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Abstract. The spectral properties of La1−xSrxTiO3, a doped Mott insulator with strong Coulomb corre-
lations, are calculated with the ab initio computational scheme LDA+DMFT(QMC). It starts from the
non-interacting electronic band structure as calculated by the local density approximation (LDA), and
introduces the missing correlations by the dynamical mean-field theory (DMFT), using numerically exact
quantum Monte-Carlo (QMC) techniques to solve the resulting self-consistent multi-band single-impurity
problem. The results of the LDA+DMFT(QMC) approach for the photoemission spectra of La1−xSrxTiO3

are in good agreement with experiment and represent a considerable qualitative and quantitative improve-
ment on standard LDA calculations.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 74.25.Jb Electronic structure –
79.60.-i Photoemission and photoelectron spectra

1 Introduction

At present, the electronic properties of solids are inves-
tigated by two essentially separate communities, one us-
ing model Hamiltonians in conjunction with many-body
techniques, the other employing density functional the-
ory (DFT) [1]. DFT and its local density approximation
(LDA) have the advantage of being ab initio approaches
which do not require empirical parameters as input. In-
deed, they are highly successful techniques for the calcula-
tion of the electronic structure of real materials [2]. How-
ever, in practice DFT/LDA is seriously restricted in its
ability to describe strongly correlated materials where the
on-site Coulomb interaction is comparable with the band
width. Here, the model Hamiltonian approach is more gen-
eral and powerful since there exist systematic theoreti-
cal techniques to investigate the many-electron problem
with increasing accuracy. Nevertheless, the uncertainty
in the choice of the model parameters and the technical
complexity of the correlation problem itself prevent the
model Hamiltonian approach from being a flexible or re-
liable enough tool for studying real materials. The two
approaches are therefore complementary. In view of the
individual power of DFT/LDA and the model Hamilto-
nian approach, respectively, it would be highly desirable
to be able to combine these techniques, thereby creating
an enormous potential for future ab initio investigations of
all real materials, including, e.g., f -electron systems and
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Mott insulators. One of the first successful attempts in
this direction was the LDA+U method [3], which com-
bines LDA with a basically static, i.e., Hartree-Fock-like,
mean-field approximation for a multi-band Anderson lat-
tice model (with interacting and non-interacting orbitals).
This method proved to be a very useful tool in the study
of long-range ordered, insulating states of transition met-
als and rare-earth compounds. However, the paramagnetic
metallic phase of correlated electron systems such as high-
temperature superconductors and heavy-fermion systems
clearly requires a treatment that goes beyond a static
mean-field approximation and includes dynamical effects,
e.g., the frequency dependence of the self-energy.

During the last decade a new many-body approach
was developed which is especially well-suited for the in-
vestigation of strongly correlated metals – the dynamical
mean-field theory (DMFT) [4–6]. It becomes exact in the
limit of high lattice coordination numbers [7] and pre-
serves the dynamics of local interactions; hence it rep-
resents a dynamic mean-field approximation. In this non-
perturbative approach, the lattice problem is mapped onto
an effective Anderson impurity model with a hybridization
function which has to be determined self-consistently. To
solve the effective impurity problem one can either use
approximative techniques such as iterated perturbation
theory (IPT) [8,6] and the non-crossing approximation
(NCA) [9–11], or employ numerical techniques like quan-
tum Monte-Carlo simulations (QMC) [12], exact diagonal-
ization (ED) [13,6], and numerical renormalization group
(NRG) [14]. In principle, QMC, ED and NRG are exact
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methods, but require an extrapolation: discretization of
the imaginary time ∆τ → 0 (QMC), the number of lat-
tice sites of the respective impurity model ns →∞ (ED),
and the parameter for logarithmic discretization of the
conducting band Λ→ 1 (NRG), respectively.

In principle, the main idea of the LDA+U method [3]
(i.e., complementing the LDA band structure by a
screened Coulomb interaction between localized tight-
binding orbitals) can be practically applied with more re-
fined approximation schemes [15–20]. Indeed, a calculation
scheme supplementing LDA with DMFT to include dy-
namic effects was first formulated by Anisimov et al. [15]
and was used to calculate the photoemission spectra of
La1−xSrxTiO3, a doped Mott-insulator and strongly cor-
related paramagnetic metal, in connection with IPT [15]
and NCA [20]. The LDA++ approach by Lichtenstein
and Katsnelson [16] formulates a very similar strategy
and was recently applied to investigate correlation effects
in iron [21,22]. Both IPT and NCA are approximative
methods to solve the effective single-impurity problem
in the LDA+DMFT scheme. They have the advantage
of being numerically inexpensive, but their reliability, es-
pecially in the case of multi-band systems with particle
densities off half-filling, is in principle uncertain. In this
situation, it is clearly desirable to employ a controlled
computation scheme to obtain numerically exact results
from LDA+DMFT. The QMC method is such a scheme
and was already applied by Lichtenstein and collabora-
tors to calculate the magnetic excitation spectrum of fer-
romagnetic iron [22] and the photoemission spectra of
Sr2RuO4 [23]. In the present paper we report on our im-
plementation of the LDA+DMFT(QMC) technique and
the results obtained with it for the photoemission spectra
of La1−xSrxTiO3.

2 Computational scheme

2.1 Local density approximation (LDA)

The main problem in combining LDA and model Hamil-
tonian approaches comes from the fact that their founda-
tions are very different. The LDA employs a functional of
the electron density, while Hubbard and Anderson models
are formulated in terms of localized, site-centered, atomic-
like orbitals. In order to merge the approaches it is nec-
essary to write LDA equations in the basis of such or-
bitals. There is one variant of the LDA method, based on
tight-binding linearized muffin-tin orbitals in the orthog-
onal approximation (TBLMTO) [24], which is naturally
realized in such a basis. The corresponding Hamiltonian
can be written as

HLDA =
∑

ilm,jl′m′,σ

(δilm,jl′m′εilmn̂σilm

+tilm,jl′m′ ĉ
σ†
ilmĉ

σ
jl′m′), (1)

where i, j are site indices, l,m, l′,m′ are orbital indices, σ
is a spin index, and operators carry a hat.

Taking this expression as the non-interacting part of
a multi-band periodic Anderson model, one may comple-
ment it by a correlation term describing the local contri-
butions to the Coulomb interaction

Hcorr =
1
2

∑
il,mσm′σ′

′ U ilmm′ n̂ilmσn̂ilm′σ′ . (2)

The prime on the sum indicates that at least two of the
indices on different operators have to be different. Here,
U ilmm′ denotes the direct Coulomb integral. The much
smaller exchange integral and other local contributions
of the Coulomb interaction have been neglected. Further-
more, non-local Coulomb contributions are not considered
in Hcorr. Note, that the largest non-local contributions is
the nearest-neighbor density-density interaction which, to
leading order in Z (Z: number of nearest-neighbor sites),
yields only the Hartree term [25] which is already taken
into account in the LDA. In an actual calculation, it is
not possible to include the local two-particle interaction
terms between all orbitals appearing in (2) since the num-
ber of states grows exponentially with increasing orbital
quantum number. Thus, one usually concentrates on a cer-
tain subset of correlations and treats the influence of the
remaining states via the use of effective, screened inter-
action parameters for the shells under consideration. In
this spirit, we will assume in the following that it is only
necessary to take the Coulomb interaction for the d-shell
of the transition metal ions (i = id and l = ld) explic-
itly into account; therefore the indices il will be omitted.
The correlation part of the Hamiltonian then acts only
on the d-wave functions of the transition metal ions. All
other valence orbitals will be treated as bands of itinerant
electrons which are well described by the LDA.

One must take into account, however, that the
Coulomb interaction is already present in LDA in some av-
eraged way. Hence, to avoid double-counting one needs to
subtract this term from the LDA-Hamiltonian. Unfortu-
nately, there exists no direct microscopic or diagrammatic
link between the Hubbard model approach and LDA, and
it is thus not possible to express the LDA energy rigorously
via the d−d Coulomb interaction parameter U (except for
the atomic limit where one can make a connection between
the Coulomb parameter U of the Hubbard model and the
second derivative of the atomic total energy as a function
of the number of electrons). While it is known that LDA
eigenvalues are rather bad approximations for excitation
energies of systems with strong Coulomb interactions, the
LDA total energy as a function of the number of electrons
is a much better approximation for the exact functional.
Furthermore, the values of U obtained from LDA calcu-
lations often agree well with experimental data and more
rigorous calculations.

Therefore one may expect that the LDA part of the
Coulomb interaction energy is well approximated by the
averaged value of the Coulomb interaction energy in (2)

Ecorr: =
1
2
Und(nd − 1). (3)

Here, U is the mean value of the Coulomb interaction
and may be obtained from a first-principles constrained
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LDA calculation [26] or from experiment, e.g. high-energy
spectroscopy; nd is the total number of d-electrons.

In LDA, one-electron energies are defined as deriva-
tives of the total energy as a function of the occupation
numbers for the corresponding states. Hence, the one-
electron energy level for the non-interacting d-states is
obtained by [15]

ε0
d :=

d
dnd

(ELDA −Ecorr) = εLDA
d − U(nd −

1
2

) (4)

with εLDA
d := d

dnd
ELDA, and ELDA being the total energy

calculated from HLDA.
Then, the new non-interacting Hamiltonian will have

the form

H0
LDA =

∑
ilm,jl′m′,σ

(δilm,jl′m′ε0
ilmn̂

σ
ilm + tilm,jl′m′ ĉ

σ†
ilmĉ

σ
jl′m′),

where ε0
ilm := εilm (1− δl,ld) + ε0

dδl,ld . In reciprocal space,
the matrix elements of the operator H0

LDA are given by:

(H0
LDA(k))qlm,q′l′m′ = (HLDA(k))qlm,q′l′m′

−δqlm,q′l′m′δql,qdldU(nd −
1
2

). (5)

Here q is an index of the atom in the elementary unit
cell, (HLDA(k))qlm,q′ l′m′ is the matrix element in k-space
of HLDA, and qd denotes the d-atoms in the unit cell.
This non-interacting part H0

LDA, taken together with the
interaction part (2),

H = H0
LDA +Hcorr (6)

forms the ab initio Hamiltonian H for a particular mate-
rial under investigation.

2.2 Dynamical mean-field theory (DMFT)

In general, the investigation of the correlated-electron
Hamiltonian H is too complicated to allow for an exact
solution or even a numerical investigation with more than
about 10 sites. Here, the DMFT [4–6] is a powerful ap-
proximation scheme which takes into account electronic
correlations and, in particular, correctly describes the for-
mation of a coherent quasiparticle band and incoherent
Hubbard bands.

The DMFT maps the lattice problem onto a single-
site problem, which is equivalent to a multi-band single-
impurity Anderson model, with the self-consistency
condition [15] (the k-integrated Dyson equation)

Gqlm,q′l′m′(z)=
∫

dk
VB

[zδqlm,q′l′m′ − (H0
LDA(k))qlm,q′ l′m′

−δql,qdldΣqlm,q′l′m′(z)]−1. (7)

Here, [...]−1 implies the inversion of the matrix with ele-
ments n (=qlm), n′(=q′l′m′), and integration extends over

the Brillouin zone with volume VB. In the present study
we consider a cubic-crystal structure and assume only the
t2g orbitals to be interacting. Due to the high symme-
try of the crystal, these three t2g orbitals are degener-
ate. Without symmetry breaking, the Green function and
the self-energy remain degenerate, i.e., Gqlm,q′l′m′(z) =
G(z)δqlm,q′l′m′ and Σqlm,q′l′m′(z) = Σ(z)δqlm,q′l′m′ for
l = ld and q = qd (where ld and qd denote the Ti
t2g orbitals). If the partially filled band under consider-
ation is well separated from other bands, as in the case
of La1−xSrxTiO3 and other transition metal oxides, one
can describe the physics of the partially filled band at the
Fermi energy approximately by an effective three band
Hamiltonian H0 eff

LDA, e.g., by downfolding to a basis with
t2g orbitals only. One obtains (indices l = ld and q = qd
suppressed):

Gmm′(z)=
∫

dk
VB

[(z−Σ(z))δm,m′−(H0 eff
LDA(k))m,m′ ]−1.(8)

Due to the diagonal structure of the self-energy the in-
teracting Green function can be expressed via the non-
interacting Green function G0(z):

G(z)=G0(z −Σ(z)) =
∫

dω
ρ0(ω)

z −Σ(z)− ω , (9)

Thus, it is possible to use the Hilbert transformation of the
unperturbed LDA-calculated density of states ρ0(ω) and
we do so in the following. This approximation is justified
if the hybridization between the t2g orbitals and the other
orbitals is rather weak as in the case of LaTiO3.

The DMFT single-site problem depends on G−1 =
G−1 + Σ and can be formulated in terms of Grassmann
variables ψ and ψ∗. For the local Green function at a
Matsubara frequency ων = (2ν + 1)π/β, orbital index m,
and spin σ one obtains:

Gσνm = − 1
Z

∫
D[ψ]D[ψ∗]ψσνmψ

σ∗
νmeA[ψ,ψ∗,G−1], (10)

where the single-site action A is given by

A[ψ,ψ∗,G−1] =
∑
ν,σ,m

ψσ∗νm(Gσνm)−1ψσνm

− U

2

∑
(mσ)6=(mσ′)

β∫
0

dτ ψσ∗m (τ)ψσm (τ)ψσ
′∗
m′ (τ)ψσ

′

m′ (τ). (11)

2.3 Quantum Monte-Carlo method (QMC)

To solve the effective single-site problem defined above we
will apply the QMC method which allows for a numeri-
cally exact solution [12]. To this end, the imaginary time
is first discretized into Λ steps of size ∆τ (∆τ = 0.25 eV−1

throughout this work), and τt := t∆τ with integer t.
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Then, in a second step, the Hubbard-Stratonovich trans-
formation

exp
∆τU

2
(ψσ∗mtψ

σ
mt − ψσ

′∗
m′tψ

σ′

m′t)
2 =

1
2

∑
st
mσ;m′σ′=±1

exp
{
λstmσ;m′σ′(ψ

σ∗
mtψ

σ
mt − ψσ

′∗
m′tψ

σ′

m′t)
}

(12)

is employed, which replaces the interacting system by
a sum of 2(2M2−M)Λ different non-interacting systems,
where M is the number of interacting orbitals. Each non-
interacting system can be solved by a Gauss integration
which yields a contribution (Ms)−1 det(Ms) to the Green
function in imaginary time, parameterized by (t, t′), where

[Mσs
m ]tt′ = ∆τ2 (Gσ

m)−1 +Σσ
m tt′

−δtt′
∑
m′σ′

λmσ;m′σ′ σ̃mσ;m′σ′ s
t
mσ;m′σ′ . (13)

Here, σ̃mσ;m′σ′ = 2Θ(σ′ − σ + δσσ′ [m′ − m]) − 1 has a
different sign if (mσ) and (m′σ′) are exchanged. Since a
full summation over all non-interacting systems is com-
putationally impossible, the Monte-Carlo method is em-
ployed for importance sampling. Details of the one-band
QMC algorithm in the context of DMFT can be found
in references [6,12] and for the band-degenerate case in
reference [27].

3 Results and discussion

The stoichiometric compound LaTiO3 has a perovskite
crystal structure with a small orthorhombic distortion
(6 Ti−O− Ti ≈ 155◦) [28]. Below TN = 125 K [29] it
is an antiferromagnetic insulator [30] with a Ti magnetic
moment of 0.45 µB and a small energy gap of approxi-
mately 0.2 eV [31,32]. At doping x = 0.05, La1−xSrxTiO3

undergoes an insulator-to-metal transition and becomes a
correlated paramagnetic metal with a strongly enhanced
susceptibility and electronic specific heat coefficient [33].

The standard LDA calculation for undoped LaTiO3

yields a density of states (Fig. 1) which is typical for early
transition metal oxides with a completely filled 2p oxygen
band ranging from −8.2 eV to −4.0 eV and a partially
filled Ti-3d band above it. Since the Ti-ion has an octahe-
dral coordination of oxygen ions, the Ti-3d band is split
into three degenerate t2g and two degenerate eg subbands
which do not mix. Titanium is three-valent in LaTiO3 and
the corresponding formal ionic configuration is d1. This
implies a partially filled t2g subband containing one elec-
tron with a total capacity of six electrons. The eg subband
is empty and situated just above the t2g subband. In order
to simplify our calculations the real orthorhombic crystal
structure was replaced by a cubic structure with the same
volume. This approximation leads to a slight overestima-
tion of the effective bandwidth.

The t2g band is the only partially filled band and is
well separated from other bands. Therefore in our DMFT

Fig. 1. Densities of states of LaTiO3 calculated with LDA-
LMTO. Upper figure: total density of states; lower figure: par-
tial t2g (solid lines) and eg (dashed lines) densities of states.

calculation we took only Coulomb interactions between
electrons in t2g orbitals into account. The resulting prob-
lem is equivalent to a Hubbard model with three de-
generate bands. The DMFT chemical potential was ad-
justed to yield the doping x = 0.06, i.e., 0.94 electrons in
the t2g band. We employ equation (3) within constrained
LDA [26], i.e., changing the number of t2g-electrons only,
to calculate U . Our LMTO-ASA calculation (TB-LMTO-
ASA code of Andersen and coworkers [24] version 47)
yields a fully-screened Coulomb interaction of U = 4.2 eV
within the basis Ti(4s, 4p, 3d) La(6s, 6p, 5d) O(2s, 2p) at
a Wigner Seitz radius of 2.37 a.u. for Ti. Our result has to
be compared to that of Solovyev et al. [34] who obtained
U = 3.2 eV employing the ASA-LMTO method within
orthogonal representation. This shows that the ab initio
calculation of U , which is the interaction between particu-
lar (t2g) orbitals, is rather sensitive to the orthogonality of
the wave functions and, also, to the choice of the orbitals.
Unless specified otherwise, we will, thus, use U = 4 eV
and keep in mind that the inherent uncertainty is about
0.5 eV.

In Figure 2, the spectral function obtained from our
LDA+DMFT(QMC) calculation at temperature T ≈
1000 K is compared with the non-interacting t2g density
of states. One can see the typical features of the spectra
of strongly correlated systems: a lower Hubbard band, a
well pronounced quasi-particle peak, and an upper Hub-
bard band. While for the non-interacting case 100% of
the spectral weight is located in the quasi-particle band,
the LDA+DMFT spectra are characterized by a spectral
weight transfer from the quasiparticle band to the Hub-
bard bands and a narrowing of the quasiparticle band.
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Fig. 2. Partial t2g densities of states of LaTiO3 calculated with
LDA+DMFT(QMC) (solid lines) and LDA (dashed lines).

The QMC simulations performed in this paper to solve
the effective multi-band single-impurity model provide
a numerically exact solution, but require a large computa-
tional effort which restricted our calculations to temper-
atures of the order of T = 0.1 eV (≈ 1000 K). Since this
technique yields results only at imaginary (Matsubara-)
frequencies the calculation of the spectral function re-
quires an analytic continuation of the spectral function
via, e.g., the maximum entropy method [35]. Previous
LDA+DMFT investigations of the photoemission spectra
of La1−xSrxTiO3 used a variant of IPT for doped multi-
band systems [15] and NCA [20] to solve the DMFT-
equations, i.e., approximate techniques. In Figure 3, we
compare the results obtained within these approxima-
tions with the numerically exact QMC simulation, all
at T ≈ 1000 K. One notes that within IPT the shape of
the upper Hubbard band is not correct. Moreover, there
is no quasiparticle peak at 1000 K, the reason being that
IPT underestimates the Kondo temperature considerably
such that the very narrow quasiparticle peak found at low
temperatures (see right inset of Fig. 3) disappears already
at about 250 K. A similarly narrow IPT quasiparticle peak
was found in a three-band model study with Bethe-DOS
by Kajueter and Kotliar [36]. While NCA comes off much
better than IPT it still underestimates the width of the
quasiparticle peak by a factor of two. Furthermore, the
position of the quasiparticle peak is too close to the lower
Hubbard band. In the left inset of Figure 3, the behav-
ior at the Fermi level is shown. At the Fermi level, the
NCA yields a spectral function which is almost by a fac-
tor two too small. The shortcomings of the NCA-results
appear to result from the well-known problems which this
approximation scheme encounters already in the single-
impurity Anderson model at low temperatures and/or low
frequencies [37,38]. Similarly, the deficiencies of the IPT-
results are not entirely surprising in view of the semi-
phenomenological nature of this approximation, especially
for a system off half filling. This comparison shows that
the choice of the method used to solve the DMFT equation
is indeed important.

Photoemission spectroscopy of the early transition
metal oxides provides a direct tool for the study of the
electronic structure of strongly correlated materials. A
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Fig. 3. Comparison of the spectral densities of La1−xSrxTiO3

(x = 0.06) as calculated by LDA+DMFT using the approxima-
tions IPT and NCA, with the numerically exact QMC-result
at T = 0.1 eV, i.e., approximately 1000 K, and U = 4 eV. Inset
left: Behavior at the Fermi level including the LDA DOS. Inset
right: NCA and IPT spectra for the temperature 80 K.

comparison of the experimental photoemission spectra [40]
with results obtained from LDA and LDA+DMFT(QMC)
at 1000 K [41] are shown in Figure 4. To take into ac-
count the uncertainty in U , we present results for U = 3.2,
4.25 and 5 eV. All spectra are multiplied with the Fermi
step function and Gaussian-broadened with a broadening
parameter of 0.3 eV to simulate the experimental resolu-
tion [40]. The LDA band structure calculation clearly fails
to reproduce the broad band observed in the experiment
at 1–2 eV below the Fermi energy [40]. Taking the correla-
tions between the electrons into account, this lower band is
easily identified as the lower Hubbard band whose spectral
weight originates from the quasiparticle band at the Fermi
energy and increases with U . The best agreement with
experiment concerning the relative intensities of the Hub-
bard band and the quasi-particle peak and, also, the po-
sition of the Hubbard band is found for U = 5 eV [42,43].
The value U = 5 eV is still compatible with the ab initio
calculation of this parameter. One should also note that
the photoemission experiment is sensitive to surface prop-
erties. Due to the reduced coordination number at the
surface, the bandwidth is likely to be smaller and the
Coulomb interaction to be less screened, i.e., larger. Both
effects make the system more correlated and, thus, might
also explain why better agreement is found for U = 5 eV.
Besides, the polycrystalline nature of the sample also spin
and orbital [44] fluctuation, not taken into account in the
LDA+DMFT approach, could further reduce the quasi-
particle weight.

In conclusion, the LDA+DMFT(QMC) approach is
shown to be a workable computational scheme which
merges the conventional band structure approach with
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Fig. 4. Comparison of the experimental photoemission spec-
trum [40], the LDA result, and the LDA+DMFT(QMC) calcu-
lation for LaTiO3 with 6% hole doping and different Coulomb
interaction U = 3.2, 4.25, and 5 eV.

a recently developed many-body technique in combination
with a numerically reliable evaluation method. Thereby,
it provides a powerful tool for future ab initio investiga-
tions of real materials with strong electronic correlations.
The LDA+DMFT(QMC) approach not only explains the
existence of the lower Hubbard band in doped LaTiO3,
but also, in contrast to LDA, reproduces the qualitative
picture of the spectral weight transfer from the quasi-
particle band to the lower Hubbard band, the position
of the lower Hubbard band, and the narrowing of the
quasiparticle band.
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