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Anderson Impurity in a Correlated Conduction Band
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We investigate the physics of a magnetic impurity with spin 1�2 in a correlated metallic host. Describ-
ing the band by a Hubbard Hamiltonian, the problem is analyzed using dynamical mean-field theory in
combination with Wilson’s nonperturbative numerical renormalization group. We present results for the
single-particle density of states and the dynamical spin susceptibility at zero temperature. New spectral
features (side peaks) are found which should be observable experimentally. In addition, we find a general
enhancement of the Kondo scale due to correlations. Nevertheless, in the metallic phase, the Kondo scale
always vanishes exponentially in the limit of small hybridization.

PACS numbers: 71.27.+a, 75.20.Hr
The Anderson model [1] has been successfully applied
in the past to describe the physics of a magnetic impurity
embedded in a conducting host. Extensive theoretical stud-
ies of this particular many-body problem led to consider-
able insight as well as progress in the development of new
methods [2]. The most thoroughly analyzed case is that
of an impurity in a noninteracting conduction band with
a constant density of states. Several properties have been
established by Wilson’s numerical renormalization group
(NRG) [3,4] and by the Bethe ansatz [5]. Most impor-
tantly, a new many-body energy scale TK (the Kondo tem-
perature) arises, which is exponentially small in the limit
of vanishing hybridization. In addition, it has been demon-
strated [6] that below this temperature the system can al-
ways be understood as a “local Fermi liquid” with strongly
renormalized quasiparticles. The single-particle spectrum
was shown to exhibit a generic three peak structure consist-
ing of two atomic levels and a quasiparticle resonance of
width TK . Based on this model, a number of experimental
results for dilute impurities in metals have been explained
successfully, including measurements of the resistivity, the
magnetic susceptibility, and the specific heat. For a review,
see Ref. [7].

It has become clear, however, that the single impurity
Anderson model is somewhat too simplified and that quali-
tatively different types of physical behavior are possible
when a more general Hamiltonian is considered. One very
important characteristic of real materials is the interaction
among the conduction electrons. This aspect is usually ne-
glected, mostly for technical reasons, i.e., to simplify the
investigation. If taken into account, we expect, at least, a
renormalization of the model parameters. Our work will
focus on the question whether, in addition, qualitatively
new physics is possible. An experimental realization fre-
quently cited in this context is the cuprate system Nd22x-
CexCuO4 [8], a concentrated impurity system, where the
energy scale of low temperature heavy fermion behavior is
apparently incompatible with the standard Kondo picture.

Models with a single impurity embedded in a correlated
host were studied already within several approaches. Per-
turbative calculations in a slave boson representation by
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Khaliullin and Fulde [9] yielded a renormalization of the
effective Kondo coupling. Very similar results were ob-
tained by Tornow et al. [10] within a noncrossing approxi-
mation. Furthermore, in the limit of high dimensions and
using a variational treatment, Davidovich and Zevin [11]
found a qualitative change of the behavior of the Kondo
temperature TK . According to these authors, above some
intermediate value of the conduction band interaction, TK

is no longer exponentially small at vanishing exchange
coupling. In our work, we will discuss this issue in detail.
Finally, in the case of one dimension, Phillips and Sandler
[12] and also Schiller and Ingersent [13] represented the
interacting host as a Luttinger liquid, which makes a renor-
malization group treatment possible. Among other results,
they found that in some region of parameter space an un-
quenched local moment may survive down to the lowest
temperatures.

These studies already indicate the competition of several
effects: (i) The conduction band correlations may change
the density of states (DOS) of the conduction band. (ii) A
repulsive on-site interaction will reduce the hybridization
of the impurity level. (iii) The conduction electrons will
become increasingly polarized, thus enhancing the effec-
tive spin coupling of the impurity moment. In the follow-
ing, using Wilson’s nonperturbative NRG, we will analyze
which one of these factors dominates.

Our Hamiltonian consists of a spin-1�2 impurity embed-
ded in an interacting host (see also Fig. 1) represented by
a one-band Hubbard model [14]:

H � 2
X
ijs
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Note that the impurity hybridizes with a single conduction
band orbital, which in the following will be denoted as the
i � 0 Hubbard site.

We will be interested in the case of half filling, which—
assuming a bipartite lattice and next-neighbor hopping
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FIG. 1. Anderson impurity (square) coupled to one site of a
correlated lattice (circles). The hybridization is taken to be
purely local. Right: effective two-impurity model with non-
interacting band orbitals (empty circles) of energy ei and hy-
bridization Vi .

(tij � t) only— is equivalent to ec � 2UB�2
and ef � 2U�2. The calculations in our paper are
restricted to the paramagnetic phase of the host. A con-
trolled approach [15,16] to correlated lattice problems is
possible in the limit of large coordination number Z ! `,
scaling the hopping matrix elements as t � �t��

p
Z�. In

our treatment we will use the Bethe lattice and take the
noninteracting half bandwidth D � 2t� � 1 as the unit
of energy. It should be emphasized, however, that the
choice of the lattice is merely motivated by calculational
convenience and should have no qualitative effect on the
results [17].

It was pointed out in [11] that integrating out all
the band fermions except those on the i � 0 Hub-
bard site (the so-called “cavity method”) yields an
effective action which has the same retarded part
Seff,ret � 2

R R
dt dt0 c

y
0sG

21
0 �t 2 t0�c0s�t0� as the

pure Hubbard model. As a result, the system can be
described as a two-impurity model (see Fig. 1) with an
effective noninteracting bath defined by a hybridization
function Dc�v� � p

P
p jVpj

2d�v 2 ep�. In our cal-
culation we will therefore follow a two-step procedure:
First, we solve the Hubbard model in dimension d ! `

using Wilson’s numerical renormalization group [2,4] as
in [17]. In the paramagnetic phase considered here this
leads to a Mott transition at a critical interaction strength
Uc

B � 2.92. Correlations strongly influence the structure
of the DOS; close to the transition point an effective nar-
row band [18] is formed by the quasiparticle resonance.

In the next step, we add the f impurity. The combined
system is then again treated using NRG, this time without
the self-consistency loop [the modification of the effective
bath due to the impurity is O �1�N� and can therefore be
neglected in the thermodynamic limit]. The band corre-
lations enter via the previously determined DOS and the
c-site interaction UB. In our calculations we have con-
fined ourselves to the metallic regime UB , 2.92 and zero
temperature.

First, we present results for the single-particle spectra
rf�c��v� � 2

1
p , ImGf�c��v� of the impurity f and the

Hubbard site i � 0. Considering rf (Fig. 2a), we obtain
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FIG. 2. Spectral densities rf (a) and rc (b) at zero tempera-
ture, D � 0.1 and UB � 2.6. For comparison, we also show
the c spectral density at vanishing hybridization D, equivalent
to the DOS of the Hubbard model.

a three peak structure in the spectrum already for U � 0
and small hybridization D �

pV 2

2D . This may be attributed
to a narrowing of the effective band, leading to resonances
at finite energy [18]. Upon increasing U, these peaks are
reduced and weight is shifted to the atomic levels which
for large interaction can be found at v � 6U�2. In ad-
dition, the height of the quasiparticle peak is significantly
reduced. Luttinger’s theorem [19] which states that rf�0�
is pinned at its U � 0 value is therefore found to be not
valid in the case of an interacting conduction band.

Furthermore, we notice that the width of the quasipar-
ticle resonance is almost independent of U, in contrast to
the situation with UB � 0. This already indicates a strong
enhancement of the Kondo scale due to band correlations,
as will be discussed in more detail below.

The corresponding results for rc are shown in Fig. 2b.
For any finite D a hybridization gap is formed. This
is already the case at U � 0 and UB � 0 (not shown
here) and persists for finite interactions, indicating that the
system is a Fermi liquid (a nonvanishing self-energy at
v � 0 would smear out the gap). The Fermi liquid pic-
ture is independently supported by the fact that the fixed
point of the NRG and its leading irrelevant eigenoperators
are unchanged compared to the noninteracting case; see
also [20].

A quantity which is more easily accessible experimen-
tally is the (longitudinal) dynamic susceptibility, defined
as the response of the impurity spin to a local magnetic
field

x�v� � i
Z `

0
dt eivt��Sz

f�t�, Sz
f�0��� . (2)

Within the NRG formalism it is convenient [21] to calcu-
late the imaginary part x 00�v� directly and to obtain the
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real part x 0�v� via Kramers-Kronig transformation. In
particular, the static susceptibility is then given by x0 �
x 0�0�. In the following we will focus on the spin relaxation
function:

S�v� �
x 00�v�
pv

. (3)

In a first step, we consider its behavior with increasing
band correlations for fixed D, U (see Fig. 3a).

In this plot we employed a normalization of x 00�v�
suggested by the Shiba relation [22,23]

lim
v!0

x 00�v�
pv

� 2x2
0 (4)

derived for UB � 0 [23]. For the noninteracting band this
relation is indeed satisfied (with an error of less than 10%
due to the NRG procedure). With increasing UB system-
atic deviations arise, indicating that the general proof [23]
based on Ward identities breaks down for an interacting
conduction band. The line shape of x 00�v� also depends
on UB. For a weakly correlated band we obtain a single
elastic peak, while close to the metal-insulator transition
(MIT) at Uc

B � 2.92 two additional inelastic side peaks
arise. They indicate that in this case the Kondo singlet is
formed at an energy scale which lies outside the effective
band. The width of the remaining elastic peak is deter-
mined by the effective bandwidth of the Hubbard model.

An increase of the impurity interaction U (Fig. 3b) leads
to a suppression of the elastic peak and to a shift of the
inelastic peaks (corresponding to a slight reduction of the
singlet binding energy).

For the real part x 0�v�, some typical results are shown in
Fig. 4: Already at a weak band interaction UB (when the
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FIG. 3. Local spin relaxation function for fixed U � 0 (a) and
UB � 2.9 (b). In both cases, the hybridization has the value
D � 0.01. Note that due to the normalization a value of 1 at
v � 0 would be consistent with the Shiba relation.
Hubbard DOS is well approximated by the noninteracting
one) the static susceptibility x0 is strongly reduced.

Of particular interest is the hybridization dependence of
the low energy scale, the Kondo temperature TK , at inter-
mediate to strong band interaction. While there is agree-
ment on the fact that a small UB enhances the effective
Kondo coupling [9–11,20] but still leads to an exponen-
tially vanishing TK at small hybridization D, it was found
in Ref. [11] that above an intermediate UB the Kondo tem-
perature varies linearly in D. We will now consider this
issue in detail.

We define TK to be equal to the binding energy of the lo-
cal singlet, which is given by the position of the maximum
in x 00�v�. Note that this definition also applies to the case
of a noninteracting impurity (U � 0). With increasing D

we observe a crossover from an exponential to a power
law behavior TK 	 D. The crossover point depends on
UB and is proportional to the effective bandwidth Deff.
For very small D, the Kondo temperature always varies as
lnTK 	 2U�D. In contrast to Ref. [11] we therefore find
an exponentially small TK at any UB, as long as the host is
metallic. The discrepancy may be due to the approximate
variational method used in Ref. [11].

At a finite band interaction, UB can lead to a nonmono-
tonic behavior of TK ; see Fig. 5. The increase at small UB

can be attributed to the local interaction on the site i � 0
while the decrease close to the MIT is due to band narrow-
ing. As UB ! UMIT , the Kondo scale approaches a finite
limiting value, indicating that even in the paramagnetic in-
sulator the local impurity is screened. We can understand
this by considering the effective hybridization “seen” by
the f impurity

Df �
V 2

v 1 i01 2 Dc�v1�
. (5)

In the insulating host Dc � 0 and therefore

Df �v� 	 V 2d�v� . (6)

In this case, the impurity couples exclusively to the i � 0
site, the singlet is purely local, and no Kondo many-particle
physics is possible.
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FIG. 4. Real part of the dynamic susceptibility at D � 0.1 and
U � 1.0.
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FIG. 5. Kondo temperature as a function of the band
interaction.

In conclusion, we analyzed a model describing an
Anderson impurity in a correlated band. The limit of
large coordination numbers made a treatment within the
dynamical mean-field theory possible. Using the nonper-
turbative numerical renormalization group, we solved the
corresponding effective two-impurity model and obtained
the one particle spectra and the dynamic susceptibility.
We found that the system is always a Fermi liquid as long
as the host is metallic. Band correlations lead to a strongly
enhanced Kondo scale, indicating that the dominant effect
of UB is to increase the spin polarization of the conduction
electrons. Nevertheless, TK remains exponentially small
as a function of hybridization. This is consistent with a
Fermi liquid picture of the Hubbard host where the Kondo
screening of the impurity is due to fermionic quasiparticles
instead of bare electrons. In the spectral quantities, a
change of the line shape and the formation of side peaks
is observed close to the Mott transition. This is explained
by a narrowing of the effective conduction band.

Of course it would be desirable to compare our results
with experiments on systems that can actually be consid-
ered as dilute. One possibility might be to perform ESR
measurements on rare earth systems, where impurities can
be introduced into a correlated host in a controlled way.
Here the main experimental signal [the absorption x 00�v�]
could be directly related to our model calculations.

In future calculations we will study the effects of finite
temperature, different fillings, and antiferromagnetic order
4420
on our findings. We will also extend our analysis to ther-
modynamic and transport properties.
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