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1 Introduction

Solving Linear Programming Problems is of enormous relevance in real world
applications, which contain a lot of data and of unknown variables. Hence, the
computational efficiency of solution methods is a crucial criterion for their appli-
cability.
Today, we have a competiton between the Simplex-Method (invented around
1947 by George Dantzig) and Interior-Point-Methods (starting with Karmarkar’s
Algorithm 1984).
This article concentrates on Simplex-Methods and on an investigation of their
arithmetical effort, measured in terms of the average number of pivot steps.
Throughout the paper we discuss the following type of Linear Programming Prob-
lems

maximize vTx
subject to aT1 x ≤ b1, . . . , aTmx ≤ bm

where v, a1, . . . , am ∈ IRn, b ∈ IRmandm ≥ n.

(1)

For abbreviation we use A :=


aT1
...
aTm

 ∈ IRm×n and b :=


b1

...
bm

 .
The matrix A collects the m gradient vectors to the restrictions as row-vectors,
and the vector b gives the m capacities. X := {x | Ax ≤ b, x ∈ IRn} is the
feasible region, resp. the feasible polyhedron to the problem (1), which can be
also be written in the form

maximize vTx subject to Ax ≤ b . (2)

Other types of programs as

maximize vTx subject to Ax ≤ b, x ≥ 0 (3)

maximize vTx subject to Ax = b, x ≥ 0 (4)

and hybrids or variations of such forms can easily be translated into (1). But for
form (1) our discussion on the influence of distributions, dimensions and variants
can be made much better in geometrical, verbal terms. All the stated results
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hold – after adaption – for the other forms, too.
If X has vertices and if there are optimal solutions to (1), then there is a vertex
in the optimal set. In each vertex of X at least n restrictions of (1) will be
active or tight. And in each edge of X at least n − 1 restrictions are active.
Every nonoptimal vertex is incident to an edge improving the objective. And if
an optimal vertex exists, every iterative construction of a connected path over
such improving edges leads to the optimal vertex after a finite number of steps.
These facts are exploited in the design of the Simplex-Method, which works in
two Phases.

Phase I: Find a vertex x0 ∈ X. If there is no vertex, STOP.
Phase II: Construct a sequence of vertices x0, . . . , xs ∈ X, such
that for i = 0, . . . , s − 1 the vertices xi and xi+1 are adjacent
and vTxi < vTxi+1.
We stop at xs if xs is optimal or if at xs the nonexistence of
an optimal solution becomes obvious.

(5)

Phase I works in a similar manner to Phase II. Since Phase II admits a better
geometrical explanation, and is simpler to analyze, we concentrate – for the be-
ginning – on Phase II.
Note that our definition of Phase II in (5) still gives the freedom, how we de-
termine the successor vertex (if more then one are possible). A rule for that
decision will fix a “variant” of the Simplex-Algorithm. The complexity of Phase
II – the so-called “Simplex-Algorithm” – is mainly determined by the number s.
Less difficult to analyze is the effort to perform a single pivot step, which costs
at most O(mn) arithmetic operations for updating an (m × n)-tableau under
all reasonable variants.
In this article we are interested in the average-case behaviour of the random
number s, when our problems (1) follow a given distribution. Since nobody
knows “the real world distribution”, we have to introduce and to use a self-made
stochastic model about the appearance of special instances of (1).

Based on that model, we will evaluate the stochastic behaviour of s. It is clear
that this will massively depend on

– the variant under use
– the chosen stochastic model/resp. the distribution.

A probabilistic analysis of the behavior of an algorithm consists of three
essential steps.

• a study of the way the algorithm is working on given, deterministic problem-
instances including a characterization of the desired figures (e.g. s) for that
instance

• a consensus about an underlying stochastic model on the distribution of
occuring problem-instances
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• a cumulation over all possible instances, weighted with their occurence prob-
ability, leading to stochastic information on the random behavior

So, we study the procedure of a deterministic algorithm, which is employed to
solve random problem-instances.
This stands in contrast to the situation with randomized algorithms, where
random parameters decide, how the algorithm shall proceed in solving a given,
deterministic problem.

Throughout the paper we shall rely on a nondegeneracy assumption:

All submatrices of (A, b) and of (AT , v) are of full (maximal)
rank.

(6)

This is compatible with our models either by direct conditioning or by the fact
that in such a probabilistic model the set of degenerate problems is a nullset.

In this paper, we shall briefly report on experiments and their (limited) information-
value. After that we come to two different stochastic models which admitted a
successful probabilistic analysis. The first is the Sign-Invariance-Model, whose
analysis reached its summit in the middle of the eighties. And the second is the
Rotation-Symmetry-Model, whose evaluation had started even earlier. But the
refinement of that approach is still going on.

2 Numerical experiments and comparison of vari-

ants

The first idea to learn more about the average-case-behaviour of s is to carry
out controlled numerical (Monte-Carlo-)experiments. For that purpose, one has
to fix several dimension-pairs (m,n), to use a stochastic model for generating
the data, and to solve the created problem-instances by application of a given
variant.
These experiments can be employed for a variety of purposes, as for forecasting
the number of pivot steps s (on the basis of (m,n) for a fixed variant and model)
or for comparing different variants or for recognizing the different influences of
stochastic models.
All of that had been done and tried in the past. Studying the huge number of
reports on such experiments leads to a very confusing and frustrating impression.
Since stochastic models, employed variants, dimensions and problem-types vary
excessively, the results and methods can hardly be compared. In particular, it
is not possible to summarize the outcome briefly, since all the test parameters
would have to be mentioned exactly. So, we refer to the very informative survey
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by Shamir in [19], who comes to the following overall conclusion.

The smaller dimension n (resp. the dimension of the polyhedra)
enters the mean-value function of s in a slightly superlinear way
and the larger dimension m (resp. the number of inequality-
restrictions, including sign-constraints) has only a significantly
sublinear influence.

(7)

Easier to understand and to interpret are experiments, when they are done par-
allel to a theoretical study, because then both results, the empirical and the the-
oretical one, can be checked whether they justify and confirm each other. This
has been achieved in experiments for the so-called Rotation-Symmetry-Model
(RSM).

Let b = l1 and let a1, . . . , am , v (and an auxiliary vector u) be
distributed independently, identically and symmetrically under rota-
tions on IRn \ {0}.

(8)

Note that only b > 0 is essential. Choosing b = l1 means a simplifying standard-
ization only.

The experiments could more or less confirm the theoretical results on Em,n(s)
(the expected number of pivot steps required for (m,n)-problems). These the-
oretical results will be presented later. Rather informative was the comparison
of the behaviour of different variants and of the influence of different stochastic
distributions. In [8] we tested seven variants belonging to three categories (A, B,
C), whose geometric description can be given as follows.
Note that in each vertex a decision has to be made, which one of the (exactly)
n tight restrictions should be deactivated. This means that a choice among the
subset of the improving edges (originating from that vertex) is made. The current
basis is the set of the n gradients (ai) corresponding to the active restrictions at
the current vertex.

Category A: Variants exploiting information on the shape of X and on the
objective vTx.

Steepest Ascent: Chooses that incident improving edge with small-
est angle to the gradient of the objective function.

Greatest Improvement: Takes that edge which leads to the maxi-
mal improvement of vTx in the next step.

Category B: Variants exploiting information on the objective only.

Dantzig’s Rule: Since a vertex x is optimal iff v is in the cone of the
gradients ai of the current basis, we can calculate in each step the rep-
resentation of v by that basis of IRn . So every basis-gradient is asso-
ciated with its v-representation coordinate. Since optimality requires
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a completely nonnegative representation, Dantzig’s Rule suggests to
take that edge, which deactivates the restriction whose gradient has
the most negative coordinate.

Shadow-Vertex-Algorithm or Parametric Variant: This is the
variant for which theoretical studies worked very well. The results
will be presented in the following sections. Therefore, we explain it in
detail. This variant leads us from a vertex optimizing an alternative
objective uTx to the optimal solution for vTx (or an unbounded
edge), by providing all optimal vertices to the family of objectives
(λv + u)Tx with λ ∈ [0,∞).
For λ starting at 0 and increasing, the sequence of optimal vertices
gives just the parametric Simplex-Path, which had also been con-
structed in the early parametric variant of Gass and Saaty. They had
introduced the parametric concept for another type of problems and
without the geometric shadow-vertex interpretation: If we project X
on Span(u, v), then our variant constructs a path along the bound-
ary of the two-dimensional image of X, visiting only shadow vertices.
These are vertices which keep their vertex-property even after the
projection. The choice of the right edge is organized by calculation of
the basis representations of v and u (as in Dantzig’s Rule) and by
minimizing the quotient of corresponding coordinates.

Category C: Rules evaluating combinatorial principles only.

Rule of Random Choice: selects randomly one of the improving
edges.

Rule of Justice: deacitivates that tight restriction which had been
active most often.

Rule of Bland: deactivates that tight restriction which has the least
original index.

These variants were compared under three different rotation-symmetric distribu-
tions for the vectors ai :

Uniform distribution on ωn (the unit sphere of IRn ),

Uniform distribution on Ωn (the full unit ball of IRn ),

Gaussian distribution on IRn .

In general, it turned out that results for Gaussian distribution were better (smaller)
than for unit ball and the latter were better than the unit sphere results. The rea-
son simply comes from the redundancy rate. A restriction is redundant, if its exis-
tence or nonexistence has no impact on the shape of X . Here, the i-th restriction
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is redundant, iff ai belongs to the interior of Conv( 0, a1, . . . , ai−1, ai+1, . . . , am).
This will never happen when all points come from ωn and rather seldom when all
points come from Ωn , but very often when the points are Gaussian-distributed.
And, it is obvious, that under normal circumstances a problem becomes easier,
if more restrictions are redundant, resp. if the redundancy-rate is high.

The quality of the different variants can be ordered consistently. The best per-
formance shows the Rule of Steepest Ascent. It is slightly better than the Rule
of Greatest Improvement. These two variants show a very good perfomance in
particular when the current vertex is still far away from the optimal one.
A bit worse are the variant of Dantzig and the Shadow-Vertex-Algorithm. The
reason may be that they do not exploit information on the polyhedron itself
(which may make the edge-choice more ineffective, but saves computation time
in the single pivot step).
Considerably worse is the performance of the combinatorial variants. The best
among these is Random Choice, followed by Rule of Justice, and finally comes
Bland’s Rule.

The overall impression is that the differences between Category A and Category
B are not dramatic, but that the differences between Category B and Category
C are striking.

We have also tested the standard deviation of s and the more meaningful quotient
between standard deviation and mean value (for the number of pivot steps). This
quotient was less, but close to 1, when m was in the order of n . But the quotient
became quite small for m � n. We understand this as a hint that in the RSM
for m→∞ and fixed n (the ”asymptotic case”) the shape of X, the number of
facets as well as their size, and the length of edges will stabilize more and more.

However, all these experiments and their outcome are not at all satisfactory for a
final judgement. One reason is that the computation time for a sufficient number
of repetitions of the experiments is irresponsibly high. Hence we cannot advance
to reasonably high dimensions. Also complexity-theory investigations cannot be
settled by limited experiments. A third argument concerns potential regression
analysis-attempts based on the data of the results. It is almost impossible to
modelize the qualitative structure of Em,n(s) as a function of m and n with
parameters to be specified by the regression, as long as we do not understand
(theoretically) the interaction between m,n and the stochastic model. Many
such attempts failed as the model structures did always fit only in a bounded
range of m and n.

Much more meaningful is the outcome of theoretical (arbitrary-dimension) con-
siderations. In the following, we present two successful approaches.
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3 Results under the Sign-Invariance-Model

The first investigation under this kind of model was done by Smale [20]. He
analyzed problems of type (3)

maximize vTx subject to Ax ≤ b, x ≥ 0

and treated this problem as a special case of the Linear Complementarity Problem

Find w, z ∈ IRm+n such that for given q ∈ IRm+n,M ∈
IR(m+n)×(m+n)

w −Mz = q and wT z = 0, w ≥ 0, z ≥ 0.

(9)

When M is specialized to

(
0 −A
AT 0

)
and q to

(
b
−v

)
, then a solution of

(9) yields a solution of (3) and its dual.

As solution procedure, Smale employs ”Lemke’s algorithm”. One starts with a
solution for l1 replacing q. Then one moves on [ l1, q] forward and performs pivot
steps whenever one of the coordinates of the vector w reaches the value 0, in
order to keep all components nonnegative.
The analysis amounted to the question, how many cones of a special type will
be intersected by a line segment. This is a typical question for a parametric
algorithm. The expected number of pivot steps Em,n(sL) was analyzed under
the following stochastic model:

1. (A, b, v) is distributed absolutely continuous.

2. The columns of (A, b) and v are independent.

3. The measure of (A, b) is invariant under coordinate per-
mutations in columns of (A, b) .

Smale proved for problems distributed under that model

Theorem 1 [20]

Em,n(sL) ≤ C(n) (1 + ln(m+ 1))n(n+1) . (10)

This shows polynomiality in m (for fixed n), but not in n. C(n) is an
(exponential) function of n.

Smale’s studies gave a motivation for the analysis of the so-called Sign-Invariance-
Model (SIM). It is extremely simple and only relies on a finite number of reflec-
tions and symmetries.
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Let A, b and v define a nondegenerate data-set for problem (3). And let the oc-
curence of
A b
vT 0

be equi-probable to the occurence of
S1AS2 S1b
vTS2 0

for every sign-

matrix
S1 ∈ IRm×m and S2 ∈ IRn×n. (A sign-matrix is a diagonal matrix with +1 or −1
in the diagonal entries). To explain the impact of that model, it suffices to con-
sider a somehow relaxed version of sign-invariance, the so-called Flipping-Model,
where we consider only the sign-matrix S1 and deal with problem instances of
form (1).

maximize vTx subject to aT1 x ≤≥ b1, . . . , aTmx ≤≥ bm. (11)

Here ≤ ≥ indicates, that one of the relations ≤ or ≥ shall be valid in the
formulation of the instance. We get ≤ if sii = 1 and ≥ if sii = −1 in (11). Since
all sign-matrices S1 shall be equi-probable, this means that we independently
determine the m directions of the relations, each one with probability 1

2
for ≤

and with probability 1
2

for ≥.

By the way, we generate exactly 2m problem-instances out of one data-set. The
idea of averaging is to solve all 2m instances, to sum up the required pivot steps
and to divide by the number of instances.
This set of problem-instances can be solved (as far as Phase II is concerned)
by application of the shadow-vertex-algorithm explained in the section before.
There we realize a Simplex-Path over all (temporarily) optimal vertices when we
traverse the set of objectives [u+ λv]Tx for λ ≥ 0.
If we add the corresponding set of (optimal) vertices for negative values of λ,
then the total set will be called the set of cooptimal vertices.
With s for the number of pivot steps, Scoop for the number of cooptimal vertices
and S for the number of shadow vertices, the following relation is obvious:
s ≤ Scoop ≤ S.

Using simple combinatorial enumeration arguments, Adler and Haimovich [13]
and showed

Theorem 2 [13]

Em,n(Scoop|a cooptimal path exists) ≤ n
m− n+ 2

m+ 1
≤ n for type (1) under SIM.

So far, the analysis considers only the procedure of moving from a uTx-optimum
to a vTx-optimum. But this does not fit exactly into a probabilistic analysis of
a complete solution method (as Smale’s method), because the u-optimum is not
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given beforehand and calculating it would be as troublesome as calculating the
vTx-optimum.

In 1983/84, the combination of this result with a design of a complete algorithm
was done in three papers by Todd [21], Adler & Megiddo [3], Adler, Karp, Shamir
[2]. They all came to the same result for (Em,n(st)), the expected number of pivot
steps required to solve the LP completely (including Phases I and II).

Theorem 3 [21], [3], [2]
For problems of type (1) resp. of type (3) distributed under SIM the expected num-
ber of pivot steps for the complete solution by a lexicographic version of Lemke’s
algorithm (st) is

Em,n(st) ≤ 2(n+ 1)2, resp. ≤ 2Min(m2, n2). (12)

In the first two papers,analyzing type (3)-problems, the proof was based – as
in Smale’s analysis – on the evaluation of a probability that a typical cone is
intersected by a line. But this time, this is the line

[d, l1] with 0 < d = (δ, δ2, . . . , δm+n)T with δ as small as desired. (13)

Closer to our geometrical interpretation and easier to explain is the third approach
in [2].
To explain the solution process of a type (1)-problem, we use

X(n+k) = {x ∈ IRn|aT1 x ≤ b1, . . . , aTn+kx ≤ bk} for 0 ≤ k ≤ m− n, and X(m) = X.

The following complete algorithm works directly in the space IRn and is called

Lexicographic Constraint-By-Constraint-Method

Initialization:
Determine the unique vertex x̄ ∈ X(n) and choose u as u = δ1a1+δ2a2+. . .+δnan
with δ > 0 sufficiently small.
Stage k (1 ≤ k ≤ m− n)

Start at x̄, the maximal vertex for uTx on X(n+k−1). If x̄ ∈ X(n+k), then go to
stage k + 1.
Else use the shadow-vertex-algorithm to improve the value of aTn+kx (note that
so far aTn+kx̄ > bn+k), start at x̄ and minimize aTn+kx on X(n+k−1). Stop as soon
as aTn+kx ≤ bn+k.
On the last traversed edge find a point x̃ with aTn+kx̃ = bn+k.
Enter stage k+1 with x̃ and replace x̄. This is possible, because we have moved
on a cooptimal path, hence x̃ maximizes uTx on X(n+k).
STOP if it is impossible to achieve aTn+kx ≤ bn+k, because then the original
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problem is infeasible.

Stage m− n+ 1:
Start at x̄, which maximizes uTx on X(m) = X. Apply the shadow-vertex-
algorithm and find the optimal point for vTx or discover that vTx is unbounded
on X.

In principle, this amounts to solving (m−n+1) problems, for which the average
number of steps is less n each (Theorem 2). But now, due to the lexicographical
choice of u, it can be exploited that – when we enter stage k + 1 – most of the
work to optimize the current objective has already been done in earlier stages.
Thus, the effort of stage k + 1 becomes much smaller than n.
Finally, the order of the total average number of steps is O(n2) instead of O(mn).

With slight additional conditions on the distributions of the A-entries, Adler &
Megiddo [3] could establish also a lower bound of type C · n2.
And they argued that for m ≤ 2n, since the share of feasible problems is at
least n−

1
2 , the conditional expected number of pivot steps for solving LP’s of

that model, under the condition that the problem-instance is feasible, is O(n2.5).

As for every probabilistic model, one should ask about the direct impact of the
model on the results.
An important feature of SIM is the fact that many instances will be infeasible,
precisely

number of feasible instances

number of generated problems
=

(
m
0

)
+
(
m
1

)
+ · · ·+

(
m
n

)
2m

→ 0 (m→∞, n fixed). (14)

Only conditioning on feasible problem-instances avoids averaging over a lot of
easy problems. But even if we do so, we meet a remarkably small expected
number of vertices.

Em,n (vertices per feasible instance) =
2n
(
m
n

)
(
m
0

)
+ · · ·+

(
m
n

) , (15)

which is less 2n and converges to that value for m→∞, n fixed.
Now it is not astonishing, that for a large class of variants the average number of
pivot steps for the complete solution will be bounded from above by a function
of n only (compare [1]).
But the most important reason for simplification of problem-instances with m�
n comes from the average redundancy rate (the share of the restrictions without
impact on X). This expected number (conditioned on feasible problems) is(

m−1
n

)
(
m
0

)
+ · · ·+

(
m
n

) → 1 for m→∞, n fixed. (16)
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Simultaneously, the absolute number of nonredundant constraints (conditioned
on feasibility) tends to 2n for m→∞ and fixed n.

So, for m � n, even for the feasible instances, the nonredundancy rate will
be very small. This will of course make these problems easy. And it says that
the Sign-Invariance-Model gives reasonable and meaningful information only for
m = O(n).
SIM relies on symmetries and reflections only. The combinatorial methods for
evaluation make it unlikely that a calculation of higher moments of the s-
distribution can easily be done. Besides that, the model is somehow inflexible.
For every set of data, the reflection procedure leads to exactly the same charac-
teristics in the 2m instances. There is no way to choose a desired redundancy
share or a size of the expected number of vertices and to parametrize certain
figures in order to study their impact.
Apparently (in particular for m� n) the small upper bounds in (Theorem 2) and
(Theorem 3) do rather reflect the special properties of the model than confirm
the efficiency of the Simplex-Method, which had been pointed out in [1]).

4 Results under the Rotation-Symmetry-Model

The theoretical analysis based on the Rotation-Symmetry-Model (8) started in
1977 [4] and is still developing. The main result– a polynomial upper bound for
the expected number of shadow vertices – was derived in 1996/97 [11] and it had
predecessors with slightly cruder bounds in 1987 [7] and 1982 [6].

Theorem 4 [11]
For every rotation-symmetry distribution as in (8) and for every pair (m,n) with
m ≥ n the expected number S of shadow vertices (and of pivot steps s in Phase
II) satisfies

4Em,n(s) ≈ Em,n(S) ≤ Const. ·m
1

n−1 · n2. (17)

This result and its predecessors have been derived by translating the question
about S into the dual space of the vectors ai. Candidates for being a vertex are
only the

(
m
n

)
basic solutions x∆ solving a system of n equations

a∆1
Tx = 1, . . . , a∆n

Tx = 1 with ∆ = {∆1, . . . ,∆n} ⊂ {1, . . . ,m}. (18)

x∆ is actually a vertex if all other restrictions are satisfied, i.e. aTi x∆ ≤ 1∀i /∈ ∆.
It becomes a shadow vertex, if the projection on Span(u, v) preserves its vertex-
property.
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Now there is a one-to-one correspondence

x∆ ↔ ∆ = {∆1, . . . ,∆n} ↔ Conv(a∆1 , . . . , a∆n) (19)

BesidesX = {x|Ax ≤ b} we consider its “polar polyhedron” Y = Conv(0, a1, . . . , am).

The following equivalencies enable us to derive the average number of shadow
vertices directly from the input data

Lemma 1

1. x∆ is a vertex of X iff Conv(a∆1 , . . . , a∆n) is a facet of Y.

2. A vertex x∆ is a shadow vertex of X iff Conv(a∆1 , . . . , a∆n) ∩
Span(u, v) 6= ∅.

The addition theorem for expectation values and the symmetry of index-choices
yield

Em,n(S) =
(
m
n

)
· P (Conv(a1, . . . , an) is a facet and intersected by Span(u, v))(20)

Here, one integrates over all possible configurations of a1, . . . , am, u, v and weights
with regard to the underlying distribution. The resulting multiple integral was
very hard to evaluate. For the case of moderate dimensions (m,n arbitrary),
we could only compare our integral with known results about a closely related
integral. Much more efficient are the tools for evaluating the so-called asymptotic
case (m→∞, n fixed), because there the integrals behave like Laplace-integrals
and can conveniently be evaluated. So it was much easier to derive asymptotic
results for specific RSM-distributions.

In the following we write Em,n(S) ∼ f(m,n) for m → ∞, n fixed, when we
mean that

C1 ≤ lim inf
m→∞
n fixed

Em,n(S)

f(m,n)
≤ lim sup

m→∞
n fixed

Em,n(S)

f(m,n)
≤ C2 for some constants C1, C2 > 0.

Besides that, we speak of a distribution on Ωn with algebraically decreasing tail
, if
P (‖x‖ ≥ r) ∼ (1− r)γ for r → 1 for a γ > 0.

Theorem 5 [4],[7],[16],[18],[14]
For fixed n and m→∞, the following distributions lead to the following behaviour
of Em,n(S).

1. Gaussian distribution on IRn : Em,n(S) ∼
√

lnm n
3
2
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2. Uniform distribution on Ωn : Em,n(S) ∼ m
1

n+1 n2

3. Uniform distribution on ωn : Em,n(S) ∼ m
1

n−1 n2

4. There are distributions such that Em,n(S) ∼ C(n)

5. For distributions on Ωn with algebraically decreasing tail: Em,n(S) ∼ m
1

n−1+2γn2.

These results should be compared with corresponding results on the average
number of vertices of X, resp. facets of Y , denoted by Em,n(V ) in our model.

Theorem 6 [7],[16],[10]
For fixed n and m → ∞ the following distributions lead to the following
behaviour of Em,n(V )

1. Gaussian distribution on IRn : Em,n(V ) ∼ [lnm]
n−1
2 2n · π n−1

2
1√
n

2. Uniform distribution on Ωn : Em,n(V ) ∼ m
n−1
n+1 2

n
2 π

n
2 n−

3
4 (n + 1)

n−1
2 ·(

1 + n
2

)− 1
2

+n−1
n+1

3. Uniform distribution on ωn : Em,n(V ) ∼ m
n−1
n−1 2

n
2 π

n
2 n−

3
4 (n− 1)

n−1
2 ·

(
n
2

)− 1
2

4. For distributions on Ωn with algebraically decreasing tail:

Em,n(V ) ∼ m
n−1

n−1+2γ 2
n
2 π

n
2 n−

3
4 (n− 1 + 2γ)

n−1
2 ·

(
n
2

)− 1
2
· n−1
n−1+2γ .

Obviously the Simplex-Method is able to select a rather short path through the
huge set of vertices. Hereby it visits (on the average) only the n-th root of the
total number of available vertices.

Another very important point is the variance of the number of shadow-vertices
resp. of the number of required pivot steps. Due to the technical difficulties
mentioned above, so far only the asymptotic case has been analyzed. Küfer [17]
showed

Theorem 7 [17]
For distributions with algebraically decreasing tail on Ωn, the quotient of variance
and square of expected value behaves asymptotically as follows

Varm,n(s)

E2
m,n(s)

∼ 1

n
and

Varm,n(S)

E2
m,n(S)

∼ m
−1

n−1+2γ . (21)

Here s is the number of pivot steps and S is the number of shadow-vertices,
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So far, we have dealt only with a fictive Phase II-algorithm, starting at an optimal
vertex for an auxiliary objective. But this vertex is impracticable to find. Now
let us talk about a safe Phase I.

A special feature of our problems is the feasibility of the origin, which makes –
in contrast to the Sign-Invariance-Model – every instance feasible. Based on that
information, we can employ a method (cf. [6] and[7]), which applies the shadow-
vertex-algorithm n − 1 times, and each time the dimension of the problem is
increased. In each of these stages all the stochastic requirements of our model
are satisfied.
Here we introduce X(k) as {x|Ax ≤ l1, xk+1 = . . . = xn = 0}, and formulate the

Dimension-By-Dimension-Algorithm

Initialization (Stage k = 1)
Starting from the origin, find a vertex of X(1) = {x|Ax ≤ l1, x2 = . . . = xn = 0}
maximizing vTx = v1 · x1. If this maximal vertex does not exist, STOP.

Stage k (2 ≤ k ≤ n)
Use the optimal point (x̄1, . . . , x̄k−1, 0, . . . , 0)T for vTx onX(k−1), which is located
on an edge of X(k).

1. Find an adjacent vertex in X(k) to that edge.

2. Apply the shadow-vertex-algorithm using eTk x and vTx as pair of objectives
for maximizing vTx on X(k). If vTx turns out to be unbounded on X(k),
STOP.

3. If k < n, set k = k + 1 and enter the next stage. If k = n, PRINT the
optimal vertex for X.

One can derive an upper bound for this cumulation of n − 1 shadow-vertex-
applications by summing up all the expected numbers of shadow-vertices. But
this would significantly overestimate the actual number of pivot steps in this
algorithm, since we would ignore that the original distribution comes from IRn

and that only projection-distributions (from IRn to IRk) can determine the
behaviour in stage k. Since the set of projection distributions is only a small
subset of the RSM-distributions in dimension k, the corresponding bound for
the expected number of steps in stage k is much better. Consequently, we
obtain the following result, which also holds for problems of type (3), including
sign-constraints.

Theorem 8 [12]
For every pair (m,n) with m ≥ n and every RSM-distribution on IRn, the
expected total number of pivot steps for the dimension-by-dimension-algorithm
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(Em,n(st)) satisfies

Em,n(st) ≤ m
1

n−1 · n3 · C (22)

as well for problems of type (1) as for problems of type (3).

But as observed in the analysis of the Constraint-By-Constraint-Method (com-
pare Theorem 3) it is plausible that most work of optimizing in stage k + 1 has
already been prepared in prior stages, such that the actual number of steps in
stage k+ 1 is much smaller. This was precisely clarified by Gabriele Höfner [14]
for the asymptotic case.

Theorem 9 [14]
For every RSM-distribution the expected total number of pivot steps in the dimension-
by-dimension-algorithm satisfies

Em,n(st) ∼ m
1

n−1 · n
5
2 (23)

when m→∞ and n is fixed for problems of type (1) and (3).

It must be clear that this algorithm is crude and lengthy and has been introduced
only for meeting the conditions of RSM and for making the probabilistic analysis
possible.

In order to confirm the “folklore” observation, that Phase I can be done with
an effort not exceeding that of Phase II, Höfner analyzed another complete algo-
rithm. But unfortunately, only in the asymptotic case this method is assured to
work.

1. Solve the problem
max l1Tx subject to Ax ≤ l1, x ≥ 0
by use of the shadow-vertex-algorithm starting at the vertex 0. The optimal
vertex x̄ will – in the asymptotic case – with extremely high probability be
a vertex of X = {x|Ax ≤ l1}.

2. Start the shadow-vertex-algorithm at x̄ , forget about the sign-constraints
and optimize vTx on X.

It can be shown that both applications of the shadow-vertex-algorithm require

(on the average) at most m
1

n−1 · n2· Const. pivot steps.
So, this is an algorithm with a Phase I-effort not exceeding that of Phase II.
So far, the plausible and natural very good behaviour of Phase I can only be guar-
anteed in the asymptotic case. In the moderate cases, the situation is similar to
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that of the Sign-Invariance-Results, where the Constraint-By-Constraint-Method
needs a factor n more pivot steps than Phase II does.

As we have discussed the advantages and drawbacks of SIM, we now consider
similar questions for RSM. Seemingly it is a tremendous advantage of RSM that
it generates only (the hard) feasible problems. But simultaneously it turns out to
be a drawback that the given Phase I-algorithms are designed in a way such that
they exploit this fact and are dependent on the guarantee of “0 being feasible”.
One way to overcome that drawback lies in the following idea. Remember that
we want to solve all problem instances of the type

maximize vTx subject to aT1 x ≤ b1, . . . , aTmx ≤ bm (24)

with arbitrary values of bi (not necessarily positive).

For integrating all these problems in our analysis, we use a “homogenization
method”. We introduce the notation Pn := {x|Ax ≤ b} and reformulate our
restrictions

aTi x ≤ bi corresponds to aTi x ≤ 1− b̃i when bi = 1− b̃i (25)

So we can demand that

aT1 x+ b̃1 · 1 ≤ 1, . . . , aTmx+ b̃m · 1 ≤ 1 (26)

and define a polyhedron in IRn+1 by

(
a1
i , a

2
i , a

3
i , . . . , a

n
i , b̃

i
)


x1

...
xn

xn+1

 ≤ 1 (x ∈ IRn+1), (27)

which means that aTi x̄+ b̃ixn+1 ≤ 1 (x̄ ∈ IRn) for i = 1, . . . ,m.

This system defines a new polyhedron Pn+1 ⊂ IRn+1. The set of feasible points
with xn+1 = 0 is a one-to-one copy of {x|Ax ≤ l1}. And the set of feasible points
with xn+1 = 1 corresponds one-to-one to the set of points in Pn .

It is now clear that in level {xn+1 = 0} the problem satisfies all RSM-requirements.
So we can solve the optimization problem for vTx on that artificial polyhedron.
But then we can use one further stage (n + 1) of the dimension-by-dimension-
algorithm to reach level { xn+1 = 1 } (by maximizing xn+1 = eTn+1x on Pn+1). If
we use the shadow-vertex-algorithm starting at the level { xn+1 = 0}-optimum,
then we walk on a cooptimal path all the time. And there will be two possible
outcomes:
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1. Max {xn+1|x ∈ Pn+1} < 1.
Then level {xn+1 = 1} has no feasible points and Pn is proven to be empty,
resp. infeasible.

2. Max {xn+1|x ∈ Pn+1} ≥ 1.
Then the shadow-vertex-path in stage n+1 will traverse the desired level. We
calculate the intersection point, drop the last coordinate 1 and have the opti-
mal point for
max vTx subject to Ax ≤ b. This results from the cooptimality of our
path.

Now the following probabilistic result is obvious.

Theorem 10 [9]

If

(
a1

b̃1

)
, . . . ,

(
am
b̃m

)
are distributed on IRn+1 according to the RSM, then

general problems of type (1) can be solved for every (m,n) with an expected total
number of pivot steps as

Em,n(st) ≤ m
1
n (n+ 1)3 · C (28)

But this condition has a quite artificial flavour, because the RSM-distribution of
the augmented vectors may lead to dependencies between the gradients ai and
the capacities bi.
We know one special distribution, where both wishes (RSM-distribution and in-
dependency) can be combined, namely the Gaussian distribution on IRn+1. This
is the only RSM-distribution, where the components of the generated vectors are
independent. We obtain

Theorem 11 [9]

If the vectors

(
a1

b̃i

)
, . . . ,

(
am
b̃m

)
are independent and Gaussian-distributed,

then

Em,n(st) ≤ m
1
n (n+ 1)3 · Const. (29)

For more general independent distributions of the right sides (the capacities), as
for uniform distribution, we could not derive satisfactory bounds so far. However,
this seems to be caused by technical difficulties. The special results in (Theorems
10 and 11 ) indicate that general problems with arbitrary independent capacity-
distribution may be solvable on the average with the same effort.

We conclude our report with a look on general variants. In [15] Petra Huhn
proved a lower bound on the average number of pivot steps, which is valid for all
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variants. Assume that Phase I has provided us with a vertex x0 of X, and that
the objective vTx had no impact on Phase I. Then we start at x0 with Phase II
and try to reach the optimal vertex xopt. To bridge the distance, every variant
has to use edges of the polyhedron X. Now stochastic geometry can provide
information on the distribution of the length of these edges. If one can show that
there are extremely few “long” edges, then a large number of “small” edges has
to be used for our walk. This has been done in [15] and it gave a guarantee that
no variant can – on the average – do its job with less than a certain (computable)
number of steps. Quantitatively, this reads as follows. We present only the result
for a special distribution, the uniform distribution on ωn (corresponding results
have been derived for a large class of distributions).

Theorem 12 [15]
In a typical RSM problem with uniform distribution on ωn, every variant of the
Simplex-Algorithm will – on the average – require a certain number Eav

m,n(s) of
pivot steps, and

Eav
m,n(s) ≥ Const. ·m

1
n−1
− 1

(n−1)2 · n−
1

2(n−2) · (2n− 2)
− 1
n−1

+ 2
(n−1)2 ≈ C · m

1
n−1 · n0.(30)

Despite the fact that here the n-order is n0 (compare with n2 for the shadow-
vertex-algorithm), this shows that no variant can perform substantially better.
This means that there is no algorithm (variant) running essentially faster than
the shadow-vertex-algorithm, which can exploit the increasing number of options

with n, and which avoids the typical order m
1

n−1 in the RSM-model.

Thus – a posteriori – the results on the shadow-vertex-algorithm have proved to
be quite representative. It is not the very best variant, but not much worse than
the very best.

Note that the lower bound in Theorem 12 is meaningful only when m � n,
because only then it becomes significantly greater than 1, although the inequality
is valid for all (m,n). This is different from the results about the variance
(Theorem 7) and the speed-up for Phase I (Theorem 9), where it is uncertain,
whether these results will be valid in moderate dimensions, too. (Perhaps not the
technical difficulties are to blame). It may as well be possible that these results
essentially rely on a regularization effect of the polyhedra for large number of
points, as we know it from the approximation of a ball from inside by the convex
hull of a huge number of random points.
To clarify these questions, remains an important challenge for future research.
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