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Nearly universal crossing point of the specific heat curves of Hubbard models
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A nearly universal feature of the specific heat cur@§,U) vs T for different U of a general class of
Hubbard models is observed. That is, the vallie of the specific heat curves at their high-temperature
crossing poinfT ;. is almost independent of lattice structure and spatial dimergsiovith C, /kg=~0.34. This
surprising feature is explained within second-order perturbation theddybyg identifying two small param-
eters controlling the value @ . : the integral over the deviation of the density of stdt€g) from a constant
value, characterized b§N= [de [N(e) — 3|; and the inverse dimensiondl/[S0163-18209)15015-X]

[. INTRODUCTION should be noted that the specific heat, like the entropy, is a
dimensionless quantity when expressed in unitggf

Recently attention was drawn to the fact that in various We denote byT, the temperature at which the curves
strongly correlated systems the curves of the specific hed@(T,U) vs T cross for different values dff. Then the spe-
C(T,X) vs temperaturd cross once or twice when plotted cific heat isindependenof U at the crossing temperature
for different values of a second thermodynamic variable T, (U), defined by
For example, crossing points are observed for different pres-
sures K= P) in normalfluid *He (Ref. 2 and heavy-fermion ﬁ
systems such as CeAlRef. 3 and UBg.* By changing the oU
magnetic field K=B), the same feature is seen in heavy-
fermion compounds such as CeCuyAl, (Ref. § and Since we are not concerned with the dependencgt,ql))
Nd,_,CeCu0,.® Crossings of the specific heat curves areon U, but rather with the crossing point value ®(T,U) for
also observed in the simplest lattice model for correlatedlifferent lattice systems, we consider only the limit of small
electrons, the Hubbard model, U, and define

=0. (2

T,(U)

T.= lim T,.(U), (3
H=2 (e maGa,+U2 fih, (D) u-ot

C.= lim C[T.(U),U]. (4)
wheree, is the dispersion of a single electronic bapdthe u—o*
chemical potential, and the local interaction. At half filling
the curvesC(T,U) vs T always cross at two temperatures. 0.6 ot 1| o
This is observed, for example, in the case of the model with - (@ d=1 1 () d=eo .
nearest-neighbor hopping =1 28°d=2°andd=« " as 05 |

well as for long-range hopping id=1 (Ref. 12; for the -
latter two systems the specific heat is shown in Fig. 1. Fur- 04 -
thermore, crossing is found oh=1 when a magnetic fiel8 .
is changed at constard.’® The fact that these crossing 35 0.3

points may be very sharp was analyzed in Ref. 1, and wastk=
traced to the properties of certain generalized susceptibilities™ 0.2
of the system.

R e A
-
)

In the following, we will consider only the crossing of the 0.1 -—-- LLJJ=8.5 -
specific-heat curves occurring fér=U in the paramagnetic _ o Hf;g 1
phase of the Hubbard model with a symmetric half-filled ol o o o L 1 I S
band f=1). We will investigate yet another observation, 0 05 0 05 1 15
namely, that for smallU the specific heat at the high- T T

temperature crossing poihts practically the same value of
approximately0.34g for all dimensions dand dispersions

FIG. 1. Specific heat for the Hubbard mod@l) Exact solution
for 1/ hopping ind=1.1? (b) Iterated perturbation theory for NN

€, which can be seen also in Fig. 1. This is surprising,hopping ind=c (Ref. 11. In (@, T and U are in units of the
because the temperatures at which this crossing occurs aggif-hand-width, while forb) the second moment of ti&aussian
very different for different dispersions and dimensions, anthensity of states is set to unity. At the high-temperature crossing
because the maximum value 6{T,U) and its value at the point the specific heat has the almost universal value ofk@.34
low-temperature crossing point vary strongly as well. Itthe limit U—0 (see arrows
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This weak-coupling crossing point can be calculated withouSince #C/dU is not identically zero, there must exist tem-
approximation using second-order perturbation theoryin  perature regions where it has positive and negative values.
Higher orders in perturbation theory would be necessary t&We assume that no phase transitions occur, sodGa#U is
determine the dependence©fT, (U),U] on U. a continuous function ofJ. Then there exist temperatures

It is the purpose of this paper to show that the value ofwheredC/9U changes sign; at these temperatures the curves
C, at the high-temperature crossing point is almost univerC(T,U) vs T cross[see Eq(2)].
sal, and to analyze the origin of this peculiar feature. We There are two such crossing points in the paramagnetic
calculateC, for a half-filled band with a symmetric density phase of the half-filled Hubbard model, as can be seen from
of stategDOS) N(€) = fdk §(e—¢€,). We also show that the the sign ofdC/dU at very low and very high temperatures.
weak dependence @, on lattice properties can be under- For intermediate values &J the specific heat of this model
stood by starting from the limitl=c and using expansions shows the following general featuregs(T,U) starts linearly
in terms of two small parameters. in T at low temperatures and develops a two-peak structure;

This paper is organized as follows. In Sec. Il we reviewone at temperatures~4t%/U due to spin excitationst (is
the origin of crossing points in the Hubbard model and showthe hopping amplitude and one at temperaturds-U —W
how to calculateT, and C, in second-order perturbation due to charge excitations, whaf¢is the bandwidth. For low
theory, the details of which are contained in the Appendixtemperatures the spin exitations become stronger for increas-
Various noninteracting lattice systems are listed in Sec. llljng U, thusdC/dU>0. At high temperatures an increase in
and the values o€ ; at the high-temperature crossing point U pushes out the charge peak and thus incre@{a@suU),
for these systems are presented in Sec. IV. Section V corwhich tends td a+bU?+0O(U*)]/T? with a,b>0. Hence
tains expansions of ;. that reveal the influence of the den- 9C/9U>0 for both high and low temperatures, so that the
sity of states and the lattice dimension. We close with asum rule [Eq. (6)] yields an intermediate region with

conclusion in Sec. VI. dCl9U<0. There are thus two sign changes corresponding
to two crossing points.
Il. CROSSING POINTS IN THE SPECIFIC HEAT To determine the location of the crossing points defined
OF THE HUBBARD MODEL by Egs.(3) and (4), we calculate the internal energy per

. _ o lattice site in perturbation theory id,
The entropy per lattice sit§(T,U) is given by

E(T,U)=EQ(T)+:U+U’E@(T)+0(U%. (7

,C(T U)
S(T.U)= j dT ® Here kg=1, B=1/T)
For the Hubbard mode§(T,U) approaches a constant when N(e)e
T— . Taking the derivative of Eq5) with respect tdJ, we EQ(T)= 2f de TTexp Be)’ (8)

find
which is the internal energy for the noninteracting system,
0= Jw d_T dC(T,U) _ (6) U/4 is the Hartree contribution, and the second-order corre-

o T ou lation energy is given bysee the Appendix for detajls

cosh 3 XB( e+ €pt €pi gt €kig)]

>T———— dekfdfd :
(0="3532), > P qcosf(%Bek)cosh%Bep)cosh%ﬁek+q)cosf(%Bep+q)

(€)

where the integrations, e.g.dk= [d%%/(2)9, run over the The specific hea€(T,U)=0dE/JT has the expansion
first Brillouin zone.

In the limit of infinite spatial dimension$this expression C(T,U)=CO(T)+U?C?(T)+0(UY), (11)
can be simplified further. In this case, momentum conserva-
tion at vertices becomes irrelevditso that the integrals where
factorize(see the Appendix

B N(e) e
4 (0) -
a B[ cosh(3 xBe cH(m= f de : (12)
E<2>(T):——ﬁ—f dx fdeN(e)—r(z ol 2) "cosR(} Be)
I 32J0 cosh(3 Be)
(100  and the functionC®)(T) can be written agsee the Appen-
dix
Note that as usual in infinite dimensions the dispersipn )
enters into one-particle quantities only via the DQIGe).
Therefore this expression is much easier to evaluate numeri- (2)(T)— ,3 f dxz [f.(x8)]" (13)

cally than Eq.(9).
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Here the sum runs over lattice sitBs,, and the functions 15
fm(X,B) are given by

ik-Rp+ 3
fm(x,5)=f il 2XPe) gy ]

costiz Bey)
Comparison with Eq(10) shows that ird=c only the local
term with R,=0, ie. fy(x,)=Sde N(€)coshéxBe)
coshége), contributes to the sum in EGL3). 0.5
The crossing point in the specific heat occurs at the tem-
peratureT . (U) for which C(T,U) is independent o). In

view of Egs.(2), (3), and(11), the crossing temperatufie,
in the limit U—0 is given by the root of the equation 0

Nie)

Cc?(T,)=0, (15)
. - . FIG. 2. DOS’s for several noninteracting systems with next-
and the specific heat at the crossing poig. (4)] is neighbor and 1/ hopping in dimensions=1, 2, and 3.
=0
Ce=CT(T4). (16) a>0. This allows us to study the behavior ©f. for a wide
These equations will be evaluated for several lattices anéange of DOS shapes. The first is the “metallic” density of
dimensions that are described in Sec. IIl. states

l+a
. MOMENTUM DISPERSION N(e)=——(1—|€e|"), |e[=1, (17
AND DENSITY OF STATES 20
bearing this name due to its finite value at the Fermi energy,

We consider only one-band systems at half-filling with awhile the “semimetallic” density of states

symmetric density of states on lattices in finite and infinite
spatial dimensions. For systems with finite bandwidth we set

1+«
W/2=1, whereW is the bandwidth, while for infinite band- N(e)= 5 le|*, |e|<1, (18
width we use a unit second moment of the density of states,
i.e., [de N(e)e?=1. vanishes at the Fermi energy. Furthermore we employ a

(1) Finite dimensionsFor the linear chain, square lattice, semimetallic density of states “with tails” having infinite
and simple cubic lattice, i.e., the hypercubic latticesdin bandwidth and unit variance
=1, 2, and 3, we use the tight-binding dispersiep
=—2t3%  cosk, |k|<w, which describes nearest- N(e)=
neighbor(NN) hopping with amplitudé=1/2d. Furthermore

we study_ the bo_dy-centered-cut(hncc) lattice ind=3 With. This reduces to the DOS for the generalized honeycomb lat-
NN hopping, which can be regarded as a subset of the S|mp|[-Ce with NN hopping in the case af=1. The important

cubic lattice with hopping across the space-diagonal, so thas : .

y ecial case of a constant rectangular density of states,
€= — Bt cosf,)cosk,)cosk;) with tE%.‘ For these systems N(e)=73 for |e|<1, is contained in Eq(17) for a—« and
we use perturbation theory as described in Sec. Il Flnally'n Eq (218) for a_)é Note that in the limitr—c . the DOS

for one-dimensional long-range hoppingr)«1/r, the in E T
; . ; : . g. (18) approaches twos peaks, N(e)=3[5(1+¢€)
known interacting dispersidfcan be used instead of pertur- + 8(1— €)]. This particular case is of interest only because

bation theory. The free dispersiondg=tk, t=1/m, With @  , is case the integrals in Eg&) and (10) can be calcu-
constant density of states. Figure 2 shows the various denﬁ!’:ited analytically. For general, on the other hand, the func-

ties of states used id=1, 2, and 3. . ; .
- . Lo . ) . tions in Egs.(17) and (18) model typical DOS shapes for
(2) Infinite dimensionsWe consider first the hypercubic finite dimeqnsi(or?s Sev(erlel densitieysp of states useg .
lattice and generalized honeycomb lattice with NN hopping. :

For the hypercubic lattice, the hopping must be sc4led are depicted in Fig. 3.
t=1/\/2d to obtain a nontrivial limit ford—oe. In this case
the density of states becomes a Gaussian with unit variance,
N(€)=exp(-€42)/\/2m, whereas for the generalized honey-
comb latticé® the same scaling leads M(€) =|elexp(= €. In this section we present results for the specific l@at
We also study the Bethe lattice with infinite connectivity andat the high-temperature crossing point for the density of
semicircular density of statebl(e) = 2/m\1— €2, el=<1. states discussed in Sec. lll. To calcul&@ge according to
Furthermore we can take advantage of the fact that in Egs.(15) and(16), the integrals appearing in Eqd2) and
=oo only the density of states of the non-interacting system(13) have to be calculated numerically. We determine them
appears in Eq(10). Hence it may be chosen at will even to high precision(typically 10 8) by either Monte Carlo
when no corresponding dispersion is known. We consideintegration (using the veGas algorithm'’) or by a high-
three such functions each containing a tunable real paramet@mperature expansiddescribed in the AppendixFor sev-

¢ N 5 _l+ta
F(c)|6| exp(—ce?), c=——. (19

IV. RESULTS FOR THE SPECIFIC HEAT
AT THE HIGH-TEMPERATURE CROSSING POINT
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1 T I I TABLE I. Values of the crossing temperatufe. and specific

1 1
rectangular DOS — heat C, at the high-temperature crossing point for several
hypeE:ittt]ig :gg:gg mm T d-dimensional Hubbard models. The temperature is given in units
hyperdiamond lattice, NN - of the half-band-width, except for the hypercubic and hyperdia-
mond lattice, for which the variance of the DOS is set to unity.
= ,// ™. System Hopping d C, T,
= 05 |- = ‘\\ -
P RN T linear chain W 1 0.346994 0.561816
17 . LN [ linear chain NN 1 0.355547 0.705047
i b square lattice NN 2 0352682 0.443585
el | I simple cubic NN 3 0.348327 0.358091
body-centered-cubic NN 3 0.357578 0.241221
0 L = L hypercubic NN <« 0343630 0.847667
1.5 - 035 2 0.5 ! 15 hyperdiamond NN o« 0.338411 0.983569
Bethe lattice NN o 0.340906 0.480185
FIG. 3. DOS’s for several noninteracting systems in infinite di- rectangular DOS undeterm. = 0.339352 0.571895
mensions. two 5-peaks DOS undeterm. «  0.330857 1.115358

eral cases both methods were applied, and yielded the same

results within numerical accuracy. Typical results for thethe noninteracting electrons and the spatial dimensi@n?
functionsE®(T) and C?)(T) are shown over a wide tem- What determines thesmall spread in the values & . ? (iii )
perature range in Fig. 4 for the linear chain with nearest\why does the value of , at the low-temperature crossing
neighbor hopping and for a constant DOS in infinite dimen-point vary so much more strongly?

sions. There is a maximum at lower temperature and a

- . . 2) .
minimum at h|ghe(r2)temperature E(%)(T), corresponding to V. EXPANSIONS OF C,
the two zeros of2'</(T). These are the temperatures where
the specific heat curves cross 1d—0. We will see that the influence of the DOS and of the

Numerical values folf , andC, are listed in Table I. In  crystal lattice orC, can be understood by expanding around
view of the drastically different DOS shapésee Figs. 2 and the limit of d=. In addition, ind=o the dispersione
3), it is quite remarkable that the values Gf, for these enters only via the DOSI(¢€), so that the effect of its form
systems are very similar, ranging from 0.331 to 0.358. Foon C, can be studied by expanding in terms of the differ-
the DOS with tunable parametér, is plotted vsa in Fig. 5. ence betweei(e) and a reference DO(E).
Again, C, varies only by a small amount although the
shapes of _the DOS change st.rongly. In particular, for the A. Influence of the DOS ind= o
semimetallic DOSEq. (18)] C, lies between the values for ] o ) _
the constant and twé-peak DOS, since these are the limits First we consider infinite-dimensional systems with an ar-
of Eq. (18) for a— 0. bitrary' symmetric DOSN(e) with finite bandwidth. The
These results raise the following questions which will beDOS is compared to a rectangular-shaped DOS with the
addressed in Sec. \() Why is C. at the high-temperature same bandwidthN(e)=3 for |e|<1. Their difference is
crossing point so insensitive against changes of the DOS afharacterized by the quantity

0.05 . . , 0.35 —————T——————————————
metallic DOS ——
semi-metallic DOS ------ 1
semi-metallic DOS with tails -------- |
0
e
g 005 o 034
[&}
N | 1 | 1
01 0 05 1 15]
linear chain, d=1 — A
rectangular DOS, d=c0 ----
-0.15 . . L L 0.33
0 0.5 1 15
T
FIG. 4. Second-order contribution i to the specific heat, FIG. 5. C, for several DOS's with a tunable parametefEqgs.

C@(T), for the linear chainwith NN hopping and for the con-  (17)—(19)], plotted vsa. The upper and lower dotted horizontal
stant DOS in infinite dimensions. The half-band-width is set to 1 inlines represent . for the constant DOS and the twbpeaks DOS,
both cases. The inset shows the correlation energy/ respectively.
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tions fo(x,8), C?(B), andC®(B) pertaining toN(e), as

weII as the known crossing points for the rectangular DOS,
1//5’+—O 13801 andC,=0.44046 at low tempera-

tures whileT . = 1/,8+ 0.57190 andC . =0.339 35 at the

which will serve as an expansion parameter. We will expanchigh-temperature crossing point.

C., to lowest order in6N, making use of the known func- We begin by expanding@'?)(B) for small 5N:

1 _
5N=f de [N(e)—N(e)|, (20)
-1

c@(p)=C® (,3)+4 +O[(8N)?]. (21)

Bzf dx [fo(x,8) = fo(x,8)fo(x,8)°

Using standard inequalities it can be shown that the neglected terms indeed vanisliNie (for fixed B<%). Now

6(2)(,8) is expanded around the known crossing p(ﬁqt Whereaz)(ﬁ+)=0. Then the new crossing point temperature is
determined from the condition

0=C®(8,)=(8,~B,)C?’ (B+)+4 ﬂzf dx fo(x,B)fo(x,B)°|  +O[(8N)?]. (22
B=B
To lowest order the shift i8,. is hence given by
J— 1
oB+=B+—B+= j_ldf N(G)AB+(€)+O[(5N)2L (23
where
n2 2 2
B |7 B
AB.(e)= 86(2)’(E+) {(9,82 cosh: )f dx fO(X B)3coshi3xBe) - (24)

Finally we expandC®(8) in B—f. to first order and can in fact estimate the maximum value of the si@.
evaluate it for3= 8, + 88, . Thus the specific heat at the =C+—C. for arbitrary N(e) with finite bandwidth, using

crossing poinC. is obtained to lowest order iiN as simple integral inequalities:
_ 1
C+=C++J' deN(€)AC.(€)+O[(sN)?], (25 |6C_|<min(a;,a,- max[N(e)])+O[(SN)?], (27)
-1 O<e<1
where
0.6 I 1 1 I
AC (o B € 04 T -
! 2cosi(3 . €) 02k ,,” . -
+CO(BAB()-COB). 20 . OF s
The last two equations show how the first order effecCan o 02f I/’ 7
of a deviation ofN(€) from a rectangular shape can be de- < 04k / _
termined by a single integration. 7
The numerical evaluations of the functiadnC_ (€) are 086 | i .
plotted in Fig. 6 for both crossing points. The amplitudes of 08k / high-temperature crossing ooint — —
the functionAC+(§) corresponding to the:- low- and h.igh- N |3w_temgeratu,e crossing Soint —
temperature crossing points are seen to differ greatly, i.e., by -1 | 1 1 1
a factor of about 40. This implies a much greater sensitivity 0 02 04 0.6 0.8 1
towards changes of the DOS and the dimension of the value E
of C, at thelow-temperature crossing point. FIG. 6. Weight functiorAC_, (&) determining the shift irC.. at

It is also clear thalC. is not entirely universal at the the low- and high-temperature crossing points for a Hubbard model
high-temperature crossing point, since for a general densityy d=« with finite bandwidth, according to Eq25). The half-
of statesN(e) the integral in Eq(25) does not vanish. We band-width is set to unity.
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TABLE Il. Comparison of the approximate results for. at the high-temperature crossing point obtained
from the expansion iN [Eq. (25)] with the exact values for several DOS's @+ ~. The expansion is
controlled by the parameteiN, which measures the “distance” ®(e) to the rectangular DOS, see Eq.
(20). “Metallic” and “semimetallic” refer to the DOS'’s of Eqs(17) and(18), respectively. The last column
shows the difference between the approximate and the exact results in percent.

DOS a SN C approx C exact diff.
rectangular 0 0.339352 0.339352 0
Bethe lattice 0.231 0.341391 0.340906 0.14%
metallic 4 0.267 0.341271 0.340444 0.24%
metallic 6 0.207 0.340482 0.339966 0.15%
metallic 8 0.169 0.340091 0.339743 0.10%
metallic 10 0.143 0.339871 0.339621 0.07%
metallic 12 0.124 0.339735 0.339552 0.05%
semimetallic 0.1 0.070 0.338349 0.338381 0.02%
semimetallic 0.5 0.296 0.335393 0.335880 0.14%
semimetallic 1 0.500 0.333279 0.334253 0.29%
semimetallic 2 0.770 0.331629 0.332752 0.35%

with a;=max- 4|AC, (¢)|, a,=/,de |AC,(€)|. At the  1/d corrections are given by the contribution from thd 2
high-temperature crossing point we fireg=0.02268 and nearest neighbors vectors suchRas=(1,00 ...) "
a,=0.02200, i.e., to ordeO(SN) we have|sC,|<C,,

which is the reason for the insensitivity 6f, to changes in 4 . 4

N(e). Furthermore the predicted range of values 0.339 2 fm(X, B =fo(x,B)*+2dfy(x,B)4+ - -

+0.023 corresponds well to the observed range of 0.331— "

0.358; see Table I. On the other hand, at the low-temperature . L[240 4 s
crossing point we findi; =0.9330 anda,=0.7727, so that =fo(x,B) "+ 54 E&_xfO(X"B) +0(d™9),
|6C.|~C, . HenceC, is indeed not confined to a small 08
interval in this case. (28)

To check the validity of this expansion we applied Eq. ) o ) .
(25) to several infinite-dimensional systems at the high_where a partla_l derivative with respectxavas employed in
temperature crossing point. Results for the Bethe lattice, a&'® Sécond line to remove the factor dosR,) from
well as for the metallic DO$Eq. (17)] and the semimetallic f1(X,8). Hence the corrections tG, in order 1d can be
DOS [Eq. (18)] at several values of the parameterare palculated entirely fronfy(x,8). This func_tlon contains an
given in Table II. As expected we find that the lowest-orderntegral over the DOSN(e) only, which in turn must be
approximation in Eq(25) describes the behavior Gf, very expanded in 4.7 Then the f|n|t_eel correction tor andQ+
well if the deviation from the rectangular DOS is not too can be calculated by expanding E@$5) and (16) to first
large. The difference between the exact valu€ofand the order in 1d, with the following results for the high-

approximate valu€ . + 5C, is due to corrections of order temperature crossing point
(8N)?, and hence is typically an order of magnitude smaller
than the first-order correctioéiC, . B 1 5

Hence we have shown that for a small chadéin the C.=0.343630-0.013 5996+O(d ), (29)
density of states the variation €, at the low-temperature
crossing point is large, while at the high-temperature cross-
ing point it is small and well described by the first-order B 1 a1
correction in SN. This gives quantitative answers to the T.=0.84766%0.082 65oa+O(d ) J2d’ (30
guestions posed at the end of Sec. IV.

Here the temperature scale has been reset to our previous
choice of unit half-band-width in finite dimensiofise., the
To determine the influence of the lattice dimension on theextra factor 1{/2d must be omitted in order to recov&r. in
value of C. we study the hypercubic lattice with NN hop- d=). Again this expansion compares very well with the
ping t and the scalinf t=1/y2d and expandC, in 1/d.  numerical results; see Table IIl. Note that the coefficient of
Since the large variation &, at the low-temperature cross- d~ ! in Eq. (29) is already much smaller tha@, in d=o,
ing point can already be understood from the results of Seavhich is the reason for the insensitivity @, to lattice
VA, we will perform this calculation only for the high- effects, such as Brillouin-zone shape and momentum conser-
temperature crossing point. vation. We expect that for longer-range hopping the small-
As discussed in Sec. Il, fod=« only the local term ness of the deviations in the value Gf, may equally be
involving f(x,8) remains in the lattice sum in E¢L3). The traced to 1d corrections.

B. Lattice effects in dimensiond=1, 2, 3
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TABLE Ill. Comparison of the approximate results far, at  system, leading to a nearly universal value for the high-
the high-temperature crossing point obtained from the expansion itEmperature intersection &(T,U) andC(T,0).
1/d [Eqg. (29)] with the exact values for hypercubic lattices dn To gain a more quantitative understanding we identified
dimensions. The last column shows the difference between the agyo0 small parameters which determine the crossing point
proximate and the exact results in percent. valuesC ., . The starting point for expansions in these small
parameters is the limit of infinite dimensiond= ). (i) For

Lattice d C+ approx et diff d=o0 the dependence d€, on the shape of a DOSI(¢)
hypercubic " 0.343630 0.343630 o with_ finit_e bandwidth is well described by 1the fir_st—order cor-
simple cubic 3 034164 0348327 005y 'cction in the parametesN=Jde [N(e)—z|. This param-

: .. eteris ameasure of the difference betwéHr) and a con-
ﬁg::rre(::;t:]ce 12 (;)3355702423: (?;5552:572 é)f;;//" stant rectangular DOS. It turns out that at the high-
. . . (1)

temperature crossing point this correction is small for almost
all DOS’s, while it is large at the low-temperature crossing
VI. CONCLUSION point. (i) For hypercubic IaFtices in dimension§_1:i<oo the
value of C, may be obtained by an expansion arouhd
For many correlated electronic systems the curves of the=« in powers of 1d. At the high-temperature crossing point
specific heat vs temperature obtained for different values of ¢he value ofC, of the d-dimensional system is already ac-
second thermodynamic parameleare known to intersect.  curately determined by the first-order correction id &ven
For the Hubbard model at half-filling the specific heat curvesfor d as low asd=1, due to the smallness of the prefactor of
for different values of the Hubbard interactibhcross twice, this term. These expansions show in detail Wiy has an
the crossing point at high-temperatures being remarkablglmost universal value at the high-temperature crossing
sharp up to intermediate valuesdf We observed that . , point.
the value of the specific heat at this crossing point in the
weak-coupling limit, is practically the same for a several APPENDIX: INTERNAL ENERGY AT WEAK COUPLING
different lattice systems. We analyzed the origin of this con-

spicuous feature by calculatir@, in perturbation theory in The internal energy per lattice siEis given by*
U. We found the values df , at the high-temperature cross- _

ing point to occur in very small interval, i.eG,~0.34 is E(T,U)=T| dk E e'“n?

indeed almost independent of dimensionality, crystal lattice, “n.7

and energy dispersion. This is not the case for the crossing 1 .
: A e+ 352 (k lwp)
point at low temperatures, whe@, varies on a much larger % kT2 o™ ®n
scale. Gol(iwn, k) 1=3 (K,iwp)
ualitatively, the reason for this difference can be traced _— .
to %e relevan{ energy scales on whi€lfT,U) varies. At Whe+re n denotes fermlomc Mat;ubara frequenc.|e$,.
high temperatures, the energy scaleTas essentially deter- gc()l ' al?)d, fl :il' ;r?ee _rlor;ln;enrgcztm(gl]( iGre)e?S ftl;]gcic;ﬂ_ IS
mined by the bandwidth, i.e., by the hopping amplitude o\'®n p " @n He M), oL ;‘1’“ h
the dispersiorg, . At low temperatures, on the other hand, energy for spino. In the paramagnetic phase the sum over

. - . spins just gives a factor of 2, and the spin indices on the
the generation of low-energy excitatiofhich are respon- If be d d
sible for the strong enhancement of the low-temperature spes—e ~eénergy can beé oroppea. . .
For a symmetric DOS the chemical potentjalat half-

cific heat and9C/9U>0) leads to a renormalized energy flling is ai by U/2 for all q il
scalet—tgy<<t. The first maximum inC(T,U) occurs at a lling is given by U/2 for all temperatures due to p?rtlc e
temperature that is of the order of; (see Fig. 4 As a  hole symmetry. It is useful to define shifted functiodg *
consequence, the first sign chang@®@ydU is also linkedto = Ggl— U/2 and2 =3 — U/2, with the new chemical poten-
ter , SO that the intersection dI(T,U) andC(T,Q) at low Fal fixed at 0. Up to second order id 2, is given by only
temperatures does not occur at any predetermined value. In i . N
contrast, the second sign changed@/dU is determined ©ne Féynman diagram where the lines now repreSgnive

only by energy scales that also appear in the noninteractingrite i(k,i wy)=U2 o(K,iw,) +O(U3), with

. (AD

H H
et

blkisin) = L = =T 3 [dke [ay faicy

wim

><Go(kz,iw,)éo(k3,iw,+ivm)éo(k4,iwn+ivm)2 6(k1_k2+k3‘k4_K) . (A2)
K

where v, denote bosonic Matsubara frequencies and the sum is over reciprocal-lattice WeckExpansion of the internal

energy[Eqg. (A1)] in powers ofU yields Eqgs.(7) and(8), and
gonr | o(K,iw,)

O'(k,la)n)"rzekm .

. (A3)
lwn— €y

EQ(T)=T| dk>,
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The frequency summations are carried out as u€ualth the result

Ky,iw, sini{ 3 B(e. — k, T €k, ™ €k,)]
TE& - [ ak, | aks [ ok, “ Sl S slki—kptks—ke=K). (A4

n lw
" 8l ex, — €k, t €k, — 6k4]H cosh; Bey)

Here we eliminate the energy denominator using the identity SBy& %,Bfédxcoshéxﬁy). Next we rewrite the second term
in square brackets in EgA3) as a formal derivative & d/de,, of Eq. (A4). We make the integrand symmetric in &l by

shifting k, andk, by Q, wheree, o= —¢€,. Then the derivative can be replaced bgd2JB because only producI;Seki
appear. Takings inside the derivative we finally arrive at

EQ(T)=— B 32f dxf dklf deJ dkgf dk,

COSF[% XB(EK1+ €k2+ Ek3+ Ek4)]
X—— - - - > 8(ki— kot ka—ks—K). (A5)
coshz Bex )cosh; Bey,)cosh; Bey, )cosh; Bey,) K
Ind=1, 2, and 3 this simplifies to E@9), while for d=o the § function can be omittéd and the numerator can be replaced
by I1{"_,coshéxge), leading to Eq(10).
The integrals in Eq(A5) also factorize if we express momentum conservation as a sum over lattice VRgtors

> Sk —Kot+ks—ks—K)=2, exdi(k;—ko+ks—k,—K)-Rp], (AB)
K m

leading to Eqs(13) and(14). Since the function$,(x,8) in Eq. (14) cannot be calculated in closed form for genesalve
employ a high-temperature expansion, which yields

oo

"1+
fm(x,8)= 2, %E(TX) la(Ri). (A7)

In(Rm)=f dk (e,)"explik-Rp), (A8)

whereE, (x) are Euler polynomials. The remaining Brillouin-zone integrals are calculated as follows. Faidtheensional
hypercubic lattice the lattice vectors &Rg,=(my, .. .my) with integerm;, so that for NN hoppind we have

d

n
| he Rp)=(=1)" ( )
PRo=C0" 2

=1

™ dkl
f .- (2 cosi)™ cogki|my]) . (A9)
[

The integral in square brackets equaﬂ_"s) {f 0<n;—|m;|=2r; with integerr;, and zero otherwise. Hence

d 1

IRy =(—t)™! >’ —_, A10
n (Rm)=(~1) ) rg =1 N+ my])! (A0
where the sum is restricted tor 2+ - - - +2rg=n—M", with M"®*=39 . |m;|. Note that|"® vanishes ifM">n or if n

+MP"° is odd. For the bcc lattice id=3 we use the hypercubic lattice baBis and the dispersion given in Sec. Ill. We obtain

® [n
(R (t)”H (‘””iﬂl(r-)’ (A11)

with r; defined as above. In particuld{*® vanishes ifM®°=max|m;|>n or if n+|m;| is odd. The advantage of the present
high-temperature expansion is that terms with>n vanish when expanding to ordgf', so that the lattice sum terminates at
m;=n. In addition, lattice symmetries can be used to further reduce the computational effort. This makes the calculation
feasible even in dimensiod=3, where numerical Brillouin-zone integration is usually difficult. At the high-temperature
crossing pointO(8%Y) is typically sufficient to obtaifil, andC, to an accuracy of 1C°.

J’ d—(2 cosk;)" cog ki|m;|)
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