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Nearly universal crossing point of the specific heat curves of Hubbard models

N. Chandra,* M. Kollar, and D. Vollhardt
Theoretische Physik III, Elektronische Korrelationen und Magnetismus, Institut fu¨r Physik,

Universität Augsburg, 86135 Augsburg, Germany
~Received 28 October 1998!

A nearly universal feature of the specific heat curvesC(T,U) vs T for different U of a general class of
Hubbard models is observed. That is, the valueC1 of the specific heat curves at their high-temperature
crossing pointT1 is almost independent of lattice structure and spatial dimensiond, with C1 /kB'0.34. This
surprising feature is explained within second-order perturbation theory inU by identifying two small param-
eters controlling the value ofC1: the integral over the deviation of the density of statesN(e) from a constant
value, characterized bydN5*de uN(e)2
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I. INTRODUCTION

Recently attention was drawn to the fact that in vario
strongly correlated systems the curves of the specific h
C(T,X) vs temperatureT cross once or twice when plotte
for different values of a second thermodynamic variableX.1

For example, crossing points are observed for different p
sures (X5P) in normalfluid 3He ~Ref. 2! and heavy-fermion
systems such as CeAl3 ~Ref. 3! and UBe3.4 By changing the
magnetic field (X5B), the same feature is seen in heav
fermion compounds such as CeCu62xAl x ~Ref. 5! and
Nd22xCexCuO4.6 Crossings of the specific heat curves a
also observed in the simplest lattice model for correla
electrons, the Hubbard model,7

Ĥ5(
ks

~ek2m!âks
1 âks1U(

i
n̂i↑n̂i↓ , ~1!

whereek is the dispersion of a single electronic band,m the
chemical potential, andU the local interaction. At half filling
the curvesC(T,U) vs T always cross at two temperature
This is observed, for example, in the case of the model w
nearest-neighbor hopping ind51,8,9 d52,10 andd5`,11 as
well as for long-range hopping ind51 ~Ref. 12!; for the
latter two systems the specific heat is shown in Fig. 1. F
thermore, crossing is found ind51 when a magnetic fieldB
is changed at constantU.13 The fact that these crossin
points may be very sharp was analyzed in Ref. 1, and
traced to the properties of certain generalized susceptibil
of the system.

In the following, we will consider only the crossing of th
specific-heat curves occurring forX5U in the paramagnetic
phase of the Hubbard model with a symmetric half-fill
band (n51). We will investigate yet another observatio
namely, that for smallU the specific heat at the high
temperature crossing pointhas practically the same value o
approximately0.34kB for all dimensions dand dispersions
ek, which can be seen also in Fig. 1. This is surprisin
because the temperatures at which this crossing occurs
very different for different dispersions and dimensions, a
because the maximum value ofC(T,U) and its value at the
low-temperature crossing point vary strongly as well.
PRB 590163-1829/99/59~16!/10541~9!/$15.00
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should be noted that the specific heat, like the entropy,
dimensionless quantity when expressed in units ofkB .

We denote byT1 the temperature at which the curve
C(T,U) vs T cross for different values ofU. Then the spe-
cific heat is independentof U at the crossing temperatur
T1(U), defined by1

]C

]U U
T1~U !

50. ~2!

Since we are not concerned with the dependence ofT1(U)
on U, but rather with the crossing point value ofC(T,U) for
different lattice systems, we consider only the limit of sm
U, and define

T1[ lim
U→01

T1~U !, ~3!

C1[ lim
U→01

C@T1~U !,U#. ~4!

FIG. 1. Specific heat for the Hubbard model.~a! Exact solution
for 1/r hopping ind51.12 ~b! Iterated perturbation theory for NN
hopping in d5` ~Ref. 11!. In ~a!, T and U are in units of the
half-band-width, while for~b! the second moment of the~Gaussian!
density of states is set to unity. At the high-temperature cross
point the specific heat has the almost universal value of 0.34kB in
the limit U→0 ~see arrows!.
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This weak-coupling crossing point can be calculated with
approximation using second-order perturbation theory inU.
Higher orders in perturbation theory would be necessary
determine the dependence ofC@T1(U),U# on U.

It is the purpose of this paper to show that the value
C1 at the high-temperature crossing point is almost univ
sal, and to analyze the origin of this peculiar feature. W
calculateC1 for a half-filled band with a symmetric densit
of states~DOS! N(e)5*dk d(e2ek). We also show that the
weak dependence ofC1 on lattice properties can be unde
stood by starting from the limitd5` and using expansion
in terms of two small parameters.

This paper is organized as follows. In Sec. II we revie
the origin of crossing points in the Hubbard model and sh
how to calculateT1 and C1 in second-order perturbatio
theory, the details of which are contained in the Append
Various noninteracting lattice systems are listed in Sec.
and the values ofC1 at the high-temperature crossing poi
for these systems are presented in Sec. IV. Section V c
tains expansions ofC1 that reveal the influence of the den
sity of states and the lattice dimension. We close with
conclusion in Sec. VI.

II. CROSSING POINTS IN THE SPECIFIC HEAT
OF THE HUBBARD MODEL

The entropy per lattice siteS(T,U) is given by

S~T,U !5E
0

T

dT8
C~T8,U !

T8
. ~5!

For the Hubbard model,S(T,U) approaches a constant whe
T→`. Taking the derivative of Eq.~5! with respect toU, we
find

05E
0

` dT

T

]C~T,U !

]U
. ~6!
rv

e

t

to
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e
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I,

n-

a

Since]C/]U is not identically zero, there must exist tem
perature regions where it has positive and negative val
We assume that no phase transitions occur, so that]C/]U is
a continuous function ofU. Then there exist temperature
where]C/]U changes sign; at these temperatures the cu
C(T,U) vs T cross@see Eq.~2!#.

There are two such crossing points in the paramagn
phase of the half-filled Hubbard model, as can be seen f
the sign of]C/]U at very low and very high temperature
For intermediate values ofU the specific heat of this mode
shows the following general features:C(T,U) starts linearly
in T at low temperatures and develops a two-peak struct
one at temperaturesT;4t2/U due to spin excitations (t is
the hopping amplitude!; and one at temperaturesT;U2W
due to charge excitations, whereW is the bandwidth. For low
temperatures the spin exitations become stronger for incr
ing U, thus]C/]U.0. At high temperatures an increase
U pushes out the charge peak and thus increasesC(T,U),
which tends to@a1bU21O(U4)#/T2 with a,b.0. Hence
]C/]U.0 for both high and low temperatures, so that t
sum rule @Eq. ~6!# yields an intermediate region with
]C/]U,0. There are thus two sign changes correspond
to two crossing points.

To determine the location of the crossing points defin
by Eqs. ~3! and ~4!, we calculate the internal energy pe
lattice site in perturbation theory inU,

E~T,U !5E~0!~T!1 1
4 U1U2E~2!~T!1O~U3!. ~7!

Here (kB[1, b51/T)

E~0!~T!52E de
N~e!e

11exp~be!
, ~8!

which is the internal energy for the noninteracting syste
U/4 is the Hartree contribution, and the second-order co
lation energy is given by~see the Appendix for details!
E~2!~T!52
]

]b

b2

32E0

1

dxE dkE dpE dq
cosh@ 1

2 xb~ek1ep1ep1q1ek1q!#

cosh~ 1
2 bek!cosh~ 1

2 bep!cosh~ 1
2 bek1q!cosh~ 1

2 bep1q!
, ~9!
where the integrations, e.g.,*dk[*ddk/(2p)d, run over the
first Brillouin zone.

In the limit of infinite spatial dimensions14 this expression
can be simplified further. In this case, momentum conse
tion at vertices becomes irrelevant,15 so that the integrals
factorize~see the Appendix!:

E~2!~T!52
]

]b

b2

32E0

1

dxF E de N~e!
cosh~ 1

2 xbe!

cosh~ 1
2 be!

G 4

.

~10!

Note that as usual in infinite dimensions the dispersionek
enters into one-particle quantities only via the DOSN(e).
Therefore this expression is much easier to evaluate num
cally than Eq.~9!.
a-

ri-

The specific heatC(T,U)5]E/]T has the expansion

C~T,U !5C~0!~T!1U2C~2!~T!1O~U4!, ~11!

where

C~0!~T!5
b2

2 E de
N~e!e2

cosh2~ 1
2 be!

, ~12!

and the functionC(2)(T) can be written as~see the Appen-
dix!

C~2!~T!5
b2

32

]2

]b2
b2E

0

1

dx(
m

@ f m~x,b!#4. ~13!
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Here the sum runs over lattice sitesRm , and the functions
f m(x,b) are given by

f m~x,b!5E dk
exp~ ik•Rm1 1

2 xbek!

cosh~ 1
2 bek!

. ~14!

Comparison with Eq.~10! shows that ind5` only the local

term with Rm50, i.e. f 0(x,b)5*de N(e)cosh(12xbe)/

cosh(12be), contributes to the sum in Eq.~13!.
The crossing point in the specific heat occurs at the te

peratureT1(U) for which C(T,U) is independent ofU. In
view of Eqs.~2!, ~3!, and~11!, the crossing temperatureT1

in the limit U→0 is given by the root of the equation

C~2!~T1!50, ~15!

and the specific heat at the crossing point@Eq. ~4!# is

C15C~0!~T1!. ~16!

These equations will be evaluated for several lattices
dimensions that are described in Sec. III.

III. MOMENTUM DISPERSION
AND DENSITY OF STATES

We consider only one-band systems at half-filling with
symmetric density of states on lattices in finite and infin
spatial dimensions. For systems with finite bandwidth we
W/2[1, whereW is the bandwidth, while for infinite band
width we use a unit second moment of the density of sta
i.e., *de N(e)e2[1.

(1) Finite dimensions.For the linear chain, square lattic
and simple cubic lattice, i.e., the hypercubic lattices ind
51, 2, and 3, we use the tight-binding dispersionek
522t( i 51

d coski , uki u<p, which describes neares
neighbor~NN! hopping with amplitudet[1/2d. Furthermore
we study the body-centered-cubic~bcc! lattice in d53 with
NN hopping, which can be regarded as a subset of the sim
cubic lattice with hopping across the space-diagonal, so
ek528t cos(kx)cos(ky)cos(kz) with t[ 1

8 . For these system
we use perturbation theory as described in Sec. II. Fina
for one-dimensional long-range hoppingt(r )}1/r , the
known interacting dispersion12 can be used instead of pertu
bation theory. The free dispersion isek5tk, t[1/p, with a
constant density of states. Figure 2 shows the various de
ties of states used ind51, 2, and 3.

(2) Infinite dimensions.We consider first the hypercubi
lattice and generalized honeycomb lattice with NN hoppi
For the hypercubic lattice, the hopping must be scaled14 as
t51/A2d to obtain a nontrivial limit ford→`. In this case
the density of states becomes a Gaussian with unit varia
N(e)5exp(2e2/2)/A2p, whereas for the generalized hone
comb lattice16 the same scaling leads toN(e)5ueuexp(2e2).
We also study the Bethe lattice with infinite connectivity a
semicircular density of states,N(e)52/pA12e2, ueu<1.

Furthermore we can take advantage of the fact that id
5` only the density of states of the non-interacting syst
appears in Eq.~10!. Hence it may be chosen at will eve
when no corresponding dispersion is known. We consi
three such functions each containing a tunable real param
-
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a.0. This allows us to study the behavior ofC1 for a wide
range of DOS shapes. The first is the ‘‘metallic’’ density
states

N~e!5
11a

2a
~12ueua!, ueu<1, ~17!

bearing this name due to its finite value at the Fermi ener
while the ‘‘semimetallic’’ density of states

N~e!5
11a

2
ueua, ueu<1, ~18!

vanishes at the Fermi energy. Furthermore we emplo
semimetallic density of states ‘‘with tails’’ having infinite
bandwidth and unit variance

N~e!5
cc

G~c!
ueua exp~2ce2!, c[

11a

2
. ~19!

This reduces to the DOS for the generalized honeycomb
tice with NN hopping in the case ofa51. The important
special case of a constant rectangular density of sta
N(e)5 1

2 for ueu<1, is contained in Eq.~17! for a→` and
in Eq. ~18! for a→0. Note that in the limita→`, the DOS
in Eq. ~18! approaches twod peaks, N(e)5 1

2 @d(11e)
1d(12e)#. This particular case is of interest only becau
in this case the integrals in Eqs.~8! and ~10! can be calcu-
lated analytically. For generala, on the other hand, the func
tions in Eqs.~17! and ~18! model typical DOS shapes fo
finite dimensions. Several densities of states used ind5`
are depicted in Fig. 3.

IV. RESULTS FOR THE SPECIFIC HEAT
AT THE HIGH-TEMPERATURE CROSSING POINT

In this section we present results for the specific heatC1

at the high-temperature crossing point for the density
states discussed in Sec. III. To calculateC1 according to
Eqs. ~15! and ~16!, the integrals appearing in Eqs.~12! and
~13! have to be calculated numerically. We determine th
to high precision~typically 1028) by either Monte Carlo
integration ~using the VEGAS algorithm17! or by a high-
temperature expansion~described in the Appendix!. For sev-

FIG. 2. DOS’s for several noninteracting systems with ne
neighbor and 1/r hopping in dimensionsd51, 2, and 3.
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eral cases both methods were applied, and yielded the s
results within numerical accuracy. Typical results for t
functionsE(2)(T) and C(2)(T) are shown over a wide tem
perature range in Fig. 4 for the linear chain with neare
neighbor hopping and for a constant DOS in infinite dime
sions. There is a maximum at lower temperature an
minimum at higher temperature inE(2)(T), corresponding to
the two zeros ofC(2)(T). These are the temperatures whe
the specific heat curves cross forU→0.

Numerical values forT1 andC1 are listed in Table I. In
view of the drastically different DOS shapes~see Figs. 2 and
3!, it is quite remarkable that the values ofC1 for these
systems are very similar, ranging from 0.331 to 0.358.
the DOS with tunable parameterC1 is plotted vsa in Fig. 5.
Again, C1 varies only by a small amount although th
shapes of the DOS change strongly. In particular, for
semimetallic DOS@Eq. ~18!# C1 lies between the values fo
the constant and twod-peak DOS, since these are the lim
of Eq. ~18! for a→0,̀ .

These results raise the following questions which will
addressed in Sec. V:~i! Why is C1 at the high-temperature
crossing point so insensitive against changes of the DO

FIG. 3. DOS’s for several noninteracting systems in infinite
mensions.

FIG. 4. Second-order contribution inU to the specific heat,
C(2)(T), for the linear chain~with NN hopping! and for the con-
stant DOS in infinite dimensions. The half-band-width is set to 1
both cases. The inset shows the correlation energy/U2.
me

t-
-
a

r

e

of

the noninteracting electrons and the spatial dimension?~ii !
What determines the~small! spread in the values ofC1? ~iii !
Why does the value ofC1 at the low-temperature crossin
point vary so much more strongly?

V. EXPANSIONS OF C1

We will see that the influence of the DOS and of t
crystal lattice onC1 can be understood by expanding arou
the limit of d5`. In addition, in d5` the dispersionek
enters only via the DOSN(e), so that the effect of its form
on C1 can be studied by expanding in terms of the diffe
ence betweenN(e) and a reference DOSN̄(e).

A. Influence of the DOS ind5`

First we consider infinite-dimensional systems with an
bitrary symmetric DOSN(e) with finite bandwidth. The
DOS is compared to a rectangular-shaped DOS with
same bandwidth,N̄(e)5 1

2 for ueu,1. Their difference is
characterized by the quantity

-

TABLE I. Values of the crossing temperatureT1 and specific
heat C1 at the high-temperature crossing point for seve
d-dimensional Hubbard models. The temperature is given in u
of the half-band-width, except for the hypercubic and hyperd
mond lattice, for which the variance of the DOS is set to unity.

System Hopping d C1 T1

linear chain 1/r 1 0.346994 0.561816
linear chain NN 1 0.355547 0.705047
square lattice NN 2 0.352682 0.443585
simple cubic NN 3 0.348327 0.358091
body-centered-cubic NN 3 0.357578 0.24122
hypercubic NN ` 0.343630 0.847667
hyperdiamond NN ` 0.338411 0.983569
Bethe lattice NN ` 0.340906 0.480185
rectangular DOS undeterm. ` 0.339352 0.571895
two d-peaks DOS undeterm. ` 0.330857 1.115358

FIG. 5. C1 for several DOS’s with a tunable parametera @Eqs.
~17!–~19!#, plotted vsa. The upper and lower dotted horizonta
lines representC1 for the constant DOS and the twod-peaks DOS,
respectively.
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dN5E
21

1

de uN~e!2N̄~e!u, ~20!

which will serve as an expansion parameter. We will expa
C1 to lowest order indN, making use of the known func
e

e

o
-
,
it

al

s

d

tions f̄ 0(x,b), C̄(2)(b), andC̄(0)(b) pertaining toN̄(e), as
well as the known crossing points for the rectangular DO
T̄151/b̄150.138 01 andC̄150.440 46 at low tempera
tures, whileT̄151/b̄150.571 90 andC̄150.339 35 at the
high-temperature crossing point.

We begin by expandingC(2)(b) for small dN:
is
C~2!~b!5C̄~2!~b!14Fb2

32

]2

]b2
b2E

0

1

dx @ f 0~x,b!2 f̄ 0~x,b!# f̄ 0~x,b!3G1O@~dN!2#. ~21!

Using standard inequalities it can be shown that the neglected terms indeed vanish like (dN)2 ~for fixed b,`). Now
C̄(2)(b) is expanded around the known crossing pointb̄1 whereC̄(2)(b̄1)50. Then the new crossing point temperature
determined from the condition

05
!

C~2!~b1!5~b12b̄1!C̄~2!8~ b̄1!14Fb2

32

]2

]b2
b2E

0

1

dx f0~x,b! f̄ 0~x,b!3G
b5b̄1

1O@~dN!2#. ~22!

To lowest order the shift inb1 is hence given by

db15b12b̄15E
21

1

de N~e!Db1~e!1O@~dN!2#, ~23!

where

Db1~e!52
b̄1

2

8C̄~2!8~ b̄1!
F ]2

]b2

b2

cosh~ 1
2 be!

E
0

1

dx f̄0~x,b!3cosh~ 1
2 xbe!G

b5b̄1

. ~24!
del
Finally we expandC(0)(b) in b2b̄1 to first order and
evaluate it forb5b̄11db1 . Thus the specific heat at th
crossing pointC1 is obtained to lowest order indN as

C15C̄11E
21

1

de N~e!DC1~e!1O@~dN!2#, ~25!

where

DC1~e!5
b̄1

2 e2

2cosh2~ 1
2 b̄1e!

1C̄~0!8~ b̄1!Db1~e!2C̄~0!~ b̄1!. ~26!

The last two equations show how the first order effect onC1

of a deviation ofN(e) from a rectangular shape can be d
termined by a single integration.

The numerical evaluations of the functionDC1(e) are
plotted in Fig. 6 for both crossing points. The amplitudes
the functionDC1(e) corresponding to the low- and high
temperature crossing points are seen to differ greatly, i.e.
a factor of about 40. This implies a much greater sensitiv
towards changes of the DOS and the dimension of the v
of C1 at thelow-temperature crossing point.

It is also clear thatC1 is not entirely universal at the
high-temperature crossing point, since for a general den
of statesN(e) the integral in Eq.~25! does not vanish. We
-

f

by
y
ue

ity

can in fact estimate the maximum value of the shiftdC1

5C12C̄1 for arbitrary N(e) with finite bandwidth, using
simple integral inequalities:

udC1u<min„a1 ,a2• max
0<e<1

@N~e!#…1O@~dN!2#, ~27!

FIG. 6. Weight functionDC1(e) determining the shift inC1 at
the low- and high-temperature crossing points for a Hubbard mo
in d5` with finite bandwidth, according to Eq.~25!. The half-
band-width is set to unity.
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TABLE II. Comparison of the approximate results forC1 at the high-temperature crossing point obtain
from the expansion indN @Eq. ~25!# with the exact values for several DOS’s ind5`. The expansion is
controlled by the parameterdN, which measures the ‘‘distance’’ ofN(e) to the rectangular DOS, see Eq
~20!. ‘‘Metallic’’ and ‘‘semimetallic’’ refer to the DOS’s of Eqs.~17! and~18!, respectively. The last column
shows the difference between the approximate and the exact results in percent.

DOS a dN C1,approx C1,exact diff.

rectangular 0 0.339352 0.339352 0
Bethe lattice 0.231 0.341391 0.340906 0.14%
metallic 4 0.267 0.341271 0.340444 0.24%
metallic 6 0.207 0.340482 0.339966 0.15%
metallic 8 0.169 0.340091 0.339743 0.10%
metallic 10 0.143 0.339871 0.339621 0.07%
metallic 12 0.124 0.339735 0.339552 0.05%
semimetallic 0.1 0.070 0.338349 0.338381 0.02%
semimetallic 0.5 0.296 0.335393 0.335880 0.14%
semimetallic 1 0.500 0.333279 0.334253 0.29%
semimetallic 2 0.770 0.331629 0.332752 0.35%
3
31
tu

ll

q
h
,

e

o

r
lle

s
er
e

th
-

-
e

-

ious

e
of

ser-
all-
with a1[max0<e<1uDC1(e)u, a2[*21
1 de uDC1(e)u. At the

high-temperature crossing point we finda150.022 68 and
a250.022 00, i.e., to orderO(dN) we haveudC1u!C̄1 ,
which is the reason for the insensitivity ofC1 to changes in
N(e). Furthermore the predicted range of values 0.3
60.023 corresponds well to the observed range of 0.3
0.358; see Table I. On the other hand, at the low-tempera
crossing point we finda150.9330 anda250.7727, so that
udC1u'C̄1 . HenceC1 is indeed not confined to a sma
interval in this case.

To check the validity of this expansion we applied E
~25! to several infinite-dimensional systems at the hig
temperature crossing point. Results for the Bethe lattice
well as for the metallic DOS@Eq. ~17!# and the semimetallic
DOS @Eq. ~18!# at several values of the parametera are
given in Table II. As expected we find that the lowest-ord
approximation in Eq.~25! describes the behavior ofC1 very
well if the deviation from the rectangular DOS is not to
large. The difference between the exact value ofC1 and the
approximate valueC̄11dC1 is due to corrections of orde
(dN)2, and hence is typically an order of magnitude sma
than the first-order correctiondC1 .

Hence we have shown that for a small changedN in the
density of states the variation ofC1 at the low-temperature
crossing point is large, while at the high-temperature cro
ing point it is small and well described by the first-ord
correction in dN. This gives quantitative answers to th
questions posed at the end of Sec. IV.

B. Lattice effects in dimensiond51, 2, 3

To determine the influence of the lattice dimension on
value of C1 we study the hypercubic lattice with NN hop
ping t and the scaling14 t51/A2d and expandC1 in 1/d.
Since the large variation ofC1 at the low-temperature cross
ing point can already be understood from the results of S
V A, we will perform this calculation only for the high
temperature crossing point.

As discussed in Sec. II, ford5` only the local term
involving f 0(x,b) remains in the lattice sum in Eq.~13!. The
9
–
re

.
-
as

r

r

s-

e

c.

1/d corrections are given by the contribution from the 2d
nearest neighbors vectors such asR15(1,0,0, . . . ),15

(
m

f m~x,b!45 f 0~x,b!412d f1~x,b!41•••

5 f 0~x,b!41
1

2d F 2

b

]

]x
f 0~x,b!G4

1O~d22!,

~28!

where a partial derivative with respect tox was employed in
the second line to remove the factor cos(k•R1) from
f 1(x,b). Hence the corrections toC1 in order 1/d can be
calculated entirely fromf 0(x,b). This function contains an
integral over the DOSN(e) only, which in turn must be
expanded in 1/d.15 Then the finite-d correction toT1 andC1

can be calculated by expanding Eqs.~15! and ~16! to first
order in 1/d, with the following results for the high-
temperature crossing point:

C150.343 63010.013 599
1

d
1O~d22!, ~29!

T15F0.847 66710.082 650
1

d
1O~d22!G 1

A2d
. ~30!

Here the temperature scale has been reset to our prev
choice of unit half-band-width in finite dimensions~i.e., the
extra factor 1/A2d must be omitted in order to recoverT1 in
d5`). Again this expansion compares very well with th
numerical results; see Table III. Note that the coefficient
d21 in Eq. ~29! is already much smaller thanC1 in d5`,
which is the reason for the insensitivity ofC1 to lattice
effects, such as Brillouin-zone shape and momentum con
vation. We expect that for longer-range hopping the sm
ness of the deviations in the value ofC1 may equally be
traced to 1/d corrections.
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VI. CONCLUSION

For many correlated electronic systems the curves of
specific heat vs temperature obtained for different values
second thermodynamic parameterX are known to intersect.1

For the Hubbard model at half-filling the specific heat curv
for different values of the Hubbard interactionU cross twice,
the crossing point at high-temperatures being remarka
sharp up to intermediate values ofU. We observed thatC1 ,
the value of the specific heat at this crossing point in
weak-coupling limit, is practically the same for a seve
different lattice systems. We analyzed the origin of this co
spicuous feature by calculatingC1 in perturbation theory in
U. We found the values ofC1 at the high-temperature cros
ing point to occur in very small interval, i.e.,C1'0.34 is
indeed almost independent of dimensionality, crystal latt
and energy dispersion. This is not the case for the cros
point at low temperatures, whereC1 varies on a much large
scale.

Qualitatively, the reason for this difference can be trac
to the relevant energy scales on whichC(T,U) varies. At
high temperatures, the energy scale forT is essentially deter-
mined by the bandwidth, i.e., by the hopping amplitudet in
the dispersionek . At low temperatures, on the other han
the generation of low-energy excitations~which are respon-
sible for the strong enhancement of the low-temperature
cific heat and]C/]U.0) leads to a renormalized energ
scalet→teff!t. The first maximum inC(T,U) occurs at a
temperature that is of the order ofteff ~see Fig. 4!. As a
consequence, the first sign change in]C/]U is also linked to
teff , so that the intersection ofC(T,U) and C(T,0) at low
temperatures does not occur at any predetermined valu
contrast, the second sign change in]C/]U is determined
only by energy scales that also appear in the noninterac

TABLE III. Comparison of the approximate results forC1 at
the high-temperature crossing point obtained from the expansio
1/d @Eq. ~29!# with the exact values for hypercubic lattices ind
dimensions. The last column shows the difference between the
proximate and the exact results in percent.

Lattice d C1,approx C1,exact diff.

hypercubic ` 0.343630 0.343630 0
simple cubic 3 0.348164 0.348327 0.05%
square lattice 2 0.350430 0.352682 0.64%
linear chain 1 0.357229 0.355547 0.47%
e
a

s

ly

e
l
-

,
ng

d

e-

In

g

system, leading to a nearly universal value for the hig
temperature intersection ofC(T,U) andC(T,0).

To gain a more quantitative understanding we identifi
two small parameters which determine the crossing po
valuesC1 . The starting point for expansions in these sm
parameters is the limit of infinite dimensions (d5`). ~i! For
d5` the dependence ofC1 on the shape of a DOSN(e)
with finite bandwidth is well described by the first-order co
rection in the parameterdN5*de uN(e)2 1

2 u. This param-
eter is a measure of the difference betweenN(e) and a con-
stant rectangular DOS. It turns out that at the hig
temperature crossing point this correction is small for alm
all DOS’s, while it is large at the low-temperature crossi
point. ~ii ! For hypercubic lattices in dimensions 1<d,` the
value of C1 may be obtained by an expansion aroundd
5` in powers of 1/d. At the high-temperature crossing poin
the value ofC1 of the d-dimensional system is already a
curately determined by the first-order correction in 1/d even
for d as low asd51, due to the smallness of the prefactor
this term. These expansions show in detail whyC1 has an
almost universal value at the high-temperature cross
point.

APPENDIX: INTERNAL ENERGY AT WEAK COUPLING

The internal energy per lattice siteE is given by18

E~T,U !5TE dk (
vn ,s

eivnh

3
ek1 1

2 Ss~k,ivn!

G0~ ivn ,k!212Ss~k,ivn!
, ~A1!

where vn denotes fermionic Matsubara frequencies,h
→01, and \[1. The noninteracting Green function
G0( ivn ,k)215 ivn2(ek2m), and Ss(k,ivn) is the self-
energy for spins. In the paramagnetic phase the sum ov
spins just gives a factor of 2, and the spin indices on
self-energy can be dropped.

For a symmetric DOS the chemical potentialm at half-
filling is given by U/2 for all temperatures due to particle
hole symmetry. It is useful to define shifted functionsĜ0

21

5G0
212U/2 andŜ5S2U/2, with the new chemical poten

tial fixed at 0. Up to second order inU Ŝ is given by only
one Feynman diagram where the lines now representĜ0. We

write Ŝ(k,ivn)5U2
•ŝ(k,ivn)1O(U3), with

in

p-
l

~A2!

wherenm denote bosonic Matsubara frequencies and the sum is over reciprocal-lattice vectorsK . Expansion of the interna
energy@Eq. ~A1!# in powers ofU yields Eqs.~7! and ~8!, and

E~2!~T!5TE dk(
vn

eivnh

ivn2ek
F ŝ~k,ivn!12ek

ŝ~k,ivn!

ivn2ek
G . ~A3!
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The frequency summations are carried out as usual,18 with the result

T(
n

ŝ~k1 ,ivn!

ivn2ek1

52E dk2E dk3E dk4

sinh@ 1
2 b~ek1

2ek2
1ek3

2ek4
!#

8@ek1
2ek2

1ek3
2ek4

#)
i 51

4

cosh~ 1
2 beki

!

(
K

d~k12k21k32k42K !. ~A4!

Here we eliminate the energy denominator using the identity sinh(1
2by)51

2b*0
1dxcosh(12xby). Next we rewrite the second term

in square brackets in Eq.~A3! as a formal derivative 2ek1
]/]ek1

of Eq. ~A4!. We make the integrand symmetric in alleki
by

shifting k2 and k4 by Q, whereek1Q52ek . Then the derivative can be replaced by 2b]/]b because only productsbeki

appear. Takingb inside the derivative we finally arrive at

E~2!~T!52
]

]b

b2

32E0

1

dxE dk1E dk2E dk3E dk4

3
cosh@ 1

2 xb~ek1
1ek2

1ek3
1ek4

!#

cosh~ 1
2 bek1

!cosh~ 1
2 bek2

!cosh~ 1
2 bek3

!cosh~ 1
2 bek4

!
(
K

d~k12k21k32k42K !. ~A5!

In d51, 2, and 3 this simplifies to Eq.~9!, while for d5` thed function can be omitted15 and the numerator can be replac

by ) i 51
4 cosh(12xbei), leading to Eq.~10!.

The integrals in Eq.~A5! also factorize if we express momentum conservation as a sum over lattice vectorsRm ,

(
K

d~k12k21k32k42K !5(
m

exp@ i ~k12k21k32k42K !•Rm#, ~A6!

leading to Eqs.~13! and~14!. Since the functionsf m(x,b) in Eq. ~14! cannot be calculated in closed form for generalek we
employ a high-temperature expansion, which yields

f m~x,b!5 (
n50

`
bn

n!
EnS 11x

2 D I n~Rm!, ~A7!

I n~Rm!5E dk ~ek!n exp~ ik•Rm!, ~A8!

whereEn(x) are Euler polynomials. The remaining Brillouin-zone integrals are calculated as follows. For thed-dimensional
hypercubic lattice the lattice vectors areRm5(m1 , . . .md) with integermi , so that for NN hoppingt we have

I n
hc~Rm!5~2t !n (

n11•••nd5n
S n

n1 , . . .nd
D)

i 51

d F E
2p

p dki

2p
~2 coski !

ni cos~ki umi u!G . ~A9!

The integral in square brackets equals (r i

ni) if 0<ni2umi u[2r i with integerr i , and zero otherwise. Hence

I n
hc~Rm!5~2t !nn! ( 8

r 1 , . . . ,r d
)
i 51

d
1

r i ! ~r i1umi u!!
, ~A10!

where the sum is restricted to 2r 11•••12r d5n2Mhc, with Mhc[( i 51
d umi u. Note thatI n

hc vanishes ifMhc.n or if n
1Mhc is odd. For the bcc lattice ind53 we use the hypercubic lattice basisRm and the dispersion given in Sec. III. We obta

I n
bcc~Rm!5~2t !n)

i 51

3 F E
2p

p dki

2p
~2 coski !

n cos~ki umi u!G5~2t !n)
i 51

3 S n

r i
D , ~A11!

with r i defined as above. In particularI n
bcc vanishes ifMbcc[maxi umi u.n or if n1umi u is odd. The advantage of the prese

high-temperature expansion is that terms withM.n vanish when expanding to orderbn, so that the lattice sum terminates
mi5n. In addition, lattice symmetries can be used to further reduce the computational effort. This makes the cal
feasible even in dimensiond53, where numerical Brillouin-zone integration is usually difficult. At the high-tempera
crossing pointO(b80) is typically sufficient to obtainT1 andC1 to an accuracy of 1028.
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9G. Jüttner, A. Klümper, and J. Suzuki, Nucl. Phys. B522, 471
~1998!.
.

.

10D. Duffy and A. Moreo, Phys. Rev. B55, 12 918~1997!; ibid. 56,
7022~E! ~1997!.

11A. Georges and W. Krauth, Phys. Rev. B48, 7167~1993!.
12F. Gebhard and E. Ruckenstein, Phys. Rev. Lett.68, 244 ~1991!;

F. Gebhard, A. Girndt, and A. Ruckenstein, Phys. Rev. B49, 10
926 ~1994!.

13T. Usuki, N. Kawakami, and A. Okiji, J. Phys. Soc. Jpn.59, 1357
~1990!.

14W. Metzner and D. Vollhardt, Phys. Rev. Lett.62, 324 ~1989!.
For reviews, see D. Vollhardt, inCorrelated Electron Systems,
edited by V. J. Emery~World Scientific, Singapore, 1993!, p.
57; A. Georges, G. Kotliar, W. Krauth, and M. Rozenberg, Re
Mod. Phys.68, 13 ~1996!.

15E. Müller-Hartmann, Z. Phys. B74, 507 ~1989!.
16G. Santoro, M. Airoldi, S. Sorella, and E. Tosatti, Phys. Rev.

47, 16 216~1993!.
17W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Fla

nery, Numerical Recipes in C~Cambridge University Press
Cambridge, 1992!, and references therein.

18A. L. Fetter and J. D. Walecka,Quantum Theory of Many-
Particle Systems~McGraw-Hill, New York, 1971!.


