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Abstract

Consider a set {a1, . . . , am, u, v} ⊂ IRn satisfying a mild nondegeneracy condition.
When the polyhedron X = {x | aT1 x ≤ 1, . . . , aTmx ≤ 1 } ⊂ IRn is orthogonally
projected on the two-dimensional plane lin(u, v), then some of its vertices may be
mapped on vertices of the two-dimensional image of X. These vertices of X will be
called shadow vertices under that projection. Their number will be denoted by S.

This figure S has an outstanding relevance for the complexity of a special Simplex-
Method, the dimension-by-dimension method, for solving LPs of the type

maximize vTx s.t. aT1 x ≤ 1, . . . , aTmx ≤ 1 where x, v, a1, . . . , am ∈ IRn and m ≥ n.

This method applies the “shadow vertex algorithm” in n − 1 stages of increasing di-
mension, by constructing a Simplex-Path that visits only shadow vertices. In each
stage specific versions of the vectors u and v are used to define the projection plane
and to control the application of the “shadow vertex algorithm.” So S delivers an
upper bound for the length of such a path in one stage.
We want to study the average-case complexity of these algorithms and are therefore
interested in Em,n(S), the expected value of S. For that purpose we assume a distri-
bution of the linear programming problems corresponding to the rotation symmetry
model (RSM):

The vectors a1, . . . , am, u, v are distributed on IRn \ {0}
independently, identically and symmetrically under rotations.

∗AMS-Classification: 90C05, 68Q25, 60D05, 52A22
†Key-Words: Linear Programming, Average-Case Complexity of Algorithms, Stochastic Geometry
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In this paper we improve the upper bounds for Em,n(S) from our polynomiality-proofs

of 1982 and 1987. There we had found an upper bound of m
1

n−1 ·n3 ·Const., valid for
all RSM-distributions and all pairs (m ≥ n).
Based on a refined evaluation technique for space-angles, on a reorganization and on
substantial modifications of the old proof, we are now able to confirm a bound

Em,n(S) ≤ m
1

n−1 · n2 · Const. for all pairs (m,n) with m ≥ n.

This result had been desired since 1982, because then a bound m
1

n−1 · n2 ·Const. had
been derived exclusively for the situation, where n is fixed and m tends to infinity.
All the time the question had been open, whether the asymptotical behaviour would
be better than the behaviour in moderate dimensions, or whether the bound for the
moderate case was crude.
In addition, we know – from an asymptotic analysis in 1987 that for a special RSM-
distribution, namely the uniform distribution on the unit sphere, there is a lower

bound for Em,n(S) of type m
1

n−1 · n2 · Const. The combination of this result and the
new upper bound shows that the new bound is sharp.
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1 The number of shadow vertices and its algorithmic relevance

The motivation for writing this paper and for doing this study came from the question for
the (average) complexity of a solution method for canonical LPs of the type

maximize vTx subject to aT1 x ≤ 1, . . . , aTmx ≤ 1,
where x, v, a1, . . . , am ∈ IRn and m ≥ n.

(1)

For the purpose of averaging we assume a distribution of the linear programming problems
corresponding to the rotation symmetry model (RSM):

The vectors a1, . . . , am, v are distributed on IRn\{0} indepen-
dently, identically and symmetrically under rotations.

(2)

This question has been investigated in earlier papers (cf. Borgwardt (1982b),
Borgwardt (1987), etc.). The new bounds on the average number of shadow vertices, as
derived in this paper, will help to improve those results on the average complexity of (1).

The core of the old and the new analysis of the average complexity is the answer to a certain
subproblem, which can be given more precisely in this paper. In this first section, we will
explain this subproblem and its relevance for the average complexity. After that, we shall
totally focus on that subproblem, which can be seen as a mathematical problem in its own
right.
We use the abbreviations lin, conv, cone, dist for linear hull, convex hull, convex cone and
distance respectively. When we write conv(x, y, . . .) we mean the set of convex combinations
formed with the help of x, y, . . .. The same applies to cone, lin.
The question attacked directly in this paper can be seen from three different points of view.
Suppose that {a1, . . . , am, u, v} ⊂ IRn with m ≥ n is a set of given points, which meets
the following nondegeneracy-assumption

Nondegeneracy is valid, if any n vectors out of {a1, . . . , am, u, v} are linearly inde-
pendent, and if any n+ 1 vectors out of {a1, . . . , am, u, v} are in general position.

(3)

Let the subset {a1, . . . , am} and the subset {u, v} respectively induce a (nonempty) polyhe-
dron and a two-dimensional plane, i.e.

X := { x | aT1 x ≤ 1, . . . , aTmx ≤ 1} ⊂ Rn and lin(u, v). (4)

We write {a1, . . . , am; u, v} to separate both parts and to indicate that in both subsets
internal permutations are irrelevant for the resulting configuration of X and lin(u, v).
Consider an orthogonal projection

Πu,v : IR
n → lin(u, v), mapping X into lin(u, v). (5)

Πu,v(X), the image of X, is a two-dimensional polyhedron. And some of the vertices of
X may be mapped on vertices of Πu,v(X), which motivates the name “shadow vertices,”
precisely:

A vertex x∗ of X is called shadow vertex of X with regard to u and
v, if the orthogonal projection Πu,v on lin(u, v) maps x∗ on a vertex
of the two-dimensional image Πu,v(X) of X in lin(u, v).

(6)
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1) A purely geometrical question is:
How many shadow vertices are induced by the projection Πu,v mapping X on lin(u, v)?

We regard this number S = S(a1, . . . , am; u, v) as a functional of the given (m+ 2)-element
set of input vectors. Note that the concentration on the configuration m ≥ n is natural,
because for m < n the number of shadow vertices is 0, as there cannot be vertices at all.

2) From the view of parametric programming the interpretation is as follows:
Consider the set of all LPs〈

maximize wTx subject to x ∈ X
〉

with 0 �= w ∈ lin(u, v). (7)

Here we ask for the number of all vertices of X being extremal with respect to any objective
wTx, such that 0 �= w ∈ lin(u, v) is an arbitrary nontrivial linear combination of u and v.
This extremality is just an equivalent formulation of the shadow vertex property. So the
answer to that question is again S = S(a1, . . . , am; u, v).
At this point we may restrict our set of possible objective gradients to a subcone of lin(u, v),
as for instance to cone(u∗, v∗), where u∗, v∗ ∈ lin(u, v) :
Solve all LPs of the form〈

maximize wTx subject to x ∈ X
〉
with 0 �= w ∈ cone(u∗, v∗) ⊂ lin(u, v). (8)

Note that u∗ = u and v∗ = v would describe a special case here.
For these two parametric programming problems, we may count those vertices, that are
optimal at least for one choice of w. We know

S = S(a1, . . . , am; u, v) = {x∗|x∗ optimal vertex of X for some w ∈ lin(u, v)}.

Accordingly we define the cardinality of the set of optimal vertices for the subcone as

su∗,v∗(a1, . . . , am; u, v) := #{x∗|x∗ optimal vertex of X for some w ∈ cone(u∗, v∗)}.
And now it is clear that

su∗,v∗(a1, . . . , am; u, v) ≤ S and su,v(a1, . . . , am; u, v) ≤ S. (9)

So far, we understand that S helps to bound qualitative figures on parametric programming
problems (as the number of “vertex-solutions”).

3) Now we come to the third point of view, which asks for the complexity of algorithms.
Suppose that we have vectors u∗, v∗ ∈ lin(u, v), and that a vertex x1 of X, maximizing
uT
∗ x on X, is available. Then x1 must be a shadow vertex with respect to lin(u, v). Assume

that our aim is to maximize vT∗ x on X, starting from x1. An optimal vertex for that problem
would be a shadow vertex, as well. It is clear that in lin(u, v) it will be possible to improve
vT∗ x by running along the boundary of Πu,v(X) over a connected path, which improves
the objective monotonically and visits only the images of shadow vertices. Of course, the
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number of visited shadow vertices equals su∗,v∗(a1, . . . , am; u, v) and is bounded from above
by S.
But now it is important that – due to nondegeneracy – the preimage of that path (before
being mapped by Πu,v) is a Simplex-Path in the original space and on the full dimensional
polyhedron X over the corresponding shadow vertices, improving the objective vT∗ x.
This is just the geometrical idea for the shadow vertex algorithm.
And it is clear that this fits into the general framework of the Simplex-Method for solving
(1), as it defines a variant for Phase II.
It is easy to construct that path. We start in x1 , the optimal vertex for uT

∗ x, where
0 �= u∗ ∈ lin(u, v). To optimize vT∗ x with 0 �= v∗ ∈ lin(u, v), we create a family of objec-
tives (u∗ + γ · v∗)Tx with γ ∈ [0,∞), start at γ = 0, increase γ continuously and follow
the sequence of temporarily optimal vertices. (For implementation it suffices to update the
representation of both objective gradients u∗, v∗ under the current basis and to observe the
γ-weighted combination of both. At certain values of γ vertex-exchanges (pivot steps) will
be necessary to stay optimal. Then the corresponding representation-coordinates determine
the pivot element.) This is just a realization of the parametric Simplex-Variant of Gass and
Saaty, adapted to the current situation. Hence the number of shadow vertices S is a natural
upper bound for the number of vertices visited on this path from x1 to xs, which means
s = su∗,v∗ ≤ S.

This is the point where we can finally turn to average-case analysis.

In this paper we modify the polynomiality-proof of Borgwardt (1987) and improve the upper
bound for Em,n(S), the expected number of shadow vertices (under orthogonal projection
on planes lin(u, v)) of feasible polyhedra X in linear programming problems of the type

maximize vTx s. t. x ∈ X = {x| aT1 x ≤ 1, . . . , aTmx ≤ 1}
with x, u, v, a1, . . . , am ∈ IRn,
where u is an augmenting vector for defining the projection-plane lin(u, v).

(10)

We assume a distribution of input sets under the rotation symmetry model (RSM) by
extending the definition (2) :

The vectors a1, . . . , am, v and the auxiliary vector u are distributed on
IRn \ {0} independently, identically and symmetrically under rotations.

(11)

This assumption justifies concentration on the nondegenerate cases, which are almost sure.

We remark that under RSM for problems of type (10) holds: Em,n(S) ≈ 4 · Em,n(su,v).

Note that rotation symmetry does not apply to the distribution of the (total) input sets
{a1, . . . , am; u, v} ∈ IR(m+2)×n, but for the identical distributions of the single points ai
over IRn. These distributions characterize different cases in our stochastic analysis (we
call that “special distributions”). When we speak of “our distribution,” we mean one of
those IRn-distributions. For denoting the corresponding distribution-function we use F .
If our distribution has a density, then the corresponding density function will be denoted
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by f . Without loss of generality we can suppose, that our distribution has a density (cf.
Borgwardt (1987)) and that its support is the unit ball.
Under rotation symmetry , the characterization of these special distributions is very simple,
because the density of different points with identical Euclidean norm must coincide. Hence
every direction d ∈ IRn will be attained with the same likelihood. Note that every point
x ∈ Rn can be written as ||x|| · d(x) with ||d(x)|| = 1. So the special distribution can be
uniquely characterized by specification of the so-called “radial distribution function” F .

Let F stand for the probability F(r) := P (||x|| ≤ r) for r ∈ [0,∞]. (12)

We introduce notation for the unit ball resp. the unit sphere in IRk, namely Ωk resp. ωk

Ωk := {x | ||x|| ≤ 1, x ∈ IRk} and ωk := {x | ||x|| = 1, x ∈ IRk}. (13)

When we use Ωk(r) or ωk(r), we mean the corresponding ball or sphere of radius r.
λk stands for the k-dimensional Lebesgue-measure. We note that

λn{Ωn} =
π

n
2

Γ(n+2
2
)
, λn−1{ωn} =

2π
n
2

Γ(n
2
)
, and n · λn{Ωn} = λn−1{ωn}. (14)

When we write Const. or C, then we mean a constant real value, independent of m and n.
C(n) will denote n-dependent reals, which are independent of m.
In Borgwardt (1982b) and Borgwardt (1987) it was shown that there is an upper bound for
all m ≥ n and for all rotation symmetric distributions of the form

Em,n(S) ≤ m
1

n−1 · n3 · Const.

In Borgwardt (1994a) resp. Borgwardt (1994b) we improved that result to

Em,n(S) ≤ m
1

n−1 · n 5
2 · Const.

by analyzing the relation between certain spherical angles more precisely. In this pa-
per we give a new proof, based on techniques of Borgwardt (1987). The main ideas of
Borgwardt (1994a) resp. Borgwardt (1994b) are included and combined with more precise
calculations replacing crude estimations of Borgwardt (1987). This leads to another saved
factor of O(

√
n). We obtain

Theorem 1
For all distributions according to our rotation symmetry model (11) we have

Em,n(S) ≤ m
1

n−1 · n2 · Const. � (15)

Theorem 1 is a long desired final step in closing the gap between observed asymptotic results
and theoretical bounds for moderate dimensions. From Borgwardt (1982a) we had known
an (asymptotic) upper bound of

Em,n(S) ≤ m
1

n−1 · n2 · Const. for m → ∞, n fixed.
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For 15 years that discrepancy between bounds for general dimension-pairs and bounds for
the asymptotic case remained an open problem. Also in numerical experiments (compare

Borgwardt, Damm, Donig and Joas (1993)) the mean values did not exceed m
1

n−1 · n2 · 2.

Another theoretical enforcement for the hope for quadratic behaviour in the lower dimension
came from Küfer (1996). For the special case of uniform distribution on ωn, he proved the
existence of an expansion for Em,n(S) in a series of products. From the very complicated
calculation of the first coefficients he could conclude truncated-series-estimations, as e.g.

Em,n(S) = C1(n) ·m 1
n−1 + C2(n) ·m− 1

n−1 +O(m− 2
n−1 ) for fixed n ≥ 3

with C1(n), C2(n) such that C1(n) → 2n2 for n → ∞ and C2(n) < 0 ∀ n.

Unfortunately, it could not be proven that the first terms dominate the rest-term already
for moderate m. So again, only the asymptotic bound for this distribution was confirmed.

On the other hand, also an asymptotic lower bound for this special distribution, the uniform
distribution on the unit sphere, is known from Borgwardt (1987). This is

Em,n(S) ≥ m
1

n−1 · n2 · Const. for m → ∞, n fixed.

Seeing this in the light of Theorem 1 we conclude

Corollary 1
The bound of Theorem 1 is sharp in that sense, that it cannot be reduced uniformly for
general distributions (with exception of lower constants). We have constants C1, C2 > 0,
such that

C1 ≥ sup
F ∈RSM

sup
n

lim sup
m→∞

EF
m,n

m
1

n−1 · n2
≥ C2, (16)

where F ∈ RSM indicates that the distribution fits into the rotation symmetry model. �

For applications of the shadow vertex algorithm in the dimension-by-dimension method it
will be necessary to study the situation where u resp. v are fixed vectors, i.e. to replace u
by a fixed vector u and v by v. Then the question arises, whether our results will remain
valid under that fixation or conditioning.

Corollary 2
The bound in Theorem 1 applies even to the conditional expectation values, when u is replaced
by a fixed vector u or when both random vectors (u, v) are replaced by a fixed pair (u, v). �

Proof
In RSM it is possible to rotate IRn, such that u is sent to u. Such a rotation (applied to all
input vectors) has no impact on S and on all the stochastic figures in RSM. For the same
reason, we can even fix the total plane lin(u, v) to lin(u, v), because our figure S depends on
the position of the plane exclusively, not on the specific location of u and v in this plane. �

Note that conditioning is possible only now, after averaging under RSM. As long as we
consider the deterministic case, this would be absolutely false. And we mention, that the
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second claim in the corollary cannot be applied to expected values of figures like su,v, where
not only the position of the plane, but also the relative position of v to u is relevant.
Let us recall the motivating quantity, the average complexity for solving the canonical LP
(1) completely. We employ a special version of the Simplex-Method, the dimension-by-
dimension method and analyze its behaviour. Our three interpretations for the subproblem
will help to perform that analysis. Now we should clarify how we organize Phase I in our LP
(1). In order to make use of the shadow vertex idea and to meet the stochastic conditions
of our model in all stages of the method, we employ the following (n-stage) method. Let us
denote

Πk(x) :=


x1

...
xk

 for x =


x1

...
xn

 ∈ IRn. (17)

That means that Πk is an orthogonal projection of IRn onto IRk .
And let Ik be the following LP in k variables (k = 1, . . . , n).

maximize Πk(v)
TΠk(x) s. t. Πk(ai)

TΠk(x) ≤ 1 for i = 1, . . . , m

where x, v, a1, . . . , am ∈ IRn and m ≥ n.
(18)

The feasible region of Ik will be called Xk. It is – due to nondegeneracy – a cute polyhedron
(containing vertices). Note that In coincides with the original LP (1). For a complete
solution we may apply the following algorithm.

Dimension-By-Dimension Method

1. Set k = 1 and find a vertex of X1.

2. If existing, find the optimal vertex (x̂1) of I1 . Else go to 6).

3. If k = n, then go to 7). Set k = k + 1.

4. For a k ∈ {2, . . . , n} the solution of Ik−1 may be available. We call it
x̂1

...
x̂k−1

 . Then


x̂1

...
x̂k−1

0

 is feasible for Ik on an edge ofXk. Determine


x̃1

...
x̃k

, which
denotes a vertex incident to that edge. It is even a shadow vertex under projection on
the plane lin (Πk(ek),Πk(v)) .

5. Use lin (Πk(ek),Πk(v)) as projection plane and start the shadow vertex algorithm in
x̃1

...
x̃k

 to find an optimal vertex


x̂1

...
x̂k

 for Ik. Go to 3) if x̂ exists, else to 6).

6. A solution of the complete problem does not exist. STOP

7. The vector x̂ ∈ IRn is the solution of In (the original problem). STOP �
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Now it should be clear that in this method the shadow vertex algorithm is applied in
dimensions k = 2, . . . , n and that these applications determine its complexity, since the
effort for the other calculations is ignorable. So we have in stage k objective gradients
u
(k)
∗ , v

(k)
∗ in lin (Πk(ek),Πk(v)) and by use of the shadow vertex algorithm the “distance”

between the u
(k)
∗ -solution and the v

(k)
∗ - solution has to be bridged. Hence all the estimations

and results mentioned above apply and we have

n∑
k=2

s
u
(k)
∗ ,v

(k)
∗
(a1, . . . , am; u, v) ≤

n∑
k=2

S(k). (19)

It makes sense to concentrate on one stage, namely stage k = n, and to analyze
S(n)(a1, . . . , am; u, v). This is, what we call Phase II of our method. Phase I consists of
the stages k = 1, . . . , n − 1. We ignore the stage-number n and write S. Also the role of
u
(k)
∗ , v

(k)
∗ becomes irrelevant now, because we concentrate on the upper bounds.

Our average-case analysis of the dimension-by-dimension method profits from the new result.
Note that the (truncated) input vectors of Ik in (18), as Πk(ai),Πk(v), are distributed
according to RSM, too. So the stochastic assumptions apply to each use of the shadow
vertex algorithm in step 5) with u replaced by Πk(ek) and v replaced by Πk(v).
For bounding the expected value of the total number of pivot steps st, we simply have to
sum up over all n− 1 applications of the shadow vertex algorithm. A simple upper bound
would result from summation over all values Em,k(S) for k = 2, . . . , n, resp. their upper
bounds given in Theorem 1 with n replaced by k. But that upper bound on the expected
value of st creates a false impression, as we would ignore that most of the RSM-distributions
over IRk are no possible projection-distributions from IRn under Πk. Remember that the
input vectors of Ik are truncated versions of randomly generated vectors in IRn. So they
follow a so-called “projection-distribution.” This shows that we have to deal only with a
subset of the distributions studied for Theorem 1. With elementary techniques on projected
distributions presented in (Borgwardt (1987), pp. 179-186) we can exploit our new result
and show

Theorem 2
For the expected value of the number of shadow vertices in stage k we know that

Em,n(S
(k)) ≤ m

1
n−1 · n · k · Const. (20)

And the expected number of pivot steps st of the dimension-by-dimension method for complete
solution of (1) satisfies

Em,n(st) ≤ m
1

n−1 · n3 · Const. � (21)
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2 Basics of the evaluation

The task of this section is to give a report on the fundamentals of the approach in
Borgwardt (1987), as far as they can be used for our new, refined study, too. Recall our
assumption of nondegeneracy from (3), which assures the validity of the following facts.
Since we have to count a certain subset of the vertices of X and since the impact of the
random data a1, . . . , am on X is rather indirect and complicated to describe, we can profit
from shifting our analysis from the primal space to the corresponding dual space (with re-
spect to our scalar product), where the vectors ai are generated. There we find the polar
polyhedron to X, defined by {y ∈ Rn | yTx ≤ 1 ∀ x ∈ X}. It can easily be seen that in our
case the polar polyhedron coincides with the following polytope:

Y := conv(0, a1, . . . , am). (22)

Since the face-lattice of Y reflects the essential properties of the face-lattice of X in an
antisymmetric way, we can carry out our analysis here, as well. The key to our translation
lies in the following one-to-one correspondence.

Let � be an n-element index set {�1,�2, . . . ,�n} ⊂ {1, . . . , m}. (23)

This index set uniquely defines a point x� as the solution of the system of equations

aT�1x = 1, . . . , aT�nx = 1. (24)

That means that in x� exactly n restrictions are active, hence x� is one of
(
m
n

)
basic

solutions of (1). On the other side, � uniquely defines a simplex conv(a�1 , . . . , a�n) in Y .

Only the
(
m
n

)
basic solutions are candidates for being shadow vertices of X. For becoming a

shadow vertex, x� must simultaneously satisfy two conditions (cf. Borgwardt (1987),p.64)

1. it must be a vertex ofX,which is equivalent to aTi x� ≤ 1 ∀ i /∈ �, (25)

2. it must optimize some objective wTx onX,where w ∈ lin(u, v) ∩ ωn. (26)

Due to the Lemma of Farkas this can equivalently be expressed with the polar polyhe-
dron. conv(a�1 , . . . , a�n) corresponds to a shadow vertex x�, iff simultaneously (cf.
Borgwardt (1987),pp.69–74)

1. conv(a�1 , . . . , a�n) is a facet of Y = conv(0, a1, . . . , am), (27)

2. conv(a�1 , . . . , a�n) ∩ lin(u, v) �= ∅. (28)

As S denotes the number of shadow vertices, we can use that characterization in the space of
the ai’s to formulate an integral representation for Em,n(S) by means of stochastic geometry
(cf. Borgwardt (1987),p.122). It describes the probability, that a certain basic solution of
problem (10) actually is a shadow vertex, and it multiplies that probability with the number

of candidates, i.e.
(
m
n

)
.
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Throughout the paper, I will stand for an indicator function and P for probability.

Em,n(S) =

(
m

n

)
·
∫

IRn

. . .
∫

IRn

I(conv(a1, ..., an) is a facet of conv(0, a1, ..., am)) ·

·I(conv(a1, ..., an) is intersected by lin(u, v)) ·
·f(a1) · · ·f(an)f(an+1) · · · f(am)f(u)f(v) da1 . . . dam du dv .(29)

The intersection-event of the plane with a simplex conv(a1, . . . , an) can easier be described
via intersection-events with side-simplices conv(a1, . . . , ai−1, ai+1, . . . , an). We make use of:

Each intersection of lin(u, v) with conv(a1, . . . , an) produces exactly two intersected simplex
sides of type conv(a1, . . . , ai−1, ai+1, . . . , an) . And for a fixed (n− 2)-dimensional simplex
conv(a1, . . . , an−1) we have due to RSM (cf. Borgwardt (1987),p.129)

P (lin(u, v) intersects conv(a1, . . . , an−1) ) = 2 ·W (a1, . . . , an−1), (30)

where W (a1, . . . , an−1) is defined as the spherical angle of cone(a1, . . . , an−1) , i.e.

W (a1, . . . , an−1) :=
λn−1 {cone(a1, . . . , an−1) ∩ Ωn}

λn−1{Ωn−1} =
λn−2 {cone(a1, . . . , an−1) ∩ ωn}

λn−2{ωn−1} (31)

Hence P (lin(u, v) intersects conv(a1, . . . , an)) =
n∑

i=1

W (a1, . . . , ai−1, ai+1, . . . , an). (32)

Exploiting the rotation symmetry of f , (29) amounts to an integral-formula (cf.
Borgwardt (1987),p.124)

Em,n(S) =

(
m

n

)
n
∫

IRn

...
∫

IRn

G(h[a1, ..., an])
m−nW (a1, ..., an−1)f(a1) · · · f(an)da1...dan. (33)

Here, h[a1, ..., an] is the distance from the origin to the hyperplane containing {a1, ..., an}. We
use G(h) for the marginal distribution function of our distribution along the n-th coordinate
and g(h) for the marginal density function. That means

G(h) := P{x | xn ≤ h} =
∫

IRn

I(xn ≤ h)f(x)dx =

h∫
−1

g(q)dq.

The integral representation achieved by that way can be simplified significantly by two
coordinate-transformations (cf. Borgwardt (1987),pp.134-137 and 145-147). In the first
transformation we perform a rotation which puts all the basic points a1, . . . , an into a hy-
perplane {x|xn = h}, and we substitute the points ai, i = 1, . . .m by vectors bi, i = 1, . . .m.
After that we have bni = h ≥ 0 ∀i = 1, . . . n. Since we used a rotation, we have preserved
all stochastic features because of RSM.
The same holds for our second transformation, which is a rotation in IRn−1. Now we
replace the vectors b1, . . . , bm by vectors c1, . . . , cm such that for n − 1 of the basic vec-
tors, namely for c1, . . . , cn−1, we have coincidence even in the (n − 1)th coordinate, i.e.
cn−1
i = Θ ≥ 0 ∀i = 1, . . . n− 1 . Still, of course cni = h ≥ 0 ∀i = 1, . . . n.

11



Lower indices in connection with vectors will distinguish different vectors, whereas upper
indices are used to characterize their components. If such a component appears with an
exponent, then the component is included in brackets, e.g. (ck)

2
or [ck]

2
.

So c1, . . . , cn are (column-)vectors in IRn, and c = (c1, . . . , cn)T .

c = (c1, . . . , cn−1)T and c = (c1, . . . , cn−2)T give the corresponding truncated vectors.

The result of these two rotations is of the following form:

Em,n(S) =

(
m

n

)
· n · {(n− 2)!}2 · λn−1{ωn} · λn−2{ωn−1}·

·
1∫

0

G(h)m−n
∫

IRn−1

√
1−h2∫
0

|Θ− cn−1
n |

∫
IRn−2

· · ·
∫

IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2 ·

·W (c1, . . . , cn−1) f(c1) · · · f(cn−1) dc1 . . . dcn−1 dΘf(cn) dcn dh. (34)

That integral describes the expected number of those facets of the polytope
conv(0, a1, . . . , am) which do not contain the origin and are intersected by lin(u, v). But
this integral does – up to now – not admit a direct evaluation of a satisfactory precision.
Only for the asymptotic configuration of dimensions (m → ∞, n fixed), such a direct eval-
uation led to reliable results as in Borgwardt (1982a).
The crucial idea to obtain a good estimation in the case of moderate dimensions was the
following: compare the figure Em,n(S) with a closely related figure Em,n(Z), which gives the
expected number of facets being intersected by the ray IR+v. The figure Z is at most 1 in
all nondegenerate cases, because then a random ray will leave Y already at the origin or in
the interior of one facet and those facets do not overlap. To derive an integral-formula for
Em,n(Z), we introduce V (a1, . . . , an) as the spherical angle of cone(a1, . . . , an).

V (a1, . . . , an) :=
λn {Ωn ∩ cone(a1, . . . , an)}

λn{Ωn} =
λn−1 {ωn ∩ cone(a1, . . . , an)}

λn−1{ωn} . (35)

And, rotation symmetry (cf. Borgwardt (1987),p.143) provides that for a fixed (n− 1)-
dimensional simplex conv(a1, . . . , an) we have

P (IR+v intersects conv(a1, . . . , an) ) = V (a1, . . . , an). (36)

Corresponding to (33), the integral formula for Z is:

Em,n(Z) =

(
m

n

) ∫
IRn

...
∫

IRn

G(h[a1, ..., an])
m−nV (a1, ..., an)f(a1) · · ·f(an)da1...dan. (37)

12



And after the same coordinate-transformations as above, we have

Em,n(Z) =

(
m

n

)
· {(n− 2)!}2 · λn−1{ωn} · λn−2{ωn−1}·

·
1∫

0

G(h)m−n
∫

IRn−1

√
1−h2∫
0

|Θ− cn−1
n |

∫
IRn−2

· · ·
∫

IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2 ·

·V (c1, . . . , cn) f(c1) · · ·f(cn−1) dc1 . . . dcn−1 dΘf(cn) dcn dh. (38)

This comparison turns out to be advantageous, since we know that

Em,n(Z) ≤ 1, (39)

and therefore
Em,n(S) ≤ Em,n(S)

Em,n(Z)
. (40)

That means that as soon as we have a good upper bound for the quotient, then we are done.

The similarity of the integrals in numerator and denominator simplifies the evaluation of
the quotient. Its estimation becomes much easier than direct calculation of (34).

A main trick in our derivation of an upper-bound for Em,n(S)
Em,n(Z)

(as desired in (40)) is the

“Principle of Pointwise Comparison”. For application of that principle, we dissect the set of
all configurations in the common integration area of (34) and (38) in a number of cells, and
compare the contributions of each such cell to the numerator- and denominator-integral in
(40). Then we know that the quotient of (34) and (38) cannot exceed the maximal quotient
observed at single cells. The dissection is chosen in such a way that the comparison becomes
easy and that the maximum mentioned above stays small.
Precisely, we form cells by collecting the set of all configurations with identical values of
t :=

√
h2 + Θ2. We can calculate such a t-contribution by integrating over the contributions

of all pairs (Θ, h) with Θ =
√
t2 − h2. For studying the contribution of one such pair

we have to integrate over all potential configurations of the points c1, . . . , cn−1, cn, where
cn1 = . . . cnn = h and cn1 = . . . cn−1

n−1 = Θ.
Note that the change from one such set with characteristic pair (Θ, h) to another with (Θ′, h′)

and t :=
√
h′2 + Θ′2 simply results from a rotation in the space of the (n− 1)-th and the

n-th coordinate, and that such a rotation leaves the other coordinates unchanged. Here the
assumption of rotation symmetry guarantees that every configuration of points for (Θ, h)
has its analogous counterpart in the set with (Θ′, h′) and that many figures in the integrals

13



c2

c1

3c

Figure 1: The configuration for n = 3 after the two coordinate-transformations. In the left figure
we look from above (the position of e3) down on the gray disk illustrating the region {x ∈ Ω3 |x3 =
h}. c1 and c2 have got an identical second coordinate, i.e. c1

2 = c2
2 = T . The point in the center

of that region is h · e3. The line bearing c1 and c2 has distance T to h · e3 and distance t to the
origin. The ellipse illustrates the intersection of ω3 with the (hyper-)plane H, which contains the
origin, c1 and c2. In the right figure we look from the side on the plane of the coordinates x2, x3.
We see in height h the disk mentioned above, bearing c1, c2, c3. The symbol c12 is used, because
from our perspective c1 is covered by c2. In addition, we see a triangle explaining the role of the
values t, h, T . The diagonal line shows H ∩ ω3. We recognize its “highest” and its “lowest point”
with respect to x3. Finally, we see z, the normal vector to H, positively oriented towards e3.

remain constant under such a rotation. This simplifies the integration over the dissection-
subset, since constant factors will not cause complications. And it makes a significant
reduction of the quotient possible, since these constant factors appear simultaneously in the
numerator- and the denominator-integral. Some of these advantages are

• the internal distribution of the “random variables” (c,Θ, h)T in {c | cn = h, cn−1 = Θ}
is identical for all pairs (h,Θ) with constant value of t :=

√
h2 + Θ2 ,

• the value of the integrals
∫

IRn−2

· · · ∫
IRn−2

f(c1) · · ·f(cn−1) dc1 . . . dcn−1 is independent of

h as long as t is fixed,

• the spherical measures W (c1, . . . , cn−1) do not vary, when c1, . . . , cn−1 and t remain
fixed, although h and Θ may vary simultaneously.

We would loose these advantages, if we tried to integrate over configurations with varying
values of t.
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With the substitution t :=
√
h2 + Θ2 , T :=

√
t2 − h2 we obtain

Em,n(S)

Em,n(Z)
=

(
m
n

)
· n · {(n− 2)!}2 · λn−1(ωn) · λn−2(ωn−1)·(

m
n

)
· {(n− 2)!}2 · λn−1(ωn) · λn−2(ωn−1)·

·
1∫
0
t

t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n | ∫

IRn−2

· · · ∫
IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2·

·
1∫
0
t

t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n | ∫

IRn−2

· · · ∫
IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2·

·W (c1, . . . , cn−1) f(c1) · · ·f(cn−1) dc1 . . . dcn−1 f(cn) dcn dh dt

·V (c1, . . . , cn) f(c1) · · ·f(cn−1) dc1 . . . dcn−1 f(cn) dcn dh dt
. (41)

Here we can exploit the “Principle of Pointwise Comparison,” by writing

Em,n(S)

Em,n(Z)
≤ sup

t∈ (0,1]
PQ(t) and defining PQ(t) as the pointwise quotient for t. (42)

PQ(t) :=

n ·
t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n | ∫

IRn−2

· · · ∫
IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2·

·
t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n | ∫

IRn−2

· · · ∫
IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2·

·W (c1, . . . , cn−1) f(c1) · · · f(cn−1) dc1 . . . dcn−1 f(cn) dcn dh

·V (c1, . . . , cn) f(c1) · · ·f(cn−1) dc1 . . . dcn−1 f(cn) dcn dh
= (43)

=

n ·
t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n | ∫

IRn−2

· · · ∫
IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2·
t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n | ∫

IRn−2

· · · ∫
IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2·

·W (c1, . . . , cn−1) f(c1) · · ·f(cn−1) dc1 . . . dcn−1 f(cn) dcn dh

· V (c1,...,cn)
W (c1,...,cn−1)

·W (c1, . . . , cn−1) f(c1) · · ·f(cn−1) dc1 . . . dcn−1 f(cn) dcn dh
(44)

From now on let us fix the value of t and try to find a bound on PQ(t), independent of t.
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3 Comparison of spherical angles

Formula (44) indicates that the main technical task is to clarify the relation between V and
W . Note that both are spherical measures of cones, but of different dimensions. Whereas
V measures a full dimensional cone, spanned by (c1, . . . , cn), W deals only with one side of
this cone, namely cone(c1, . . . , cn−1). Its spherical measure W is associated with ωn−1, as it
measures a part of a unit sphere in a hyperplane of dimension n−1. Thus, the position of cn
gains an extraordinary significance. Note that (44) describes the inverse of an expectation
value of the random variable V

W
(under a rather strange distribution).

In this section, we explain two different strategies, which can be used for that comparison.
The first was employed in Borgwardt (1987) and the second is the basis for our new result.

In the old approach we derived a relatively simple estimation of V (c1,...,cn)
W (c1,...,cn−1)

and inserted

this into (44). Unfortunately, this method caused a considerable underestimation.
Before explaining the new approach, let us generalize the use of conv and cone such that also
complete sets (and not the elements of these sets) are treated as generators for forming the
convex (conical) hull. This is done because we will have to deal with nonconvex sets, whose
single elements are combined with an augmenting point by forming the convex hull of both
points. But this operation does not form the convex hull of the mentioned nonconvex set. If
M is a set, then ˜conv(x,M) (c̃one(x,M)) means the set of all convex (conical) combinations
of x with single points y ∈ M . Formally:

˜conv(x,M) =
⋃

γ∈[0,1]
γx+ (1− γ)M and c̃one(x,M) =

⋃
ρ1,ρ2∈[0,∞)

ρ1x+ ρ2M.

Note that this may differ from conv(x,M), the convex hull of {x}∪M . And also cone(x,M)
may differ from c̃one(x,M). If we apply these operators to one generator-set only, then we
recognize that ˜conv(M) = M and c̃one(M) =

⋃
ρ∈[0,∞)

ρM.

The Cavalieri-Principle states the following:
The volume of an n-dimensional area (or body) enclosed between two parallel hyperplanes
H0 and H1 can be calculated by integrating over all (n − 1)-dimensional volumes resulting
from intersecting the area (body) and hyperplanes H, which are parallel to H0 and H1.

This principle enables us to determine the volume of the body, if the size of all intersection
areas is known and the resulting integral can be solved easily.
Both advantages are available, if our area (body) has the general structure ˜conv(c,M),
where c is an arbitrary point in IRn and M is a measurable (n − 1)-dimensional subset
of a hyperplane H0. ˜conv(c,M) is enclosed between H0 and H1, where the latter is the
hyperplane, which is parallel to H0 and contains c. Then all intersection areas with parallel
hyperplanes are scaled copies of M . If we define τ as the quotient τ := dist(c,H)

dist(c,H0)
with H for

the intersecting hyperplane, then the correponding intersection-volume is λn−1{M} · τn−1.
Integration over all parallel hyperplanes yields the well-known formula for the volume of˜conv(c,M)
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V olume =
1

n
× (height of c)× (size of ground area M) =

1

n
· dist(c,H) · λn−1{M}. (45)

This result can be applied to the following special case. Replace c �∈ H by cn, H by
H(0, c1, . . . , cn−1), M by cone(c1, . . . , cn−1) ∩ Ωn. Then our formula yields

λn

{ ˜conv( cn
||cn|| , cone(c1, . . . , cn−1) ∩ Ωn

)}
=

=
1

n
· λn−1 {cone(c1, . . . , cn−1) ∩ Ωn} · dist

(
cn
||cn|| , H(0, c1, . . . , cn−1)

)
. (46)

On the other hand we know that

λn

{ ˜conv( cn
||cn|| , cone(c1, . . . , cn−1) ∩ Ωn

)}
≤ λn {cone(c1, . . . , cn) ∩ Ωn} , (47)

because the set on the right side is convex and contains cn
||cn|| and cone(c1, . . . , cn−1) ∩ Ωn.

Recalling the definitions of W (c1, . . . , cn−1) in (31) and of V (c1, . . . , cn) in (35) yields

V (c1, . . . , cn)

W (c1, . . . , cn−1)
≥

λn

{ ˜conv ( cn
||cn|| , cone(c1, . . . , cn−1) ∩ Ωn

)}
λn−1 {cone(c1, . . . , cn−1) ∩ Ωn} · λn−1{Ωn−1}

λn{Ωn} =

=
1

n
· dist

(
cn
||cn|| , H(0, c1, . . . , cn−1)

)
· λn−1{Ωn−1}

λn{Ωn} . (48)

The insertion of this formula into (44) was the basis for the successful overestimation in
Borgwardt (1987).

Now it is time to present the new evaluation method. We avoid proceeding to (44) and
consider formula (43). It will be our aim to reformulate W (c1, . . . , cn−1) and V (c1, . . . , cn)
such that their close relationship becomes evident and that the precision of our estimation
remains high. Before going into details, we introduce some notation.

Definition 1
1. Let � (x, y) denote the angle between two vectors x and y. Correspondingly, we write

� (cn, lin(c1, . . . , cn−1)) for the minimal angle between cn and lin(c1, . . . , cn−1), resp. the
hyperplane H(0, c1, . . . , cn−1).

2. Let z = z(c1, . . . , cn−1) be the normal vector on lin(c1, . . . , cn−1). In order to make this
correspondence unique, let that z be positively oriented towards en. Since after our
two coordinate-transformations as in (43), z does only depend on the variables T and
h, it is also useful and admitted to write z = z[T, h].

As we have already fixed the value of t, we may now – for the moment – also fix the loca-
tion of the hyperplane H containing 0, c1, . . . , cn−1 and of the augmenting point cn

||cn|| (in a

nondegenerate configuration, since degenerate cases do not contribute to (43)). As long as
we rely on that fixation, we shall abbreviate H := H(0, c1, . . . , cn−1).
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Figure 2: A spherical triangle generated by three (normalized) points c1, c2, c3. Our task is to
compare the size of the conical sector spanned by these points with that of the two-dimensional
sector spanned by c1, c2 only. In the right figure we see a subset of the 3-dimensional sector, whose
volume can easily be calculated using the Cavalieri-Principle. Here the surface is given by connect-
ing c3 with the points of the bow from c1 to c2 directly by straight lines. Note that this surface
traverses the interior of the unit ball and that the size of the subset on the right underestimates the
size of the full sector significantly. This right surface can in our generalized terminology be written
as c̃onv(c3, cone(c1, c2) ∩ ωn), and the calculated sector is c̃onv(c3, cone(c1, c2) ∩ Ωn), whereas in
the left figure we see cone(c1, c2, c3) ∩ ωn and cone(c1, c2, c3) ∩Ωn.

We are going to show that it is possible to formulate both spherical angles W (c1, . . . , cn−1)
and V (c1, . . . , cn) as integrals over an appropriate subset of ωn ∩H .

It is a tautology to see that

W (c1, . . . , cn−1)λn−2{ωn−1} = λn−2 {cone(c1, . . . , cn−1) ∩ ωn} =
∫

cone(c1,...,cn−1)∩ωn

λn−2{dn−1w}, (49)

and that correspondingly

V (c1, . . . , cn)λn−1{ωn} = λn−2 {cone(c1, . . . , cn) ∩ ωn} =
∫

cone(c1,...,cn)∩ωn

λn−1{dnw̆}, (50)

when we use w and w̆ for the respective integration variables. dnw̆ stands for the surface-
element over ωn, and dn−1w works accordingly for ωn−1 or ωn ∩H .
It is very important and useful that even V (c1, . . . , cn) · λn−1{ωn} can be written as an
integral over cone(c1, . . . , cn−1) ∩ ωn, similarly to (49). This is proven in

Lemma 1
For fixed z = z(c1, . . . , cn−1) = z[T, h] and every nondegenerate set {c1, . . . , cn−1} inducing
exactly that z, and as long as cn �∈ H, there exists a function Υ( cn

||cn|| , z;w), defined for
w ∈ H ∩ ωn, such that

V (c1, . . . , cn)λn−1{ωn} = λn−1 {cone(c1, . . . , cn) ∩ ωn} =
∫

cone(c1,...,cn−1)∩ωn

Υ(
cn
||cn|| , z;w)λn−2{dn−1w}.
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Figure 3: Imagine that we look at the hemisphere ω3 ∩ {x|zTx ≥ 0} from the position of z (the
“northpole”). Assume that the bounding circle ω3 ∩ {x|zTx = 0} = ω3 ∩ H (the “equator”) is
dissected in 12 sections M1, . . . ,M12 of equal size. In the left figure we have put c3 on a general
place in the hemisphere and in the right figure exactly at z. Now we can observe the impact of
the “projection along the sphere” Π̆c3 . The sectors given in different patterns on the hemisphere
illustrate the respective preimages of the 12 circle-sections under that projection. In the right figure
we obtain a uniform distribution, where the preimages all have equal sizes. But in the left figure
the corresponding attribution is far from being uniform. Increasing the number of circle-sections
and decreasing their size leads (in the limit) to an illustration for the density Υ(e3, z;w).

Proof
Without loss of generality, let cTnz > 0. (For cTnz < 0, the proof would work analogously).
Note that every set of type cone(c1, . . . , cn) ∩ ωn has the general structure c̃one(c,M) ∩ ωn,
where c is a point on ωn and M is a measurable set in H ∩ ωn.
We set H+ := {x|zTx ≥ 0} and define a finite measure λn−1{M̆} for measurable sets
M̆ ⊂ ωn ∩H+ (the hemisphere above H(0, c1, . . . , cn−1)).
Let us denote this measure by κ̆.
On the other hand we have the finite Lebesgue-measure λn−2{M} on H ∩ωn for measurable
sets M on that space. To avoid confusions, we call that measure ν and have

ν{M} =
∫
M

λn−2{dn−1w}.

Now we introduce Π̆c, a “projection along the sphere”, which maps the hemisphere ωn∩H+

onto the subdimensional sphere H ∩ ωn. Π̆c maps x̆ ∈ ωn ∩ {x|zTx ≥ 0} as follows:

Π̆c(x̆) = H ∩ cone(c, x̆,−c) ∩ ωn =
x̆− γ · z
||x̆− γ · z|| , where γ =

zT x̆

zT z
= zT x̆.

It is clear that zT ( x̆−γ·z
||x̆−γ·z||) = 0, hence Π̆c(x̆) ∈ H ∩ ωn, and that Π̆c is a projection. This

mapping is measurable and it induces a new measure κ on H ∩ ωn via the measure-transfer
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rule κ{M} := κ̆{Π̆−1
c (M)} for every measurable set M ⊂ H ∩ ωn, because Π̆−1

c (M) is a
measurable set on ωn ∩H+. Note that as long as c �∈ H , we have

Π̆−1
c (M) = c̃one(c,M) ∩ ωn,

and that κ is proportional to ν only in the very special case, where c = z. Then

κ = ν · λn−1{ωn}
2 · λn−2(ωn−1)

.

Moreover, the new (artificial) measure κ is ν-continuous, because for every measurable set
with λn−2{M} = ν{M} = 0 it is clear that as long as c �∈ H

κ{M} = κ̆{Π̆−1
c (M)} = κ̆{c̃one(c,M) ∩ ωn} = λn−1 {c̃one(c,M) ∩ ωn} = 0.

For this configuration, the Theorem of Radon-Nykodym confirms that κ posesses a density
relative to ν. And this means for our situation, where c = cn

||cn|| and z = z(c1, . . . , cn−1) are

fixed, that there is a function of w ∈ H ∩ ωn, denoted by Υ( cn
||cn|| , z[T, h];w), representing

this ν-density of κ, which satisfies for every measurable set M ⊂ H ∩ ωn:

λn−1

{
c̃one

(
cn
||cn|| ,M

)
∩ ωn

}
= κ̆

{
c̃one

(
cn
||cn|| ,M

)
∩ ωn

}
=

= κ̆{Π̆−1
c (M)} = κ{M} =

∫
M

Υ(
cn
||cn|| , z[T, h];w)ν{dn−1w} =

=
∫
M

Υ(
cn
||cn|| , z[T, h];w)λn−2{dn−1w}. (51)

(We write the semicolon, because the parameters left of it indicate that for different values
of cn

||cn|| and z[T, h] the density-functions will be different, which is meaningless for the present

configuration, where cn and z are fixed.)

But now we can replace M by cone(c1, . . . , cn−1) ∩ ωn and

c̃one

(
cn
||cn|| ,M

)
by c̃one

(
cn
||cn|| , cone(c1, . . . , cn−1)

)
= cone(c1, . . . , cn).

So we learn that

V (c1, . . . , cn) · λn−1{ωn} = λn−1 {cone(c1, . . . , cn) ∩ ωn} = (52)

=
∫

cone(c1,...,cn−1)∩ωn

Υ(
cn
||cn|| , z[T, h];w)λn−2{dn−1w}. �

Now measure theory gives the following additional information:

Remark 1
Any arbitrary density simulating the impact of κ can differ from Υ( cn

||cn|| , z[T, h];w) only on
a nullset with respect to ν = λn−2. �

These integral-formulas forW and V give us an alternative to the Cavalieri-underestimation.
In the next section, we try to calculate and to quantify Υ( cn

||cn|| , z[T, h];w).
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4 A refined analysis of the spherical angle

In order to install a more precise estimation for V (c1, . . . , cn), we must know
Υ( cn

||cn|| , z[T, h];w), as introduced in Lemma 1, resp. in (52).
We have to generalize the use of V and W – as we did it with ˜conv, c̃one – and study

Ṽ
(

cn
||cn|| ,M(w)

)
W̃ (M(w))

=
λn−1

{
c̃one

(
cn
||cn|| ,M(w)

)
∩ ωn

}
λn−2{M(w) ∩ ωn} · λn−2{ωn−1}

λn−1{ωn}
for points w in ωn∩H , and for very small areas M(w) about w in ωn∩H . We are interested
in the spherical angle (with respect to ωn) induced byM(w) in cooperation with an arbitrary
point cn

||cn|| ∈ ωn, i.e.

Ṽ

(
cn
||cn|| ,M(w)

)
=

λn−1

{
c̃one

(
cn
||cn|| ,M(w)

)
∩ ωn

}
λn−1{ωn} .

As before, z shall denote the normal vector to H(0, c1, . . . , cn−1) (normalized and positively
oriented towards en). Throughout this section c1, . . . , cn−1 and H = H(0, c1, . . . , cn−1) will
be kept fixed. en is the vector (0, . . . , 0, 1)T , which will be regarded as the “north pole of
ωn.” W. l. o. g. we may assume that 1

||cn||cn and en belong to the same halfspace induced
by H . The other case, where cn and en belong to opposite halfspaces, can be treated sym-
metrically. It is even allowed to identify 1

||cn||cn with en, and to assume that zT en > 0 in
order to learn how to calculate the spherical angles. This configuration is much simpler
to imagine, to illustrate and to describe than the general case. We are going to make use
of that simplification for local purposes, as in some proofs (where indicated). Claims are
stated for the general configuration.

This section has the task to give the confirmation of the following auxiliary result.

Proposition 1
If cn

||cn|| and z[T, h] are fixed, and if cn
||cn|| /∈ H, then the density function is of the form

Υ(
cn
||cn|| , z[T, h];w) :=

λn−2{ωn−1}
λn−1{ωn} · dist

(
cn
||cn|| , H

)
·

· 1

(1− ( cn
||cn||

Tw)
2
)
n−1
2

1∫
cn

||cn||
Tw

√
1− h2

n−3
dh, (53)

and the spherical angle generated by cone(c1, . . . , cn) admits the formulation

V (c1, . . . , cn) =
λn−2{ωn−1}
λn−1{ωn} · dist

(
cn
||cn|| , H

)
· (54)

·
∫

cone(c1,...,cn−1)∩ωn

1

(1− ( cn
||cn||

Tw)
2
)
n−1
2

1∫
cn

||cn||
Tw

√
1− h2

n−3
dh λn−2{dn−1w}. �
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The following measure-method for spherical angles of a simple structure is elementary and
well-known from standard calculus. We cite it without proof and use it as a basic tool for
the calculation of more complicated angles.

Remark 2
Consider a measurable set K ⊂ {x | ||x|| = 1, xn = 0} and c̃one(K), and the spherical
measure of the (general) cone generated by the set K and the point en. Then the spherical
measure of the spherical set c̃one(en, K,−en) ∩ ωn ∩ {x|xn ≥ h}, where h ∈ (−1,+1), is

λn−1

{
c̃one(en, K,−en) ∩ ωn ∩ {x|xn ≥ h}

}
λn−1{ωn} =

=
λn−2{ωn−1}
λn−1{ωn}

1∫
h

√
1− h2

n−3
dh

λn−2 {K ∩ ωn−1}
λn−2{ωn−1} =

=
λn−2{ωn−1}
λn−1{ωn}

1∫
h

√
1− h2

n−3
dh · λn−1 {c̃one(K) ∩ Ωn−1}

λn−1{Ωn−1} . (55)

Based on (55), we can determine a function Υ̂( cn
||cn|| , z[T, h], w) with the following property.

Lemma 2
Let z and cn with zT cn > 0 be fixed. And let w be a point of ωn ∩H. Consider a sequence
of positive δ-values such that δ → 0+. Let M δ(w) be a corresponding sequence of sets in
ωn ∩H with M δ(w) ⊂ {x| � (x, w) < δ}, and W̃ (M δ(w)) > 0. Then the approximation-error
in the formula

Υ̂(
cn
||cn|| , z[T, h], w) =

λn−2{ωn−1}
λn−1{ωn}

1∫
cn

||cn||
Tw

√
1− h2

n−3
dh ·

| cos ( � ( cn
||cn|| , z))|

(1− ( cn
||cn||

Tw)
2
)
n−1
2

(56)

≈
Ṽ
(

cn
||cn|| ,M

δ(w)
)

W̃ (M δ(w))
=

λn−2{ωn−1}
λn−1{ωn} ·

λn−1

{
c̃one

(
cn
||cn|| ,M

δ(w)
)
∩ ωn

}
λn−2 {c̃one(M δ(w)) ∩ ωn} (57)

converges uniformly to 0 for δ → 0+.
That means that for every ε > 0 we can find a value δ(ε, z), independent of w, such that
this error is smaller than ε for all w ∈ ωn ∩H. �

Proof
In this proof we identify cn

||cn|| with en . Then −1 < cn
||cn||

Tw = wn < 1.

For the beginning, we may abbreviate M(w) := M δ(w) for a (so far) fixed δ.
Let Π : IRn → IRn−1 ×{0} describe the orthogonal projection on IRn−1 ×{0}, which sends
x = (x1, . . . , xn)T to x = (x1, . . . , xn−1, 0)T .
Then we discover an “equatorial counterpart” K[M(w)] of M(w) defined as

K[M(w)] := Π(c̃one(M(w))) ∩ {x | ||x|| = 1, xn = 0} and c̃one(K[M(w)]). (58)

Throughout this proof we use positive reals τ and τ to describe

inf{xn|x ∈ M(w)} := wn − τ and sup{xn|x ∈ M(w)} := wn + τ .
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Hence ∀ x ∈ M(w) : wn − xn ≤ τ and xn −wn ≤ τ . Without loss of generality we may
assume that either M(w) ⊂ {x | ||x|| = 1, xn ≥ 0} or M(w) ⊂ {x | ||x|| = 1, xn ≤ 0}. (If both
signs exist in M(w), we divide it in one part “above” and one part “below” the “equator”
{x | ||x|| = 1, xn = 0} and apply the proof to both parts separately).

So, we start with the positive case. Here, we observe a set-inclusion for c̃one(en,M(w))∩ωn:

c̃one(en, K[M(w)]) ∩ ωn ∩ {x|xn ≥ wn + τ} ⊂ c̃one(en,M(w)) ∩ ωn

⊂ c̃one(en, K[M(w)]) ∩ ωn ∩ {x|xn ≥ wn − τ}. (59)

The consequence is

λn−1 {c̃one(en, K[M(w)]) ∩ ωn ∩ {x|xn ≥ wn + τ}} ≤ λn−1 {c̃one(en,M(w)) ∩ ωn}
≤ λn−1 {c̃one(en, K[M(w)]) ∩ ωn ∩ {x|xn ≥ wn − τ}} . (60)

Application of (55) leads to

λn−2{ωn−1}
λn−1{ωn}

1∫
wn+τ

√
1− h2

n−3
dh · λn−1 {c̃one(K[M(w)]) ∩ Ωn−1}

λn−1{Ωn−1} (61)

≤ λn−1 {c̃one(en,M(w)) ∩ ωn}
λn−1{ωn} =

λn {c̃one(en,M(w)) ∩ Ωn}
λn{Ωn} = Ṽ (en,M(w)) (62)

≤ λn−2{ωn−1}
λn−1{ωn}

1∫
wn−τ

√
1− h2

n−3
dh · λn−1 {c̃one(K[M(w)]) ∩ Ωn−1}

λn−1{Ωn−1} . (63)

This inclusion result for Ṽ (en,M(w)) from (62) should be compared with

W̃ (M(w)) =
λn−2 {M(w) ∩ ωn}

λn−2{ωn−1} =
λn−1 {c̃one (M(w) ∩ Ωn)}

λn−1{Ωn−1} .

For this quantity we make use of

λn−1 {Π(c̃one(M(w)) ∩ Ωn)} = cos( � (en, z)) · λn−1 {c̃one(M(w)) ∩ Ωn} . (64)

But our set-inclusion delivers

c̃one(K[M(w)]) ∩ Ωn−1

(√
1− [wn + τ ]2

)
⊂ Π(c̃one(M(w)) ∩ Ωn) (65)

⊂ c̃one(K[M(w)]) ∩ Ωn−1

(√
1− [wn − τ ]2

)
,

and hence

λn−1 {c̃one(K[M(w)]) ∩ Ωn−1} ·
(√

1− [wn + τ ]2
)n−1

=
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M(w)

M(w)

Figure 4: The left figure shows a spherical triangle generated by e3 = c3 and a small area
M(w) ⊂ H ∩ ωn. M(w) has w as its central point and it is the intersection set of the spherical
triangle with the ellipse illustrating the location of H. Also we see the conical sector generated
by M(w). Its size is proportional to W̃ (M(w)). In the right figure we look down from e3 and
recognize, that both areas have the same image when orthogonally projected on the equatorial
plane lin(e1, e2). It gives a hint how to bound W̃ (M(w)). The projection image of M(w) lies
between two circles. Reduction of the cone to the inner circle resp. extension to the outer circle
will provide a lower resp. an upper bound for the size of the image. If we take into account that
the projection hits the conical sector under a certain angle, which causes a known reduction of its
size under our projection, we can derive bounds for the size of M(w).

= λn−1

{
c̃one(K[M(w)]) ∩ Ωn−1(

√
1− [wn + τ ]2 )

}
≤ λn−1 {Π(c̃one(M(w)) ∩ Ωn)} = cos( � (en, z)) · λn−1 {c̃one(M(w)) ∩ Ωn} = (66)

= cos( � (en, z)) · λn−1{Ωn−1} · W̃ (M(w)) ≤ (67)

≤ λn−1

{
c̃one(K[M(w)]) ∩ Ωn−1(

√
1− [wn − τ ]2 )

}

= λn−1 {c̃one(K[M(w)]) ∩ Ωn−1} ·
(√

1− [wn − τ ]2
)n−1

.

Since cos(� (en, z)) > 0, we can divide (62) by (67), and we can conclude from that result:

λn−2{ωn−1}
λn−1{ωn}

1∫
wn+τ

√
1− h2

n−3
dh · cos( � (en, z))(√

1− [wn − τ ]2
)n−1 = (68)

=

λn−2{ωn−1}
λn−1{ωn}

1∫
wn+τ

√
1− h2

n−3
dh · λn−1{c̃one(K[M(w)]) ∩ Ωn−1} · cos( � (en, z))

λn−1{c̃one(K[M(w)]) ∩ Ωn−1} ·
(√

1− [wn − τ ]2
)n−1 (69)
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≤ λn {c̃one(en,M(w)) ∩ Ωn} · λn−1{Ωn−1}
λn−1 {c̃one(M(w)) ∩ Ωn} · λn{Ωn} =

Ṽ (en,M(w))

W̃ (M(w))
(70)

≤
λn−2{ωn−1}
λn−1{ωn}

1∫
wn−τ

√
1− h2

n−3
dh · λn−1 {c̃one(K[M(w)]) ∩ Ωn−1} · cos( � (en, z))

λn−1 {c̃one(K[M(w)]) ∩ Ωn−1}
(√

1− [wn + τ ]2
)n−1 (71)

=

λn−2{ωn−1}
λn−1{ωn}

1∫
wn−τ

√
1− h2

n−3
dh · cos( � (en, z))(√

1− [wn + τ ]2
)n−1 . (72)

Note that not only Ṽ (en,M(w))

W̃ (M(w))
from (70) but also Υ̂(en, z, w) from (56) is bounded between

(72) and (68). To study the difference of both, just have a short look on the geometry of
ωn ∩H .

Figure 5: In the left figure we see the foreground of the unit ball and two spherical triangles
generated by e3 = c3 and two examples of small areas M(w) ⊂ H ∩ ω3. H is illustrated by the
diagonal line. M(w) is the respective border betweeen the small triangles at the bottom . The
true size of Ṽ (e3,M(w)) results from adding the stripe with horizontal bottom line above H and
the small triangle above H. We can underestimate the size of V (e3,M(w)) by measuring only that
stripe and ignoring the triangle. We can overestimate it by adding the stripe and both triangles,
even that below H. This overestimation-method again delivers a (this time larger) stripe with
horizontal bottom line. In the right figure we observe the conical sector generated by M(w) of the
right example from above (position e3). Bounding the size of W̃ (M(w)) can be done analogously,
using the fact that M(w) completely lies in the ring between two level-circles, and proceeding as
mentioned above.

Our hyperplane H is determined by the vector z = (0, . . . , 0, zn−1, zn)T . Taking the de-
pendence z = z[T, h] into regard, shows that zn−1 = −h

t
and zn = T

t
. We recall that

25



zn > 0 and observe that the “highest point” (with maximal n-th coordinate ) in ωn ∩H is

z⊥ = (0, . . . , 0, zn,−zn−1)T = (0, . . . , 0, T
t
, h
t
)T , where 0 ≤ −zn−1 =

√
1− [zn]2 = h

t
< 1. It

is clear that for any y ∈ ωn ∩H we have

√
1− [yn]2 ≥

√√√√1−
[
h

t

]2
, and this explains

√
1− [wn − τ ]2 ≥

√√√√1−
[
h

t

]2
and

√
1− [wn + τ ]2 ≥

√√√√1−
[
h

t

]2
.

Now let y be any point of M(w) such that � (y, w) < δ. Then we see that

wn − δ · h
t
≤ yn ≤ wn + δ · h

t
and τ ≤ δ · h

t
as well as τ ≤ δ · h

t
.

For showing the uniform convergence of the error mentioned in the claim to 0 on ωn ∩ H
under a sequence of δ’s decreasing to 0+ , we simply have to study the difference between
(72) and (68), more precisely the difference

1∫
wn−τ

√
1− h2

n−3
dh(√

1− [wn + τ ]2
)n−1 −

1∫
wn+τ

√
1− h2

n−3
dh(√

1− [wn − τ ]2
)n−1 . (73)

This difference converges uniformly to 0 (as a function of δ), as (for wn > 0 and sufficiently
small δ) it is bounded from above by

1∫
wn−δ·h

t

√
1− h2

n−3
dh

(√
1− [wn + δ · h

t
]2
)n−1 −

1∫
wn+δ·h

t

√
1− h2

n−3
dh

(√
1− [wn − δ · h

t
]2
)n−1 . (74)

Both quotients in (74) converge uniformly to

1∫
wn

√
1− h2

n−3
dh(√

1− [wn]2
)n−1 . (75)

In addition, this limit function (75) itself is a uniformly continuous function of wn on the
compact interval [−h

t
,+h

t
]. Hence also the difference in (73) tends to 0 uniformly for δ → 0+

and for every value wn ∈ [−h
t
,+h

t
].

Similar convergence results can be obtained for the negative case, where wn < 0 and M(w)
is completely in the lower hemisphere. Here, we see that

λn−2{ωn−1}
λn−1{ωn}

1∫
wn+τ

√
1− h2

n−3
dh · cos( � (en, z))(√

1− [wn + τ ]2
)n−1 ≤ λn {c̃one(en,M(w)) ∩ Ωn} λn−1{Ωn−1}

λn−1 {c̃one(M(w)) ∩ Ωn} · λn{Ωn} =(76)
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=
Ṽ (en,M(w))

W̃ (M(w))
≤

λn−2{ωn−1}
λn−1{ωn}

1∫
wn−τ

√
1− h2

n−3
dh · cos( � (en, z))(√

1− [wn − τ ]2
)n−1 .(77)

This case, where M(w) is completely below the equator, leads to the difference

1∫
wn−τ

√
1− h2

n−3
dh(√

1− [wn − τ ]2
)n−1 −

1∫
wn+τ

√
1− h2

n−3
dh(√

1− [wn + τ ]2
)n−1 .

Here, the claim results from the uniform continuity on the compact interval wn ∈ [−h
t
, h
t
] of

1∫
wn

√
1− h2

n−3
dh(√

1− [wn]2
)n−1 . �

To show that Υ = Υ̂ almost everywhere, is – in the view of Lemma 1 and Lemma 2 – a
typical and pure task of measure theory. Therefore, we give the proof in the Appendix.

Lemma 3
Let cn and z be fixed such that cn

||cn||
T z �= 0. Consider the orthogonal hyperplane H to z.

Then with the exception of a λn−2-nullset, Υ̂( cn
||cn|| , z[T, h];w) from (56) in Lemma 2 and

Υ( cn
||cn|| , z[T, h];w) from Lemma 1, are identical functions on ωn ∩H. �

At this point, Proposition 1 is proven.

Before proceeding to technical estimations, we want to tell something more about Υ, to
illustrate the geometrical significance of that figure. Again, we simplify the notation by
setting en = cn

||cn|| .
Consider a small set M(w) ⊂ ωn∩H . Since the spherical angle of c̃one(en,M(w)) represents
a certain share of the surface of ωn, it also admits another interpretation. It can be described
by the following three formulas

spherical angle = horizontal extension × depth-extension, (78)

horizontal extension of en onM(w) :=
λn−2{K[M(w)]}

λn−2{x | ||x|| = 1, xn = 0} , (79)

depth-extension of en on M(w) :=
λn−1{x | ||x|| = 1, xn ≥ wn}

λn−1{x | ||x|| = 1} . (80)

It is known that λn−2{ωn−1}
λn−1{ωn} ·√1− h2

n−3
is the marginal density of the share of ωn below the

level xn = h.
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Figure 6: A chance for approximation of Ṽ (e3,M(w)) and W̃ (M(w)) comes from rectification of
the sectors. We replace the spherical triangle by another one, which uniformly ends at level wn.
Note that a circle-movement from e3 to −e3 over w hits H (illustrated by the diagonal line) under
a certain angle. The right figure describes the parallel approximation method for W̃ (M(w)).

If our position is in y = en and if we look at M(w) “along the sphere,” then from our
perspective M(w) covers K[M(w)], the “equatorial counterpart of M(w)” or the “shadow
of M(w) on the equator {x | xn = 0} under that projection.”
If we want to reach all points of M(w) from en, we may start movements on all half-circles
ωn ∩ cone(en, x,−en), for which x ∈ K[M(w)], in direction to {x | xn = 0} until we arrive at
M(w). During such a movement the value yn of our current point y is reduced. To reach
M(w), it may even be necessary to cross the equator. If M(w) has a very small diameter,
then we have to run approximately until yn = wn.
To understand the formula for the horizontal extension, imagine that we observe M(w)
from en. Since we are unable to measure the distance exactly, we may attribute this set to
a certain horizon {x | ||x|| = 1, xn = wn} of ωn. The projection of M(w) on that horizon
can closely be approximated by {x | ||x|| = 1, xn = wn, cone(en, x,−en) ∩ M(w) �= ∅}. We
compare this set with the complete size of this horizon. Relying on that observation, we can
predict, which share of the equator will be covered by the “equator-shadow of M(w).” That
share depends on the size ofM(w), and on our perspective onM(w). The perspective causes
a reduction-factor | cos( � (z, ŵ⊥))|. z is the normal vector to H and −ŵ⊥ is the tangential
vector to our movement-circle ωn ∩ cone(en, x,−en) at w, where we reach and traverse H .
Our reduction factor reflects the divergence from an orthogonal movement across H , taking
into regard that such a divergence causes the size of the shadow to shrink.

Remark 3
For the horizontal extension the following formula holds

λn−2{K[M(w)]}
λn−2{x | ||x|| = 1, xn = 0} =

λn−2{M(w)} · | cos ( � (z, ŵ⊥))|
(1− (wn)2)

n−2
2 · λn−2{ωn−1}

. (81)
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The depth-extension is

λn−1{x | ||x|| = 1, xn ≥ wn}
λn−1{x | ||x|| = 1} =

λn−2{ωn−1}
λn−1{ωn} ·

1∫
wn

√
1− h2

n−3
dh. (82)

The total spherical angle is calculated by

λn−2{ωn−1}
λn−1{ωn} ·

1∫
wn

√
1− h2

n−3
dh · λn−2{M(w)} · | cos ( � (z, ŵ⊥))|

(1− (wn)2)
n−2
2 · λn−2{ωn−1}

. � (83)

Of course, this formula holds for wn < 0 as well. In that case, the horizontal extension is the
same (symmetry between en and −en). Different is the behaviour of the depth-extension,
where the traversed angle between en and w now exceeds π

2
.

Remark 4
The expression (1− (wn)2)

1
2 · | cos ( � (z, ŵ⊥))| tells the distance of the point en to the hyper-

plane H (whose normal vector is z). So it equals | cos( � (z, en))|. �

Proof
We exploit that z, en, w, ŵ

⊥ are normalized and that w is orthogonal to z and ŵ⊥ as well.

en = (en
T ŵ⊥)ŵ⊥ + (en

Tw)w = (en
T ŵ⊥)ŵ⊥ + wnw = (1− (wn)2)

1
2 ŵ⊥ + wnw

=⇒ zT en = (1− (wn)2)
1
2 (zT ŵ⊥) =⇒ zT en = (1− (wn)2)

1
2 | cos ( � (z, ŵ⊥))|. �

Obviously, this purely geometrical interpretation yields the same extension-formula as be-
fore, namely Υ. Let us study this function in detail.

Lemma 4
The formula Υ( cn

||cn|| , z;w) admits the following transformations.

Υ(
cn
||cn|| , z;w) =

λn−2{ωn−1}
λn−1{ωn} ·

1∫
cn

||cn||
Tw

√
1− h2

n−3
dh ·

| cos ( � ( cn
||cn|| , z))|

(1− ( cn
||cn||

Tw)
2
)
n−1
2

=

=
λn−2{ωn−1}
λn−1{ωn} ·

1∫
| cn
||cn||

Tw|

√
1− h2

n−3
h dh ·

| cos ( � ( cn
||cn|| , z))|

(1− ( cn
||cn||

Tw)
2
)
n−1
2

·

1∫
cn

||cn||
Tw

√
1− h2

n−3
dh

1∫
| cn
||cn||

Tw|

√
1− h2

n−3
h dh

=

=

〈
λn−2{ωn−1}
λn−1{ωn} · 1

n− 1
· | cos ( � ( cn

||cn|| , z))|
〉 1∫

cn
||cn||

Tw

√
1− h2

n−3
dh

1∫
| cn
||cn||

Tw|

√
1− h2

n−3
h dh

=

=

〈
λn−1{Ωn−1}
n · λn{Ωn} · dist

(
cn
||cn|| , H

)〉 1∫
cn

||cn||
Tw

√
1− h2

n−3
dh

1∫
| cn
||cn||

Tw|

√
1− h2

n−3
h dh

. � (84)
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The term in 〈 〉 gives just the Cavalieri-estimation for the quotient of the spherical angles
from Borgwardt (1987), when we consider M(w) at the place of ωn∩cone(c1, . . . , cn−1). Our
chance of improving old bounds now lies in a careful analysis of the factor outside 〈 〉. We
regard this factor as a function of cn

||cn|| and w, briefly as a factor of cn
||cn||

Tw.

Definition 2

We define: η := η(
cn
||cn|| , w) :=

cn
||cn||

T

w and the function (85)

Φ : (−1,+1) → IR+ with Φ(η) :=

1∫
η

√
1− h2

n−3
dh

1∫
|η|

√
1− h2

n−3
h dh

. � (86)

The function Φ tends to∞ for cn
||cn||

Tw → −1. Already at cn
||cn||

Tw = 0 it yields an enlargement

of the denominator-integral in (43) by a factor 1
µn
. In the following we use the notation

Definition 3

µn :=
2 · λn−2{ωn−1}
(n− 1)λn−1{ωn} =

2 · λn−1{Ωn−1}
n · λn{Ωn} ∀n ≥ 2. � (87)

From the Appendix of Borgwardt (1987) we know that the following relation holds√
(n− 2)

2π
≤ λn−2{ωn−1}

λn−1{ωn} ≤
√
(n− 1)

2π
. (88)

This gives us information on the size of µn, which will be applied in the following forms:

Remark 5 √√√√ 2(n− 2)

(n− 1)2π
≤ µn =

2 · λn−2{ωn−1}
(n− 1)λn−1{ωn} ≤

√
2

(n− 1)π
, (89)

µ2 =
2

π
and µ3 =

1

2
and µ4 =

4

3π
, (90)

for n > 3 : µn−1
2 ≤ 2

(n− 2)π
≤ 1

n− 1
, for n = 3 : µn−1

2 =
4

π2
≤ 1

2
=

1

n− 1
, (91)

for n > 3 : µn ≥ 1

n− 1
, for n = 3 : µn =

1

2
=

1

n− 1
, (92)

2

µn · µn−1

=
λn{Ωn}n

λn−1{Ωn−1}µn−1

= π · (n− 1). � (93)

Our comparison of dealing with V
W

in the old and new approach shows, that we can still use
the factor in 〈 〉, which is uniform for all points w ∈ H ∩ωn. But for a precise estimation we
have to correct this with a w-dependent factor Φ(η) = Φ( cn

||cn||
Tw) to manage the complication

of the curvature. This dependence on w introduces an additional level of integration (the
innermost integration), which makes the new approach more complicated.
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5 Insertion into the integral-quotient

The purpose of this section is to bound the pointwise quotient PQ(t) from (43) above by
another integral-quotient, which is much simpler and easier to evaluate. We will prove

Proposition 2

PQ(t) ≤ λn{Ωn}
λn−1{Ωn−1}

n2 ·
t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n |f(cn) dcn dh

t∫
0
G(h)m−nT−1 h

t

∫
IRn−1

|T − cn−1
n |2 1

||cn||Ψ(h, t, ||cn||)f(cn) dcn dh
(94)

where Ψ(h, t, ||cn||) is defined as
1

h·h
t·||cn|| + (1− h·h

t·||cn||)µn

. � (95)

Remember that we have fixed t. But still we are going to vary h (and implicitly T ) over
all possible values. Once again, z shall denote the normal vector to H(0, c1, . . . , cn−1) with
orientation towards en. Then z is uniquely characterized by the values T and h. Variation
of h means that we have to vary z, too. So we should now release z and replace the “;” in
the parameter list of Υ back to a “,”. Inserting this into (43) yields

PQ(t) =

n ·
t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n | ∫

IRn−2

· · · ∫
IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2
t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n | ∫

IRn−2

· · · ∫
IRn−2

|λn−2 {conv(c1, . . . , cn−1)} |2∫
ωn∩cone(c1,...,cn−1)

dn−1w · f(c1) · · ·f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh∫
ωn∩cone(c1,...,cn−1)

Υ( cn
||cn|| , z, w) dn−1w · f(c1) · · · f(cn−1) dc1 · · · dcn−1 f(cn) dcn dh

. (96)

It will pay to apply Fubini’s Theorem to the integrals given in (96) and to interchange the
order of integrations. We can place the integration over cn on IRn−1 on the innermost posi-
tion and regard this as the first integration to be performed. Note that the interchange with
the integrations over c1 · · · cn−1 is absolutely harmless, since f(c1) · · ·f(cn−1) are density-
functions and the remaining inner terms are all bounded. Note that the innermost integrals
deliver ∫

ωn∩cone(c1,...,cn−1)

1 · dn−1w = W (c1, . . . , cn) · λn−2{ωn−1} ≤ λn−2{ωn−1} and

∫
ωn∩cone(c1,...,cn−1)

Υ(
cn
||cn|| , z[T, h], w)dn−1w = V (c1, . . . , cn) · λn−1{ωn} ≤ λn−1{ωn}.

This helps even in the last interchange with the integration over w on ωn ∩ H (for fixed
values of c1, . . . , cn−1), although there the unbounded function Υ( cn

||cn|| , z[T, h], w) is used.

31



After that change in the order of integrations, we obtain

PQ(t) =

n
t∫
0
G(h)m−n · T−1

∫
IRn−2

· · · ∫
IRn−2

∫
ωn∩cone(c1,...,cn−1)

|λn−2 {conv(c1, . . . , cn−1)} |2

t∫
0
G(h)m−nT−1

∫
IRn−2

· · · ∫
IRn−2

∫
ωn∩cone(c1,...,cn−1)

|λn−2 {conv(c1, . . . , cn−1)} |2
(97)

· ∫
IRn−1

|T − cn−1
n |f(cn) dcn · dn−1w f(c1) · · ·f(cn−1) dc1 · · · dcn−1 dh

· ∫
IRn−1

|T − cn−1
n | ·Υ( cn

||cn|| , z[T, h], w)f(cn) dcn · dn−1w f(c1) · · ·f(cn−1) dc1 · · · dcn−1 dh
.

It would be very helpful to know more about the critical function Υ( cn
||cn|| , z[T, h], w) and its

inherent function Φ(η), as defined in (86). It is easy to see that the characteristic values of
Φ are:

Φ(η) =


1 for η = 1

1
µn

for η = 0

∞ for η = −1.

(98)

The following Lemma, describing the behaviour of Φ, will be proved in the Appendix.

Lemma 5
The term

Φ(η) =

1∫
η

√
1− h2

n−3
dh

1∫
|η|

√
1− h2

n−3
hdh

=

1∫
η

√
1− h2

n−3
dh

(1− η2)
n−1
2

· (n− 1) (99)

represents a monotonously decreasing, convex function of η in the interval (−1, 1). �

Φ(η) is our “correction function” with respect to the old approach in Borgwardt (1987).

More difficult is the treatment of
1∫
η

√
1− h2

n−3
dh. In the case η � 0 a simple approxima-

tion is given by

1∫
η

√
1− h2

n−3
dh ∼

1∫
η

√
1− h2

n−3 · h dh =
1

n− 1
· (1− (η)2)

n−1
2 . (100)

If 1 > h > η > Const., then we have underestimated the integral at most by a constant
factor. Now we derive an estimation for all η > 0. This technical result combined with
Theorem 1 was the essential tool for saving a first factor of

√
n in the main result of

Borgwardt (1994a). Its proof is given in the Appendix.

Lemma 6

η + (1− η)
2

(n+ 1)
≤

1∫
η

√
1− h2

n−3 · h dh
1∫
η

√
1− h2

n−3
dh

≤ η + (1− η)
2 · λn−2{ωn−1}
(n− 1)λn−1{ωn} ∀ η > 0. (101)
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And for the correction factor Φ it is known that for all η > 0

Φ(η) ≥ 1

η + (1− η)µn

. � (102)

Φ(η) will contribute to a decrement of the total expression (97) in particular, when η << 1.
Recall the definition of our extension–function Υ from (84).

Υ(
cn
||cn|| , z[T, h], w) =

〈
1

n

λn−1{Ωn−1}
λn{Ωn}

[
dist

(
cn
||cn|| , H(0, c1, . . . , cn−1)

)]〉
Φ(wT cn

||cn||) (103)

From elementary trigonometry we know the following two facts

Remark 6

dist (cn, H(0, c1, . . . , cn−1)) = |T − cn−1
n | · h

t
, (104)

dist

(
cn
||cn|| , H(0, c1, . . . , cn−1)

)
= |T − cn−1

n | · h
t
· 1

||cn|| . � (105)

Φ is a convex and monotonously decreasing function. Let us insert (103) and (105) into
(97).

PQ(t) =
λn{Ωn}

λn−1{Ωn−1}
n2 ·

t∫
0
G(h)m−nT−1

∫
IRn−2

· · · ∫
IRn−2

∫
ωn∩cone(c1,...,cn−1)

t∫
0
G(h)m−nT−1 h

t
· ∫
IRn−2

· · · ∫
IRn−2

∫
ωn∩cone(c1,...,cn−1)[ ∫

IRn−1

|T − cn−1
n |f(cn) dcn ·

]
[ ∫
IRn−1

|T − cn−1
n |2 · 1

||cn||Φ(w
T cn
||cn||)f(cn) dcn ·

]

·|λn−2 {conv(c1, . . . , cn−1)} |2dn−1w f(c1) · · ·f(cn−1) dc1 · · · dcn−1 dh

·|λn−2 {conv(c1, . . . , cn−1)} |2dn−1w f(c1) · · ·f(cn−1) dc1 · · · dcn−1 dh
. (106)

Let us think about the quotient of integrals in [ ], particularly about the term in the denom-
inator. For simplification we try to exploit the convexity of Φ, which had been confirmed
in Lemma 5 .

Lemma 7
We achieve a decrement of the denominator of (106), if we consistently use the point h

||cn||en
instead of cn

||cn|| in the argument of Φ. That means

∫
IRn−1

|T−cn−1
n |2 1

||cn||Φ(w
T cn
||cn||)f(cn)dcn ≥

∫
IRn−1

|T−cn−1
n |2 1

||cn||Φ(
h

||cn||w
T en)f(cn)dcn. (107)
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Proof
We consider a cn and cumulate each time over a quadrupel of corresponding points cni, i =
1, 2, 3, 4, resp. over their normalized counterparts ξi :=

1
||cni||cni. Let cn1 := cn induce the

following four points:

ξ1 :=
1

||cn||cn1 :=
1

||cn||

 cn
cn−1
n

h

 , ξ2 :=
1

||cn||cn2 :=
1

||cn||

 −cn
cn−1
n

h

 ,

ξ3 :=
1

||cn||cn3 :=
1

||cn||

 cn
−cn−1

n

h

 , ξ4 :=
1

||cn||cn4 :=
1

||cn||

 −cn
−cn−1

n

h

 . (108)

Without loss of generality let cn−1
n ≤ 0. The barycenter of the four points cni lies in 0

0
h

, the barycenter of the ξi is located in h
||cn||en = 1

||cn||

 0
0
h

. In (107) all points cni

have the same density f . cn1 and cn2 (the two of the points with identical negative (n−1)th
coordinate) are even identically weighted (with exception of Φ), because in |T − cn−1

n |2 only
this coordinate is relevant. The same holds for the two other points cn3 and cn4.
w belongs to ωn ∩ cone(c1, . . . , cn−1), so it is clear that wn > 0 and that wn−1 > 0.

The weight of the two points ξ1 and ξ2 will be greater than that of the pair ξ3 and ξ4, since
|T − cn−1

n | > |T + cn−1
n |. Now the convexity of Φ yields:

|T − cn−1
n |2 · (Φ(wT ξ1) + Φ(wT ξ2)) + |T + cn−1

n |2 · (Φ(wT ξ3) + Φ(wT ξ4))

|T − cn−1
n |2 · 2 + |T + cn−1

n |2 · 2 ≥

≥ Φ

(
wT |T − cn−1

n |2 · (ξ1 + ξ2) + |T + cn−1
n |2 · (ξ3 + ξ4)

|T − cn−1
n |2 · 2 + |T + cn−1

n |2 · 2
)
=: Φ(wT ξ). (109)

Here ξ is a vector with the properties ξ = 0, ξn−1 ≤ 0, ξn = h
||cn|| . Since Φ increases while

η = wTx decreases, and because

wT ξ = wn · ξn + wn−1 · ξn−1 ≤ wn · ξn = wn · h

||cn|| =
h

||cn||w
T en, (110)

the replacement mentioned above yields a smaller value of the denominator in (106). �

Lemma 8

Φ(
h

||cn||w
T en) ≥ 1

wn h
||cn|| + (1− wn h

||cn|| )µn

≥ 1
h·h

t·||cn|| + (1− h·h
t·||cn||)µn

=: Ψ(h, t, ||cn||). (111)

That means that a replacement of Φ(wT cn
||cn||) by Ψ(h, t, ||cn||) in the denominator of (106)

increases the quotient from (106) even more than the replacement suggested by (107). �
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Proof
Since in any case

h

||cn||w
n =

h

||cn||w
T en = η ≥ 0,

we may make use of (102) : Φ(η) ≥ 1
η+(1−η)µn

∀ η > 0 in Lemma 6. But the figure

1
wn h
||cn|| + (1− wn h

||cn|| )µn

in (111) is monotonously decreasing for growing wn. And the greatest value of wn in H ∩ωn

simply is h
t
. �

So we obtain

PQ(t) ≤ λn{Ωn}
λn−1{Ωn−1}

n2 ·
t∫
0
G(h)m−nT−1

[ ∫
IRn−1

|T − cn−1
n |f(cn) dcn

]
t∫
0
G(h)m−nT−1 h

t

[ ∫
IRn−1

|T − cn−1
n |2 · 1

||cn||Ψ(h, t, ||cn||) dcn
] (112)

〈 ∫
IRn−2

...
∫

IRn−2

∫
ωn∩cone(c1,...,cn−1)

|λn−2 {conv(c1, ..., cn−1)} |2dn−1w f(c1) · · · f(cn−1) dc1...dcn−1

〉
dh〈 ∫

IRn−2

...
∫

IRn−2

∫
ωn∩cone(c1,...,cn−1)

|λn−2 {conv(c1, ..., cn−1)} |2dn−1w f(c1) · · · f(cn−1) dc1...dcn−1

〉
dh

=
λn{Ωn}

λn−1{Ωn−1}
n2 ·

t∫
0
G(h)m−nT−1

∫
IRn−1

|T − cn−1
n |f(cn) dcn dh

t∫
0
G(h)m−nT−1 h

t
· ∫
IRn−1

|T − cn−1
n |2 · 1

||cn||Ψ(h, t, ||cn||)f(cn) dcn dh
. (113)

Note that the integral in [ ] in the denominator has lost all dependence upon c1, . . . , cn−1,
while its counterpart in the numerator had been independent from c1, . . . , cn−1 all the time.
So we could change the order of integrations .
The integrals in 〈 〉 depend exclusively on (c1, . . . , cn−1), (neither on h nor on cn) and they
are identical in numerator and denominator. Hence, reduction is admitted.
Now Proposition 2 is proved and the possibility of an evaluation, based on (113), seems
much more likely.
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6 Partitioning the set of possible configurations

This section is devoted to preparing detailed and extensive case–studies on the remaining
integral-quotient in the next section. For this purpose, we change to polar coordinates, and
use r := r(cn) = ||cn||, h, γ(cn) ∈ ωn−1, such that

cn =

( √
r2 − h2 γ(cn)

h

)
and cn =

√
r2 − h2 γ(cn), and we set R := R(r, h) =

√
r2 − h2.

Now we can uniquely characterize our distribution by its “radial distribution function.”

Let F stand for the probability F(r) := P (||x|| ≤ r) for r ∈ [0,∞]. (114)

Analyzing (113), we exploit the fact, that for fixed r(cn) we have a sphere of radius R
in height h, where the points cn will vary. dγR(cn) denotes the corresponding integration
element. As a result of symmetry (compare Borgwardt (1987), page 157-158) we get:

1

r(cn)

 ∫
ωn−1(R)

|T − cn−1
n |2dγR(cn)

 =
1

r(cn)

[
T 2 +

1

n− 1
R2
]
Rn−2λn−2{ωn−1} . (115)

For the numerator we analogously obtain∫
ωn−1(R)

|T − cn−1
n |dγR(cn) =

∫
cn−1
n ≤−T≤0

(T + |cn−1
n |)dγR(cn) +

∫
0≤T≤cn−1

n

(|cn−1
n | − T )dγR(cn)

+
∫

−T≤cn−1
n ≤0

(T + |cn−1
n |)dγR(cn) +

∫
0≤cn−1

n ≤T

(T − |cn−1
n |)dγR(cn)

=
∫

−T≤cn−1
n ≤T

T dγR(cn) +
∫

|T |≤|cn−1
n |

|cn−1
n | dγR(cn).

So we have for R < T :

≤ T ·
∫

ωn−1(R)

dγR(cn) = T · λn−2{ωn−1} · Rn−2. (116)

For R > T we obtain :

≤
∫

ωn−1(R)

|cn−1
n |dγR(cn) +

∫
−T≤cn−1

n ≤T

(T − |cn−1
n |)dγR(cn)

≤ 2 · λn−3{ωn−2}
(n− 2)λn−2{ωn−1} · R · λn−2{ωn−1}Rn−2 + T

∫
ωn−1(R)

dγR(cn)

=
2 · λn−3{ωn−2}

(n− 2)λn−2{ωn−1}R
n−1λn−2{ωn−1}+ Tλn−2{ωn−1}Rn−2

= µn−1 · R · λn−2{ωn−1}Rn−2 + T · λn−2{ωn−1} · Rn−2. (117)

Translating the definition (95) resp. (111) of Ψ into the language of polar coordinates yields

Ψ(h, t, r) =
1

h·h
r·t + (1− h·h

r·t )µn

. (118)
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(115), (116), (117) and our transformation deliver a new upper bound for (113).

PQ(t) ≤
λn{Ωn}n2

t∫
0
G(h)m−n T−1

1∫
h

Rn−3

rn−2 [T + I{r>t}(r) · µn−1R] dF(r) dh

λn−1{Ωn−1}
t∫
0
G(h)m−nT−1 h

t

1∫
h

Rn−3

rn−2 (T 2 + 1
n−1

R2)1
r
Ψ(h, t, r) dF(r) dh

. (119)

Now we partition the area of integration (r, h) ∈ [h, 1] × [0, t] into different subareas. For
each part we estimate the corresponding integral-quotient. The very worst item of those
upper bounds gives us – according to the principle of pointwise comparison – an upper
bound for the complete integral-quotient. After an appropriate and feasible permutation in
the order of integrations, we have the following result, which we will use as the basis for the
evaluation on subsets in the following sections.

Proposition 3

PQ(t) ≤ λn{Ωn}n2

λn−1{Ωn−1} · (120)

·


t∫
0

r∫
0
G(h)m−n T−1Rn−3 r−n+2 · T dh dF(r)+

t∫
0

r∫
0
G(h)m−nT−1ht−1r−1Rn−3r−n+2[T 2 + 1

n−1
R2]Ψ(h, t, r) dh dF(r)+

+
1∫
t

t∫
0
G(h)m−nT−1Rn−3r−n+2(T + µn−1R) dh dF(r)

+
1∫
t

t∫
0
G(h)m−nT−1ht−1r−1Rn−3r−n+2[T 2 + 1

n−1
R2]Ψ(h, t, r) dh dF(r)

 . �

The partition-subsets will be:

B1 := B11 ∪B12,where (121)

B11 := {(r, h)|0 ≤ h ≤ µnr ≤ r ≤ t}
B12 := {(r, h)|0 ≤ h ≤ µnt ≤ t < r}

B2 := {(r, h)|0 ≤ r ≤ t ∧ µnr ≤ h ≤ µnt} (122)

B3 := B31 ∪B32,where (123)

B31 := {(r, h)|µnt ≤ h ≤ r ≤ t}
B32 := {(r, h)|µnt ≤ h ≤ t < r} .

Note that h ≤ r and h ≤ t are tautological in our construction.
For each subarea we are able to derive bounds on Ψ(h, t, r).
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Lemma 9
The function Ψ(h, t, r) can be bounded from below on the dissection subsets as follows

Ψ(h, t, r) :=
1

h·h
r·t + (1− h·h

r·t )µn

≥



1
2µn

in B1

1
2h
r

in B2

1
2h
r

in B31

1
2h

t

in B32

� (124)

Proof:
We use µn < 1 and the fact that a replacement of h·h

r·t by the same upper bound at both
places in the denominator will increase the denominator and decrease the quotient.
In B1 we know h·h

r·t ≤ µn and conclude

Ψ(h, t, r) =
1

h·h
r·t + (1− h·h

r·t )µn

≥ 1

µn + (1− µn)µn

≥ 1

2µn
. (125)

In B2 we have h·h
r·t ≤ h

r
and µn ≤ h

r
. So

Ψ(h, t, r) =
1

hh
rt

+ (1− hh
rt
)µn

≥ 1
h
r
+ µn

≥ 1

2h
r

. (126)

In B31 we replace h·h
r·t by h

r
and obtain with µn ≤ h

t
≤ h

r
:

Ψ(h, t, r) =
1

h·h
r·t + (1− h·h

r·t )µn

≥ 1
h
r
+ (1− h

r
)µn

≥ 1

2h
r

. (127)

And in B32 the inequality h·h
r·t ≤ h

t
yields with µn ≤ h

t
:

Ψ(h, t, r) =
1

h·h
r·t + (1− h·h

r·t )µn

≥ 1
h
t
+ (1− h

t
)µn

≥ 1

2h
t

. � (128)

The purpose of the partition is the following:
In (119) or (120) the denominator contains some factors not appearing in the numerator,
e.g.

h

tr
or Ψ(h, t, r) or

[T 2 + 1
n−1

R2]

(T + µn−1R)
.

Each of these factors will become (relatively) small somewhere in the integration area,
which causes the quotient to get large. The impact of that fact would be dramatic, if this
happened simultaneously, i.e. if two or more of these will be small at the same configuration
of integration variables.
Now the given partition enables us to show that in each of the subsets from (121), (122),
(123) only one of these factors becomes critical. So, it will be possible to bound the “inverse
expectation” of the mentioned “product” from above on each subset. But this has to be
done carefully, using different methods and estimations, which are adapted to the local
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Figure 7: The partition into subsets for t = 0.7 and n = 3 (left) and n = 21 (right). The vertical
line is located at r = t, and the horizontal line at µnt. The diagonal line illustrates h = µnr. Note
that for growing n the value of µn decreases.

configuration of the respective subset.

The following consequence of a Binomial Theorem and of (91) lets us handle the third
factor and will be applied several times. Its use was the crucial initial step in finding a
chain of simplifying underestimations for the denominator, such that comparisons between
numerator and denominator (e.g. with the help of Jensen’s inequality) became possible.

Remark 7

[T + µn−1R]2 = T 2 + 2µn−1RT + µn−1
2R2 ≤ 2[T 2 + µn−1

2R2] ≤ 2[T 2 +
1

n− 1
R2]. (129)
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7 Upper bounds for partial pointwise quotients

This section deals with deriving upper bounds for (120) on the different subareas. The
corresponding integral-quotients will be denoted by Q1, Q11, Q12, Q2, Q3, Q31, Q32.

Proposition 4
In B1 = {(r, h)|0 ≤ h ≤ µnr ≤ r ≤ t} ∪ {(r, h)|0 ≤ h ≤ µnt ≤ t < r} we have

Q1 ≤ λn{Ωn}n28e
1
π

λn−1{Ωn−1}µn−1

√
1− µn

2
. (130)

Proof

Q11 ≤ λn{Ωn}n2

λn−1{Ωn−1} ·


t∫
0

µnr∫
0

G(h)m−n T−1Rn−3 r−n+2 T dh dF(r)

t∫
0

µnr∫
0

G(h)m−nT−1 h
tr
Rn−3r−n+2(T 2 + 1

n−1
R2) · 1

2µn
dh dF(r)


≤ λn{Ωn}n22µn

λn−1{Ωn−1} ·


t∫
0

µnr∫
0

G(h)m−n Rn−3 r−n+2 dh dF(r)

t∫
0

µnr∫
0

G(h)m−nRn−3r−n+2 hT
rt

dh dF(r)


≤ λn{Ωn}n22µn

λn−1{Ωn−1} · sup
0≤r≤t


µnr∫
0

G(h)m−nRn−3r−n+2 dh

µnr∫
0

G(h)m−nRn−3r−n+2 hT
rt

dh

 . (131)

In B11, we have T
t
≥ √

1− µn
2, since h

t
≤ h

r
≤ µn. The remaining objective in the denomi-

nator h
r
increases with h, as G(h) does. So, dropping G(h)m−n increases the quotient.

Q11 ≤ λn{Ωn}n22µn

λn−1{Ωn−1}
√
1− µn

2
· max
0≤r≤t


µnr∫
0

Rn−3 r−n+2 dh

µnr∫
0

h
r
Rn−3r−n+2 dh


=

λn{Ωn}n22µn

λn−1{Ωn−1}
√
1− µn

2
·


µnt∫
0
T n−3 t−n+2 dh

µnt∫
0

h
t
T n−3t−n+2 dh

 . (132)

Analogously, we get for the set of radii with t < r (using t+ as lower bound for the integration
area in order to exclude t):

Q12 ≤ λn{Ωn}n2

λn−1{Ωn−1} ·

1∫
t+

µnt∫
0
G(h)m−n T−1Rn−3 r−n+2 (T + µn−1R) dh dF(r)

1∫
t+

µnt∫
0
G(h)m−nT−1 h

tr
Rn−3r−n+2(T 2 + 1

n−1
R2) · 1

2µn
dh dF(r)
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≤ λn{Ωn}n22µn

λn−1{Ωn−1} · sup
t<r≤1


µnt∫
0
G(h)m−n T−1Rn−3 r−n+2 (T + µn−1R) dh

µnt∫
0
G(h)m−nT−1 h

tr
Rn−3r−n+2(T 2 + 1

n−1
R2) dh

 . (133)

Here, we apply Remark 7 resp. (129).

Q12 ≤ λn{Ωn}n22µn · 2
λn−1{Ωn−1} · sup

t<r≤1


µnt∫
0
G(h)m−n T−1Rn−3 r−n+2 (T + µn−1R) dh

µnt∫
0
G(h)m−nT−1 h

tr
Rn−3r−n+2(T + µn−1R)2 dh

 . (134)

The true objective in the denominator is h
tr
(T +µn−1R). Replacing it by a smaller objective

will deliver a higher upper bound for Q12 in general. So, we make two replacements of this
kind.

h

tr
(T + µn−1R) ≥ h

tr
(µn−1R) =

h

t
· µn−1 · R

r
≥ h

t
· µn−1 ·

√
1− µn

2. (135)

Here, we have exploited that R
r
≥ √

1− µn
2 on B12.

This figure (the reduced objective) increases proportionally with h. G supports larger values
of h. Hence we are allowed to drop the G-terms once more. The same applies to the product
T−1 · (T + µn−1R), because T−1R increases with h when r > t, which holds in B12.

Q12 ≤ λn{Ωn}n2µn · 4
λn−1{Ωn−1}µn−1

√
1− µn

2
· sup
t<r≤1


µnt∫
0
G(h)m−n T−1Rn−3 r−n+2 (T + µn−1R) dh

µnt∫
0
G(h)m−nT−1 h

t
Rn−3r−n+2(T + µn−1R) dh



≤ λn{Ωn}n2µn · 4
λn−1{Ωn−1}µn−1

√
1− µn

2
· sup
t<r≤1


µnt∫
0

Rn−3 r−n+2 dh

µnt∫
0

h
t
Rn−3r−n+2 dh

 . (136)

Without any effect, we may replace r−n+2 by t−n+2 (in numerator and denominator). Sub-

stituting T n−3 for Rn−3 will support the lower values of h
t
. This means that this substitution

will deteriorate our bound. Hence we know

Q12 ≤ λn{Ωn}n2µn · 4
λn−1{Ωn−1}µn−1

√
1− µn

2
·

µnt∫
0

T n−3 t−n+2 dh

µnt∫
0

h
t
T n−3t−n+2 dh

. (137)

So the remaining integral-quotient gets a common pattern for Q11 and Q12. Since the upper

bound of (137) exceeds that of (132), it suffices to evaluate (137) further.
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On [0, µnt] the term Tn−3

tn−3 =
√
1− h2

t2

n−3
is almost constant, because it is 1 at h = 0, it is

monotonously decreasing in the interior of the interval, and at h = µnt we have (compare
(89)) √

1− µ2
n

n−3 ≥
√
1− 2

(n− 1)π

n−3

=
(
1− 2

π

1

n− 1

) 1
2
(n−3)

> e−
1
π .

Enlarging (T
t
)
n−3

in the numerator to 1 and reducing it to e−
1
π in the denominator delivers

Q1 ≤ λn{Ωn}n2µn · 4e 1
π

λn−1{Ωn−1}µn−1

√
1− µn

2
·

µnt∫
0

1
t
dh

µnt∫
0

h
t2
dh

=
λn{Ωn} · n2 · 8 · e 1

π

λn−1{Ωn−1}µn−1

√
1− µn

2
. � (138)

Proposition 5
For B2 = {(r, h)|0 ≤ r ≤ t ∧ µnr ≤ h ≤ µnt} we obtain

Q2 ≤ 2 · λn{Ωn} · n2

λn−1{Ωn−1}
√
1− µn

2
. (139)

Proof

Q2 ≤ λn{Ωn}n2

λn−1{Ωn−1} ·
t∫
0

µnt∫
µnr

G(h)m−nRn−3 r−n+2 dh dF(r)

t∫
0

µnt∫
µnr

G(h)m−n h
trT

[T 2 + 1
n−1

R2]Rn−3r−n+2 r
2h

dh dF(r)

=
λn{Ωn}n2 · 2
λn−1{Ωn−1} ·

t∫
0

µnt∫
µnr

G(h)m−n Rn−3 r−n+2 dh dF(r)

t∫
0

µnt∫
µnr

G(h)m−n 1
tT
[T 2 + 1

n−1
R2]Rn−3r−n+2 dh dF(r)

≤ λn{Ωn}n2 · 2
λn−1{Ωn−1} ·

t∫
0

µnt∫
µnr

G(h)m−n Rn−3 r−n+2 dh dF(r)

t∫
0

µnt∫
µnr

G(h)m−n T
t
Rn−3r−n+2 dh dF(r)

≤ λn{Ωn}n2 · 2
λn−1{Ωn−1}

√
1− µn

2
because of T

t
≥ √

1− µn
2 in B2. �

Now only the rest of the integral (h > µnt) remains for evaluation. Here we cannot ignore
the influence of the monotonously increasing function G(h), since it forces R

r
to become very

small (it pushes h to the top, i.e. to t). Therefore we handle the growth of G(h) in another
way this time.

Proposition 6
In B3 = B31 ∪ B32 = {(r, h)|µnt ≤ h ≤ r ≤ t} ∪ {(r, h)|µnt ≤ h ≤ t < r} it is true that

Q3 ≤ π(n− 1)n4e ·
[
n(1 + µn−1)

µn−1

] 1
n−1

max


(
m− n+ 1

2

) 1
n−1

,
1√

1− (µn)2

 . (140)
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Proof
Consider the term (120) for the third area B3

Q3 ≤ λn{Ωn}n2

λn−1{Ωn−1} ·


t∫

µnt

r∫
µnt

G(h)m−n Rn−3 r−n+2 dh dF(r)+

t∫
µnt

r∫
µnt

G(h)m−n h
t r T

Rn−3r−n+2[T 2 + 1
n−1

R2] r
2h

dh dF(r)+
(141)

+
1∫

t+

t∫
µnt

G(h)m−n[1 + µn−1
R
T
]Rn−3r−n+2 dh dF(r)

+
1∫

t+

t∫
µnt

G(h)m−n h
t r T

Rn−3r−n+2[T 2 + 1
n−1

R2] t
2h

dh dF(r)


=

λn{Ωn}n22

λn−1{Ωn−1} · (142)

·

t∫
µnt

r∫
µnt

G(h)m−n Rn−3

rn−2 dh dF(r) +
1∫

t+

t∫
µnt

G(h)m−n[1 + µn−1
R
T
]R

n−3

rn−2 dh dF(r)

t∫
µnt

r∫
µnt

G(h)m−n T
t
[1 + 1

n−1
R2

T 2 ]
Rn−3

rn−2 dhdF(r) +
1∫

t+

t∫
µnt

G(h)m−n T
r
Rn−3

rn−2 [1 +
1

n−1
R2

T 2 ]dhdF(r)

The following Lemma 10 will be proved in the Appendix – due to the lengthy and technical
character of the proof. It clarifies that it is possible to work (in our analysis) with a distri-
bution concentrating all its weight on the radii in the interval [t, 1].

Lemma 10
There is a radial distribution function F̂ (t) with F̂ (t)(r) = 0 ∀ r < t and F̂ (t)(1) = 1,
such that the quotient corresponding to (142) when based on the distribution function F̂ (t)

becomes worse (larger) than (142), which is based on F . One instance of such a distribution
function is of the form

F̂ (t)(r) =


0 for r < t
γt · F(t) for r = t

γt · F(t) + [1− γt · F(t)] · F(r)−F(t)
1−F(t)

for r > t,
(143)

with an appropriate ( t-dependent) value of γt ≤ 1. �

Relying on the statement in Lemma 10 and using it in (142) we achieve

Q3 ≤ λn{Ωn}n22

λn−1{Ωn−1}·

·

t∫
µnt

G(h)m−n[1 + µn−1
T
T
] Tn−3

tn−2 dh · F̂ (t)(t) +
1∫

t+

t∫
µnt

G(h)m−n[1 + µn−1
R
T
]R

n−3

rn−2 dh dF̂ (t)(r)

t∫
µnt

G(h)m−n T
t
[1 + 1

n−1
T 2

T 2 ]
Tn−3

tn−2 dh · F̂ (t)(t) +
1∫

t+

t∫
µnt

G(h)m−n T
r
[1 + 1

n−1
R2

T 2 ]
Rn−3

rn−2 dhdF̂ (t)(r)
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=
λn{Ωn}n22

λn−1{Ωn−1} ·

1∫
t

t∫
µnt

G(h)m−nRn−3

rn−2 [1 + µn−1
R
T
] dh dF̂ (t)(r)

1∫
t

t∫
µnt

G(h)m−nRn−3

rn−2
1
rT
[T 2 + 1

n−1
R2] dh dF̂ (t)(r)

=: Q̂3. (144)

From now on we can ignore the radii with r < t.

Remark 8
Since F̂ (t) is based on F and two modifications, which move distribution mass
(monotonously) towards higher radii, we know that

F̂ (t)(h) ≤ F(h) ∀ h ∈ [0, 1]. (145)

Remark 9
The same holds for the two marginal distribution functions

GF(h) =
1

2
+

λn−2{ωn−1}
λn−1{ωn}

1∫
0

h
r∫

0

(1− σ2)
n−3
2 dσdF(r), (146)

GF̂(t)(h) =
1

2
+

λn−2{ωn−1}
λn−1{ωn}

1∫
0

h
r∫

0

(1− σ2)
n−3
2 dσdF̂ (t)(r). (147)

From the remark above it is clear that

GF̂(t)(h) ≤ GF(h) = G(h) ∀ h ∈ [0, 1]. (148)

Here we interrupt the proof for a short comment. This is the point where we lost precision
in Borgwardt (1987) caused by a crude, but seemingly inevitable overestimation.
Consider the quotient

(T + µn−1R)

[T 2 + 1
n−1

R2]
, (149)

which is the essential part of the quotient of integrands in (144). Its numerator and de-
nominator are embedded in integrals over r and h . The variation of both variables makes
handling the quotient very troublesome. One attempt to overcome that difficulty lies in
considering only the dominating term in numerator and denominator respectively. That
means that we focus on

max{T, µn−1R}
max{T 2, 1

n−1
R2} .

But now the question arises, for which (r, h)-configurations which term dominates the other.
Even for the relevant case r > t and different r’s, the “turnover” happens at different values
of h. This would force us even to introduce flexible bounds on the integration area, what
would make a sharp estimation overcomplicated.
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In Borgwardt (1982b), Borgwardt (1987), Borgwardt (1994a) and Borgwardt (1994b) these
problems had been avoided by use of the simplifying overestimation

(T + µn−1R)

[T 2 + 1
n−1

R2]
≤ max{T,R}

1
n−1

max{T 2, R2} , (150)

because here for r > t the R-term consistently dominates for every h. But the price we had
to pay for that simplification was the big loss of a factor µn−1, in particular for R � T .

Now we continue the new proof. This time, we avoid such an overestimation of (144) as in
(150) and use refined methods. In the following we shall deal with Q̂3 only. Again, we make
use of Remark 7 resp. (129):

[T + µn−1R]2 ≤ 2[T 2 +
1

n− 1
R2].

We conclude

Q̂3 ≤ λn{Ωn}n24

λn−1{Ωn−1} ·

1∫
t

t∫
µnt

G(h)m−nRn−3r−n+2R
T
[T
R
+ µn−1] dh dF̂ (t)(r)

1∫
t

t∫
µnt

G(h)m−nRn−3r−n+2 1
Tr
[T + µn−1R]2 dh dF̂ (t)(r)

=

=
λn{Ωn}n24

λn−1{Ωn−1} ·

1∫
t

t∫
µnt

G(h)m−nRn−3r−n+2R
T
[T
R
+ µn−1] dh dF̂ (t)(r)

1∫
t

t∫
µnt

G(h)m−nRn−3r−n+2R2

Tr
[T
R
+ µn−1]2 dh dF̂ (t)(r)

≤

≤ λn{Ωn}n24

λn−1{Ωn−1}µn−1
·

1∫
t

t∫
µnt

G(h)m−nRn−3r−n+2R
T
[T
R
+ µn−1] dh dF̂ (t)(r)

1∫
t

t∫
µnt

G(h)m−nRn−3r−n+2R2

Tr
[T
R
+ µn−1] dh dF̂ (t)(r)

=: Q3 . (151)

It will pay to interpret the numerator and the denominator of (151) as integrals over func-
tions of h. Therefore, we permute the order of integrations and apply (93) to simplify the
first factor

Q3 = 4 · π · (n− 1) · n ·

t∫
µnt

G(h)m−n
1∫
t
Rn−3r−n+2R

T
[T
R
+ µn−1] dF̂ (t)(r) dh

t∫
µnt

G(h)m−n
1∫
t
Rn−3r−n+2R2

Tr
[T
R
+ µn−1] dF̂ (t)(r) dh

. (152)

We analyze that integral-quotient more precisely for a single value of h. Then T is a constant.

1∫
t
Rn−3r−n+2R

T
[T
R
+ µn−1] dF̂ (t)(r)

1∫
t
Rn−3r−n+2R2

rT
[T
R
+ µn−1] dF̂ (t)(r)

=

1∫
t
Rn−2r−n+2[T

R
+ µn−1] dF̂ (t)(r)

1∫
t
Rn−1r−n+1[T

R
+ µn−1] dF̂ (t)(r)

.

45



We keep in mind that

1∫
t

dF̂ (t)(r) = 1, T ≤ R, 0 ≤ T

R
≤ 1, µn−1 ≤ [

T

R
+ µn−1] ≤ 1 + µn−1,

and apply Jensen’s inequality
1∫
t

(
R
r

)n−2
[T
R
+ µn−1]dF̂ (t)(r)

1∫
t
[T
R
+ µn−1]dF̂ (t)(r)

 ≤


1∫
t

(
R
r

)n−1
[T
R
+ µn−1]dF̂ (t)(r)

1∫
t
[T
R
+ µn−1]dF̂ (t)(r)


n−2
n−1

. (153)

Hence it is clear that
1∫
t

(
R
r

)n−2
[T
R
+ µn−1]dF̂ (t)(r)

1∫
t

(
R
r

)n−1
[T
R
+ µn−1]dF̂ (t)(r)

 ≤


1∫
t
[T
R
+ µn−1]dF̂ (t)(r)

1∫
t

(
R
r

)n−1
[T
R
+ µn−1]dF̂ (t)(r)


1

n−1

≤

≤


1∫
t
[1 + µn−1]dF̂ (t)(r)

1∫
t

(
R
r

)n−1
[0 + µn−1]dF̂ (t)(r)


1

n−1

≤
(
1 + µn−1

µn−1

) 1
n−1

 1∫
t

(
R

r

)n−1

dF̂ (t)(r)

−
1

n−1

≤
(
1 + µn−1

µn−1

) 1
n−1

2−
1

n−1 [1−GF̂(t)(h)]
− 1

n−1 . (154)

This results from the definition of G and the relation (compare Borgwardt (1987), page
170-171):

1∫
h

√
r2 − h2

n−1

rn−1
dF̂ (t)(r) =

1∫
h

Rn−1r−n+1dF̂ (t)(r) = (n− 1)

1∫
h

1∫
h
r

(1− σ2)
n−3
2 σdσdF̂ (t)(r) ≥

≥ 2 · λn−2{ωn−1}
λn−1{ωn}

1∫
h

1∫
h
r

(1− σ2)
n−3
2 dσdF̂ (t)(r) = 2[1−GF̂(t)(h)], (155)

which also guarantees that
1∫
t

(
R
r

)n−2
dF̂ (t)(r)

1∫
t

(
R
r

)n−1
dF̂ (t)(r)

 ≤ 2−
1

n−1 [1−GF̂(t)(h)]
− 1

n−1 . (156)

As we already know from Remark 9 and (148), the original distribution induced by F and
the auxiliary distribution induced by F̂ (t) make sure that

GF̂(t)(h) ≤ GF(h) = G(h) ∀ h ∈ [0, 1]. (157)
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Particularly, for a value h̃ such that

GF(h̃) = 1− 1

m− n + 1

it is sure that

GF̂(t)(h̃) ≤ 1− 1

m− n+ 1
= GF(h̃). (158)

So we have ∀ h ∈ [µnt, t] such that h < h̃ : GF̂(t)(h) ≤ GF(h) < 1− 1

m− n+ 1
. (159)

In the following we shall make some case-studies on Q3, compare (152) and (151), based on
the respective position of h̃. In (brackets) the corresponding case or the configuration will
be described. For this purpose we introduce the notation:

ζ := max{µnt, h̃}. (160)

Suppose, that ζ > µnt, i.e. h̃ > µnt. If we then restrict our integral-quotient Q3 from (152)
to the region where µnt ≤ h ≤ min{h̃, t}, and if we denote the corresponding quotient by
Q3(µnt ≤ h ≤ min{h̃, t}), then the evaluation based on (154) and (158) delivers

Q3(µnt ≤ h ≤ min{h̃, t}) ≤ π(n− 1)n4

[
1 +

1

µn−1

] 1
n−1

2−
1

n−1 (1−GF̂(t)(h̃))
− 1

n−1

≤ π(n− 1)n4

[
1 +

1

µn−1

] 1
n−1

2−
1

n−1 (m− n+ 1)
1

n−1 . (161)

If h̃ ≤ t, then still [max{µnt, h̃}, t] = [ζ, t] remains to be analyzed.
In the area under consideration we have

G(h) ≥ 1− 1

m− n+ 1
and hence [G(h)]m−n ≥ e−1. (162)

Consider the region µnt ≤ ζ ≤ h ≤ t. Let us denote the corresponding quotient of (152) by
Q3(µnt ≤ ζ ≤ h ≤ t). We make use of (162) and estimate G(h) ≤ 1 in the numerator and
G(h)m−n ≥ e−1 in the denominator. So we achieve

Q3(µnt ≤ ζ ≤ h ≤ t) ≤ π · (n− 1) · n · 4 · e ·

t∫
ζ

1∫
t

Rn−2

rn−2
1
T
[T
R
+ µn−1] dF̂ (t)(r) dh

t∫
ζ

1∫
t

Rn−1

rn−1
1
T
[T
R
+ µn−1] dF̂ (t)(r) dh

. (163)

For this most important and most critical area we use the following essential estimation.

Lemma 11
If r ≥ t, then we know that

t∫
ζ

1∫
t

1
T

Rn−1

rn−1 [
T
R
+ µn−1] dF̂ (t)(r) dh

t∫
ζ

1∫
t

1
T

Rn−2

rn−2 [
T
R
+ µn−1] dF̂ (t)(r) dh

≥
[

µn−1

n(1 + µn−1)

] 1
n−1

 1∫
t

√
r2 − ζ2

n−1

rn−1
dF̂ (t)(r)


1

n−1

(164)
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Proof

t∫
ζ

1∫
t

1√
t2−h2

√
r2−h2n−1

rn−1 [T
R
+ µn−1] dF̂ (t)(r) dh

t∫
ζ

1∫
t

1√
t2−h2

√
r2−h2 n−2

rn−2 [T
R
+ µn−1] dF̂ (t)(r) dh

(165)

≥
[

1

1 + µn−1

] 1
n−1

t∫
ζ

1∫
t

1√
t2−h2

√
r2−h2n−1

rn−1 [T
R
+ µn−1]

n−1
n−1 dF̂ (t)(r) dh

t∫
ζ

1∫
t

1√
t2−h2

√
r2−h2 n−2

rn−2 [T
R
+ µn−1]

n−2
n−1 dF̂ (t)(r) dh

(166)

≥
[

1

1 + µn−1

] 1
n−1


t∫
ζ

1∫
t

1√
t2−h2

√
r2−h2n−1

rn−1 [T
R
+ µn−1]

n−1
n−1 dF̂ (t)(r) dh

t∫
ζ

1∫
t

1√
t2−h2 dF̂ (t)(r) dh


1

n−1

(167)

≥
[

µn−1

1 + µn−1

] 1
n−1


t∫
ζ

1∫
t

1√
t2−h2

√
r2−h2n−1

rn−1 dF̂ (t)(r) dh

t∫
ζ

1∫
t

1√
t2−h2 dF̂ (t)(r) dh


1

n−1

(168)

=

[
µn−1

1 + µn−1

] 1
n−1


t∫
ζ

1∫
t

1√
t2−h2

√
r2−h2n−1√

t2−h2n−1

rn−1
√
t2−h2n−1 dF̂ (t)(r) dh

t∫
ζ

1∫
t

1√
t2−h2 dF̂ (t)(r) dh


1

n−1

(169)

≥
[

µn−1

1 + µn−1

] 1
n−1


t∫
ζ

1∫
t

1√
t2−h2

√
r2−ζ2

n−1√
t2−h2n−1

rn−1
√

t2−ζ2
n−1 dF̂ (t)(r) dh

t∫
ζ

1∫
t

1√
t2−h2 dF̂ (t)(r) dh


1

n−1

(170)

=

[
µn−1

1 + µn−1

] 1
n−1


1∫
t

√
r2−ζ2

n−1

rn−1 dF̂ (t)(r)

1∫
t
dF̂ (t)(r)

· 1√
t2 − ζ2

n−1 ·

t∫
ζ

1√
t2−h2

√
t2 − h2

n−1
dh

t∫
ζ

1√
t2−h2 dh


1

n−1

(171)

≥
[

µn−1

1 + µn−1

] 1
n−1


1∫
t

√
r2−ζ2

n−1

rn−1 dF̂ (t)(r)

1∫
t
dF̂ (t)(r)

· 1√
t2 − ζ2

n−1 ·

t∫
ζ
h
√
t2 − h2

n−2
dh

t∫
ζ

h√
t2−h2 dh


1

n−1

(172)

=

[
µn−1

1 + µn−1

] 1
n−1


1∫
t

√
r2−ζ2

n−1

rn−1 dF̂ (t)(r)

1∫
t
dF̂ (t)(r)

· 1√
t2 − ζ2

n−1 ·
1
n

√
t2 − ζ2

n

√
t2 − ζ2


1

n−1

(173)
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=

[
µn−1

n(1 + µn−1)

] 1
n−1


1∫
t

√
r2−ζ2

n−1

rn−1 dF̂ (t)(r)

1∫
t
dF̂ (t)(r)


1

n−1

(174)

=

[
µn−1

n(1 + µn−1)

] 1
n−1

 1∫
t

√
r2 − ζ2

n−1

rn−1
dF̂ (t)(r)


1

n−1

. (175)

In (167) it is exploited, that the expectation value of an objective-variable increases, when
the density is multiplied with a function, which is monotonously increasing with the objec-
tive variable. This amounts to an application of the Jensen-inequality. (170) relies on the

fact that
√
r2−h2√
t2−h2 ≥

√
r2−ζ2√
t2−ζ2

for r > t > h > ζ . In (170) we observe that the integrands

consist of factors which either depend on h only, or on r only, or are independent of both.
So we can separate the integrations as in (171). Multiplication of the density with h in
(171) in the rightmost quotient of integrals decreases this quotient, since its objective is a

decreasing function of h. In the very last equation we apply
1∫
t
dF̂ (t)(r) = 1. �

Exploitation of Lemma 11 for proving Proposition 6
Insertion into (163) and application of (155) and (157) yields

Q3(µnt ≤ ζ ≤ h ≤ t) ≤ π(n− 1)n4e

[
n(1 + µn−1)

µn−1

] 1
n−1

 1∫
t

√
r2 − ζ2

n−1

rn−1
dF̂ (t)(r)

−
1

n−1

(176)

≤ π(n− 1)n4e

[
n(1 + µn−1)

2µn−1

] 1
n−1

[1−GF̂(t)(ζ)]
− 1

n−1 (177)

≤ π(n− 1)n4e

[
n(1 + µn−1)

2µn−1

] 1
n−1

[1−GF(ζ)]
− 1

n−1 . (178)

This means for the case that ζ > µnt

Q3(µnt < ζ ≤ h ≤ t) ≤ π · (n− 1) · n · 4 · e ·
[
n(1 + µn−1)

2µn−1

] 1
n−1 {

(m− n+ 1)
1

n−1

}
, (179)

in accordance to (157), (158), (159) and (160).

Finally, consider the potential case that ζ = µnt, i.e. h̃ ≤ µnt. Denote the corresponding
quotient by Q3(µnt = ζ ≤ h ≤ t). From (176) we learn that

Q3(µnt = ζ ≤ h ≤ t) ≤ π(n−1)n4e

[
n(1 + µn−1)

µn−1

] 1
n−1

 1∫
t

√
r2 − ζ2

n−1

rn−1
dF̂ (t)(r)

−
1

n−1

(180)

For any single radius r in our special configuration h̃ ≤ µnt we have√
r2 − (ζ)2

r
=

√
r2 − (µnt)2

r
≥
√
r2 − (µnr)2

r
≥
√
1− (µn)2. (181)

49



Insertion in (180) delivers

Q3(µnt = ζ ≤ h ≤ t) ≤ π · (n− 1) · n · 4 · e · 1√
1− (µn)2

[
n(1 + µn−1)

µn−1

] 1
n−1

. (182)

Having analyzed all the possible cases of Q3 in B3, namely (161), (179), (182), we observe
that

Q3 ≤ π(n− 1)n4e ·
[
n(1 + µn−1)

µn−1

] 1
n−1

max


(
m− n+ 1

2

) 1
n−1

,
1√

1− (µn)2

 . (183)

This finishes the Proof for Proposition 6. �

Now we can formulate our main result, recalling from (89) that µn ≈
√

2
(n−1)π

:

Theorem 3

Em,n(S) ≤ π · (n− 1) · n · 4· (184)

·max

 2e
1
π√

1− µn
2
, e

[
n(1 + µn−1)

2µn−1

{m− n+ 1}
] 1

n−1

, e

[
n(1 + µn−1)

µn−1

] 1
n−1 1√

1− (µn)2

 .

Proof
Comparison of (140) with the bounds derived earlier in (130) resp. (139)

Q1 ≤ λn{Ωn} · n2 · 8 · e 1
π

λn−1{Ωn−1}µn−1

√
1− µn

2
= π(n− 1) · n · 8 · e 1

π
1√

1− µn
2
,

Q2 ≤ 2 · λn{Ωn} · n2

λn−1{Ωn−1}
√
1− µn

2
,

Q3 ≤ π(n− 1)n4e ·
[
n(1 + µn−1)

µn−1

] 1
n−1

max


(
m− n+ 1

2

) 1
n−1

,
1√

1− (µn)2


leads to the result that the bound given in the Theorem is the worst. �
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8 Final Result, Consequences and Conclusions

Finally, let us give a brief overwiew over the main results in the RSM-investigation. As
before, C or Const. denote constants, independent of m and of n.
In a concise form our main result reads:

Theorem 4

Em,n(S) ≤ m
1

n−1 · n2 · Const. for all pairs (m,n) with m ≥ n. (185)

One should compare this upper bound for general distributions with a lower bound for a
special distribution which was first derived in Borgwardt (1987).
For uniform distribution on ωn it is known that

m
1

n−1 · n2 · 2 · Cn · [1 + ε(m,n)] ≥ Em,n(S) ≥ m
1

n−1 · n2 · 2 · Cn · [1− ε(m,n)] (186)

with ε(m, n) → 0 for m → ∞, n fixed and with Cn,Cn → 1 for n → ∞.

The asymptotic result (186) for a special distribution shows that our result in Theorem 4
comes close to the lower bound, and that it differs from any sharpest uniform upper bound,
which is valid for all RSM-distributions, only by a moderate constant factor.

As explained in section 1, our main result helps to improve the bound for the average effort
for the so-called dimension-by-dimension method from Borgwardt (1987), our complete so-
lution method for LPs of type (1). The new bound on its average number of pivot steps
is

Em,n(st) ≤ m
1

n−1 · n3 · Const. (187)

These insights and average-case bounds can also be transferred to problems of the type

maximize vTx s.t. aT1 x ≤ 1, . . . , aTmx ≤ 1 and x ≥ 0. (188)

Polynomial upper bounds on the average number of pivot steps have also been
derived under the so-called sign invariance model in Adler, Karp and Shamir (1987),
Adler and Megiddo (1985), Todd (1986). There the stochastic assumptions are extremely
different and it makes no sense to start a comparison here. For RSM the study presented
here finally gives a quantitatively precise information on the behaviour in single stages, in
particular in the last stage (Phase II), as had been available for SIM from Haimovich (1983).
The analysis of the expected number of pivot steps under RSM is still developing and in
progress, as the following examples may demonstrate.
Höfner (1995) could show that the dimension-by-dimension method has – under distribu-
tions with bounded support Ωn – a better asymptotic bound of

Em,n(st) ≤ m
1

n−1 · n 5
2 · Const. for m → ∞, n fixed.

The reason for that improvement lies in the observation, that in the asymptotic case, where
conv(0, a1, . . . , am) approximates the unit ball from inside very closely, there is not much
left to do in higher stages (k � 1). This holds, because stages 1, . . . , k − 1 have provided
us with an entrance vertex for stage k, which is very close to the optimal vertex in stage k.
This confirmation could – so far – be given only for the asymptotic case.
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And, we can combine the present result with Höfner (1995) in order to construct a complete
solution-algorithm, which performs two stages of the shadow vertex algorithm only, but
which is explicitly designed for the asymptotic configuration, so that its success-probability
is only there extremely close to 1. This algorithm would reflect the common belief in the
equal complexity of the two Phases, since it does not only the work of Phase II, but also
that of Phase I for problems of type (1) or (188) in an average number of steps less than

Em,n(st) ≤ m
1

n−1 · n2 · Const. for m → ∞, n fixed.

Küfer (1995) proved that (for a certain subclass of RSM-distributions with bounded sup-
port) – and again for the asymptotic case – the quotient of variance and squared expected
value of su,v tends to behave as 1

n
, and the corresponding quotient for S behaves (asymp-

totically seen as a function of m for fixed n) better than m
−1
n−1 .

Finally, it should be mentioned that Huhn (1997) derived lower bounds on Em,n(s) for a
family of RSM-distributions ( the same subclass as mentioned above). For uniform distri-
bution on ωn, she calculated a constant C > 0, such that any Phase II-Simplex-Variant
requires more than

m
1

n−1 · C · n0 steps on the average.

Although this result holds for every pair (m,n), it is significant and meaningful only when
m � n, because the constant is small and m has to become large until the bound becomes
nontautological. This insight exploits the fact that edges of X (stochastically) are not long
for arbitrary dimensions and tend to be very short for m � n in RSM. This shows that

under RSM, no variant can avoid the factor m
1

n−1 , which had been observed with the shadow
vertex algorithm.

For these three types of results, it is highly desirable to study the question, whether they
hold for moderate dimensions (m,n), too. Here the situation is similar as it was with the
question on Em,n(S), before clarification in this paper: The asymptotic behavior is proven
to be quite good, but still we do not know whether this quality is a general effect, or whether
it is only a consequence of the asymptotic configuration.

So far not very satisfactory is the state of the art with problems (of the general type) with
arbitrary capacities bi (not necessarily positive)

maximize vTx s.t. aT1 x ≤ b1, . . . , aTmx ≤ bm where b ∈ IRm. (189)

We developed a complete algorithm, which augments one additional stage to the dimension-
by-dimension method, in order to translate the general problem into a problem of our type
(1). Then it solves the auxiliary problem and implicitly the original problem (189). Good
upper bounds for the average number of pivot steps for the extended method like

Em,n(st) ≤ m
1

n−1 · n3 · Const.

could so far be derived only for two special distribution-cases, namely

• when all entries aji and 1− bi follow a Gaussian distribution, or when

• the augmented row-vectors (a1i , . . . , a
m
i , 1− bi) follow an RSM-distribution.

So, there is still enough to do.
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APPENDIX
This Appendix delivers some results and their rather technical proofs, which have already
been mentioned in the main text, but not been proved there.

Lemma 3
Let cn and z be fixed such that cn

||cn||
T z �= 0. Consider the orthogonal hyperplane H to z.

Then with the exception of a λn−2-nullset, Υ̂( cn
||cn|| , z[T, h];w) from (56) in Lemma 2 and

Υ( cn
||cn|| , z[T, h];w) from Lemma 1, are identical functions on ωn ∩H. �

Proof
Again, we set en = cn

||cn|| in this proof.

Fix a point w̃ ∈ ωn∩H and a value ε > 0. We recall from Lemma 2 that there is a value δ(ε, z)
such that any set M(w̃) ⊂ ωn ∩H with positive measure and M(w̃) ⊂ {x| � (x, w̃) < δ(ε, z)}
satisfies

|Υ̂(en, z; w̃)− Ṽ (en,M(w̃))

W̃ (M(w̃))
| ≤ ε. (190)

We may as well set δ2 :=
1
2
· δ and consider a set N := N δ2 ⊂ ωn ∩H about w̃ with positive

measure and N δ2 ⊂ {x| � (x, w̃) < δ2(ε, z)}.
Now consider any point x ∈ N δ2 . Of course, for x the set N δ2 is in a δ-neighbourhood of x.
We learn from (190) that

|Υ̂(en, z; x)− Ṽ (en, N)

W̃ (N)
| ≤ ε ∀x ∈ N. (191)

From Lemma 1 we know the density function Υ(en, z; x), which is of course also defined on
N . It is unique outside a nullset with respect to the measure λn−2. Let us study one such
version and call this Υ0.
The comparison between Υ0 and Υ̂ induces a (disjoint) dissection of N into three subsets,
namely

N≈ := N ∩ {x| |Υ0(en, z; x)− Υ̂(en, z; x)| ≤ 2ε} (192)

N> := N ∩ {x| Υ0(en, z; x)− Υ̂(en, z; x) > 2ε} (193)

N< := N ∩ {x| Υ0(en, z; x)− Υ̂(en, z; x) < 2ε}. (194)

Neither N> nor N< can contain a (measurable) subset of positive λn−2-measure. Otherwise,
this subset would contradict the statement in Lemma 1. To explain this, assume that N>

has positive measure. Since N> is a subset of N , it should satisfy according to (190)

|V (en, N>)

W (N>)
− Υ̂(en, z; x)| ≤ ε ∀x ∈ N>. (195)

But in this set we find according to (193) and (190) for every element x ∈ N>

Υ0(en, z; x) > {Υ̂(en, z; x) + ε} + ε ≥ Ṽ (en, N>)

W̃ (N>)
+ ε. (196)
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Since Υ0 is a density for V
W

on N>, this is the contradiction.
For N< we can argue analogously. That means that λn−2 {N> ∪N<} = 0.

We generalize that argument to a finite dissection of the full region ωn ∩H into sets of type
Ni of maximal “angle-radius” δ2. Since this angle-radius can be chosen independently of
w (compare Lemma 2), a finite number of such neighbourhood-subsets suffices to cover the
full region. This confirms that globally only on a nullset the two functions Υ0(en, z[T, h];w)
and Υ̂(en, z[T, h];w) may differ by more than 2ε. Finishing that argument with arbitrary
small ε yields the λn−2-almost-everywhere coincidence of both functions. �

Lemma 5
The term

1∫
η

√
1− h2

n−3
dh

(n− 1)
1∫

|η|

√
1− h2

n−3
hdh

=

1∫
η

√
1− h2

n−3
dh

(1− η2)
n−1
2

(197)

represents a monotonously decreasing, convex function of η in the interval (−1, 1).

Proof
The first derivative of the function (197) is

−(1− η2)
n−3
2 (1− η2)

n−1
2 +

1∫
η

√
1− h2

n−3
dh · η(1− η2)

n−3
2 (n− 1)

(1− η2)n−1
=

=

−(1− η2)
n−1
2 +

1∫
η

√
1− h2

n−3
dh · η(n− 1)

(1− η2)
n−1
2

+1
. (198)

This shows that the value of the derivative (198) at η = 0 is just −1.
For η < 0 the convexity of (197) is obvious. Have a look at (198). The numerator of (198)

is negative then. It has its own derivative of just
1∫
η

√
1− h2

n−3
dh · (n− 1) > 0.

So, the numerator of (198) is negative and monotonously increasing.
The denominator of (198) is positive and increases while η grows.
The combination of both observations yields that (198) is negative and increases on the
interval η ∈ (−1, 0] up to the value −1.
So, (197) has a negative, but increasing derivative on (−1, 0]. The value of (197) at η = 0 is

1∫
0

√
1− h2

n−3
dh =

λn−1{ωn}
2 · λn−2{ωn−1} =

1

(n− 1) · µn

.
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In order to confirm this behaviour also for η > 0, we perform additional transformations,
which are feasible only here (for η > 0).

(198) =

−
1∫
η

√
1− h2

n−3
h dh · (n− 1) +

1∫
η

√
1− h2

n−3
dh · η(n− 1)

(1− η2)
1∫
η

√
1− h2

n−3
h dh · (n− 1)

=

= − 1

1 + η
·

1∫
η

√
1− h2

n−3 · h−η
1−η

dh

1∫
η

√
1− h2

n−3 · h dh
=

= − 1

1 + η
·


1∫
η

√
1− h2

n−3 · h−η
1−η

dh

1∫
η

√
1− h2

n−3
dh

 ·


1∫
η

√
1− h2

n−3 · h dh
1∫
η

√
1− h2

n−3
dh


−1

.

This product is negative, so (197) is decreasing. It remains to show convexity. The first
quotient decreases while η grows. The rest gives a relation between two expectation values.
First observe the quotient in the last brackets. For growing η we observe a transformation
of weights in favour of higher values of h. Hence this expectation value grows. For the figure
in the first expectation value (first brackets) h−η

1−η
the effect is just the opposite. The larger

η becomes, the steeper is the relative descent of the density-function, while the range of the
objective is always [0, 1]. So, by increasing η, the large values of the objective variable get
less and less weight. Therefore, this expectation value decreases. So we have

• a negative sign

• a positive, decreasing first factor

• a positive, decreasing second factor

• a positive, decreasing third factor (the inverse of an increasing one).

Hence (197) is convex, because its derivative (198) is a negative, but increasing product. �

Lemma 6

η + (1− η)
2

(n+ 1)
≤

1∫
η

√
1− h2

n−3 · h dh
1∫
η

√
1− h2

n−3
dh

≤ η + (1− η)
2 · λn−2{ωn−1}
(n− 1)λn−1{ωn} ∀ η > 0. (199)

And for the correction factor Φ it is known that for η > 0

Φ(η) ≥ 1

η + (1− η)µn

=
1

η + (1− η) 2·λn−2{ωn−1}
(n−1)λn−1{ωn}

. � (200)

55



Proof
The second line is just a reformulation of the right inequality in the first line.
Let us first prove the left inequality in the first line. We use that

1∫
η

√
1− h2

n−3 · h dh
1∫
η

√
1− h2

n−3
dh

=

1∫
η

√
1− h

n−3√
1 + h

n−3 · h dh
1∫
η

√
1− h

n−3√
1 + h

n−3
dh

.

This is an expectation value of h. Hence the factor
√
1 + h

n−3
will support higher values of

h. Dropping or reducing this factor will provide a lower expectation value for h.

1∫
η

√
1− h

n−3
hdh

1∫
η

√
1− h

n−3
dh

= η +

1∫
η

√
1− h

n−3
(h− η)dh

1∫
η

√
1− h

n−3
dh

= η +
(1− η)

n−3
2

+2
1∫
0

√
1− u

n−3
u du

(1− η)
n−3
2

+1
1∫
0

√
1− u

n−3
du

=

= η + (1− η) ·
2

n−1
− 2

n+1
2

n−1

= η + (1− η) · 2

n + 1
. (201)

Now we proceed to the right inequality

1∫
η

√
1− h2

n−3 · h dh
1∫
η

√
1− h2

n−3
dh

= η +

1∫
0

√
1− [η + (1− η)x]2

n−3 · x dx
1∫
0

√
1− [η + (1− η)x]2

n−3
dx

· (1− η) ≤∗

≤ η +

1∫
0

√
1− [x]2

n−3 · x dx
1∫
0

√
1− [x]2

n−3
dx

· (1− η) = η + (1− η) · 2 · λn−2{ωn−1}
(n− 1)λn−1{ωn} . (202)

* holds, because we know that for 0 ≤ xk ≤ xg < 1 :

1− x2
k

1− x2
g

=
(1− xk)(1 + xk)

(1− xg)(1 + xg)
≤ 1− xk

1− xg

=⇒ 1− x2
k

1− x2
g

≤ (1− η)2(1− x2
k) + 2η(1− η)(1− xk)

(1− η)2(1− x2
g) + 2η(1− η)(1− xg)

=
1− [η + (1− η)xk]

2

1− [η + (1− η)xg]2
.

This means that * results from a transformation of weights in favour of higher x-values.
The expectation value of x is the largest when η = 0. �
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Lemma 10
There is a radial distribution function F̂ (t) with F̂ (t)(r) = 0 ∀ r < t and F̂ (t)(1) = 1,
such that the quotient corresponding to (142) when based on the distribution function F̂ (t)

becomes worse (larger) than (142), which is based on F . One instance of such a distribution
function is of the form

F̂ (t)(r) =


0 for r < t
γt · F(t) for r = t

γt · F(t) + [1− γt · F(t)] · F(r)−F(t)
1−F(t)

for r > t,
(203)

with an appropriate (t-dependent) value of γt. �

Proof
Consider the following integral-quotient from (142)

t∫
µnt

r∫
µnt

G(h)m−n Rn−3

rn−2 dh dF(r) +
1∫

t+

t∫
µnt

G(h)m−n[1 + µn−1
R
T
]R

n−3

rn−2 dh dF(r)

t∫
µnt

r∫
µnt

G(h)m−n T
t
[1 + 1

n−1
R2

T 2 ]
Rn−3

rn−2 dhdF(r) +
1∫

t+

t∫
µnt

G(h)m−n T
r
Rn−3

rn−2 [1 +
1

n−1
R2

T 2 ]dhdF(r)

(204)

Without loss of generality, we may assume that F(r) = 0 ∀ r < µnt. Else, we could easily
normalize, because [0, µnt) is irrelevant for the evaluation of (204).
First look at the quotient of the two left summands only. For every single radius quotient
with r ≤ t we have

r∫
µnt

G(h)m−nRn−3

rn−2 dh

r∫
µnt

G(h)m−n T
t
[1 + 1

n−1
R2

T 2 ]
Rn−3

rn−2 dh
≤

r∫
µnt

G(h)m−n Rn−3

rn−2 [1] dh

r∫
µnt

G(h)m−n T
t
Rn−3

rn−2 [1] dh
≤

≤

r∫
µnt

G(h)m−n Rn−3

rn−2 [1 + µn−1] dh

r∫
µnt

G(h)m−n T
t
Rn−3

rn−2 [1 +
1

n−1
] dh

≤

t∫
µnt

G(h)m−n[1 + µn−1]
Tn−3

tn−2 dh

t∫
µnt

G(h)m−n T
t
[1 + 1

n−1
]T

n−3

tn−2 dh
. (205)

The second inequality exploits 1 + 1
n−1

< 1 + µn−1 from (92) and the third (205) is justified
by comprehending that a transformation of weights has taken place to get from the new
form to the old form according to{

Rn−3

Tn−3 for h ≤ r
0 for r ≤ h ≤ t

(monotonously decreasing with h).

Since r ≤ t and R ≤ T , this transformation supports the lower values of h and the larger
values of T

t
. So the quotient is smaller in the old form.
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This observation motivates a possible change of the radial distribution. Consider the radial
distribution function

F̃ (t)(r) :=

{
0 r < t
F(r) r ≥ t

. (206)

Let us use this function in (204) and let us do the replacement suggested in (205). This
leads to a new quotient of integrals.

t∫
µnt

G(h)m−n Tn−3

tn−2 [1 + µn−1] dh · F̃ (t)(t) +
1∫

t+

t∫
µnt

G(h)m−n[1 + µn−1
R
T
]R

n−3

rn−2 dh dF̃ (t)(t)

t∫
µnt

G(h)m−n T
t
[1 + 1

n−1
]T

n−3

tn−2 dh · F̃ (t)(t) +
1∫

t+

t∫
µnt

G(h)m−n T
r
Rn−3

rn−2 [1 +
1

n−1
R2

T 2 ]dhdF̃ (t)(r)

. (207)

The right summands in numerator and in denominator will not be involved by the modifica-
tion, because we let them start at t+. But the left summands will be changed. Our change
from (204) to (207) has enlarged the left summand in the numerator of (204), i. e. the
integral mass for [0,t]. The reasons are the factor 1 + µn−1 and the insight that the figure

r∫
µnt

G(h)m−nRn−3r−n+2 dh =

1∫
µnt
r

G(qr)m−n
√
1− q2

n−3

dq (208)

increases monotonously with r. As a result of the monotony of G, we observe an increment
of these terms for growing r until t. We conclude

t∫
µnt

r∫
µnt

G(h)m−n Rn−3 r−n+2 dh dF(r) ≤
t∫

µnt

G(h)m−nT n−3t−n+2 dh · [F(t)− F(0)]. (209)

Consequently, the use of F̃ (t) in (207) instead of F as in (204) delivers a higher quotient of
the left summands because of (205). And it provides a higher integral mass for the region
[0, t], as (209) shows.
Hence, this new quotient will not be smaller than the quotient in (204), if F̃ (t)(t) = F(t) = 1.

Let us now study the case F̃ (t)(t) = F(t) < 1. Up to now it is impossible to decide, whether
the total quotient has changed and in which direction. Therefore, we simplify the notation
for the moment and look at the structure of the modifications. Let us use N≤t, N>t, D≤t, D>t

for the two numerator- and the two denominator-terms in (204), which had been based on
F . Then the structure of (204) can be described as

N≤t +N>t

D≤t +D>t

. (210)

Accordingly, we use Ñ≤t, Ñ>t, D̃≤t, D̃>t for the fragments of (207). Our change leads to an
increment of the quotient of the left summands, i.e. there is a real number α ≤ 1 such that

N≤t

D≤t

≤ Ñ≤t

D̃≤t

=
N≤t

α ·D≤t

.

58



Besides that it leads to an increment of the left numerator-summand, i.e. there is a real
number β ≥ 1 such that

N≤t ≤ Ñ≤t = β ·N≤t.

Now we have
Ñ≤t + Ñ>t

D̃≤t + D̃>t

=
β ·N≤t +N>t

α · β ·D≤t +D>t
. (211)

Although the quotient in the area of “≤ t” is larger now, we cannot finally compare (211)
with (210). To clarify the effect of the modification, we could introduce another real γ ≤ 1,
which restores the original balance of the two numerator-summands, with the property

γ · β ·N≤t

1−γ·F(t)
1−F(t)

·N>t

=
N≤t

N>t

, respectively γ · β =
1− γ · F(t)

1−F(t)
.

The existence of such a value is clear. Choose

γ =
1

1 + (1− F(t))(β − 1)
≤ 1.

Switching to another distribution function, namely

F̂ (t)(r) =


0 for r < t
γ · F(t) for r = t

γ · F(t) + [1− γ · F(t)] · F(r)−F(t)
1−F(t)

for r > t,
(212)

with γ defined as above, would lead to the relation

N≤t +N>t

D≤t +D>t

≤
γ · β ·N≤t +

1−γ·F(t)
1−F(t)

N>t

γ · α · β ·D≤t +
1−γ·F(t)
1−F(t)

D>t

=
N≤t +N>t

α ·D≤t +D>t

=
N̂≤t + N̂>t

D̂≤t + D̂>t

since α ≤ 1.

Note that N̂≤t, N̂>t, D̂≤t, D̂>t denote the fragments under use of the new distribution func-

tion F̂ (t)(r) corresponding to (207), where F̃ had been used.
So we arrive at the desired simplification Q3 ≤ Q̂3, as defined in (144) in the main text. �
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