i) In case there exists a x, < xo with
g(xo_,a) =0 and Dlg(xo_,a) <0,
and g(x, a) # 0 forall x € (x;,x0) U (xo, x4), we have
RS = (xo_ — X0, X4 — xo) )

(iii) In case there exists a xg' > xo with

g(x0+,a) =0 and Dlg(xo+,a) <0,
and g(x, o) # 0 forall x € (x—, xo) U (xo, x; ), we have

RS = (x_ —xo,xar —xo).

PROOF. The assertions follow from Proposition 2.1.22 and Lemma 7.2.3. UJ

7.2.5 LEMMA (EXISTENCE OF FUTURE REPULSIVE SOLUTIONS). Leta_ < a4 be in
(a0, a1], and consider the nonautonomous differential equation
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’)'c =f(t,x,a)‘

assume that

Dig(xo,a) >0 forall a € [o—,a4].

Aim (2, @) = xo.

In addition, for fixed o. € [o—, a4 ], the following statements are fulfilled:

(i) In case there exist x, < xo and xo+ > xo with

and g(x,a) # 0 forall x € (xo_, xo) U (xo,xg), we have
7(.’0[) = (xo_ — X0, x(;r — xo) .

Furthermore, there exists a future attractor A(a) of (7.24), with

(i) In case there exists a x, < xo with
g(xo_,a) =0 and Dlg(xo_,a) <0,
and g(x, a) # 0 forall x € (xg, x0) U (xo, x4), we have
/7(_’0() = (xo_ — X0, X4 — xo) .
(iii) In case there exists a x(‘)" > xo with
g(xa',a) =0 and Dlg(xa',a) <0,
and g(x,a) #0 forall x € (x_, xo) U (xo, xg'), we have

7(,’0() = (x_ — X0, x(’)" — xo) )

depending on a parameter o. with a C'-function f : (0, 00) x (x_, x4) X [a—, a;] = R. We

lim f(t,x,a) =gx,a) and lim D, f(t,x,a) = Dig(x, a)
— o0 t— 00

hold uniformly for all x € (x—, x4) and o € [a—, a]. Furthermore, we suppose that

Then, there exist a t > 0 and a continuous function u : [t,00) X [a—, a+] — R such that
w1 (-, @) is the uniquely determined future repulsive solution of (7.24), which fulfills

g(xo_,a) = g(xg',a) =0, Dlg(xo_,a) <0 and Dlg(xo+,a) <0,

—_ + . . . —_ +
(xo ,xo) C htrgérolf A(a,t) C htrgilip A(a,t) C [xo ) X ] .

PROOF. The assertions follow from Proposition 2.1.22 and Lemma 7.2.1.

OJ

In the following, we observe that pitchfork bifurcations of (7.20), give rise to total nonau-
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tonomous bifurcations. Transcritical and saddle node bifurcations, however, lead to partial nonau-
tonomous bifurcations.

First, the attention is restricted to the situation that the autonomous differential equation (7.20),,
admits a supercritical pitchfork bifurcation at (xg, ag). More precisely, there exist a monotone
increasing continuous function 4 : (o, @1] = (x—, x4) and a monotone decreasing continuous
function &5 : (ag, a1] = (x—, x1) such that for all @ € (ag, a1], we have

hi(a) < xo < ha(a),
g(hi(a),a) = g(xo, a) = g(h2(a),a) =0,
Dig(hi(a),a) #0, Dig(xo,a) #0, Dig(ha(a),a) #0.

Moreover, for all a € (ag, a1] and x € (hi(a), x0) U (xg, h2(a)), g(x, a) # 0 is satisfied, and we
have limy—; 4, h1(a0) = limg 54, h2(a) = xo.

7.2.6 THEOREM (TOTAL PAST BIFURCATION). We suppose that (7.20), admits a pitch-
fork bifurcation as described above and consider the nonautonomous differential equation

&= f(t.x.0)] (7.25),

depending on a parameter a. with a C!-function f : (—o0, 0) x (x_, x4) X (g, a1] > R. We
assume that

lim f(t,x,0)=gx,a) and lim D,f(t,x,a) = Dg(x,a)
——00 ——00

hold uniformly for all x € (x_,x4) and a € (a9, a1]. Then, the following statements are
fulfilled:

(i) Incase Dig(xg, 1) < 0, there exists a continuous function u : D C R x (ag, 1] > R
such that u (-, a) is a past attractive solution of (7.25),. We have a total past biturcation,

since
Jim 4 (45wl @) =0.

Furthermore, for all o € (aq, o.1], there exists a past repeller R(a.). Due to

ah\rg d (hm sup R(a, t)‘{xo}) =0,

——0o0

we also have a past repeller transition.

(i) In case Dig(xg, a1) > 0, there exists a continuous function u : D C R x (ag, 1] > R
such that u (-, a) is a past repulsive solution of (7.25),. We have a total past bifurcation,
since

lim d (R, [10}) =0.

oo

Furthermore, for all o € (o, a1], there exists a past attractor A(a). Due to

a0 t——00

lim d (lim sup A(a,t) {xo}) =0

we also have a past attractor transition.
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PROOF. We define the compact intervals Iy := {a € (ag, a1] : hi(a) < xo — 1} and

1 1
I, = [a € (ap, a1] : hi(a) € [XO — X0 —
n

1:“ forall n € N.

n+

(1) For all n € No, we restrict (7.25),, to the parameter area I, and apply Lemma 7.2.1. Therefore,
there exists a continuous function x, : (—o0, 7,] x I, = R which describes uniquely determined
past attractive solutions. We define

w(t,a) = u,(t,a) forall t <Oanda € (ap, a;] witha € I, andt < 7, .

Due to the uniqueness of the x,, the so-defined function u : D — R for some D C R x (ag, a1]
is well defined, and the continuity of u follows directly. The existence of the past repellers and
the limit relations are consequences of Lemma 7.2.1 (i).

(ii) For all n € Np, we restrict (7.25), to the parameter area I, and apply Lemma 7.2.4. It
is obvious that one can construct a continuous function 4 : D C R x (ag,@;) — R which
describes past repulsive solutions. The existence of the past attractors and the limit relations are
consequences of Lemma 7.2.4 (i). O

7.2.7 THEOREM (TOTAL FUTURE BIFURCATION). We suppose that (7.20), admits a
pitchfork bifurcation as described above and consider the nonautonomous differential equa-
tion

%= f(t,x,0)] (7.26)4

depending on a parameter o. with a C'-function f : (0, 00) x (x—,x4+) x (apg, 1] > R. We
assume that

lim f(t,x,a)=g(x,a) and lim D, f(t,x,a) = Dig(x,a)
— o0 — 00

hold uniformly for all x € (x_,x4) and a € (a9, a1]. Then, the following statements are
fulfilled:

(1) Incase Dig(xp,a1) < 0, there exists a continuous function u : D C R x (ag, a1] > R
such that u(-, ) is a future attractive solution of (7.26),. We have a total future bifur-
cation, since

lim d (A7, |(01) =0.

aNog

Furthermore, for all o € (aq, o.1], there exists a future repeller R(a). Due to

lim d (lim sup R(a, 1) {xo}) =0

aNao t—00

we also have a future repeller transition.

(ii) In case Dig(xg, o1) > 0, there exists a continuous function u : D C R x (ag, a1] > R
such that u (-, ) is a future repulsive solution of (7.26),. We have a total future bifur-
cation, since

lim d (R [(0}) =0.

aNoaQ

Furthermore, for all . € (ao, a1], there exists a future attractor A(a). Due to
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lim d (lim sup A(a,t) {xo}) =0,
N0 t—00

we also have a future attractor transition.

PROOF. See proof of Theorem 7.2.6. U

In the following example, which is a special case of POTZSCHE & RASMUSSEN [139, Exam-
ple 4.1], the center manifold reduction (see, e.g., CARR [38] and HALE [74, Chapter 4] in the
autonomous context) is used to verify past and future bifurcations and transitions in an asymptot-
ically autonomous version of the Lorenz system.

7.2.8 EXAMPLE. We consider a nonautonomous version of the famous Lorenz equation (see,
e.g., LORENZ [107] and KUZNETSOW [100, pp. 166, 249]), given by the three-dimensional system

X1 = 04(t)(x2 — x1)
X2 = pa(t)x1 — x2 — x1X3

X3 = —fa(t)x3 + x1x2

In our situation, o, p,, s are perturbed nonautonomously, i.e., we assume that the functions
Ca» Pa> Po : R — (0, 00) are given by

0.ty =00+ ac(t), pst)=14+po+ap(t) and p,({)=po+apf(t) forall r e R

with real constants og, pg, fo > 0, bounded C 3_functions o, p, p and a € R, which will be the
bifurcation parameter. It is our goal to study the stability of the equilibrium x = O for different
values of a. From the linearization of the trivial equilibrium, which is given by

—og 09 0
po —1 0 ],
0 0 —po

we see that in case a = 0 (i.e., in case of the autonomous Lorenz system), the origin is attractive
for pp < 0 and repulsive for pp > 0. More interesting is the nonhyperbolic case pg = 0, where an
autonomous pitchfork bifurcation occurs as pg passes through 0 (see KUzNETSOW [100, p. 249]).
To mimic this situation, we assume pg = 0 from now on. Before proceeding, we formally append
the trivial equation oo = 0 and—to simplify our calculations—apply the transformation

V1 —o9g 0 1 O X1

»l._ 1 010 X2

vl T o 10o0]]x

V4 0 001 a
This implies the system

y=Ay+F(t,y)] (7.27)
with A := diag(—o9 — 1, — o, 0, 0) and the nonlinearity
%0y yy — CEO@EP W)y, yy Ly ys + L0y,
Ft.y) —ooyt + (1 — 60)y1y3s — B()y2ya + 3 +2y;
’ y = 2 _
UZL)’lyz + JUHUOSZ(J?I 02y, y, — sod7y2ys + %ﬁ)ym

0



158 Chapter 7: Bifurcations of Asymptotically Autonomous Systems

Thus, we can apply Theorem 5.1.3 to (7.27) to show that there exists a local two-dimensional all-
time center-unstable manifold S~, given as graph of a function s~ : V x R — R?, where V C R?
is a neighborhood of 0. The ansatz

2 1 3
- —ii (52— (D)
Onan = 2804 (30 ) + o (Vi i)
‘=0 2—i,i

yields that the equation reduced to the all-time center-unstable manifold S~ is given by

. 00
y3 =

2 ()43 2 2.3
T oo+ [P 1)y = 530(0)y3 + O(ay3, ay3, y3) -

Using POTZSCHE & RASMUSSEN [139, Theorem 3.1], we obtain s% O(t) = /%0 and consequently,
the one-dimensional bifurcation equation is given by

: o0 1.3 2 2 3
¥3= a0y = gys + 0(ays.atys. y3). (7.28)

We henceforth assume that our system is asymptotically autonomous for t — =00, i.e., the limits
t — Foo of the functions o, p and f exist. We define

=l B = B .
o= im0 pti= lim p0) wd gt im pO).

The autonomous limiting equations of the bifurcation equation are then given by
00
oo+ 1

Vs = apFys = 4v3 + O(ay3, a’y3, 33) . (7.29)
It is easy to check that this equation admits a pitchfork bifurcation, i.e., the equilibrium O is at-
tractive for o < 0 and repulsive for & > 0. For small a > 0, there are two additional attractive
equilibria branching from the origin. One can show that the convergence of the right hand side
in (7.28) is uniform in a neighborhood of 0, and also the derivative with respect to y3 of (7.28)
converges locally uniformly to the corresponding derivative in (7.29). Thus, Theorem 7.2.6 or
Theorem 7.2.7, respectively, is applicable, and therefore, system (7.28) admits a total past or fu-
ture bifurcation and a past or future attractor transition, respectively. Please note that not only
the reduced equation (7.28) gives rise to a nonautonomous transition but also the nonautonomous
Lorenz equation itself. This is due to the fact that there exists an asymptotic phase for the center
manifold (see AULBACH & WANNER [22, Theorem 3.3]), i.e., every solution approaches a solu-
tion lying in the center manifold in forward time exponentially. Therefore, for small o > 0, there
also exists a past or future attractor of the three-dimensional system, respectively, which shrinks
down in the limit a 0. However, the three-dimensional nonautonomous Lorenz equation does
not admit a past or future bifurcation, since due to the asymptotic phase, the trivial solution is not
past repulsive for o > 0.

To obtain partial nonautonomous bifurcations, we assume that the differential equation (7.20),,
admits a supercritical transcritical or saddle node bifurcation at (xg, ag). This means, there exists
a strictly increasing continuous function £ : (ag, o1) — (x—, x4) such that for all a € (a9, a1),
we have

h(a) < xo,
g(h(a), a) = g(xo,a) =0,
Dig(h(a),a) #0, Dig(xo,a) #0.
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Moreover, for all & € (ag, 1) and x € (h(a), xo), the relation g(x,a) # 0 is satisfied, and
we have lim, 4, h(a) = xo. Please note that in case of a saddle node bifurcation, one has to
transform the greater equilibrium into xg. In case of a transcritical bifurcation, we assume that the
bigger equilibrium equals x. This can be also reached by a transformation.

7.2.9 THEOREM (PARTIAL PAST BIFURCATION). We suppose that (7.20), admits a tran-
scritical or saddle node bifurcation as described above and consider the nonautonomous dif-
ferential equation

&= f(t.x.0)] (7.30)4

depending on a parameter a with a C'-function f : (—00, 0) x (x_, x4) x (ag, a1] = R. We
assume that

lim f(t,x,a)=gx,a) and lim D;f(t,x,a) = Dig(x,a)
t——00 [—>—00

hold uniformly for all x € (x_,x4) and a € (09, a1]. Then, the following statements are
fulfilled:

(i) Incase Dig(xp, 1) < 0, there exists a continuous function u : D C R x (ag, 1] > R
such that u (-, ) is a past attractive solution of (7.30),. We have a partial bifurcation,
since

. e _
0}1\51() Ql’u("a) =0.

(i) In case Dig(xg, a1) > 0, there exists a continuous function u : D C R x (ag, 1] > R
such that u(-, o) is a past repulsive solution of (7.30),. We have a partial bifurcation,
since

lim R, y=0.

asag . HGa

PROOF. See proof of Theorem 7.2.6. UJ

7.2.10 THEOREM (PARTIAL FUTURE BIFURCATION). We suppose that (7.20), admits a
transcritical or saddle node bifurcation as described above and consider the nonautonomous
differential equation

i=f(t.x,a) (7.31),

depending on a parameter o with a C'-function f : (0, 00) x (x—, x1) x (ag, a1] = R. We
assume that

lim f(t,x,a) =g(x,a) and lim D, f(t,x,a) = Dig(x,a)
=00 =00

hold uniformly for all x € (x_,x4) and a € (09, a1]. Then, the following statements are
fulfilled:

(i) Incase Dig(xp, 1) < 0, there exists a continuous function u : D C R x (ag, 1] > R
such that i (-, a) is a future attractive solution of (7.31),. We have a partial bifurcation,
since

lim 2177 y=0.

oo Hia
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(ii) In case D1g(xg, a1) > 0, there exists a continuous function u : D C R x (ag, a1] > R
such that u (-, ) is a future repulsive solution of (7.31),. We have a partial biturcation,
since

) S
llm %#(.’a) = O .

aNag

PROOF. See proof of Theorem 7.2.6. UJ

7.3 BIFURCATIONS IN DIMENSION TWO

In this section, two-dimensional differential equations which exhibit Hopf bifurcations are stud-
ied (see, e.g., MARSDEN & MCCRACKEN [116]). As in the previous section, this bifurcation
behavior is transferred to asymptotically autonomous systems.

More precisely, we consider the autonomous differential equation

x=gix,y, a)

_ (7.32),
y=gk,y,a)

depending on a parameter a with a C!-function g : (x_, x4) x (y_, y4) X (@, a1] = R? which
admits a supercritical Hopf bifurcation at (xg, yo, ao), i.e., for all @ € (ag, a1], we have

g(x0,y0,a) =0 and D 2g(x0, yo, ) = ( ZEZ; _a[zg;) )

with continuous functions a : (ag, a;] — R and b : (ag, a;] — R which fulfill a(a) # 0 and
b(a) # 0. Furthermore, let S(a) be an attractive (in case a(a) < 0) or a repulsive (in case
a(a) > 0) periodic orbit of (7.32),, respectively, which depends continuously on a with respect
to the Hausdorff distance and converges to (xg, yo) in the limit @ — ag. We denote the inner area
of S(a) by S’ ().

As in the previous section, in the next four lemmata, conditions for the existence of nonau-
tonomous counterparts for the equilibrium (xg, yo) are studied. In the first instance, the parameter
area is restricted to compact subintervals of (o, a1].

7.3.1 LEMMA (EXISTENCE OF PAST ATTRACTIVE SOLUTIONS). Consider the nonau-
tonomous differential equation

x = filt,x,y,a)

7.33),
y:fZ(taxsy:a) ( )

depending on a parameter oo with a C'-function f : (—00,0) x (x_,x4) x (y_, y4) X
l[o—,ay] — R2. We assume that

hm f(taxayaa):g(xayaa) 3ﬂd hm D(2,3)f(tsxay’a):D(1,2)g(xayaa)
——00 t——00

hold uniformly for all x € (x—,x4), y € (y—,y+) and o € [a—, a4]. Furthermore, we
suppose that
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a(a) <0 forall o € la—,a4].

Then, there exist at < 0 and a continuous function u : (—o0, 7] X [a—, a4] — R? such that
w1 (-, o) is the uniquely determined past attractive solution of (7.33), which tulfills

lim (7, @) = (x0, yo) -
t——00
Moreover, we have
:1_(-,11) = S'(a) — (xo, yo) forall a € [a—,a4].
Furthermore, there exists a past repeller R(a) of (7.33), with

Si(a) C liminf R(a,t) C limsup R(a,t) C cls Si(a) forall o € [a—,a4].
[==00 t——00

PROOF. For simplicity, we assume w.l.0.g. that (xg, yo) = (0, 0) in this proof. The proof is di-
vided into three steps.

STEP 1. There exists a 7 < 0 and a continuous function u : (—oo, 7] X [a—,04] — R2
such that u(-, o) is the uniquely determined past attractive solution of (7.33), which fulfills
lim;—, oo u(t, @) = (0, 0).

Due to the compactness of [a_, a4 ] and the uniform continuity of g on compact sets, there exist
p > 0andy < 0 with

< -y

0 0 0 0
Bl y,a) <2y, L y,a) <2y and | Zx,y,0) + 22(x, y, )
ox oy oy ox

for all (x, y) € cls U»4((0,0)) and a € [a—, a4 ]. This implies the existence of a 7 < 0 with

o 0 0 o
i(t,x,y,cx) <y, ﬁ(t,x,y,a) <7y, i(t,x,y,ocH- ﬁ(t,x,y,a)
ox oy oy ox

S
-2

and 5
1£1(£,0,0, )| + | 2(2, 0,0, a)| < —VT

forall 1 < 7, x,y € clsUp((0,0)) and a € [a_,ay]. For the rest of this step, we fix an
a €la_,ay] Forallt < 7 and x, y € cls Up;((0, 0)), the mean value theorem implies

1
ft,x,y,a) = f(t,0,0,a) —|—/ Doy f(t,0x,0y,a)- (x,y)do.
0

It follows that forall < 7, a € [a—, a+] and x, y with x4+ y2 = ,82,
(f(taxa Y, OC), (X, )’)) = fl(t’xa Y OC)X + fZ(I’xa Y OC)y
1
0 0
= 510,0,0,00x + (10,0, + | (a—fl(r, 0x, 03,00 + 10,0, ) +
0 X y

d d
ﬁ(t, Ox, 0y, a)xy + a—fz(t, Ox, 0y, a)xy) do
X

oy
y B* /1< ’ » 7 ) y B*
< 2 - do < <0
< A + A yX“+yy 2I)cyl < <
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holds. Therefore, the subset cls Ug((0, 0)) of the phase space is forward invariant in the following
sense: Forall 1~ <tT <t and a € [a_, a], we have

AtT, 17, cls Ug((0, 0)), o) C cls Up((0,0)).
Thus, the set

M = {(x, y) € clsUg((0, 0)) : There exists a t < 7 such that
|A(t, z,x,y,a)|| = p and
A, 7,x,y,0) # (f,0) and
A, T, x,y,0) # (=5,0)}

is nonempty and due to the continuity of the general solution relatively open in in cls Uz ((0, 0)).
This means that M := cls U 5((0,0)) \ M is closed. The sets

M, = {(x, y) € M : There exists a ¢ < 7 such that
”j'(t’ T,X,Y, (X)” = ﬂ and
Mt T, x,y,a) = (B,0)}

and

M, = {(x, y) € M : There exists a r < 7 such that
lA(t, 7,x,y,a)| =B and

AMt,t,x,y,a) = (=P, ())}

are obviously nonempty and due to the continuity of the general solution relatively open in M.
This implies that M1 U M, C M. Therefore, there exists a (X, y) € Ug(0, 0) with

u(t,a) :=A(t,7,%,9,a) € Ug((0,0)) forall <.
To show that u is past attractive, we study the differential equation of the perturbed motion

X =hi(t,x,y,a):= fi (t,x + ur(t,a), y + ua(t, a), a) - f (t, w(t, a), a)
y=hy(t,x,y,a):= fz(t,x +uit,a),y + pu2t, a), a) — fz(t, w(t, a), a) '

Due to the mean value theorem, for all ¥ < 7 and (x, y) € Ug((0, 0)),
1
v y.0) = | Danhe,0x.0.0) - () do
0

1
= [ Do f(r.0x+ .00y + ot . 0) - ()
0
is fulfilled. Thus, for all (r, ¢) € (0, f) x [0,27) and ¢t < 7, we have

hi(t,rcose,rsing, a)cosd + hy(t,r cosg, rsing, o) sin ¢
1
0
:/ (a—fl(t,er cosp+ ui(t,a),0r sin¢+ﬂ2(t,a),a)rcosz¢+
0 X

0
%(t, Orcosg + ui(t,a),0rsing + us(t, a), oc)r sin’ ¢+
y
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0
%(r, Orcose + ui(t,a),0rsing + us(t, a), oc)r cos ¢ sin g +
y

0
%(r, Orcos¢ + ui(t,a),0rsing + us(t, a), oc)r cos ¢ sinqb) do
X

1
< / (yrcosz¢+yrsin2¢— %rcosgbsingb) do < r%.
0

Applying polar coordinates (see AULBACH [14, Satz 5.2.1, p. 192]), we see that u(-, a) is past
attractive. Moreover, the limit relation lim,_, o x (¢, a) = (0, 0) is obviously satisfied. The
uniqueness of x (-, a) follows directly from Proposition 2.1.27 (i).

STEP 2. u is continuous.

See Step 2 of the proof of Lemma 7.2.1.

STEP 3. The assertions concerning Aj(., o) and the past repellers are tulfilled.

This follows directly from Lemma 7.1.5. 0

7.3.2 LEMMA (EXISTENCE OF FUTURE ATTRACTIVE SOLUTIONS). Consider the nonau-
tonomous differential equation

x = filt,x,y,a)

7.34),
j)=f2(t,x,y,a) ( )

depending on a parameter o with a C'-function f : (0,00) x (x_,x4) x (y—, y4+) X
[o—,ayr] — R%. We assume that

lim f(l:xayaa):g(xayaa) and lim D(2,3)f(l>xayaa):D(I,Z)g(xayaa)
t—>00 t—00

hold uniformly for all x € (x—,x1), y € (y—,y+) and o € [a—, a4]. Furthermore, we
suppose that
a(a) <0 forall o € [a—,a4].

Then, there exist t > 0 and f > 0 such that for (x, y) € Ug((xo, y0)) and a € [a_, a4 ], the
solution A(-, 7, x, y, a) of (7.34), is future attractive with
lim A(z, 7, x, y, &) = (x0, yo)
— 00
and '
AR',T,X,_Y,(X) = Sl (a) - (x05 yO) *

Furthermore, there exists a future repeller R(a) of (7.34), with

S'(a) C liminf R(a, 1) C limsup R(a, ) C clsS'(a) forall a € [a—,a4].
=00 t—00

PROOF. For simplicity, we assume w.l.o.g. that (xo, yo) = (0, 0) in this proof. Due to the com-
pactness of [a—, a4 ] and the uniform continuity of g on compact sets, there exist # > Oand y < 0
with

0 0 0 0
Bl yia) <2y, B2,y a) <2y and | Bh(x,y,a) + 2 (x, y, )| < —y
ox oy oy ox
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for all (x, y) € cls U»4((0,0)) and a« € [a—, a4 ]. This implies the existence of a 7 < 0 with

0 0 0 0
ﬁ(t,x,y,a) <y, 2(t,x,y,cit) <y, i(t,x,y,a) + 2(t,x,y,a) < e
0x oy oy 0x 2

and

|fl(t: O> Oa a)l + |f2(t70’ 0’ a)l < _¥

forallt > 7, x,y € clsUp;((0,0)) and a € [a_, a4]. For the rest of this proof, we fix an
a €la_,ay] Forallt > 7 and x, y € cls Up;((0, 0)), the mean value theorem implies

1
ft,x,y,a) = f(,0,0,a) +/0 fi(t,0x,0y,a) - (x,y)dl .

Thus, for all + > 7 and x, y with x4+ y2 = ,82, we have
(ft,x,y,a), (x,y)) = filt,x,y,0)x + fo(t,x,y,a)y
L rofi
= f1(¢,0,0, 2)x + f2(z, 0, O,a)y—l-/ —_—
0 5)6
0 0
N1 0x. 8y, ayey + L. 0x, 0y, a)xy) a0
oy ox
2 1 2
7B ( 2 2 7 ) vB
- - dd < — <0.
4+/0 yx“+yy 2Ixyl s <

0
(1.0x,07.0)2% + 2 (1,6x. 03, 0)y*+

IA

Therefore, the subset cls Uz ((0, 0)) of the phase space is forward invariant in the following sense:
Foralltt >t~ > 7, we have

AtT, 17, cls Ug((0, 0)), o) C cls Ug((0,0)).

We choose (%, y) € Ug((0,0)) arbitrarily and consider for the rest of this proof in particular the
solution v(+) := A(-, 7, X, y, &) on the interval [z, c0). It is obvious that lim,_, _, v(¢) = (0, 0)
holds. To show that v is future attractive, we study the differential equation of the perturbed

motion
xX=hi(t,x,y,a):= fi (t, x+vi(),y+ (1), a) - fi (t, v(1), a)

y=ha(t,x,y,a) = fo(t, x +vi(t),y +v2(1), a) — fo(t,v(1), &)
Due to the mean value theorem, we have for all ¢+ > 7 and (x, y) € Ug((0, 0)),

1
W, x, v, @) = / Dosyh(t, 0x, 0y, @) - (x, y) dO =
0

1
/ Doy f(6.0x + 1t @), 0y + pa(t, 0), @) - (x, y) d6.
0

Thus, for all (r, ¢) € (0, f) x [0,27) and t > 7, we have

hi(t,rcose,rsing, a)cosd + hy(t,r cosg, rsing, o) sin ¢
1
0
:/ (a—fl(t,er cosp+ ui(t,a),0r sin¢+ﬂ2(t,a),a)rcosz¢+
0 X

0
%(t, Orcosg + ui(t,a),0rsing + us(t, a), oc)r sin’ ¢+
y
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0
%(r, Orcose + ui(t,a),0rsing + us(t, a), oc)r cos ¢ sin g +
y

0
%(r, Orcos¢ + ui(t,a),0rsing + us(t, a), oc)r cos ¢ sinqb) do
X

1
< / (yrcosz¢+yrsin2¢— %rcosgbsingb) do < r%.
0

Applying polar coordinates, we see that v is future attractive. The asserted relations concerning
;’(. o) and the existence of the future repellers follow directly from Lemma 7.1.6. 0

7.3.3 LEMMA (EXISTENCE OF PAST REPULSIVE SOLUTIONS). Consider the nonau-
tonomous differential equation

x = fi(t,x,y,a)

7.35),
y:fZ(taxayaa) ( )

depending on a parameter a with a C'-function f : (—00,0) x (x_,x3) x (y_, y3) X
[o—,ay] — R2. We assume that

lim f(t, x,y,a)=gx,y,a) and lim Dgp3) f(t,x,y,a) = Dq2gx,y,a)
t——00 t——00

hold uniformly for all x € (x—,xy), y € (y—,y+) and o € [a—, as]. Furthermore, we
suppose that
a(a) >0 forall o €la—,a4].

Then, there exist 1 < 0 and > 0 such that for (x, y) € Ug((x0, y0)) and a € [a_, ay], the
solution A(-, 7, x, y, a) of (7.35), is past repulsive with

lim A(t, 7, x,y,a) = (x0, Yo)

t——00
and |
Ri(axy.a =S (@) = (xo0, 0) -
Furthermore, there exists a past attractor A(a) of (7.35), with

Si(a) C liminf A(a,t) C limsup A(a,t) C cls Si(oc) forall o € [o—,04].
I—==00 t——00

PROOF. The assertions follow directly from Proposition 2.1.22 and Lemma 7.3.2. 0

7.3.4 LEMMA (EXISTENCE OF FUTURE REPULSIVE SOLUTIONS). Consider the nonau-
tonomous differential equation

x = fi(t,x,y,a)

7.36),
y=ft,x,y, a) (7:36)

depending on a parameter oo with a C'-function f : (0,00) x (x_,x4) x (y—, y4) X
[o—,ay] — R2. We assume that
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lim f(l’xayaa):g(x:yaa) and lim D(2,3)f(l:xayaa):D(I,Z)g(xayaa)
t—>00 t—00

hold uniformly for all x € (x_,x4), y € (y—,y+) and o € [a—, a4]. Furthermore, we
suppose that
a(a) >0 forall a € la—,oa4].

Then, there exist a 7 > 0 and a continuous function u : [7,00) X [a—,04+] — R? such
that u(-, @) is the uniquely determined future repulsive solution of (7.36), which fulfills
lim; o0 1 (t, @) = (x9, yo). Moreover, we have

/7(.,0[) = S'(a) — (xo, yo) forall a € [a_,a4].
Furthermore, there exists a future attractor A(a) of (7.36), with

Si(a) C litminf A(a,t) C limsup A(a,t) Ccls Si(a) forall a € [a_, at].
— 0

t—00

PROOF. The assertions follow directly from Proposition 2.1.22 and Lemma 7.3.1.

OJ

As in the previous subsection, these four lemmata lead to the existence of total nonautonomous

bifurcations and transitions.

7.3.5 THEOREM (PAST HOPF BIFURCATION). We suppose that (7.32), admits a Hopf
bifurcation as described above and consider the nonautonomous differential equation

= f(t.x,0)] (7.37)a

depending on a parameter o with a C'-function f : (—00,0) x (x_,x4) x (y_, y4) X
(0, a1] = R%. We assume that

lim f(tﬂx:yaa):g(xayaa) and lim D(2,3)f(t:x;y’a):D(I,Z)g(xayaa)
t— —00 11— —00

hold uniformly for all x € (x—,x+),y € (y—,y+) and a € (ag, o1]. Then, the following
statements are fulfilled:

(i) Incasea(o;) < 0, there exists a continuous function u : D C R x (ag, a1] — R2 such
that u(-, a) is a past attractive solution of (7.37),. We have a total past biturcation,

since
lim d (A5 ,|(0}) =0.

aNag

Furthermore, for all o € (g, 1], there exists a past repeller R(a). We also have a past
repeller transition, since

lim d (lim sup R(a, t)|{(xo, yo)}) =0.

a0 t——00

(ii) Incase a(o) > 0, there exists a continuous function u : D C R x (ag, a1] — R? such
that u(-, o) is a past repulsive solution of (7.37),. We have a total past bifurcation,
since
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lim d (R, [10}) =0.

aNoQ

Furthermore, for all & € (ag, o.1], there exists a past attractor A(a)). We also have a past
attractor transition, since

axao t——00

lim d (lim sup A(a, 1) [{(xo, yo)}) =0.

PROOF. See proof of Theorem 7.2.6. 0

7.3.6 THEOREM (FUTURE HOPF BIFURCATION). We suppose that (7.32), admits a Hopf
bifurcation as described above and consider the nonautonomous differential equation

&= f(t.x.0)] (7.38) 4

depending on a parameter o. with a C'-function f : (0, 00) x (x_, x4 ) x (y—_, y4+) X (ag, a1] =
R?. We assume that

lim f(t,x,y,a)=g(x,y,a) and lim D@3 f(t,x,y,a) = Dag(x,y,a)
1— 00 11— 00

hold uniformly for all x € (x—_,x4+), y € (y—,y+) and a € (ag, a1]. Then, the following
statements are fulfilled:

(i) Incasea(o;) < 0, there exists a continuous function u : D C R X (ag, a1] — R? such
that u (-, &) is a future attractive solution of (7.38),. We have a total future bifurcation,
since

. % _
i, 0 (47,01 9) =0

Furthermore, for all o € (ag, 1], there exists a future repeller R(a). We also have a

future repeller transition, since

lim d (lim sup R(a, t)|{(x0, yo)}) =0.

aNao t—00

(ii) Incase a(o) > 0, there exists a continuous function u : D C R x (ag, a1] — R? such
that u (-, o) is a future repulsive solution of (7.38),. We have a total future bifurcation,
since

lim d( 7(.,“)\{0}) —0.

aNog

Furthermore, for all o € (o, a1], there exists a future attractor A(a). We also have a
future attractor transition, since

lim d (lim sup A(a, t)|{(xo, yo)}) =0.

a~0o t— 00

PROOF. See proof of Theorem 7.2.6. 0
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This chapter is concluded with the following famous example.

7.3.7 EXAMPLE. We consider a nonautonomous version of the unforced Duffing-van der Pol
equation

X1 =x2

Xy = —x1 + af(t)xa — x3(x1 + x2)

depending on a real parameter a.. We assume that # : R — R* is a C'-function. This differential
equation describes a nonlinear oscillator. It is well-known (see, e.g., HOLMES & RAND [81] or
MARSDEN & MCCRACKEN [116]) that in case the function £ is constant and positive, i.e., the
system is autonomous, the equilibrium (0, 0) is attractive for o < 0. At @ = 0, the system under-
goes a Hopf bifurcation: The equilibrium (0, 0) becomes repulsive and an attractive periodic orbit
appears. As a consequence, we also have a bifurcation of autonomous attractors (see AULBACH
& RASMUSSEN & SIEGMUND [16]): For values a < 0, the singleton {(0, 0)} is an attractor. If «
is small and positive, then the interior of the bifurcating periodic orbit is an attractor of the system.

We assume that the nonautonomous system is past (future, respectively) asymptotically au-
tonomous, i.e., the function f fulfills

p = [_lggloo p) > 0.
Then, the differential equation fulfills the hypotheses of Theorem 7.3.5 or Theorem 7.3.6 in some
neighborhood of (0, 0), respectively, and we have a nonautonomous bifurcation and transition as
described in these theorems.



APPENDIX

This supplementary appendix contains well-known definitions and results used in this thesis
which—to provide reading fluency—are not stated before.

The first section of this appendix is devoted to fundamental facts about ordinary differential equa-
tions. In Section A.2, some useful lemmata are stated, and in the last section, basic properties of
projective spaces are treated.

A.1 ORDINARY DIFFERENTIAL EQUATIONS

We begin with the definition of an ordinary differential equation in the Euclidian space R".

A.1.1 DEFINITION (ORDINARY DIFFERENTIAL EQUATION). For given N,M € N, let
D c Rx RN x RM be an open setand f : D — R be a function. Then, the equation

i=f(t.x,a) (A1),

is called (nonautonomous) ordinary differential equation which depends on a parameter o.
For fixed & € RM, we say that a differentiable function u : | — R, | an open interval, is a
solution of (A.1); if (¢, u(t), &) € D forallt € | and

n(t) = C;—’l;(t) = f(t,u(t),a) foralltel

is fulfilled. The combination of the differential equation (A.1); and an initial value condition
x(z) = ¢ is called initial value problem. We say, a solution u of (A.1); solves this initial
value problem if u(r) =¢.

For the uniqueness of solutions of ordinary differential equations, the concept of Lipschitz conti-
nuity is appropriate.

A.1.2 DEFINITION (L1PSCHITZ CONTINUOUS FUNCTIONS). For given N, M € N, let
D c RHN*M and g : D — RN be a function. We say that g is (globally) Lipschitz
continuous if there exists a constant L. > 0 with

g, x,a) —g(t, y,a)|l < Lllx =yl forall (t,x,a),(t,y,a)€D.
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g is called locally Lipschitz continuous if for all (¢, x, ) € D, there exist neighborhoods V
oft and W of a. such that the restriction of g to V x W x {a} is globally Lipschitz continuous.

The proof of the following proposition can be found, e.g., in AULBACH [14, Definition 2.6.2,
Satz 7.2.2].

A.1.3 PROPOSITION (GENERAL SOLUTION). Let N, M € N, D C R x RY x R™ be open
and f : D — R be alocally Lipschitz continuous function, and consider the nonautonomous
differential equation (A.1),. Then, there exist an open set Q € R x R x RY x RM and a
continuous function A : Q — RY such that for fixed (¢, &, &) € D, the function A(-, 7, &, &)
is a non-continuable solution of the initial value problem (A.1);, x(t) = £. The function A is
called the general solution of (A.1),.

A.1.4 REMARK. In case the differential equation (A.1), does not depend on «, the fourth argu-
ment of the general solution is omitted.

A.1.5 DEFINITION (TRANSITION OPERATOR). Letl C R be an interval, and consider the
nonautonomous linear differential equation

A

with a continuous function A : | = RVY*N . The (uniquely determined) function A : | x | —
RV*N with
A, 1) = At,7,&) forall t,7 €land& e RV,

where 4 denotes the general solution of (A.2), is called transition operator of (A.2). In case
(A.2) is autonomous, i.e., A = A(t) for allt € | = R with a matrix A € RN*N  we define the
matrix exponential function e : R — RV*VN by

el = A(r,0) forallt € R.

Inhomogeneous linear differential equations are solved by the variation of constants formula.

A.1.6 PROPOSITION (VARIATION OF CONSTANTS FORMULA). Let[ C R be an interval,
and consider the nonautonomous inhomogeneous linear differential equation

%= A@Ox + b)) (A.3)

with continuous functions A : | — R¥*N and b : | — RY. Let 1 denote the general solution
of (A.3) and A denote the transition operator of x = A(t)x. Then, we have the representation

t
A, 1,8) = A, )¢ +/ A(t,s)b(s)ds forallt,7 € landé € RY .
T

This equation is called the variation of constants formula.

PROOF. See, e.g., COPPEL [53, p. 45]. O
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For the analysis in the vicinity of a given reference solution, the differential equation of perturbed
motion is of great importance.

A.1.7 PROPOSITION (DIFFERENTIAL EQUATION OF PERTURBED MOTION). For given
D C R xRN, let f:D— RN be a locally Lipschitz continuous function, and consider the
nonautonomous differential equation

A

with a solution A : | — RY, | an interval. Then, the so-called differential equation of per-
turbed motion

x=ft,x+A0) — f(t, (1)) (A.5)

has the following properties:

() Ifv:J — RN isasolution of (A.4) and J C I, then u := v — J is a solution of (A.5)
onJ.

(i) If u : J — R is a solution of (A.5) and J C I, thenv := u + J is a solution of (A.4)
onJ.

A.2 USEFUL LEMMATA

The following lemma, which goes back to GRONWALL [70], plays a central role in obtaining
estimates for solutions of differential equations.

A.2.1 LEMMA (GRONWALL’S INEQUALITY). Leta > O and u,b : [t—,174] — R(J{ be
continuous functions, and suppose that

t
u(t) <a +/ b(s)u(s)ds forall t € [t—, 4]
is fulfilled. Then,

t
u(t) <aexp (/ b(s) ds) forall t € [t—, 74].

PROOF. See, e.g., ABRAHAM & MARSDEN & RATIU [1, Theorem 4.1.7, p. 242]. ]

The following lemma provides a triangle inequality for the Hausdorff-semi distance, which has
been introduced in Section 1.1.

A.2.2 LEMMA (TRIANGLE INEQUALITY FOR THE HAUSDORFF SEMI-DISTANCE). Let
X be a metric space and d denote the Hausdorff semi-distance. Then, for all nonempty sets
A, B, C C X, the relation

d(A|C) < d(A|B) +d(B|C)

is fulfilled.
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PROOF. Obviously, for all nonempty sets M|, M, C X, the Hausdorff semi-distance fulfills
d(Mi|M) =inf{6 > 0: M; C Us(M>)} .
Hence, for all ¢ > 0, we have
AC Ud(A|B)+%(B) and B C Ud(B|C)+%(C).

This implies A C Ug(a|B)+d(B|c)+¢(C) and finishes the proof of this lemma. O

A.2.3 LEMMA. Let A, B, C be linear subspaces of the RN such that A D C. Then, the
relation
ANMB+C)=(ANB)+C

is fulfilled.

PROOF. See SIEGMUND [170, Hilfssatz 2.36, p. 58]. O

A.3 PROJECTIVE SPACES

In this section, the real projective space PV ~! of the vector space RY is introduced, and some basic
properties are derived. Here, the R" is equipped with the Euclidian norm || - || and the Euclidian
scalar product (-, -) (cf. Section 1.1). We say, two nonzero elements x, y € R" are equivalent if
there exists a real number ¢ € R such that x = cy. The equivalence class of x € RY is denoted
by Px, and we call the set of all equivalent classes the projective space P¥~!. Equipped with the
metric dp : PV~ x PN=1 [O, \/5] given by

i 0 w v w N
dp(Pv, Pw) = min — , forall v, w € R",
ol lwll |~ (ol lwll
the projective space is a compact metric space. For any v € PNV~!, we define

P~lo:={xeRY:Px =0} U{0}.

A.3.1 LEMMA. For all ¢ > 0, there exists a d € (0, 1) such that for all nonzero v, w € RN
with

(v, w)?
ol lw|* ~

we have
dp(Pv,Pw) < e.

PROOF. This is a direct consequence of COLONIUS & KLIEMANN [49, Lemma B.1.17., p. 538].
O

A.3.2 LEMMA. LetV, W C RN be linear subspaces of the RN with V C W. Then,

dp(PW|PV) = 2.
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PROOF. The linear subspace V- N W, where V+ := {x € RV : (x,v) = 0 forall v € V}, is
obviously nontrivial. Let w be a nonzero element of vinw. Then, for all v € V, we have

D w
o ot
Il Tl

— min <v,v>+<w’w>i2<v,w>:\/§
ol lloll lwll™ llwl] ol llwll

=1 =1 =0

dp(Pw, Pv) = min {

Since dp(x, y) < +/2 for all x, y € P¥~!, this implies the assertion. ([
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