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0. Introduction and statement of the result

Let V be a euclidean vector space and K ⊂ O(V ) a compact subgroup.
The representation of K on V is said to be polar, if there exists a linear
subspace Σ which meets every orbit and meets it perpendicularly at every
point of intersection. Examples are the so called s-representations, i.e. the
isotropy representations of symmetric spaces. Dadok ([D]) has classified
almost explicitly all irreducible polar representations (cf. Theorem 9 and
the subsequent remark on p. 129, together with the lists on pp. 133, 134 and
136 in [D]). As a consequence of his classification he gets that any polar
representation is orbit equivalent to an s-representation, i.e. it has the same
orbits as a suitable s-representation after an isometric identification of the
vector spaces (cf. [D], Prop. 6). We will call this his main result. Dadok's
proof for the classification consists in an ingeneous reduction of the set of
all irreducible representations of all compact Lie groups to finitely many
cases (many of which are left to the reader).

In [EH] we gave a classification free conceptual proof of the main result
if the rank (i.e. the codimension of the principal orbits) is not two. In fact it
turns out that for any polar representation ρ on V , the maximal subgroup of
O(V ) with the same orbits as ρ is an s-representation. The purpose of the
present paper is to derive the complete classification from the main result.
More precisely, for any irreducible symmetric space S = G/K, we will
determine all (connected) subgroups K ′ of K having the same orbits as K
under the isotropy representation of S. The main idea of our proof consists in
the observation that the principal K-orbits are isoparametric submanifolds
which are foliated by curvature spheres on which K and also K ′ ⊂ K act
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transitively. This is a very severe restriction on K ′ and implies in most cases
immediately K ′ = K. But our proof also gives a geometric explanation for
the occurence of those polar representation which are not s-representations.
In this way, we can confirm Dadok's result and obtain the following explicit
list:
Theorem LetG/K be an irreducible symmetric space of rank at least two
and with K connected. If K ′ ⊂ K is a compact connected subgroup which
has the same orbits as K under the isotropy representation, then K ′ = K
unless we have one of the following cases:
(i) G/K = SO(9)/SO(2) × SO(7) and K ′ = SO(2) × G2
(ii) G/K = SO(10)/SO(2) × SO(8) and K ′ = SO(2) × Spin(7)
(iii) G/K = SO(11)/SO(3) × SO(8) and K ′ = SO(3) × Spin(7)
(iv) G/K = SU(p + q)/S(U(p) × U(q)) with p 6= q andK ′ = SU(p) ×

SU(q)
(v) G/K = SO(2n)/U(n) , n odd, and K ′ = SU(n)
(vi) G/K = E6/SO(10) · S1 and K ′ = SO(10) .

Remarks.
1. By the main result of Dadok and this theorem the only irreducible polar

representations of rank at least two are the s-representations and the
restrictions of s-representations to K ′ of the list above.

2. Reducible polar representations are recently classified by I. Bergmann
in her thesis at Augsburg.

3. The rank one case of the theorem follows from the classification of com-
pact connected subgroups K of SO(m+1) which act transitively on Sm

and which we state here for later use (cf. [B]):
(i) m = 1: K = SO(2)
(ii) m = 2n, n 6= 3: K = SO(2n + 1)
(iii) m = 6: K = SO(7), G2
(iv) m = 2n − 1, n odd, n > 1 : K = SO(2n), U(n), SU(n)
(v) m = 4n − 1:

K = SO(4n), U(2n), SU(2n), Sp(n), Sp(n) · Sp(1), Sp(n) · S1,

Sp(n), Spin(9) (if n = 4), Spin(7) (if n = 2)

with the only inclusions:
G2 ⊂ SO(7)
SU(n) ⊂ U(n) ⊂ SO(2n)
Sp(n) ⊂ SU(2n) ⊂ U(2n) ⊂ SO(4n)
Sp(n) ⊂ Sp(n) · S1 ⊂ Sp(n) · Sp(1) ⊂ SO(4n)
Sp(n) · S1 ⊂ U(2n)
SU(4) ⊂ Spin(7) ⊂ SO(8)
Spin(9) ⊂ SO(16) .
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1. Proof of the theorem

Let g = k + p be the Cartan decomposition. Then the isotropy represen-
tation of G/K can be identified with the action of K on p (by the adjoint
representation). A section Σ for this polar action is provided by a maximal
abelian subspace a of p. Let p0 ∈ a be a regular element. Then the principal
orbit K.p0 is an isoparametric submanifold (cf. [T]). In particular the cur-
vature distributions E1, . . . , Eg are defined on K.p0 . These distributions
are integrable with leaves being round spheres. Denote by Si the leaf of
Ei through p0 and let mi := dimSi = dimEi, i = 1, . . . , g . Since the
Ei are geometrically defined they are left invariant by K. Hence Si is left
invariant by an element k ∈ K if only k.p0 ∈ Si . Since both K ′ and K
act transitively on the orbit K.p0 the groups Ki := {k ∈ K; k.Si ⊂ Si}
and K ′

i := K ′ ∩ Ki act transitively on Si. But in general these actions will
not be effective. We decompose therefore the Lie algebra of Ki into ideals:
ki = ni ⊕ k̃i where ni is the Lie algebra of the kernel of the action and k̃i is
the orthogonal complement with respect to a biinvariant inner product on k .
Clearly we have Ki ⊃ K0 for any i where K0 is the isotropy group of K at
p0.

Now let K ′
0 := K ′ ∩ K0 and k0 and k′0 the Lie algebras of K0 and

K ′
0 respectively. Since K/K0 = K.p0 = K ′.p0 = K ′/K ′

0, we have
dimK/K ′ = dimK0/K ′

0 . In particular K ′ = K if k′0 = k0 .
Let (̃ki)0 = k̃i ∩ k0 . Then k0 = ni ⊕ (̃ki)0 is a direct sum of ideals (for

any i) since ni ⊂ k0 ⊂ ki . Furthermore k0 =
g∑

i=1
(̃ki)0 , since any v ∈ k0

perpendicular to (̃ki)0 for all i lies in
g⋂

i=1
ni and thus would give rise to a

1-parameter group acting trivially on all Si and hence on K.p0 and finally
on p since the action is irreducible. But this happens only if v = 0 . To prove
K ′ = K it therefore suffices to show that (̃ki)0 ⊂ k′0 for all i.
Lemma 1.1 Let n ∈ N, n 6= 3. If mi ∈ {1, 2n} for all i, then K ′ = K.

Proof. By the classification of groups acting transitively on spheres, k̃i =
so(2) if mi = 1 and k̃i = so(2n + 1) if mi = 2n respectively. In particular
k0 is a sum of ideals isomorphic to so(2n) . Let mi = 2n . Since K ′

i
also acts transitively on Si and there is only one compact connected group
acting transitively and effectively on Si, the projection of k′i onto the second
factor k̃i of ki = ni ⊕ k̃i is surjective. Thus k′i contains an ideal k′′i which
projects isomorphically onto k̃i ≡ so(2n + 1). Since there are no nontrivial
homomorphisms from so(2n + 1) into so(2n), any homomorphism of k′′i
into ni ⊂ k0 must vanish. Therefore the projection of k′′i ⊂ ki into the first
factor ni of ki is zero, i.e. k′′i ⊂ k̃i and thus k′′i = k̃i. This implies (̃ki)0 ⊂ k′i
for all i, hence k0 = k′0. 2
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The assumption of Lemma 1.1 is satisfied in particular in the group case
(all mi = 2) but also for most other irreducible symmetric spaces. In [H],
pp. 532-534 or [L], pp. 146-148, the multiplicities of the symmetric space
are listed from which one gets the mi by adding up the multiplicities of
proportional roots. These lists show that the only exceptions are possibly
the Grassmannians SO(p + q)/SO(p) × SO(q) with 2 ≤ p < q , SU(p +
q)/S(U(p) × U(q)) with 2 ≤ p < q , Sp(p + q)/Sp(p) × Sp(q) with 2 ≤
p ≤ q, and further SO(2n)/U(n) with n odd (D III) and E6/SO(10) × S1

(E III). It is only at this point that we use the classification of symmetric
spaces. The proof of the theorem is therefore completed by the following
two lemmas and the consideration of the Grassmannians and the D III case
for which we give direct proofs (cf. Sects. 2 and 3).
Lemma 1.2 If G/K is hermitian symmetric, K = K ′ · S1 , then K ′ has
the same orbits under the isotropy representation as K provided that all
mi 6= 1 .

Proof. It is enough to show that all the K ′
i act transitively on Si since

then the K ′-orbit through p0 has the same dimension as the K-orbit. Since
dimKi/K ′

i ≤ 1, K ′
i is a normal subgroup of codimension ≤ 1 in Ki

and the same is true for the connected components. But it follows from the
classification of groups acting transitively on the sphere Smi (or an easy
homotopy argument) that such a normal subgroup acts also transitively on
the sphere if mi > 1 . 2

Lemma 1.3 If G/K = E6/SO(10) · S1 (type E III), then K ′ ⊂ K has
the same orbits as K if and only if K ′ = K or K ′ = SO(10) .

Proof. In this case the multiplicities are 6 and 9. Thus the second possi-
bility for K ′ really occurs by Lemma 1.2. To prove that there are no more
possibilities we have to show dimK0/K ′

0 ≤ 1 . Since dimK0 = dimK −
dimK/K0 = dimK−(dimG/K−rank G/K) = 46−(32−2) = 16, this
is equivalent to dimK ′

0 ≥ 15 . The smallest group acting transitively on S9

is SU(5) with isotropy group SU(4) . Hence dimK ′
0 ≥ dim su(4) = 15.

2

2. Isotropy representation of Grassmannians

Let K ∈ {R, C, H} and consider the Grassmannian S = Gp(Kp+q) of all
oriented p-planes in K

p+q, where 2 ≤ p ≤ q. Hence S = G/K with

G = SO(p + q), K = SO(p) × SO(q) if K = R,

G = SU(p + q), K = S(U(p) × U(q)) if K = C,

G = Sp(p + q), K = Sp(p) × Sp(q) if K = H.
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S is a symmetric space of rank p. Its tangent space can be viewed as

p = Hom(Kp, Kq),

and the isotropy representation ρ then is given by

ρ(A, B)X = BXA−1

for (A, B) ∈ K and X ∈ p. For K ∈ {R, H}, the group K splits as

K = K1 × K2.

If K = C, we replace K by the locally isomorphic group SU(p) × U(q)
which has the same image under ρ. This has the advantage that in all three
cases, K splits as K = K1 × K2. The projection onto the factor Ki will be
denoted by πi.

Now letK ′ ⊂ K be a closed connected subgroup acting with the same or-
bits. Applying K to any X ∈ p, we can transform the subspaces ker X ⊂ K

p

and im X = X(Kp) ⊂ K
q into arbitrary subspaces of the same dimension.

Therefore, the two projections πi(K ′) of K ′ ⊂ K must act transitively on
the set of subspaces of any fixed dimension between 1 and p.

Lemma 2.1 If p = q, then K ′ = K.

Proof. If K ∈ {R, C}, this follows from Lemma 1.1 (cf. [H], p.532 for the
multiplicities). If K = H, then by Lemma A1 of the appendix, πi(K ′) =
Sp(p) for i = 1, 2. Hence, if K ′ is a proper subgroup of K, it must be
the diagonal embedding of Sp(p), but this has dimension too small to act
transitively on a principal K-orbit M , since dimM = dimS − rk S =
p(4p − 1) > p(2p + 1) = dim(Sp(p)). 2

Lemma 2.2 If 2 ≤ p < q, thenK ′ ⊂ K acts transitively on theK-orbits
if and only if

K ′ = K1 × K ′
2

whereK ′
2 ⊂ K2 acts transitively on the Stiefel manifold of (real) orthonor-

mal or (complex or quaternionic) unitary p-frames {e1, ..., ep} in K
q.

Proof. Suppose that K ′ ⊂ K acts with the same orbits on p. Consider the
subspace p̄ = {X ∈ p; X(Kp) ⊂ K

p ⊂ K
q} of p. This space is invariant

under the action of the subgroup K̄ = K ∩ (GL(Kp) × GL(Kp)). The
group K̄ ′ := K ′ ∩K̄ acts transitively on the sub-orbits K̄.X for any X ∈ p̄.
(In fact, if X(Kp) = K

p, then any k ∈ K with k.X ∈ p̄ must lie in K̄.)
Now we are back to the case p = q, and from Lemma 2.1 we may conclude
K̄ ′ = K̄. In particular, K ′ ⊃ K̄ contains K1 × 1, hence K ′ = K1 ×K ′

2 for
some subgroup K ′

2 ⊂ K2 which acts transitively on the set of p-dimensional
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subspaces in K
q and contains K1. Thus, K ′

2 acts transitively on the set of
unitary p-frames in K

q.
The converse statement is obvious: In order to transform X ∈ p =

Hom(Kp, Kq) into BX for some B ∈ K2, we only need to transform an
orthonormal or unitary basis of the subspace im X into its image under B
which is possible by some B′ ∈ K ′

2. 2

Lemma 2.3 If 2 ≤ p < q, then precisely the following connected proper
subgroups K ′ ⊂ K act transitively on the K-orbits:

K = R:
K ′ = SO(2) × G2 (p = 2, q = 7)
K ′ = SO(2) × Spin(7) (p = 2, q = 8)
K ′ = SO(3) × Spin(7) (p = 3, q = 8)

K = C: K ′ = SU(p) × SU(q)
K = H: None.

Proof. It follows from the lemmas 2.2, A1 and A2 (cf. appendix) that K ′
2 =

Sp(q) if K = H and K ′
2 ⊃ SU(q) if K = C. This settles the last two cases.

If K = R, then inspection of the groups acting transitively on the sphere
shows that no proper subgroup of SO(q) acts transitively on the 4-frames
in R

q, only Spin(7) ⊂ SO(8) acts transitively on the 3-frames, and only
G2 ⊂ SO(7) and Spin(7) ⊂ SO(8) act transitively on the 2-frames. In fact,
G2 acts transitively on S6 with isotropy group SU(3) which is still transitive
on S5 (but its isotropy group SU(2) does not act transitively on S4), so G2
preserves the 2-frames (but not the 3-frames), and Spin(7) preserves the
3-frames (but not the 4-frames) since it acts transitively on S7 with isotropy
group G2. All other groups acting transitively on the sphere preserve Hopf
fibrations, so they do not act transitively on the real 2-frames. By Lemma
2.2, the proof is complete. 2

3. The D III case

Lemma 3. If G/K = SO(2n)/U(n) with n odd, then K ′ = SU(n) is
the only proper connected subgroup with the same orbits as K.

Proof. Since the multiplicities in this case are 4 and 5 (cf. [H], p. 533),
K ′ = SU(n) acts transitively on the K-orbits by Lemma 1.2. Now let us
show that there are no other such groups K ′. Let g denote the Lie algebra
of G = SO(2n) and k the Lie algebra of K = U(n). We have the Cartan
decomposition g = k + p with

k = {X ∈ g; XJ = JX}, p = {X ∈ g; XJ = −JX},
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whereJ denotes the usual complex structure on R
2n = C

n. We are interested
in the principal K-orbits on p.

Since each X ∈ p is an antisymmetric real matrix, it has imaginary
eigenvalues iα with α ∈ R. Let Eα ⊂ C

2n be the corresponding eigenspace.
From JX = −XJ we get JEα = E−α. Thus the corresponding real
subspace

Vα = (Eα + E−α) ∩ R
2n

is invariant under J , hence a complex subspace of R
2n = C

n. For nonzero
α, the complex dimension of Vα must be at least 2 since all antilinear maps
C → C are of the type z 7→ az for some a ∈ C, but this map is symmetric,
not antisymmetric. If dimC Vα = 2, then X|Vα = α · j where j is a complex
structure on Vα with Jj = −jJ , i.e. a quaternionic structure. X ∈ p lies
in a principal orbit with respect to the action of K by conjugation if these
invariant subspaces Vα are as small as possible, namely dimC Vα = 2 for
all nonzero eigenvalues, and dimC ker X ≤ 1. Thus, if n = 2m + 1 is
odd, a principal orbit M ⊂ p is characterized by m pairwise distinct posi-
tive numbers α1, ..., αm, and any X ∈ M is determined by an orthogonal
decomposition

C
n = V1 ⊕ ... ⊕ Vm ⊕ L (∗)

where V1, ..., Vm are complex planes and L a complex line in C
n, together

with quaternionic structures jp on Vp for p = 1, ..., m; in fact, X =∑
p αpjp. Any k ∈ K conjugates the decomposition (∗) and the quater-

nionic structures. In particular, any one-dimensional subspace L ⊂ C
n oc-

curs in (∗) as the kernel for some X ∈ M . Thus a subgroup K ′ ⊂ K which
acts transitively on M must also act transitively on CP 2m. By Lemma A2
(see Appendix) this shows that K ′ ⊃ SU(2m). 2

Appendix: Transitive groups on projective spaces

For the convenience of the reader we add the proofs of the following well
known lemmas which were needed above.

Lemma A1 For n ≥ 2, let H ⊂ Sp(n) be a connected closed subgroup
acting transitively on the set of one-dimensional quaternionic subspaces of
H

n. Then H = Sp(n).

Proof. We extend H to H · Sp(1) where Sp(1) = S3 ⊂ H acts by right
scalar multiplication on H

n. Then H · Sp(1) acts transitively on the unit
sphere in H

n. The only proper subgroups of Sp(n)·Sp(1) acting transitively
on the sphere are Sp(n) and Sp(n) · S1 which are both not of the type
H · Sp(1) if n > 1. Hence H · Sp(1) = Sp(n) · Sp(1) which shows
H = Sp(n). 2
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Lemma A2 For n ≥ 2, let H ⊂ U(n) be a connected closed subgroup
acting transitively on the set of one-dimensional and, if n is even, also on
the two dimensional complex subspaces of C

n. Then H ⊃ SU(n).

Proof. We extend H to H · S1 where S1 = S1 ⊂ C acts by scalar multi-
plication on C

n. Then H · S1 acts transitively on the unit sphere and, if n
is even, on the 2-dimensional complex subspaces in C

n. The only proper
subgroups of U(n) with this property is SU(n) since Sp(n

2 ) · Sp(1) pre-
serves the set of quaternionic one-dimensional subspaces which are special
2-dimensional complex subspaces. Thus H ·S1 ⊃ SU(n) which shows that
H ⊃ SU(n) since SU(n) is a simple group. 2
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