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Abstract

In this paper we derive a lower bound on the average complexity of the Simplex-Method

as a solution-process for linear programs (LP) of the type:

maximize urc subject to alr ( 1, . . . , alt 1 L.

'we assume these problems to be randomly generated according to the

Rot ation- Symmetry-Model :

Let a1, . . . , arn,r.' be distributed independently, identically

and symmetrically under rotations on IR'\ {0}

We concentrate on distributions over IR' with bounded support and we do our calcu-

lations only for a subfamily of such distributions, which provides computability and is

representative for the whole set of these distributions.

The Simplex-Method employs two phases to solve such an LP. In Phase I it determines

a vertex cs ofthe feasible region - ifthere is any. In Phase II it starts at x,s to generate

a sequence of vertices a,ot . . ., c" such that successive vertices are adjacent and that the

objective aTr;increases. The sequence ends at a vertex c, which is either the optimal

vertex or a vertex exhibiting the information that no optimal vertex can exist. The

precise rule for choosing the successor-vertex in the sequence determines a variant of

the Simplex-Algorithm.
We can show for every variant, that the expected number of steps s'o' for a variant,

when rn inequalities and n variables are present, satisfies

E^,nlr""'l ) const. ^# no for all pairs rn ) n and for all variants.

This result holds, if the selection of cs in Phase I has been done independently of the

objective u.
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L The Problem and its Significance

1.1 Notation
We study the average number of pivot steps required by the Simplex-Method in
the solution-process of a linear program (LP):

maximize arr srbject to al* ( 1,.. .,alr 1I
where urfrra1r...r&* €]Rt and rnlTLrrnrn €]N.

(1)

We are interested in stochastic results and therefore we employ the following
stochastic model:

Rotation-Symmetry-Model (RSM) :

&tt . . . , a* amd u are distributed independently, (2)

identically and symmetrically under rotations on IR'\ {0}.

These stochastic assumptions have the side-effect of giving the set of so-called

"degenerate" problems only probability zero. A problem of type (1) is called
nondegenerate, if:

Each subset of n elements out of {ot, . . . , arn,u} is

linearly independent and each subset of (n * 1) (3)

elements out of {ot,. . . ,a^} is in general position.

A single distribution over R" \ {0} according to (2) can be characterized by
its distributionfunctiott F. Without loss of generality (w. l. o. g.) we can assume

that F has a density f . n"t the assumption of rotation-symmetry even admits a
simpler characterization via the radial distribution function

F(r) :: p(rlllrll < r) : t 16l,ll < r) dF(r),
"/R.

where /( . ) denotes the indicator function of an event.

Our analysis will rely on the condition that the distributions under investigation
have bounded support. W. l. o. I. we can simplify this restriction to the condition
that the support is contained in the unit ball f,). :: {r e IR'lllrll < t} The
unit sphere on IR* will be denoted by ,n,: {, € IR'l llrll : t}
Moreover, we concentrate on a certain family of these distributions with bounded
support (with the property that p(llrll ( r) decreases algebraically, when r
approximates 1, see [5, 10, 11]). The reason for investigating these distributions
lies in the good evaluability of many integrals appearing in the probabilistic
analysis.



3

Specifically, we deal with distributions whose radial distribution function is

controlled by a parameter z € (-1, oo) in the form

[ ['o-r2)"n-'d'
l- for 0(r(1,

F.(r) :: 
I J" 

(r _ rz)"rn-td,

I r for r]1.
The parameter z can be seen as a centralization parameter, since an

in z will move more and more weight to the interior of f1,".

Prominent special cases for the choice of z are

z :0 uniform distribution on f,}.,

z I -I uniform distribution on (rn,

z -+ 6 extremal concentration of weight about the origin,

" 
: * symmetric concentration about the central radius |.

The corresponding radial density function /, is

( {t - r2\zrn-r
l# for0(r11,

f "(r) ,: I J" O - rz)"rn-Ldr

I o elsewhere.

Simplex-Methods solve problems of type (1) in two phases.

Phase I: Determination of a vertex cs of the feasible region X ::
{z e IR'j|"T" S 1,..., alr < 7} or confirmation that X
has no vertices.

(4)

increment

(5)

Phase II: Construction of a sequerc€ 16, ...,ß" of vertices of X,
such that successive vertices fritti+r are adjacent and that
uTri { uTri+t for i : 0,...,s - 1. The sequence end.s at (6)

r", tf

- r" is the optimal vertex or

- at r" the nonexistence of an optimal vertex becomes evi-
dent.
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t.2 Complexity of Simplex-Methods

As we are interested in a lower bound on the (average) complexity, it suffices to
derive a lower bound on the number s (the number of pivot steps in Phase II).
Besides that, Phase I can be done in a similar manner to Phase II. So we are

allowed to concentrate on Phase II. We rely on an application of Phase I, which

delivers a unique vertex rs for a given polyhedron X, independently of the current

choice of z. (That means that z is seen as a specific input for Phase II and does

not enter the vertex-searching process.)

Since the definition of Phase II in (6) does not specify a formula cr rule for

choosing the successor vertex to an iteration vertex ni) we have the freedom to

carry out this construction in several ways. Such a unique rule will define a

variant of the Simplex-Algorithm.
Prominent variants (in the huge set of possible variants) are e. g.

- the Rule of Greatest Improvement

- the Rule of Steepest Ascent

- the Dantzig Rule

- the Shadow-Vertex Algorithm (or parametric rule)

- the Rule of Random Choice

- Bland's Rule.

If we apply such a rule, then the effort for carrying out one iteration is simple to

recognize. Unclear is the number s. So the natural question for the complexity

of single variants concerns the value s'o" or E^,n!"""'f, where uar indicates the

specific variant under use.

Variants as the above mentioned examples implement a fixed ruie for making a

choice between the possible successor vertices or the incident edges, which im-

prove the objective. For this decision different strategies with different effort can

be employed. The two first variants study the full shape of the polyhedron and

decide after that amongst the available edges (in the style of a local optimiza-

tion). The two next variants calculate only forecast-values for the progress in the

objective locally at the current vertex and decide for the best. And the two last

do not optimize (locaily) at all, but base their decision on combinatoriai methods

(handling the original indices) only. Knowing this, one should expect that the

first two are superior to the third and fourth and that the fifth and sixth variant
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are considerably worse. These judgements are somehow confirmed by numerical
tests as in [7].

Only for one of these variants a satisfying upper bound for the average number
of s could be derived so far. This is the Shadow-Vertex-Algorithm (SVA). Here
it could be proven that the expected number of pivot steps is polynomial in rn
and z [3, 4] and that the upper bound [6] is as follows

E-,,["tuo] I const. rn#nz

for all m,n and for all distributions of the RSM.

This bound is sharp in the sense, that for the uniform distribution on the unit
sphere there is an asymptotic (n fixed, rn -+ oo) lower bound for E-,.[ssuo] of
the type const.m*n2, see [4].
Another result concerning lower bounds on the average number of steps of the
Simplex-Method has been derived by Adler and Megiddo [1] for a parametric
variant of the Simplex-Algorithm, but their analysis is based on different stochas-

tic assumptions and therefore the results are hardly comparable with the above

mentioned analysis.

The reason for the special role of the Shadow-Vertex-Algorithm and its qual-
ification for a probabilistic analysis lies in the fact that it is possible to give

a purely geometrical characterization of the event "a certain vertex is on the
Simplex-Path" using only the active constraints and two objective directions. It
is - for this variant - not necessary to know the preceding part of the Simplex-
Path. This would be essential for other va,riants and makes their evaluation by
far overcomplicated.

This situation leads to the question for the representativity of the Shadow-
Vertex-Algorithm results for general variants. Our lower bound derivation for
the distribution family lL gives a partial answer.

For simplification and a better comparability we only discuss the results for
z -+ -I. Here, we can show that - under the condition that Phase I worked
independently of u ar'd provided us with a vertex ns of X - the following lower
bound holds for every variant:

E^,-l"l ) const. To*$-"1n))n-t1-1 (Z)

where e(n) and d(n) tend to 0 for rz -+ oo. Essentially this means that we have
a growth as

**no
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So it can be stated that our anaiysis still leaves a gap for better variants (from

7pn-rLnz 16 ro#r'o). But this gap is not too dramatic. Note that the factor z0

can in the case n'L >> n not be regarded as a triviality, since in each vertex up to
n incident edges have a chance for providing a significant progress (increment)

of the objective. So we would not have been astonished, if we had observed a

negative exponent describing the n-dependency as result of the exploitation of
an increasing number of options. And, now it is clear that under the RSM no

variant can surpass the SVA with respect to the rz-dependency.

In addition, note that our result is true for every m and n, but that it yields a

nontautological statement only for rn ) n, because the constant in (7) may be

very small.

The technique used in this paper uses the fact that a certain distance between

lDs and r" has to be bridged in single applications of the Simplex-variant. Then

we can show that - without regard to the variant - there are not enough "long"
edges to construct a path with few vertices (traversing the required distance).

This geometrical idea leads to a lower bound on the average number of steps -
independent of the variant - and will be elaborated in section 2. In detail, our

result can technically be described as follows.

We apply the Markov-Inequality (to integrals appearing in the calculation of the

lower bound) with varying parameter p € [2, *) and we can show that for each

such p and each such z (the parameter for our distribution family) we have

E^,^ls t l]

. .(2" * n tz)-i#rd@ + o)-#+fi#ffi ,

where the constant is independent of n,m,z,p. This lower bound will be proven

in section 3.



2 Geometrical Background

2.L Observing the Walk on a Simplex-Path

Our nondegeneracy condition ascertains some fundamental properties for LPs,

which will be very useful for our investigation. To describe them, we introduce

the notation

A,: {4t,...,A'} c {1, ...,r.n}

for an (arbitrary) n-element index set of {1, . . . , rn}. Upper indices denote differ-

ent elements. In case that different A-sets have to be discussed simultaneously,

we use lower indices as 41, A2 for distinction.

Remark L

7. Each A-set induces a basic solution of our LP (1), i. e. the solution of a

system of n equations af,ra: L,...,af,-*: l. We call this (unique) point
z6. Because of nondegeneracy, oT*o + I Vi ( L
Such a basic solution is a vertex of X if and only if alr6 S 1 Vi ( L
(i. e. all nonbasic constraints are satisfied).

2. If nn is a vertex of X, then there are differcnt (" - L)-element subsets

{4t,. . . , An-t, At*t,. .., A'} and each suc}r subset induces a line (affi.ne

subspace) {z e IR'la[rr - 1,. ..,af,;-rr : l,af,r*rn : !,. . . ,of,**: 1],
containing an edge of X, which is incident to z-6.

3. Edges incident to a veftex fr6 ar€ either rays stafiing at ra or line segments

between r6 and another vertex r6*, where #(A n A*) : n-1. That means

that n-L constraints are active in the interval (rn,r4*) and in r6 resp. fr6a

one additional restriction becomes active (not the same). In this case r L
and n6* arc adjacent on X.

4. No two adjacent veftices can have equal objective value.

5. If and only if an optimal vertex n6 exists, then u € cone(a6rr...r &t*),
i. e. u is an element of the polar cone of 16.
If and only if an optimal vertex does not exist, then u ( cone(a1, . . . , a^) .

From the elementary theory of the Simplex-Algorithm it is known that the

construction in Phase II delivers a connected path consisting of edges

fr1fr1, fr1fr2r. . . tfra-Lta .

At the stopping vertex r,, two outcomes are possible.

(8)
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1. r, is the optimal vertex with index set A". This will be confirmed in the

current tableau by giving a conical representation for a by a6'"r. . .raaT.

2. c" is not optimal, but the current tableau shows that z cannot belong

to cone(o1 ,.. .,a^) resp. that no pivot element exists. Geometrically this

amounts to the exhibition of an unbounded edge incident to n" which im-

proves the objective urr.

It is our aim to quantify (or at least to bound from below) the unknown number

s in all potential cases. For this purpose we should handle both stopping cases in

a compatible way. And here it is important that in case 1 - bounded objective

- every variant working on a given polyhedron X and starting at rg leads to the

same stopping vertex ns : aopt. But in case 2 - unbounded objective - a start

at 16 and the use of different variants may provide a variety of stopping vertices

r". So it is desirable to face every variant with the same challenge. And we want

to achieve as much conformity as possible in the way how we treat bounded and

unbounded problems.

Our expedient for that difficulty is the following.

we augment our simplex-Path (8) with a final move ftom r" to u. This move

can be interpreted as an additional "edge" z,r.'. So our complete walk is now

tyh,flfy,...,f 
"- 1nr,f "A 

.

Hence, bridging the way from z6 to o is the joint challenge for each variant, no

matter whether aTr is bounded from above or not. And - by the way - we have

now achieved a certain symmetry between rs and ?r.

For this interpretation we equate and identify (symbol a ) all paths from zs to u

- unregarded the different vertices on those paths and the different lengths. The

common characteristic is the starting vertex o6 and the endpoint a. So, we can

describe our walk as the sum of the movements, e. g.

froa ' >rr^ where we set frz*r: a. (9)

i=O

2.2 Measuring the length of a Simplex-Path

Since our (augmented) path is connected, we may measure the sum of piecewise

moves that we make and compare the result (the total distance) with the direct

distance from re to z (when the move is made straightforward). Whenever we

use a distance measure satisfying the triangle inequality, then the direct distance

will be smaller.



arc(cs, ?r) I

Figure 1: A Simplex-Path and its measurement via angles

The left figure shows the foreground of a three-dimensional polyhedron X and

a Simplex-Path with the starting vertex cs and the final and optimal vertex
&c: topt. This Simplex-Path is extracted into the right figure to illustrate our
idea of measuring the edge-movements and the measuring of the total distance

from us to u via angles.

As it is possible to'observe our walk and the piecewise linear moves from the
origin, we interpret measuring such a move as determining the angle between the
directions induced by the starting point and the end point of the move. This
model is based on a projection on the sphere and on fictive movements over
geodetic curves on the sphere. Therefore, we introduce the notation

l(*"r):: arc(rs, u) ,

l(trtr+r):: arc(r;,n;-;1) for i: 0,...,s - 1,

((*""-) :: arc(r",u) ,

i. e. we measure edge-movements using the angles of direction-pairs.
Because the triangle inequality holds with those angles as distance measure)

we have

/s \ a

t(","):tl\onn) <t t@;nt+L) (10)
\ ;=o / t=o
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Our strategy for obtaining a lower bound on s lies in an attempt to show that the

edges of X (resp. their angles) are deterministically resp. stochastically not long

enough to bridge the distance from rs to u (resp. l(ro,z)) in a small number of
steps.

We shall try to employ the methodology developed in [4, 8, 10] for a stochastic

confirmation of such a statement. But since most of these techniques deal with the

role of separate/single vertices and their contributions to polyhedral functionals,

we would be better off if we could attribute our movements to single vertices

rather than to edges. So we suggest to make the following translation.

Consider an edge Enn (0 < i ( s - 1) connecting two vertices na, : r; and

na;+r: z;11. As explained before in Remark 1, part 3, we have f (A; n At+1) :
n-1, and 14, and c4r*, are incident to the same edge fna.,ntr*r] and lie on its

affine hull. This line is the solution set for the system a! r : 1 Vj € A; t.-) A;.,.1

and does not contain the origin.

So we have a unique (normalized) perpendicular to this line and a unique foot p;

of this perpendicular on the line. Therefore we know

(to,*, - n t,)r P'; : o and P; e aff(r 6,, ca,*, )'

Now three locations of p; arc possible:

1. between the two vertices (on the edge), i...p, € [ra,,ta,*,];

2. "Ieft" of 16r, such that 16, € lp.i,na,;*r);

3. "right" of r4r*r, such that r6,n, e [ra,pt).

It is possible to dissect the movement from r; to n;.',1into two parts: r;ua :
apt + ptnt+r and our sum of movements reads as follows (compare (9))

+_ a-,

rou - LrF*r = D@ffi + etrt+r) + r"a
i=O i=0

g,_ _\:: ropo + )_,lp;n + Uerl + p*tr" -t r;u- .

i=t

Hereby we have to accept a higher distance for the dissected movement in cases

2) and 3), i. e. l(rtnt+r) < l(rapr) + l(p;r+r). In case 1) the distance remains

the same.

For future purposes we want to remark that overestimations of the traversed

angles are acceptable for our ultimate goal, the derivation of a lower bound on

(11)
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t L;+, fr a;+,

600

Figure 2: Location of the foot of the perpendicular

These figures illustrate the possible locations of the foot p; of the perpendicular.

In the left figure p; is lying on the edge, i. e.p; € [ta,,3a,*,]. The figure in

the middle illustrates the case 2, where p; is lying "left" of ra' such that
xd.; e lp;,rt*r'1. Case 3 is shown'in the right figure, wherep; is lying "right"
of c4,*r, such that c6,*, e lx*,p;1 .

the number of steps. (This will become clear in the following.)

So, we have the following inequality for the lengths of our movements.

t(E@)
i=O

(tfrA+{pp;*,))+t1rv1
a-Lt
i=0 (t2)

: l(roeo) + (t-1e=n1 + t('m)) + Ap*,a) + t(* {,)

In this dissection we have a "halfedge" contributed by the vertex ,co, each time

two "halfedges" contributed by 21, ...tfrt-rt and r, contributes one "halfedge"

and the augmenting move z,u. As we want to assign the movements to single

vertices in a consistent way, it wili be advantageous to dissect the augmenting

move in the case of unbounded problems in the following way. If r" is not optimal,

then the Simplex-Aigorithm delivers an unbounded edge and we can dissect the

movement from r" to o into a movement from r" to the foot of the perpendicular

p" of the unbounded edge and a second movement from p" to o.

r"u - r;u- . I(r" is the finai vertex and optimal)

+ (** + p;r)' I(r" is the final vertex and exhibits (13)

the unboundedness of ur n on X) .

As it is clear that z, denotes the last vertex on the Simplex-Path and that it
is either the optimal vertex or exhibits the unboundedness of the problem, we

s-1

T
i=l
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abbreviate the indicator functions above as follows:

1(r, is optimal) :: I(r" is the final vertex and optimal)

1(r, exhibits unboundedness) ::
: I(r"is the final vertex and exhibits the unboundedness of ar r on X) .

We measure these movements by the contributions of single vertices CB(r;) to
(12) and employ (13)

CB(cs) :: l-(t;5)

CB(r;) :: l@;'-i+l(affi) fori:1,...,s-1 (14)

CB(z,) :: l(F;-1d;) + l(W) I(n" is optimal)

+ l(o61f(r" exhibits unboundedness) .

So, we know

s-L

+ l(*"r) I(r" is optimal)

+ l(r p"7 1(r, exhibits unboundedness)

+ l(p,o-) 1(2" exhibits unboundedness)

a

: I Cnlrr; + l(W) 1(r, exhibits unboundedness) .

i=o

Now we could partition the sum on the right side into two categories, namely

large contributions and small contributions. Therefore we introduce a threshold

a ) 0 and call a vertex contribution CB(z;)

a - large, if CB(r;) > a,
( 15)

o - small, if CB(z;) < a.

And, obviously
a

l(*"")
i=O

a8

: I cn(';) /(CB(z;) > o) + | ce(,;) I(CB(r;) < a)
i=0 i=0

+ l(p,r).I(r, exhibits unboundedness) .
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Next, we move the sum of "large contributions" and l(W) to the left hand side

.E

l(*r") - t CB(r;) /(CB(c;) > a) - l(Fn) 1(c" exhibits unboundedness)
i=0

a

i=O

Imagine that we were able to calculate the left side (no matter houi and why, but
take this as given). Then we could conclude as follows:

a

l(*"6) - t CB(r;) /(CB(r;) > o) - l(p;r) 1(r, exhibits unboundedness)
i:o

I

./-.t \
i=O

a

i=O

: o'#{n; I CB(c;) 1- a}: o'No.

We introduce this number

No :: #{*;l CB(r;) < a}

and define the left side as o-pathgap:

( 16)

a

a-pathgap :: l(*"") - t CB(r;) 1(CB(z;) > a)
i=0

- l(W).I(2, exhibits unboundedness) .

( 18)

(17)

Note that this a-pathgap may be positive or negative. If it is negative, it is

useless for our purpose, but if it is positive, it yields

a-pathgap <lr,("+1.
C

The right inequaiity is a simple consequence of the fact that No counts a certain
subset of the vertices on the path. So our (so far unexplained) knowledge of the
a-pathgap could lead to a lower bound for s.

Note, that for increasing o the sum fj-o CB(r;)I(CB(r;) > a) will decrease,

so the numerator in (18) wili increase. But simultaneously the denominator gets

iarger. In order to get a good lower bound we should choose a small, but in such

a way that the numerator still is considerably positive.
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a),3r:s"i.H"*rq'ffi l!Fr.i:,:.i111lrll*i,!ffi-Äfl,s!r i*ä"a44

no l(dr") u

ro li=o l(r;r;u) *s+1 : a

l(*r')
O*$+1*e.,r4'!#di

sum of a-large o-pathgap
angles

Figure 3: a-pathgap

For the Simplex-Path in Figure 1 the measured distance of l(rsu) is repre-

sented by.a line segment with length according to l(asa). The same is done

for fi=o L(e4i. Obviously, we have: l(W) S Di=o l(d7e;$.
The third line segment illustrates that the distance from cs to u cannot be

bridged with this sum of great angles and that there remains a positive a-
pathgap, which has to be bridged with o-small angles.

Here the practicability of that approach should be questioned. Calculation
of the a-pathgap will only be possible in deterministic special cases. The main
reason lies in the fact that the characterization of a path for a general variant is
by far too complicated.
This had been just the reason why so far all attempts to derive average upper
bounds for general variants had failed. But before we give up, we should think
about a relaxation. If we could sum up over all vertices, which are able to
make a a-large contribution, instead of using only those on the path, we could
overestimate the sum associated to o-iarge contributions and underestimate the
a-pathgap by a "a-polyhedrongap". If still this o-polyhedrongap is positive then
the according approach could lead to a (worse, but still correct) lower bound on

s.

2.3 A Polyhedron in the Dual Space

Before we make an attempt to derive an evaluable lower bound for the o-pathgap,
we should transfer our considerations to the dual space, where the input vectors a;

are generated. There we find a certain counterpart to X, namely the polyhedron
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resp. polytope

y :: conv(or,. .. ,a,n) .

The reason for moving our concentration from X to Y lies in the very direct
impact of the input data on the shape of X. The input data do form the poly-
hedron X as well, but this is made in a very indirect and hardly computable

way. Another reason for the concentration on Y is the fact that we can obtain
all relevant information on X also by studying Y.

Y is - due to nondegeneracy - a simplicial polytope, i. e. every facet is a

simplex generated by n points out of {41,...,a^}. We call such a simplex

conv(a4r,...,at-) a basic simplex. There are (l) such candidates and some

of them will turn out to be facets of Y.
So we observe as augmentation of the one to one correspondence in Remark 1,

part 1,

basic solution ca <-+ A <---+ conv(aat t. .. , oa-) : conv(A) basic simplex.

Each such basic simplex is part of a hyperpiane //(aalr . . . r 46.) :; II(A), which

is the affine hull of con"(A). This hyperplane bounds two open halfspaces, namely

H+(a6',...,44.) :: fI+(A) and fI-(oo',. ..,at^):: f/-(A).
Due to nondegeneracy, 0 e HtA). So we define the distinction between I/+(A)
ar.d H-(A) according to the location of 0: 11-(A) is the halfspace, that contains

0, and ä*(A) is the opposite halfspace with 0 d H+(A)
By h(A) resp. h(aatt...ta4-) we denote the distance of I1(A) to the origin.

Note, that 16 - as defined in the section before - is a normal vector on f/(A).
Now let us look at Y and its facet-structure. A basic simplex conv(A) will be

a facet of Y if and only if its bearing hyperplane 11(A) is a supporting hyperplane

of Y. That means that

1. either f c ä(A) u H- (A) (all ai U e A) are contained in 11-(A))

2. orY c H(A) u H+(A) (all aj (i # A) are contained in fI+(A)).

In the first case, we call conv(A) a facet of 1st kind; and in the second case,

conv(A) is a facet of 2nd kind.
It is easy to see, that exactly in the case that conv(A) is a facet of lst kind,

then 16 (the corresponding basic solution) is a vertex of X.
Investigating the structure of a simplicial polytope further, we see that every

facet of Y, e. 8. conv(a4', . . ., aa-) has n side simplices of dimension n -2 of the
form conv(oot,. ..,o,ai-L)aai+l,...,oa.). To each such side-simplex it is guar-
anteed that exactiy one a,i U 4 A) exists, that augments our side-simplex in a
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way that another iacet is formed, i. e. conv( &aLr...1aai-l)aj)aai+r,...,o6-) is

another facet. We call a pair of such facets (with n - Ljoint generators) "fully
adjacent".
Now there may be three types of "full adjacency" between two facets, which meet

in a common side-simplex conv(aart...iaai-rio'ai+Lr...rdy-) and are augmen-

tations of this side-simplex with ai, resp. a5r:

1. both are facets of lst kind,

2. both are facets of 2nd kind

3. a facet of lst kind meets a facet of 2nd kind.

For describing the properties of X, the cases 1) and 3) are important, whereas

case 2) is not interesting.

Case 1: Considertheindexsets A1 : (At,...,At-t, ir,L'+',...,4') and A2:
(4t,...,At-t, jr,L'*t,...,A'). As conv(Ar) and conv(42) are facets of

lst kind, 16, and fra2 ate both vertices of X and rt,- 1 common constraints

are active.
The solution set of n- 1 equations {r € R'lafr -- LVi € Ar n Ar}
is a line, which contains 24, and 

'.6, 
and can be described as ra1 + ]Rd,

where d denotes the direction of the line. The direction d is orthogonal

to lin(oalr. .r ?LL;-L)(Lai+t)...,oa.) (the linear hull containing the side-

simplex conv(a6t ). .. ) aai-I, aa;+I,' . ., oa.)).
So the line intersects the linear subspace in a point p, which is just the foot

of the perpendicular on this line. We orient d in such a way that af,;d < 0.

As we have in 16,: oTi*or: L, aTrra, { 1; and in r4r: af,;n4 -- l,
oTl*o, < 1, it becomes ciear that lrn,ra,.) is a bounded edge of X with
direction d.

Case 3: We set A1 and A2 as before. As two types of facets meet, let conv(A1)

be the facet of 1st kind and conv(a2) be the facet of 2nd kind. Then 16,

is a vertex of X,but 16, is none'

Again, we find a line consisting of all solutions of the n - I equations

aln:1 Vj € A1 ll A2, and this line contains zal and is orthogonal to

lin(a6' )...,aa;-L jo,Li+\,...,aa-). The intersection point of the line and

the linear subspace is p (which is again the foot of the perpendicular on

our line). Let the direction of the line be d, oriented in the same way as in

case 1. Then it becomes clear that rtr l IR+d is an unbounded edge of X,
because lin(a6r ). . . jaai-r ) oat+r,. . ., oa-) is a supporting hyperplane of Y
with outer normal vector d and hence for all o,i we have a! d < 0.
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Our Simplex-Path discussed in the previous section can now be interpreted in
this dual space as a walk over facets (of lst kind) of Y, where successive facets

are fully adjacent. The walk ends in a facet of 1st kind that intersects IR+u or

when our move leads us to a side-simplex, which also belongs to a facet of 2nd

kind. This is the translation of the potential case that in r, an unbounded edge

improving u proves the nonexistence of an optimal point.

As derived before, we should measure ail the angles which result from a move

from a vertex ra (the normal on f/(A)) to a point p, which is the foot of the
perpendicular on an outgoing edge.

For handling the final movement in an appropiate way we consider the fol-

lowing fact, formulated with indicator functions of events:

I(*" exhibits unboundedness) (

Let us repeat and add some facts about the point/direction p.

p has been introduced as foot of the perpendicular on the line containing an edge

incident to 14. This line is orthogonal to lin(aal;. . . tayi-r )o,a;+l, . . . , a4-) and

p satisfies af,rp: ...: aTr..rp: af,;+rP: ... : eT^P -- 1. Hence p is a normal
vectoron aff(aar 1...,aa;-L jay;+l,...,oa-)andthereis apoint F: \p () e IR+),

suchthatfisthefootoftheperpendicularonaff(o^t1...1aa;-L,a6i*r,...,aa-).
For dealing with angles l(*o,p) it does not matter when we replace p bV ffip
or by f.

In case 1) we have two adjacent ver-

tices c4, and 14, and the foot of
the perpendicular p is lying on the
edge. Simultaneously, you can see

the basic simplices and facets of the
polyhedron Y, namely conv(A1) and

conv(A2). f is the foot of the per-

pendicular on aff(o; lf € Ar n Az)
and a multiple of the vector p.

Figure 4: Illustration of case 1)

conv(A,2)
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To simpüfy the study of the geometric configuration we perform a transfor-

mation of coordinates in the following manner. Given (w. l. o. g.) the index sets

A : {1, ...,n} and A* : {1, ...,r1 - L,n f 1} and the vectors o1r...,o.11 we

rotate IR'in such a way that &rt...,s'nate mapped on points bt,..',b^ri' e'

b;:

such that bT,...,bT,: h. That means that the last coordinate of the points

bt,. . ., ä,, coincides at a joint value h > 0.

Of course ä is the distance of H(a1,...,&n), resp. fl(b1 ,...,bn) to the origin

(remember that we have used a rotation) , i- e. h: h(A) .

For the new vectors we define

b;: €R'-t, i:L,,....TTL.

So far our rotation helps to relocate a facet or a complete basic simplex on a com-

mon level in the n-th coordinate. But the study of the points p makes it also nec-

essary to handle side-simplices of such facets, resp. basic simplices. So we apply

another rotation to simplify the description of the side-simplex conv(bt,. . ., b'-r).
We rotate the first n - | coordinates again in such a way that the vectors b; are

mapped on vectors ci,, i : 1, . . . , rn, and that

,T-t:...:ci-l:0>0

(remember that still cT : ..' : c\-t -- cI: h).

Due to our general condition that the support is contained in f,)., it follows that

a; € Qn and b;,c; € {ln for ail i: l,...,rTL as well. Hence 0 < h ( l and

o<e<JT-F.
Now it is possible to calculate the position of the two vertices t4 and z6* via the

systems of equations

(;;)

(;l)

(i)and(;l ,1,=',;)
rL:
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";.,)na 
(i)

(

I

\
We obtain

c!

'"r^-t

"!^+t

"T-' e

":-? 0

nn-2 nn-l
"n*l "n*L

"T<h Yj:n*L,,...,m.

1 cl*r-h 0-r:;l
et : Een and 

',a* 
: 

,:;e -ffi^' 
-r 

q+J - ":*'rh"^'
For 14 becoming a vertex, it must be ascertained that ci e H-(c1,...,cn)
Yj : n* 1,...,rn,, resp. that

ra* will be an additional vertex, if and only if c; €
Yj : nrn * 2r' . . lrrl' or resP'

"?-'kl*, 
* h) + ü(s - "lil) . ., v; _

"7P-qlrh 
-'vr-

H-("rt...tCn-L,cn+L)

(20)

(22)

So we learn that if we want ac4 and 14* to be vertices, then the potentiai location

of cnq2, . . . t c^ and of cnt cn*L is considerably restricted.
Now let us consider the description of the case where conv(A) is a facet of

2nd kind. This is true if and only if

cn*Lt. . .,c^ € fI+(A) resp. 
"T 

> h Vi # L.

Following this concept, we can also describe the configuration, where a facet of
lst kind conv(A) is fully adjacent to a facet conv(A*) of 2nd kind. This happens

if and only if

cn*1t...,c^ € f/-(A) and cntcn*2t...,c* € H+(4.)

or - explicitly - if and only if

ci<h Vi#L and

cT-l(c:*t - ?) + 5_(e - c7+) r, yj : n,n r2,... trn.
c\,+r0 - ":;ih

Finally, let us identify the point (or direction) p after our transformation of
coordinates. We know that p is the foot of perpendicular on the edge through
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p

ce

rl

fr6

the

Sin

For

from the
perpendic

aff(c1,.

he vertex

l(""p)

origin), and a positive multiple of p, namely F : )p, is
ular from the origin on aff(c1 ,. . . ,cn_t).
,..,cn-r): {*lrn-r :0, frn: h, r e IR.}, we have

':[;) 
and .:r*,[;

20

the foot of

(23)

24 we get

. t(n ^n: arcsin (#) : u...o, (67
If we know h : h(L), then we remember that d 3 ,/T -F due to c; € {ln:

./ d \
arcsrn I : | < arcsin(t/t _ ä2)and\\/0' + h2 )

arccos (-+ ,=) < u...or(ä) .\\/e'I h2 t
The result is

l(T"p) I arcsin(JL - hz ) : arccos(ä) : ur..os(ä(A))

for all edges incident to z-6, wherep is the corresponding foot of the perpendicular
on that edge.

Also we know something about l-(a"ü for any z € cone(c 1t. . . tc,). without loss
of generalitylet un:h (as for crt...,c,,). That means thatu € conv(c1 ,...,,cn).
Since conv(c1, ...,cn) c {"1:xn:h,llell < \n-F,z € IR.}, it is clearthat

l(r^u) < arcsin(v/t - # ; : urc.os(ä)

for all z € conv(c1,...,c,) as well.
This estimation can be applied in the case where conv(A) is the optimal facet,
resp' 14 is the optimal vertex. The optimaiity is indicated by the fact that
'r.r € cone(cr, . . ., cn).

And now we have learned that under the condition that ra is the optimal vertex,

l(d"6) ( arcsin(r,/l - Äz ) : arccos(ä) : .r".os(ä(A)) . (24)

fn our algorithm this move from u 4 : &opt to z will be the final move. So, in
case of existence of an optimal vertex, we actually have an overestimation of the
angle which depends only on features of the vertex 16.
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But if the last vertex c, on the Simplex-Path is not optimal (resp. when t' f
y), then we could axgue that the angle of the move to p" (on the unbounded edge)

l(n"ü is boundable as above by arcsin(t/T:F1: arccos(ä) : ut..ot(h(A)).

And after that we have to reach r., from p" and we do not know a better bound than

zr for the angle of that move. Employing this very conservative estimation for the

last move, we are now able to bound the "vertex-contributions" independently of

the edges, which have been selected.

2.4 An upper bound on the pathgap (in dual notation)

Remember that we had derived a so-called o-pathgap (17) in the form

a-pathgap : l(r@)- i CB(r;) I(CB(r;) > a)
i=0

- l(p;r) 1(r, exhibits unboundedness)

with the vertex contributions cB( . ) as defined in (14). And we could use the

o-pathgap to bound s from below as in (18):

s*1)/r/'>a-PathgaP'
o

The cr-pathgap is a difference, which mainly depends on the value of the sum

a

I Cnlrr; I(CB(';) > o.) + l(p""-) -t(2, exhibits unboundedness) (25)

i=O

If we overestimate this sum and still keep a positive a-pathgap, then we obtain

a lower bound as desired. So let us try to overestimate (25) in a moderate and

simplifying way.

Take an arbitrary internal vertex r;,11i 1 s- 1, and let h;: h(a;) denote

the height of the corresponding facet of Y . Then - using (23) - we have

CB(z;) : l(pi-ra) + l(*tpt) ( 2 arccos(h;)

and I(CB (*n) > o) < I(arccos(ä;) ,;) 
(26)

because the left indicator can only be 1 if the right one is'

For the initiai vertex we have a parallel, trivial consideration for the san,e reasons

CB(rs) /(CB(rs) > a)

(27)
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A similar treatment of the last vertex's contribution results from (23) and (2a):

CB(2,)

+ l(e 
"e,1 

1(2" exhibits unboundedness)

f arccos(h ") 
I(*" exhibits unboundedness)

:2arccos(h,)

and therefore

CB(c,) /(CB(r,) > o) < Zarccos(h,) I(arccos( ü,;) (28)

As mentioned before, the only bound tor l(p"tt) we know is rr:

l(W).I(c, exhibits unboundedness )

1n I(r" exhibits unboundedness) . (29)

Now we'have, as a result of (26)-(29) and (19),

a-pathgap
i=0

- l(p;r) /(r, exhibits unboundedness)

a

i=o 
(30)

- r. I(X has unbounded edges) .

In the next section, we want to employ this underestimation for an average-

case analysis. There it will be absolutely disastrous to have the obligation of

a selection of the path vertic€s les, ...tfr". But here we can underestimate the

pathgap resp. overestimate the sum in the following way'

a

I 2 ur..o s(h;) I(ur.cor(h;) , "r) t
i=O

< t 2arccos(ä(A)) /(conv(A) is facet of 1st kind) I(arccos(h(A)) t ;) ,

A

where we have summed up over all index sets A of basic solutions. And after our

discussion of unboundedness we know that

r . I(X has unbounded edges) { zr | 11"o""(A) is facet of 2nd kind) .

A
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So our new estimation of the a-pathgap is:

a-pathgap

- t 2 arccos(h(A)) I(conv(A) is facet of lst kind) 1(arccos(ä(A)) t ;)
A

- " 
.t /(conv(A) is facet of 2nd kind) . (31)

A
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3 A lower bound on the average number of steps

Now we start the averaging process. We would like to sum up or average over all

possible problems and to calculate the average value of the available lower bound

for s.

If we apply our lower bound on the o-pathgap (31), then we observe that this

often will be negative. Here we are in a conflict, as we know that s never wiil be

negative. So we could work with the maximum of 0 and the term in (31), but

this would overcomplicate the calculations. So we conclude

E,n,nl"+ 1l > 
"-,. lIry+eql - 

E-'"[a-patheap]

loJa

E^,*[l(r,6,u)]

- Lu^,i)], arccos(ä(A)) I(conv(A) is facet of 1st kind)orT
/(arccos(ä(^)) r ;) ]

- L u^,^l-" f /(conv(a) is facet of 2nd kind)] -

(f
A

1

o

3.1 Calculation of expectation values

Let us first think about the expected value E^,^ll(r'o)]: For each subset of

problems, where cLLt... jarn ate fixed, Phase I works in the same way. So it
produces the same vertex ro in ail these cases, which means that the direction

of rs is fixed. Now (independently of rs) z' is distributed symmetrically under

rotations. So it is trivial, that the average angle is f. This holds for all choices

of a1,. .,ü* and therefore the total average value is

E^,^ll(rs,")l : ; .

The second expectation value in (32) can be written as

U^,^lD, ur..os(n(l)) I(conv(A) is facet of 1st kind) 1(arccos(h(A)) t ;) ]
A

:' (T) u^.t-:;i:::l;fitlj *'",'r 1s'ü kind)

(32)

(33)

(34)
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This equality is a result of the fact, that the input data are distributed identically,

and therefore we can choose a typical candidate and a typically basic index set

A* :: {1,...,n} and count the number of possibilities, which it (T) . Using

integrals we have

(34) : , C) !'^' 
ur.ros(h(A.)) I(conv(A*) is facet of lst kind)

Iln

. 1(u'..o,(ä(4.)) , ;) dr@) . . . ar@,,). (35)

1@) : r -rL-- !^r:^- t... tHere, / abbreviates the notation
J 

'laÜes LIre rruuilu-turr. J l"Itn 

-/_/For the last expectation value in (32) #. 
"ur, 

estimate r l2arccos(ä) for any

h < A and we obtain
T't,^,-b. ! f 1"onv(A) is facet of znd kind)]

A

lr1 E^,,,LI , arccos(-h(A)) I(conv(A) is facet of 2nd kind)]
A

:, (T) u*,*larccos(-h(A-)) I(conv(A*) is facet of 2nd kind)]

:2 (*\ ['^' *r.os(-ä(A-)) I(conv(A*) is facet of 2nd kind)\n/ J
xln

.dr@)...dF(a^). (36)

Combining both upper bounds (35) and (36) in integral form and using the

explicit description of the events "conv(A*) is facet of 1st kind" and "conv(A*)
is facet of 2nd kind" and exploiting A*: {1, ...,n}, we obtain

U, ,^lI2u...os(n(l)) I(conv(A) is facet of lst kind) 1(ur..os(h(A)) t ;) ]
A

+ U^,^ln. I ri"oov(A) is facet of 2nd kind)] leZl
A

t, (T) I'*' (arccos(ä(al,..., a^)) I(a^ar,. . .r a,n e H-(o,,. . .,o-))

Rn 
. 1(trc.os( h(or,. ..,o*)) ,;)

f arccos(-h(or,...,o,)) I(o**rt. .tarne H+(a1,. .,ün

dr@)...dr@).

)) )

(38)
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Now we apply our transformation of coordinates with a; --1b; for i : L, . . . trrl
and öi : ...: bl: h: h(ar,...,an) to the integral (38). The result is

, C) ),-r(.'.,.) .

1

/ (ur..., (h)G(h)^-'1(u,...or(h.) > ? -arccos(-äX1 - c(ä))--*)
0

r@)

I lDet(B)ll(ö,) ...ip"1att...d6^d,h, (3e)
JI

R--r

where Ä,,-r(r.) denotes the Lebesgue-measure of the unit sphere. Analogously,

),(0,n) denotes the Lebesgue-measure of the unit ball. We know (compare [4]):

.\,,- 2zrt rd ),(fl,) --:tL(u^): ffi and ),(0,) : fut (40)

G(ä) is the marginal distribution function of our special lR"-distribution, given

by G(h) :: P(rn S ä)nwith G : [-1,1] -+ [0,1] . 9(h) is the corresponding

density function *t n 
J_rs(h)db 

: G{h). For G(h) we know that

['- ffi jjr-o')']aoap(,) rorä>0,
I h+

G(h):{ ,," (41)

| **# I lu - o\"*dodF(r), ror h <0,
I lhl lrj
\r

where F(r) is the radial-distribution function under consideration. In that ter-
minology

dF{r).
(r' - tr21"*

1

I
läl

d
)

un_

lu^
,1

-1

)._
)"s(h) : (42)

rn-2

The matrix B is

/bi bT-'1\
B:l : : i I

\ ul b::-' r )
and enters the integral via the Jacobian of the transformation, which is taken

into account by ).-t(r,) 'lDet(B)l .
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G(h)'"-" reflects the requirement that the points &ntlt . . . t &* all have to lie below

the level rn : h and (1 - G(h))^-' is the probability for the condition that all

these points have to be beyond that level, i. e. belong to the opposite halfspace.

For future purposes we introduce also the function

gr(h) ,--
\^-r(r^-r) (r' - tf1*

d,F(r), (43)
(" - l) \^-'(r^) Tn-2

and we notice that for al, h e [-1, 1]

G(h) : I - G(-h), s(h) : s(-h) and sz(h) : sz(-h) . (44)

As we had announced before, we concentrate and restrict our calculations to the

family (a) of "z-distributions" F"(r) . For these distributions we obta;n special

versions of the above-mentioned functions, namely

1

I
l/"1

forä)0:

. \n-z(un-t)| _-^ ),,-t (,rr,)

forlz<0:

11

I I,
hL

- o')# do(L - rz)'r^-L dr
zt(z*7+r)
t(z * 1)r(;)

G"(h) =

s,(h) :

92,"(h) :

- o')* a"G - rz)"rn-r dr

(45)

2t(z+7+I)
t(z * 1)r(;)

lÄl

l(z*;+L)
Jit(, +; + i)

\^-r(r^-t)

- h')+
Tn-2

'(1 - h2)*+" ,

- h\+

(L-r2)"r*-Ld,r.Tffi

(" - 1) ).-t(c.,.)

t(z-t7+I)
------__:-----:-

Zlrt(z +; +;)

(L - r2)'rn-tdr .

(46)

zt(z+7+L)
t(z -t 1)r(;)

(47)

on our special distribution

(,'
1

I
ll, I

Tn-2

.(1 - 6z1T+'

An evaluation of the inner integral in (39) based

(compare [tO](p 40) and [a](p. +S/+9)) delivers:

r@)

/ lnet(a)li(b,) ... i"(t)ab1...d,6n :
J

F[--1
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_ (n !) ).-r(Cl,-r) t(z + 7 + L)t(n(z + ;)) - tL(nr1^-t r{z-t;F@ö;if1's'(h) ' (1 - 7'21@-t)('+7)

We conclude that for an arbitrary z-distribution

(32) <, C) ),-,(,,) .("t) -l=:!?"-') ffi
1

/ (*..., (h)G,(h)^-' 1(u,rc.or(h) > ;) -arccos(-ä )(r - G"(h))--')
0

's.(h) '(1 - 6z1(--t){z+7)dh '

If we take (4a) into regard, then it is also possible to write the upper bound in
the form

(37)

coc(i)
f. I arccos(ä)G "(h)*-^g,(ä) '(1 - 621@-t)('+7)dh

!,

: (:) c'@)'c2(z'n)

coa(|) (48)
f
I arccos(ä)G "(h)^--g"(h) 

. (1 - 621{^-r)("+7)dh.
!,

with

cr(n) :: 2(z!) '\'-r(fl'-r) )'-r(ar') and (49)
(hr1^-'

cz(z,n):: W (50)"1'"/ t(" + |)t(n(z + ?) + i)
After abbreviating the description of the upper bound, we want to simplify the

integral in (a8) as much as possible. This can be achieved by an attempt to
estimate arccos(ä) by a function of C(h) .

For 17 € [0,1] we have

11

In-;'n-"d'> [""T -"'n-"do: -1(t - rz1--r)/2, (b1)J -J n-1'



to

and therefore we get for h

| - G,(h)

€ [0,

\n_z
')r

1l 
'

(r^-
t(un.\._

11

I lu-o')#aoaP.?)
hh

h2-7
_h2

dF,(r)

d,F"(r)

n-l

I

n-L

)

)"\ )^-r('^-r).. ,[I,J
L f(,'n-rJ- Tn-2

In this chain of approximations we have first used (51), then : > 1, and the

equalities to gr,. are clear, if we remember (a3) and (a7). The iast estimation

follows from

(52)

(53)

(54)

\tr- w > ?ur.rir, (\/T - h'z): ?ur..or(ä)
7t 7r

Now, we can conclude from the result of (52) that for

arccos(h) ,;(T#J n)* (, -t(z*7+L)

forhe[0,1] .

h e [0.1]:
-L/l

c.@));irü

On-1 <h<0wehave

L * G.(h)> 1 - G.(o) :;.; (*Tg4)"*'*"
because f ( arccos(h) < r for h € [-1'0] '

+ arccos(h) < 2;#o;n(t - C,1n1)*

A uniform bound of this kind for the total interval h e l-L,l] comes by combining

(53) and (54) in the form

arccos(ä) s M.. 
{ ; (T##) *,r,*-\

(r - c"@)^+*"

s +.s . (r - G"&));r+rü (55)
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This is true for all n

;(
21/it(z + t /{it(z+;+ 3)\*z\ 11, 1"*4 1

<2;*i*;;n i(*,ß)'

t(z+i
1< 2-+L+2" T .

< 2;n+uv 1Ji" < 4.5 .

For the first estimation we exploit, that for c ) 1 and a € (0,1) we have

Hf I no (compare [4], Appendix), and for the second inequality we used

the monotonicity of the function J|TT I fo, t > 0.
The bound (55) for arccos(h) leads to

/ ?rL\
(48)

(56)

- G"@)# g"th)' (1 - 6z1b-t)(z+? an.

Next, we want to estimat" (1 - h') by a function of G(h). Remembering the

definition @7) of g2,"(h) we get

(1 - h,) + : ('{,'(: !^n 
3\" ;#i;

' \ t(z-t;ff) gz''(h);r+n

and further, we know for h e [0,1] (compare the estimations leading to (52)):

92,,(h)<1-G"(h)
and also for h € [-1,0] :

92,'(h): g2,"(-h) < 1- G,(-h) < 1-' G"(h).

So, we have
/ TTL\

(56)

eoa(\)
f.1

I G"(h)^-^ (t * c,61)* n"&) ' sr,.1t 1*i**@*r)(z++) dh

-1
/ 77-\

coa(\) (57)
f ' ! \" 4/\--r"

I G"(h)*-^s,(h).(, - r,1n11w an

-1

cos(fi)

I c,@)^-'(t
-1
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IMith

c.,. _, . (zJir(" ]t j2).##"{z,n)':(ffi/ (58)

Now we make use of the transformation/substitution r : I - G"(h) and

#: -g.(h). This yields

1

(bz) : (T) t,t") cr(",n) 4.5 . c3(z,n) . t (r - *)^-'*b4W! 4*

't"/<ill
with r(cos(?)) ': 1 - G"(cos(!)) .

A chance for information on such truncated Beta-integrais lies in an applica-

tion of the Markov-inequality, which states that for any e > 0 and every positive

exponent p > 0 for a random variable X:

P|Xt) e) ( Ellxl',l
\r I 

- 6P

From that we can conclude:

1

I tn-1)(22+n)+1

I G-*)^-"'---;irrn*dn
J

o(cos(f )) 
1

= ;Gj# lo - *1'*-nrb4w!+04*
0

_ 1 .t{m-n+l)r(n-L+!+ffi)r(cos(\))c r(rn* p+ffi))
So we arrive at the upper bound

(57)

t r(m-nr l)t(n -1+ p+ffi)
(5e)

We want to estimate the single factors. If we take into regard that f ($)f (;) :
b#{ and (u *a- 1)'< +dfl lro for r} L and a € (0,1), thenwe get

from (49), (50), (58) and (40)

^ , , 2(n!) ),-r(0.*r) ),-r(c.r,) z(n\n*Zrrt
" r\''t (2r1^-t (2rr)^-rr(S)f (;)
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: +("\TL - +(nr.)riz*-r- :4n.
z^-'t(*)f (;) 2"-r(n - r)11/rr

, r(z+t+)r@Q+il)- Q+liC2(z,n) :

1/
i '-it/n- r

cs(z,n) : (Tffi) * t ("t'(" * 7 *1);)

The quotient of f-functions in (59) can be estimated as follows:

lrnyt(rn-n*l)r(n -1+ p+ffi) _ r(*+1)r(n -1+ p+ffi)
tl\n)@D r(n *1)r(nr.tptffiD

l(rn + 1) r(rn * tP + ffi)):
i1," + lp + 4*)) l(rn + p + ffi)

r(r-1+Lp+ffiffil) r("-1+p+ffi)' \," r I lr I nlltl2J t

r(n+1) r('-i+Lp+ffi))

\ *Fffitrt -Lp+ffi)

/ 2z *3 1Ln+ff$;.-z'(.z-2+lP+ 
"*u2"))

/ 2z *Z 1r+ffi-Lp+ffi1'(.z-Lrp* 
"+t+*)

S (n + pr-2+ffi . rn-c+t-ffi for p * -2J* > t

Now, we have

(5?)

and this yields (compare (32) and (33)):

E^,nla-pathgup]
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8,",^ll(rs,u)l

- E,n,n[t , arccos(ha) I(conv(A) is facet of 1st kind)
A

1(ar".os(ä^) t ;) ]

- E^,n[" f /(conv(A) is facet of 2nd kind)]
A

ran. (21;e + t+ 1)ä) 
b#W 

(n + p),-,*ffi
(60)

r(cos(!))r . J; -T 2z+3
ffln -t n+L+22

3.2 Discussion of the Parameter o

We have to look for a value o such that the difference in (60) remains positive

and that we get a good lower bound oo 'E-''[a-Bathgap] 
.

If we determine a value ä in way that the t"r* io (60) is at least f then we get

a lower bound of the form

E,n,nlr+ 1] > E^'*[a-p-_ath}ap]
6

1

a

1

C

Since we wan

/ _ ln-t\l2z+d

| " nn.(zJiQTl +!;ffr+z'
I 

--I z r(cos(i\c . Jn -T\\

(n + p)'-'+#'-;
2z+3

TfL, '' n+t+22

7f

4

t the term in (60) to be at least

(61)

7t

-4
7f

t-

;)

1

;C;Gtr

T
41 this requires:

I8n. (2
. (n-r)(22*n)

)=#id- (n + p)o-r*#
2 z+3

TTLP- ''t;+-lTi;

. (n-L\(2'+nl

(a . 18n) i (zut4;77 4a) ;F+ri't 
@ + p)'-"v+miffi;a

. 1, 2z+3
rnr-i+;G+lTr4

t(ztä+1)
2fit(z +; +

f(z*;+1) /o\n+r+22
Et(;+L+\ '\;/

e r(cos(!)) >

We remember from

r(cos(!)) :

_l

(nt/" - 1)t
(52) that

1 - G,(cos(!))

92,.(cos(;)1 :

+*) \a

JN -T

zfit(z + | 2

'(1 - cos(;)2)"f+'
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: tio(ä)' > G)'' So it suffices to choose a in such abecauseofl-cos(!)2
way that

t(z-r ? + 1)

zf-trt(z+;+il \zr

:: a,

Finally, we remember from (61) that

in the form

E^,nls + 1] >

'- 4 \2\6f (" +; + 1) /

1n+r+zz
"_

(72n)i (2
( n-r\t2z+nl

,/{;+TTT) ;c+rrt;r 
@ + p),-i+nii{i;a

_ .--1
(nt/n - r )i

.L2z+3t
m'-i-r;6+l+2l

(62)

yields a lower bound on E-,.[s * 1]

which is equivalent to

_ \ _ (2rftt(".3jä\ t+- 
.C

(n-L\(22+n\ , I

(72n)i6rr+,-4 (2yG6 + TTT )ftift,f ( @ + d'-7* xi't#q \ 
*

r 

-L 

1, ,r+J I

(""/" - 1);O+i;24 \ n'L'-i-il;+t+'4 /

1r
a4

2Ji("+ez+L)i )"":

I

@t/" - 1)torlrz

(63)

/ .1, 2z+3 t --=l:
( ,n'-;*;6:i'+-'4 \ 

n+t+22

L":, 2z+3- |

\(r + p)t-i+;6+rr'4 f

This is the lower bound on E,n,nfs + 1] that we have aimed for. But since the

formula in (63) iooks very complicated, we try to simplify some of its parts, in
order to get an estimation of its size.

We remark that

I>_- 2.r

and

| . (n-r)(zz+n)
(72n)vErr-+,zl (2.yt r (z + ; + I) ) e@+t+z'12
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/ r '-(n-t)(zz+nl ' 

-\ 

I
t /tzz+n+2\)-;GiiE t \T\/n-I)Pb+t+2")
\V\"- 

t tu t uJ 
/ 

'

as we n^". (ffi)t-*- , (*)# , o.zr ror p ) 2 and

_(n-L)(2zln) __ I
(r/2" ) c(-+t+z')2 > r/2n' > 0.63 for p ) 2.
So, this proves the main theorem:

Theorem I
Forn } 3,m) n, p € 12,oo) and z € (-1, a) (fromow distributionfamily)
we have

8,.,^[s I I]

. (22 1- n + \-nnl'ä.;a @ + p1- ---i+t;+i#?i;a' .

The constant is independent of n,rn,z,p.

3.3 Concluding Remarks

Now we have a lower bound for the expected value of pivot steps, which holds
for every variant.

To make an illustrative comparison with the behaviour of the Shadow-Vertex-
Algorithm possible, we concentrate on a single distribution (z -+ -1, i. e. uniform
distribution on the unit sphere) and we choose a special value of p, namely p : n.
Then we get from Theorem 1

E*,*ls * L)

1(1_n-2\1-_IL2n-3
: const. nln-tv n(n-t)) . (n)-; . (2n) n-l ' n(n-1)2

: consts. Tn#{r-"1"D . n-t1"1

where e(n) :: ffi, 6(") t: -*- * + #ip and ail constants are taken
into regard by consts.. So we see - as announced in the introduction - that the
ord.er of growth is essentially rn# ' no .

Remember that we had an upper bound [6] for that configuration with the
Shadow-Vertex-Algorithm of constl..rn#nz, and an (asymptotic) lower bound

[a] of const2. . ,n# nz for m -+ oo and fixed z.
So the result presented here shows the same behaviour inrn, but leaves a gap of
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a factor n2 for possible superior speed of better variants. We remark that even

with the Shadow-Vertex-Algorithm the behaviour in z gets better for distribu-

tions with increasing parameter z. This shows that the growth in rn is an intrinsic
feature of our stochastic model and cannot be avoided even when we employ the
most sophisticated variant.

Another question arises when we ask for any variant which actually realizes

that behaviour of *#ro, i. e. whether our lower bound. is sharp. Here we must

understand clearly the concept of our proof. This result is mainly a consequence

of our relaxation method described at the end of chapter 2, where we forgot

about the specific path and summed up over all vertices of the polyhedron. Our

stochastic analysis shows 11'14 yn#n0 cannot be increased significantty by doing

a better analysis or numerical evaluation on our relaxation. This is the price we

have to pay for having a variant-independent lower bound.

We suspect that the sharpest lower bound on Simplex-Paths might be higher

(perhaps *#ni o, *#r'), but for proving such a result we are forced to
employ the path-generating-rule (pivot rule) of specific variants. That means

that such an analysis would have to concentrate on each specific variant. (And
with the exception of the Shadow-Vertex-Algorithm, this seems to be impossible

from the current point of view.)

A last aspect, that we should mention, is that our result implies a certain

information on the average diameter of a polyhedron (the maximum over all

shortest paths between two vertices).

In the same marlner as we have derived our result on all variants, we could show

that the average diameter is bounded from below by

const. . ,n# no .

This is also an evident consequence of the chosen stochastic model.

To improve such bounds remains a challenge for the future.
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Summary

We derive a lower bound on the average complexity of the Simplex-Method solving
linear programs (LP) of the form: max uTx s.t. a{n ( 1,.. .,alx /-L.
We assume these problems to be randomly generated according to the Rotation-Symme-
try-Model (RSM), i. e. let aLt...t&rntu be distributed independently, identically and

symmetrically under rotations on IR^ \ t0).
Concentrating on a representative family of RSM-distributions with bounded support,

we show for every variant uar ofthe Simplex-Method, that on the average the number

of pivot-steps s'o' satisfies

Ern,nL"uo'f ) const. Tn* no for all pairs rn ) n and for all variants.

This result holds, if the selection of the starting vertex for the Simplex-Method has

been done independently of the objective u.
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