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Polar representations and symmetric spaces 
By J.-H. Eschenburg and E. Heintze at Augsburg 

Abstract. J. Dadok has shown by classification that any polar representation has 
the same orbits as the isotropy representation of some symmetric space. A conceptual 
proof of this result is given subject to some restriction. 

0. Introduction 

An orthogonal representation $ of a compact Lie group on a Euclidean 
vector space is called polar if there exists a linear subspace (also called section) which 
intersects every orbit and which is perpendicular to the orbits at any point of intersection. 
Equivalently, a representation is polar if a normal space υp of a principal orbit intersects 
all orbits perpendicularly. Important examples are the adjoint representations of compact 
Lie groups (with maximal abelian subalgebras as sections) and more generally, the isotropy 
representations of symmetric spaces. By this we mean more precisely the isotropy repre¬ 
sentation of Riemannian symmetric spaces X = G/K with G being the identity component 
of the isometry group and K connected. If G is semisimple, this is also called an s-
representation while, in general, it splits into the direct sum of an s-representation and a 
trivial representation. By classifying irreducible polar representations, J. Dadok [D] has 
shown the following remarkable theorem: 

Theorem (Dadok). Any polar representation is orbit equivalent to the isotropy repre¬ 
sentation of a symmetric space. 

Here representations of two groups are called orbit equivalent if they have the same 
orbits after a suitable isometric identification of their representation spaces. 

There is an important application of Dadok's theorem to submanifold geometry. A 
submanifold $ is called isoparametric (cf. [T]) if any normal vector ξ0 

extends to a normal vector field ξ which is parallel with respect to the normal connection, 
and the shape operator Aξ has constant eigenvalues for any such parallel ξ. Principal orbits 
of polar representations are isoparametric since the normal vector fields one obtains by 
moving around normal vectors by the group are easily seen to be parallel in the normal 
bundle. Conversely, Thorbergsson [Th] has shown that any (irreducible, compact, con¬ 
nected, full) isoparametric submanifold of codimension $ 3 arises in this way and hence, 
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by Dadok's theorem, is an orbit of an s-representation. Thorbergsson's result has recently 
been extended to isoparametric submanifolds of Hilbert spaces ([HL]), and it is conjectured 
that Dadok's theorem also extends naturally to the infinite dimensional setting. But for 
this a better understanding of the finite dimensional case and in particular a more geo¬ 
metrically proof of Dadok's theorem seem necessary. Dadok obtained his classification 
by means of representation theory, in particular by studying an enormous number of 
special cases. 

The main purpose of the present paper is to give (subject to a certain restriction) a 
classification-free proof of Dadok's theorem. This is done by making heavy use of the 
submanifold geometry of the orbits. Our proof also yields somewhat more, namely a 
characterization of s-representations as polar representations with additional geometric 
properties as we will now explain. 

A subgroup $ is called ω-maximal if it coincides with the maximal connected 
subgroup of O(V) having the same orbits as K, i.e. if K is the connected component of 
the group $. It is clear that any compact connected sub¬ 
group $ can be replaced by a unique ω-maximal one with the same orbits. Polar 
representations of ω-maximal groups are called maximal polar. 

Motivated by the case of s-representations and the work of Olmos [(O2)] we introduce 
another condition which we will call strong polarity. Recall that $ (with Lie 
algebra $) is polar precisely if the normal space υp of a principal orbit M = K.p intersects 
any orbit perpendicularly, i.e. $. We would like to extend this property to singular 
orbits. However, if a point $ lies on a singular orbit  K.q, we no longer have $ 
since the isotropy group Kq (unlike Kp) does not act trivially on υq. The best we can expect 
is to have a vector space decomposition $ with $. But we also need a 
certain compatibility of these decompositions for all $. Therefore we require that there 
is a single decomposition $ such that for any $ and any α either $ 

or $ (and that the mα’s are maximal with this property). This is what we call strong 
polarity (cf. Ch. 2). We can now state our main result: 

Main Theorem. Let V be a Euclidean vector space and  $ a compact connected 
subgroup which acts irreducibly and with cohomogeneity at least 3 on V. Then the following 
conditions are equivalent: 

(S) The action of K on V is an s-representation. 

(MP) The action of K on V is maximal polar. 

(SP) K acts strongly polar on V. 

In the cohomogeneity 1 case, i.e. if K acts transitively on the spheres centered at 0, 
one only has the implications $, but the reverse directions do not hold 
as the actions of U(n) and SU(n) on $ show. In the cohomogeneity 2 case, the 
equivalence of (S) and (MP) is still true ([D], cf. also [HsL]), but our proof does not work. 
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Dadok’s theorem (for irreducible K of cohomogeneity ╪ 2) is of course contained 
in the implication $. To obtain from this the full classification of all $ 
whose action is irreducible and polar, one has for all s-representations $ classify 
all subgroups K of $ having the same orbits. This is carried out in a subsequent paper 
([EH]) which is also based on geometric ideas. Another conceptual proof of Dadok's 
theorem was given by K. Tetzlaff in his thesis [Tz], assuming that the codimension is at 
least 4. 

The proof of the Main Theorem can be outlined as follows. It is rather easy to see 
that (S) implies the other conditions. The step $ is essentially contained in 
[O2] and [HL]. Hence the main work is to show $. To determine whether the 
action of a compact subgroup $ is an s-representation we will construct (following 
Cartan and Kostant) a Lie bracket on the vector space $ extending the Lie structure 
on $ such that ( $ ) becomes a symmetric pair. This is done by defining $ with 
$ for any $ and $. We have to use a scalar product $ 
on $ which imitates the restriction to $ of the Killing form metric on $ in the symmetric 
case and which we will call the $-trace metric (cf. Ch. 3). It is well known that the 
action of K on V is an s-representation if and only if this "Lie bracket" satisfies the Jacobi 
identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all $ (Condition (J) in Ch.4). 
But it might be surprising that the Jacobi identity is already equivalent to its special case 
where [x, y] = 0 (Condition (J 1)) or even [x, y] = [y, z] = 0 (Condition (J2)). This turns 
out (Theorem 4.3) to be equivalent to (SP) with the extra condition that the subspaces mα 

above (including $) are orthogonal to each other (“(SP + )”). Therefore the essential 
step is to conclude (SP + ) from (SP) which is carried out in Theorem 5.2. The principal 
idea is that, by (SP), the slice representation of any orbit K.q (the representation of Kq on 
vq) in fact coincides with the holonomy representation of the normal bundle of K.q and is 
therefore an s-representation, due to a general result of Olmos [O1]. Since (SP+) holds 
for s-representations, we in this way obtain the orthogonality of certain mα’s with respect 
to the $-trace metric, which turns out to be sufficient information if the codimension 
is at least 3. 

The way the various conditions are related in the proof is shown by the following 
diagram (where “$” or “$” indicate that the conclusion is valid only in the case that 
K is ω-maximal or its cohomogeneity is $ 3, respectively, while all other conclusions hold 
if the cohomogeneity is $ 2). 

$ 

$ 

A condition related to (SP+) (which will be denoted by (Co)) was already considered 
by Conlon [C] many years ago; we will show in Theorem 4.3 that it is also equivalent to 
(J2) and hence to (S). This disproves his conjecture ([C], p. 151) saying that (Co) is true 
for all polar representations up to a finite number of exceptional cases. Note that there is 
even an infinite number of irreducible polar representations which are not s-representations 
([D], cf. [EH]). 

Finally, we would like to comment on the proof of $ and a more algebraic 
approach to the Main Theorem which might be possible. As indicated above, after choosing 
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an invariant inner product on $ and a corresponding “Lie bracket” on $, the (S)-
condition is equivalent to the vanishing of the Jacobi map 

$ 

where $. Due to its symmetries, J may be considered also as a symmetric linear 
map J: Λ2V → Λ2V which satisfies in addition $ for all x, y, z (i.e. 
$) and hence has trace zero. Since $ (natural identification), we have 
on orthogonal splitting $ (with respect to the standard inner product on Λ2V). 
The choice of the right inner product on$yields precisely $ for some $, 
cf. Ch. 4). Hence $ already implies J = 0 and thus (S). Now the ω-maximality of K 
is equivalent to the fact that $ is generated by decomposable elements $. Since 
$ is equivalent to [x, y] = 0, the condition $ is equivalent to our condition 
(J1) (and hence to (J2)), provided that K is ω-maximal. Moreover, the polarity too can be 
expressed easily in this language as $ for some (equivalently for any) regular 
$. Hence it seems conceivable that “$” can be proved by purely algebraic 
considerations. In this context it might be interesting to note that $ also 
implies J = 0 and hence (S). This follows essentially from a calculation made by E. Witt 
([W], cf. [Db]) who constructed certain exceptional Lie algebras $ of the form $ 
for suitable representations $ by extending the Lie bracket from $ to $ as above 
and who showed J = 0 by computing trace (J2). We are grateful to P. Slodowy for bringing 
these papers to our attention. 

1. Review of polar representations and isoparametric submanifolds 

Let V be a Euclidean vector space and $ a compact, connected isoparametric 
submanifold. Thus the normal bundle vM of M is flat and the eigenvalues of the shape 
operator Aξ are constant for any parallel normal field ξ. From the compactness it follows 
that M is contained in a sphere which we may assume to have center in the origin (see 
[T] and [PT] for most details in this section). 

By the Ricci equation, all Aξ with ξ in a fixed normal space vp = vpM, commute. 
Hence we have an orthogonal simultaneous eigenspace decomposition 

$ 

where Π is a finite subset of (vp)* such that 

$ 

The linear forms $ are called the principal curvatures at p and the dual vectors 
$ are the principal curvature vectors or curvature normals; any two of them are linearly 
independent. Since the eigenvalues of Aξ are constant for any parallel ξ;, each nα can be 
considered as a parallel normal vector field $. The dimension of Span Π is 
called the rank of the isoparametric submanifold. It coincides with the codimension if M 
is full, i.e. not contained in any proper affine subspace. The subspaces $ for 
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$ form the so called curvature distributions Eα. They are integrable, and the integral 
manifold Sα(p) of Eα through $ is a called a curvature sphere; it is a round sphere of 
radius 1 / |nα | with center p + nα / | nα|2. 

Isoparametric submanifolds come in families. For any parallel normal field ξ on M, 
the set 

$ 

is again a smooth submanifold (called parallel manifold) and the “endpoint mapping” 
$, is a fibration with totally geodesic fibres. If $ and 
$ then 

If α(ξ) ╪ 1 for all $ then Mξ is diffeomorphic to M and again an isoparametric sub-
manifold. But if α(ξ) ╪ 1 for some α, then Mξ drops dimension. In this case one calls Mξ 

a focal manifold and one says that the Eβ with β(ξ) = 1 focalize onto Mξ. In particular we 
have M-p = {0} (where p denotes the position vector field, considered here as parallel 
normal field) and hence α(p) = — 1 for all α. The linear hyperplanes 

$ 

are therefore called focal hyperplanes. For any affine subspace $ we may focalize 
precisely the Eα with $ by choosing ξ appropriately, namely such that 

$. 

In particular if we choose a = {nα}, we can just focalize Eα and in this case, the fibres of 
the end point map πξ: M → Mξ are the curvature spheres Sα(q) with $. In general the 
fibre of πξ: M → Mξ through q lies in the affine subspace q + vq (which actually coincides 
with vq) and is an isoparametric submanifold therein. The curvature normals and distri¬ 
butions of the fibre are those nα and Eα with α(ξ) = 1 or equivalently with α(x) = 0. If M 
is irreducible (i.e. if the embedding of M into V does not split) and Mξ ╪ {0}, then it has 
been shown in [HOTh] that the fibres are extrinsically homogeneous. In fact the fibre 
over x = p + ξ (p) is the orbit through p of the normal holonomy group $ at x, 
which acts isometrically on vx by parallel translating normal vectors along closed curves 
in Mξ. Furthermore the action of $ on vx is equivalent to the direct sum of a trivial 
representation and an s-representation as follows from a general result of Olmos ([O1]) 
on the normal holonomy representation of submanifolds in Euclidean space. Hence any 
fibre different from M is the orbit of an s-representation. 

Examples of isoparametric submanifolds arise as principal orbits of polar represen¬ 
tations. Let K be a compact Lie group, $ its Lie algebra, $ a representation, 
and $ a principal orbit. (We will write shortly $ and $ 
for $ and $.) The representation $ is polar if the normal space vp = vpM is a section, 
i.e. $ for any $. Then a K-equivariant normal field ξ : M → V is parallel 
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with respect to the normal connection on vM. In fact, since ξ(M) = K.ξ(p) is an orbit 
which intersects vp perpendicularly, the derivatives of ξ have no normal components. Thus 
the shape operators Aξ have constant eigenvalues for any parallel normal field ξ and M 
is isoparametric (recall that the equivariant normal fields trivialize the normal bundle of 
a principal orbit). Furthermore, the parallel manifolds Mξ are precisely the other orbits; 
the principal orbits are isoparametric while the singular orbits are the focal manifolds. 
Moreover the isotropy group Kq of any $ acts transitively on the fibre over 
q of the end point map π : M → Mξ where ξ is the parallel normal field with p + ξ(p) = q. 
The rank of a principal orbit, considered as an isoparametric submanifold, is also called 
the rank of the polar representation. It coincides with the cohomogeneity of the action 
(codimension of the principal orbits) if the representation does not contain trivial subre-
presentations. 

It has been shown by Thorbergsson [Th] that principal orbits of polar representations 
are in fact the only full and irreducible isoparametric submanifolds of codimension $ 3. 
More precisely, if $ is such an isoparametric submanifold, then the action of the 
group $ of extrinsic isometries is transitive on M and polar on 
V. A completely different proof has been given by Olmos [O2] and an even simpler one 
follows from [HL] by specializing to the finite dimensional case. In addition these authors 
show a property of K which will be important for our approach and which we will call 
Olmos condition: For any $ there exists a Killing field $ with X.p = x and 
$ for any β ╪ α. In fact, the one-parameter group of isometries corre¬ 
sponding to X is constructed in [HL], Lemma 4.5. It may be interpreted as a transvection 
group of the connection introduced by Olmos [O2]. 

2. Olmos condition and strong polarity 

Let $ be a compact connected subgroup whose action on V is polar. For 
any $ let Kx be the isotropy group with Lie algebra $. We denote the tangent and 
normal spaces of the orbit K.x at x by τx and vx, respectively. Now fix a regular point 
$ and let M = K.p. Recall that $. Hence for any vector space decomposition 

$ there is a unique decomposition $ such that mα.p = Eα(p). For such 
decompositions we have 

Proposition 2.1. For any $ we have 

(i) $, 

(ii) , 

(iii) mα.vp = Eα(p), 

(iv) $, 

(v) $, 
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where (αβ) denotes intersection of Π with the affine span of α and β (which are not necessary 
distinct). 

Proof. For any $ and $ we have X • ξ = — α(ξ)X.p. In fact, since $ 
is a parallel normal field on M = K.p, we obtain 

$ 

This shows (iii), and it implies also that for any $ and $ we have  X.q = 0 (i.e. 
$) if and only if α(q) = 0. Moreover, $ because Kp acts trivially on  vp since K.p 
is a principal orbit. Thus we get (i). Assertion (ii) is true for any isoparametric submanifold, 
cf. Ch. 1 (recall α(q) = 0 for q = p + ξ  iff α(ξ) = 1). By choosing $ appropriately 
we can focalize precisely the  Ey with $ (cf. Ch. 1). Hence (iv) and (v) follow from 
the remark that $ is a subalgebra which moreover leaves $ invariant. □ 

If the Olmos condition holds (which is true if in addition K is ω-maximal, cf. Ch. 1), 
we may choose a particular complement m0 as follows (we will call it Olmos complement). Let 

$, 

and put $. 

Proposition 2.2. Suppose that the action of  $ is irreducible and polar with 
rank $ 2 and the Olmos condition is satisfied. Then $ complement of  $ 

. 

and the sum is direct. Furthermore, each $ is invariant under Ad(Kp). 

Proof. Since all  Eα and Eβ are invariant under Kp, the last statement is clear by 
definition of $. The other statements follow by dimension reasons if we can show that 
the linear map $ is a vector space isomorphism. In fact, it is onto 
by the Olmos property. Moreover, if $ then X0.Eβ(p) = 0 for any  β ╪ α 
since $ and $. Let $. Then the orbit  K.q which 
is a focal manifold of K.p has tangent space at  q contained in $. Thus the 1-parameter 

group exp tXo fixes q and Tq(K.q), and so it acts trivially on K.q and its linear span. But 
since K acts irreducibly, K.q spans V, hence Xo = 0. 

For the Olmos complement we can improve Proposition 2.1 as follows: 

Proposition 2.1 '. Let $ be a compact polar subgroup satisfying the Olmos 
condition, and let  $ be the Olmos complement. Then we have for α ╪ β 

(iv') $, 

(v') $, 
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where (αβ)* = (αβ)\{α,β}. 

Proof. If α ╪ β, then $ by definition of the Olmos complement, and 
$ because $, $ and $ 
by 2.1 (iv). Thus $ and $ are both perpendicular to 
Eα(p) and  Eβ(p) and hence (αβ) may be replaced by (αβ)* in 2.1 (iv), (v). Further, by 2.1 (iii) 
we have $, hence $. $ has no  vp-component. □ 

Recall that $ is strongly polar if there is a decomposition $ such 
a 

that for any $ and any index  α either $, and the $ are maximal 
with this property. A priori, the index set is arbitrary. But if we put $ where the 

sum has to be taken over allµwith $, then we obtain from (SP) that $ 
for all $ with  vq = vp + Eα, and hence mα.p = Ea(p). Thus $ is a direct 

vector space decomposition which also satisfies (SP) and thus coincides with the given one, 
due to the maximality assumption. In other words, if a decomposition $ satisfies 

(SP), then the index set necessarily coincides with  Π and $ (after a possible 
reordering of the indices). 

Proposition 2.3. For an irreducible polar representation of rank $ 2 the Olmos con¬ 
dition and the strong polarity (SP) are equivalent and mo = ms. 

Proof. By the above discussion, the Olmos condition is the special case of the strong 
polarity condition for those  q with vq = vp + Eα for some single α. Vice versa, if the Olmos 
condition holds, let $ be the Olmos complement. Let $ and $. If 

α(q) = 0, then $ by 2.1 (i). Otherwise, if α(q) ╪ 0, we have by 2.1 (ii), (iii) 

This is perpendicular to  vq by 2.1 (ii) and 2.1'(iv'); note that y(q) ╪ 0 for all $*. Thus 
m° satisfies (SP). □ 

Proposition 2.4. Let $ be a compact polar subgroup satisfying  (SP) for some 
principal orbit M = K.p. Let  $. Then Kq leaves vq invariant, and the image of K q in O(vq) 
contains the holonomy group of the normal bundle of  $. 

Proof The rank one case is trivial, so we may assume rank $ 2. By 2.1 we have a 
reductive decomposition $ where $. This subspace $ extends 

to a left invariant distribution on  K which is “horizontal”, i.e. transversal to the fibres of 
the projection K→K.q (in other words, this distribution is a canonical connection on the 
principal bundle K→K.q). Any curve q(t) in N = K.q has a horizontal lift k(t) in K, i.e. 
k(t).q = q(t) and $. Moreover, for any $, the normal field ξ(t) = k(t).ξ is 
parallel along the curve q(t) since 
$ 
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Thus k(t) is the normal parallel transport along q(t). If the curve q(t), $ starts and 
ends at q, then $. Hence the normal holonomy group at q is contained in Kq. □ 

3. Trace metrics 

Let $ be a (not necessary faithful) orthogonal representation of a compact 
Lie group K with Lie algebra $. We will use the following Ad (K)-invariant inner product 
on $ which we will call ($, V)-trace metric or simply trace metric: For any X, $ we put 

$ 

where $. If $ is an s-representation, i.e. if the Lie structure on 
$ extends to a Lie algebra structure with Cartan decomposition on $ with corres¬ 
ponding Lie group G, and $ is the V-part of the adjoint representation of K, then $ is 
the restriction to K of the adjoint representation of G and — $, is the Killing form of 
$ restricted to $. 

Strictly speaking, $ is not always a positive definite inner product. In fact, it has 
a kernel which may be nonzero, namely ker $ where $ is the center of $. 

We are now going to investigate the relation between various trace metrics. 

Lemma 3.1. Let $ be a surjective homomorphism between compact Lie groups, 
$ a faithful representation and $. For some $ let $ be an Ad (Kp)-
invariant linear subspace with $. Then for any $ and $ we have 

$. 

Proof Let $ be a complementary ideal to ker $ in $. Then $ 
is an isomorphism and an isometry, and moreover one sees easily that 

$ 

for any $ and $. Let n' = π'(n) where $ is the projection along ker $. Since 
ker $, we have $. Thus ker $ commutes with n and n', 
hence $ where $ is the center of ker $. But recall that $ is the 
kernel of the trace metric on $. Thus for any $ and $ we have 

$ 

which finishes the proof. □ 

Lemma 3.2. Let $ be strongly polar, M = K.p a principal orbit and $. 
Then the components $ of $ which are contained in $ (including $) are mutually 
perpendicular with respect to the ($, V)-trace metric on $ if and only if they are perpendicular 
with respect to the ($ , vq)-trace metric on $. 
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Proof. Let $ such that $, which means α(q) = β(q) = 0. 
Choose $ and $. It suffices to show that the traces of ad(X) ◦ ad(Y) and X◦Y 
do not change when the mappings are restricted to $ and vq, respectively; in other words, 
there are no contributions to the traces coming from $ and Eγ respectively, for any $ 
with γ(q) ╪ 0. But this is a consequence of Prop. 2.1': We have 

$. 

A nonzero contribution to the trace can occur only if $ for some $ and 
some $. In other words, we would have $ and $ which implies $. 
But this is impossible since α(q) = β(q) = 0, but γ(q) ╪ 0. In the same way we see that 
(X ◦ Y).Eγ does not contribute to trace X ◦ Y which finishes the proof. 

4. Detecting s-representations 

Let V be a euclidean vector space of dimension at least two and $ a compact 
connected subgroup, which acts irreducibly on V. In order to detect whether the action 
of K on V is an s-representation we extend the bracket of the Lie algebra $ of K to the 
vector space direct sum 

$ 

by putting 

[A,υ]:=Aυ= — [υ,A], 

$, 

$ 

for all $ and $ where $ is the $-trace metric defined above (cf. Ch. 3). Let 
J:V×V×V→V be defined by 

J(x, y, z) := [[x, y], z] + [[y, z], x] + [[z, x], y]. 

Then J is K-equivariant and J = 0 is equivalent to the Jacobi identity of $, since the 
K-equivariance of [x, y] implies the Jacobi identity whenever one entry lies in $ (by diffe¬ 
rentiating $. 

Lemma 4.1. The following two conditions are equivalent: 

(S) The action of K on V is an s-representation. 

(J) J = 0. 

Proof. “(S) $ (J)”: If K on V is an s-representation then there exists a compact 
symmetric pair (G, K) whose isotropy representation is the given action. The Lie algebra 
$ of G decomposes as above and the negative of the Killing form is a biinvariant metric. 
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This implies $ for all $ and $. Note that — $ and 
the given inner product on V coincide up to a constant factor, due to the irreducibility of 
the K-action. This in turn implies that the bracket on $ coincides with the one described 
above on V × V up to a constant factor. Therefore J = 0 follows from the Jacobi identity 
of $. 

“(J) $ (S)” is well known and follows almost immediately from the remark that ( $ ) 
is a symmetric pair (cf. [HZ], Lemma 1). 

Remark. Notice that [x,y] = 0 for $ is equivalent to $, by the 
definition of the Lie bracket. In particular, [vp, vp] = 0. 

Lemma 4.2. If K is ω-maximal, i. e. maximal among the connected subgroups having 
the same orbits, then (J) is equivalent to 

(J1) J(x, y, z) = 0 for all $ with [x, y] = 0. 

Proof. $ defines a skew-symmetric 4-form on V; in fact 

$ 

which shows the skew symmetry also in the arguments x, y, u. Thus J may be interpreted 
as a symmetric endomorphism $ of trace 0. Since Λ2V is canonically iso-
morphic to the Liealgebra $(V) of skewsymmetric endomorphisms, we have an orthogonal 
splitting $. It follows from the choice of the inner product on $ that $ 
for some $ (Lemma 2 of [HZ]). Hence (J) is equivalent to $. Now by the remark 
above, (J1) is equivalent to $ for all $ and all $, i.e. for all $, 
since $. Thus (J) follows from (J1), if these decomposable elements 
span $, i.e. if any $ with $ for all $ belongs to $, or in 
other words if any $ with $ for any $ is in $. But this last condition 
is satisfied precisely if K is ω-maximal. 

Theorem 4.3. Let $ be a compact connected subgroup acting irreducibly on 
V. Choose a regular point $, i.e. a point lying on a principal orbit. Then the following 
conditions are equivalent: 

(J1) J(x,y,z) = 0 for all $ with [x ,y ] = 0. 

(J2) J(x, y, z) = 0 for all $ with [x, y] = [x, z] = 0. 

(J3) $ for all $ where $ denotes the orthogonal complement of $ 
with respect to the $-trace metric. 

(SP+) The K-action is strongly polar, and the $ are mutually orthogonal (including 
$). 

(Co) The K-action is polar and the subspaces $ of $ with $ and $ 
(for all $) are mutually orthogonal. 
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Proof. (J1) implies (J2) trivially, while (J2) is equivalent to [y, z].x = 0 for all $ 
and $ (cf. Remark preceding 4.2), i.e. to $ or equivalently to $ 
and thus to (J3). If x is regular then $, since Kx acts trivially on vx. Therefore (J3) 
implies $ for all regular x. Hence it follows from any condition above that the 
K-action is polar. 

The sections of a polar action are the normal spaces of a principal orbit, and the 
normal space of any point is a union of sections. Therefore for any $ with [x, y] = 0, 
i.e. $, we can find an element in K, which maps x and y to vp. Since J is K-equivariant, 
(J1) is therefore equivalent to J(vp, vp, V) = 0 and thus to J(vp, vp, Eα) = 0 for all α, where 
Eα — Eα(p). (Note that J(vp, vp, vp) = 0 since [vp, vp] = 0, cf. Remark above.) Let $ be 
the focal hyperplane $. Then J(vp, vp, Eα) = 0 if and only if J(lα, vp, Eα) = 0, because 
J(nα, nα, Ea) = 0. Since Eα (p) focalizes under the mapπx—p for $, we have that Eα = Eα (p) 
lies in the normal space vx for any $, i.e. [Eα, lα] = 0 by the remark above. Hence (J1) 
follows from (J2), and we have proved the equivalence of (J1), (J2) and (J3). Furthermore, 
(J1) is equivalent to 

(*) [vp, Eα].lα = 0. 

From (J3) we obtain (SP +) as follows. Let $ and $. 
Now (J3) implies that for all $ 

$, 

and by reasons of dimension we have in fact equality. Thus $ 
$ by Lemma 1. Thus m = ms = mo. Since for any α ╪ β we find $ with 

α(x) = 0 and ß(x) ╪ 0, the decomposition$ is orthogonal. 

Clearly, (SP+) implies (Co) and $. It remains to show that (Co) implies (*), 
hence (J1). From $ and $ for all 
ß ╪ α, we conclude that (Co) implies $. But $ for any $ (cf. Prop. 2.1), 
hence $ and we obtain (*). □ 

5. Proof of the Main Theorem 

In this section let $ be a compact connected polar subgroup which acts 
irreducibly on V. We have already seen that maximal polarity of K implies the Olmos 
Condition (Ch. 1) and hence the strong polarity (Ch. 2). Furthermore, (S) is equivalent to 
(SP +) if K is ω-maximal (4.1, 4.2, 4.3). To finish the proof of the Main Theorem stated 
in the introduction it therefore suffices to show that (S) implies (MP), and (SP) implies 
(SP+) as well as the ω-maximality of K. 

Proposition 5.1. (S) implies (MP) if the rank is at least 2; in particular, any irreducible 
s-representation of rank $ 2 is ω-maximal. 
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Proof. By 4.1, 4.2, 4.3, K satisfies (SP) with certain subspaces $ of $ which are 
perpendicular to $ . Since $ is ad $-invariant, the subalgebra generated by mo 

is an ideal of$.Its orthogonal complement is therefore also an ideal of$which is contained 
in $ and thus trivial by the effectiveness of the action of  K on K.p. Hence mo generates $ 
as a Lie algebra. If $ is a compact subgroup containing K and with the same 
orbits as  K, then $ and thus $ satisfies (SP) with the same $ (but a priori not 
necessarily (SP+)). Therefore, $ is a reductive decomposition as well by Propo¬ 
sition 2.2. As before we conclude that the subalgebra generated by m o is an ideal of $. 
Hence$is an ideal of$.If $ then there exists a nontrivial element  A in a complementary 
ideal. Since A is skew symmetric and A2 commutes with K which acts irreducibly, we may 
assume A2 = — I. But since K acts as an s-representation,  A belongs to $ (the symmetric 
space is Kählerian and thus  A commutes with the curvature tensor). This contradicts $ 
and thus K is ω-maximal. □ 

Theorem 5.2. (SP) implies (SP +) provided that the rank is $ 3. More precisely, if the 
action of  $ is strongly polar with rank $ 3, then $ is an orthogonal 
decomposition. 

Proof. Fix some regular point $ and let M = K.p. Let $. Recall that 
(αß) is the set  of $ which lie on the line through α and ß. We can find $ such that 
precisely the  Eγ(p) =: Eγ with $ focalize onto K.q. This implies $ and 
$, where L is the fibre through p of the endpoint mapping 

πξ:M = K.p→Mξ= K.q 

and ξ is the parallel normal field with p + ξ(p) = q. The fibre L is a rank 2 isoparametric 
submanifold of  vq and actually the orbit of the normal holonomy group $of K.q through 
p, whose action on  vq is equivalent to the direct sum of an s-representation and a trivial 
representation (cf. Ch. 1). But  L is also an orbit of the isotropy group Kq acting on  vq by 
the normal isotropy representation $. This implies that $ and  Kq have the 
same orbits. Moreover, by Prop. 2.4, $ is contained in $. 

Case 1. L is irreducible, i.e. (αß) ╪ {α, ß}. Then we conclude from the maximality 
of s-representations (cf. 5.1) that the connected components containing the identity of $ 
and $ coincide. Since $ acts as an s-representation, it satisfies (SP+) (cf. 4.1, 4.2, 
4.3). Thus it follows from Lemma 3.1 that $ is an orthogonal decomposition 

with respect to the $-trace metric and hence also with respect to the $-trace metric 
by Lemma 3.2. In particular we get $ in this case. 

Case 2. L  is reducible, i.e. (αß)* := (αß)\{α, ß} = Ø. Then we show by a direct 
argument that $ with respect to the $-trace metric (and hence with respect to 
the $-trace metric by Lemma 3.2). In fact, in this case $ and 
vq = vp + Eα + Eß, and further vp is the orthogonal sum of lα and lß. From 2.1 ' we obtain 
$. Thus $ (recall that $) which 
implies $. In particular, $ which is an ideal of $ being contained 
in $. Now for $ and $ we have $. Further, ad(X) ◦ ad(Y) maps 
$ into $ and $ into ker $ while ker $ itself is mapped to 0 (recall 
that $). This shows trace $ ad( X) ad(Y) = 0. 
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Since for any $ we can find some $ with $ (which implies that the 
corresponding L is irreducible), we get $ for all α from Case 1. □ 

Corollary 5.3. (SP) implies (MP) if the rank is at least 3. 

Proof. Let $ be a compact, connected subgroup which contains K and has 
the same orbits. Then also $ satisfies (SP) with the same $. By Theorem 5.2, the 
decomposition $ is orthogonal (with respect to the $-trace metric). From 

the effectiveness of the K-action on V it follows therefore that $ generates$as a Lie alge-

bra (cf. the proof of Proposition 5.1) and by the same argument also$.This implies $. □ 

Combining the results of this and the previous section we finally get the following 
corollary, which includes in particular the theorem of the introduction. 

Corollary 5.4. For any compact, connected subgroup of O(V) which acts irreducibly 
and with cohomogeneity $ 3 on V, the conditions (S), (MP), (SP), (J), (J1), (J2), (J3), (Co), 
(SP +) and the Olmos condition are all equivalen. □ 
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